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Voronoi-Based Multi-Robot Autonomous

Exploration in Unknown Environments via

Deep Reinforcement Learning
Junyan Hu , Hanlin Niu , Joaquin Carrasco , Barry Lennox , Senior Member, IEEE, and Farshad Arvin

Abstract—Autonomous exploration is an important application
of multi-vehicle systems, where a team of networked robots are
coordinated to explore an unknown environment collaboratively.
This technique has earned significant research interest due to its
usefulness in search and rescue, fault detection and monitoring,
localization and mapping, etc. In this paper, a novel cooperative
exploration strategy is proposed for multiple mobile robots, which
reduces the overall task completion time and energy costs compared
to conventional methods. To efficiently navigate the networked
robots during the collaborative tasks, a hierarchical control ar-
chitecture is designed which contains a high-level decision making
layer and a low-level target tracking layer. The proposed cooper-
ative exploration approach is developed using dynamic Voronoi
partitions, which minimizes duplicated exploration areas by as-
signing different target locations to individual robots. To deal
with sudden obstacles in the unknown environment, an integrated
deep reinforcement learning based collision avoidance algorithm
is then proposed, which enables the control policy to learn from
human demonstration data and thus improve the learning speed
and performance. Finally, simulation and experimental results are
provided to demonstrate the effectiveness of the proposed scheme.

Index Terms—Autonomous exploration, path planning, deep
reinforcement learning, multi-vehicle systems, collision avoidance.

I. INTRODUCTION

M
ULTI-ROBOT coordination has already established its

worth in both theory and practical applications over

the past two decades. By combining the techniques of nav-

igation, localization, communication and control, networked

multi-robot teams can be coordinated to accomplish a given task

in a cooperative manner. Compared with a single sophisticated

robot, a collaborative multi-robot team may offer robustness
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to hardware faults, adaptability to environmental changes and

cost-effectiveness. Therefore, multi-robot systems have many

potential applications, such as object transportation [1], security

surveillance [2], disaster detection [3], formation coordination

[4], [5], vehicle-assisted wireless communication networks [6],

autonomous shepherding [7], connected vehicle platoons [8],

[9], etc. As an important component in multi-robot coordination,

cooperative exploration techniques have been widely used in

search and rescue missions and mapping of unknown environ-

ments, which motivates the need to develop more efficient and

feasible solutions.

In recent years, many advanced control methods and path

planning techniques have been investigated for use in single

robots to perform exploration tasks. In [10], Frontier Exploration

planning (FEP) and receding horizon Next-Best-View Planning

(NBVP) were combined, using FEP as a global exploration

planner and receding horizon NBVP for local exploration. A

two-stage heuristic information gain-based NBVP algorithm

was proposed in [11] for autonomous exploration and recon-

struction in 3-D unknown environments. The two-stage planner

included a frontier-based boundary coverage planner and a fixed

start open travelling salesman problem solver, such that it returns

an optimal path. In [12], a priori knowledge-based dynamic

object search strategy was proposed to improve the search effi-

ciency of mobile robot in home environments. An incremental

road-map based path planning strategy was developed in [13],

where the feasible global path was further optimized with the

proposed trajectory optimization method that considered the

motion constraints of the robot. In [14], the traditional approach

of frontier-based exploration and deep reinforcement learning

were combined to allow a robot to autonomously explore un-

known cluttered environments. However, in the aforementioned

works, autonomous exploration methods were only designed

for single-robot cases, which may be viewed as a limitation in

exploring large unknown areas. The use of multiple cooperating

robots offers several advantages, e.g., reduced mission comple-

tion time, increased fault-tolerance of the whole system, and

improved localization efficiency [15], which motivates the need

for further research that considers multi-robot cases.

When multiple robots are deployed in an exploration task, the

autonomous exploration problem becomes more challenging as

the cooperation between the robots must be considered thor-

oughly to ensure high levels of efficiency and to avoid conflicts
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such as repeated trajectories. Some pioneering research works

have been conducted in recent years. As an example, in [16], a

significant contribution was made in developing a collaborative

multi-robot system that built an information network in an un-

known environment by deploying information nodes. By using

the proposed networking strategy, the power consumption was

reduced while preserving the global coverage. However, this

article did not include hardware experiments to validate the the-

oretical results. In [17], pioneering research work was completed

on a decentralized cooperative exploration strategy for a mobile

robotic team equipped with range finders using a sensor-based

random graph method. A trade-off between information gain and

navigation cost was considered in the local planner. In another

study [18], a Gaussian mixture model for global mapping to

model complex environment geometries was proposed. A small

memory footprint was maintained which enables distributed

operation with a low volume of communication. A local oc-

cupancy grid for use in planning from the Gaussian mixture

model was then generated using Monte Carlo ray tracing. In

[19], autonomous exploration and mapping strategy was devel-

oped for a heterogeneous multi-robot systems including both

quadrotors and wheeled mobile robots. Even though exploring

a static environment using a team of robots has been investigated

extensively [20], [21], dealing with unexpected obstacles, such

as human movements and dynamic environments, remains an

open question.

With improvements to computational capability and access to

large training databases, deep learning has shown great potential

for solving autonomous vehicle navigation problems. In contrast

to artificial potential field based collision-free path planning

methods [22]–[24], which require comprehensive knowledge

about the environment (e.g., the sizes and positions of the obsta-

cles) and the robotic platforms (e.g., the accurate mathematical

model of the robots), deep reinforcement learning techniques

have the potential to achieve safe navigation with less work area

information in advance. Besides, since the neural network is

trained end-to-end and then map the vehicle sensor data into

action command directly, the analysis complexity to obtain

the desired trajectory is hence largely simplified for different

scenarios.

Some recent progresses in using deep learning techniques

to solve autonomous navigation problems are introduced as

follows. In [25], an efficient method to solve the inverse re-

inforcement learning problem based on the sparse Gaussian

process prediction was proposed. The robots were able to mimic

the expert behaviour for avoiding collision and the work demon-

strated the potential that this could be applied to real-robots. In

[26], a robust collision avoidance algorithm was developed for

autonomous vehicles, which accelerates the learning of optimal

policies and efficiently utilizes the remaining resources. In [27],

a multi-stage and multi-scenario training framework for train-

ing the collision avoidance policy was proposed. The collision

avoidance capability of multiple agents was finally demonstrated

in a simulated environment. A reinforcement learning based

anti-jamming relay scheme for underwater sensor networks was

proposed in [28], which optimized the relay mobility and power

allocation without being aware of the underwater channel model

and the jamming model. The relay performance of the pro-

posed scheme was also validated by real-world experiments in a

water tank. In [29], a successor-feature-based deep reinforce-

ment learning algorithm was developed that improved the train-

ing speed and transferred learned experience to the new sce-

narios. A novel deep reinforcement learning algorithm was

designed in [30] to integrate long short-term memory and mocal-

map critic, enabling the robot to navigate with a limited field of

view, whilst outperforming methods that used a wider field of

view. In [31], a long-term path planning algorithm using deep

reinforcement learning instead of a near field collision avoidance

algorithm [32] was proposed to navigate the robot to visit unex-

plored environments with a greedy strategy. An end-to-end deep

reinforcement learning based collision avoidance algorithm was

proposed in [33]. The laser data and the relative target position

were used as inputs to a neural network and the policy generated

heading and speed commands. An asynchronous version of Deep

Deterministic Policy Gradient (DDPG) was proposed to improve

the Q-value. The efficiency was validated in Gazebo simulation

and the real-world environment. However, the performance of

conventional deep learning methods relies heavily on the train-

ing data and hence a human’s experience is not well utilized

during this process. How to improve the output performance and

accelerate the training process by exploiting human experience

and guidance is still an interesting area which needs further

efforts.

Motivated by the consistent progress and technological ad-

vancements in applications of cooperative exploration, espe-

cially by the increasing need to develop novel coordination

techniques for handling multiple robots, in this paper, we aim

to design an efficient autonomous exploration strategy for a

decentralized collaborative multi-robot team while avoiding

suddenly observed obstacles. The contributions of the paper can

be summarized as follows:
� A Voronoi-based exploration strategy is developed to co-

ordinate a multi-robot team effectively in exploring an

unknown area. Each robot is assigned a different target

location based on dynamic Voronoi partitions to avoid

duplicated exploration areas.
� A collision avoidance algorithm with deep reinforcement

learning is proposed to navigate the robot to the target. The

proposed method enables the control policy to learn from

human demonstration data and outperforms conventional

methods in terms of training speed and final performance.
� The feasibility of the proposed cooperative exploration

strategy is validated by real-world experiments using

wheeled mobile robots.

The rest of the paper proceeds as follow. Section II covers

the technical background. In Section III, a hierarchical control

architecture for networked explorers is proposed. A Voronoi-

based exploration algorithm and deep reinforcement learning

based collision avoidance approach are then provided to coor-

dinate the robots efficiently while avoiding sudden obstacles.

Simulation case studies and experimental validation using real

mobile robots are given in Section IV to highlight the feasibility
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and efficiency of the proposed strategy. Section V concludes the

paper.

II. TECHNICAL BACKGROUND

A. Communication Networks

Consider a weighted and undirected information graph I =
(V, E ,A) with a non-empty set of nodes V = {1, 2, . . . , N}, a

set of edges E ⊂ V × V , and the associated adjacency matrix

A = [aij ] ∈ R
N×N . An edge rooted at the ith node and ended

at the jth node is denoted by (i, j), which means information

can flow from node i to node j. aij is the weight of edge (j, i)
representing the distance between these two nodes and aij �= 0

if (j, i) ∈ E . Node j is called a neighbor of node i if (j, i) ∈ E .

An undirected graph I is connected if there is a path between

every pair of distinct nodes. The shortest-path distance between

two nodes in a graph is the sum of weights for all edges in a

shortest path connecting them.

B. Voronoi Partitions

We partition the area between the available mobile robotic

platforms using Voronoi partitions in which the centroid of each

Voronoi cell is taken to be the position of a single mobile robot.

Thus, a certain region within this area (namely the corresponding

Voronoi cell) is allocated to each robot for exploring. This is

performed on an iterative basis, so the Voronoi partitions are

dynamic in nature.

Using Voronoi partitions, the area to be mapped can be broken

up dynamically among the robot team members based on their

current locations. Also by construction, Voronoi partitioning

can be implemented in a decentralized fashion via inter-robot

communications.

Let the convex polygon Q ⊂ R
2 be an open space without

obstacles to be explored. Suppose Ri ∀i ∈ {1, 2, . . . , N} are

networked robots and NRi
is a robot set satisfying that each

element in this set is a neighbor robot of Ri, and pi represents

the position of robot Ri. The Voronoi cell Vor(Ri) is defined

by:

Vor(Ri) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖, ∀Rj ∈ NRi
}, (1)

which means the Voronoi partition of Q, generated by Ri, is the

set of all points in Q such that all points in the region Vor(Ri)
are closer to Ri than any other point in Q.

Notice that to define the boundaries of each Voronoi cell, robot

i at position pi only needs to know the boundary of Q, and the

position of its neighbor pj , such that the Voronoi cells of pi and

pj share a common edge. Using dynamic Voronoi partitions,

each robot can compute its partition with only knowledge of

its neighbors locations. Thus, using Voronoi partitioning facili-

tates decentralized control designs. Another advantage of using

Voronoi partitions is in the case where there is a robot or sensor

failure. Because the Voronoi partitions are made dynamically,

the team can adjust their Voronoi partition configuration taking

into account their new neighbors excluding the failed robot. This

procedure ensures that all regions in the area will be covered by

an operational robot.

Fig. 1. The hierarchical control architecture includes a high-level decision
making layer and a low-level target tracking layer.

C. Collision Avoidance Problem Formulation

The collision avoidance problem for autonomous agents is

defined in the context of each autonomous agent moving on

the Euclidean plane in the assumption that obstacles might

appear. The problem can be formulated as to find the translation

function:

vt = f (lt, pt, vt−1) (2)

where lt is the laser range data at time step t, pt stands for the

relative position of the target,vt−1 denotes the velocity command

at the last time step. The model calculates the next time velocity

command vt. It is assumed that each agent only has partial

observations in the sensing range of the rangefinder rs. This

assumption makes our method more practical and robust in real

world environments.

III. COOPERATIVE EXPLORATION STRATEGY

A. Hierarchical Control Architecture

In this subsection, a two-layer control architecture for net-

worked robots is presented, which includes a high-level decision

making layer and a low-level target tracking layer as shown in

Fig. 1. In the first layer, a desired next frontier point is selected

based on the Voronoi partition and the synchronized map. This

information is sent to the second layer for tracking and a deep

reinforcement learning neural network is used to train the robot

to reach the desired position while avoiding potential obstacles.

The cooperative exploration method is proposed under the

following assumptions:

1) The robots are equipped with an omnidirectional sensory

system that provides a description of the free space sur-

rounding the robot and detects the boundary of an obstacle

within the maximum sensing range rs.
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Fig. 2. Exploration strategy using a single robot in a cluttered environment.
The information nodes are marked by the red stars and the sensing range is
represented by the blue dotted circle. Some new generated frontier points are
marked by small black circles which indicate the next possible way point.

2) Each robot can broadcast the information stored in its

memory within a communication range rc at any time.

The robot is always open for receiving the relative position

from a neighbor robot located within the communication

range rc.

3) The communication range rc is larger than the sensing

range rs.

B. Coordination Algorithm for Explorer Robots

Frontier-based techniques have been widely used in the multi-

robot exploration missions, motivated by [16], [17], [34], the

proposed cooperative exploration strategy in the first layer is

introduced in this section. In order to mark the explored area, ev-

ery robot in the multi-vehicle system deploys information nodes

while exploring the environment. Those deployed information

nodes form an information network, which allows the robots

to share information in a decentralized manner. Note that the

information nodes can be real sensor devices or virtual targets

in the synchronized map of each robot. Once an information

node is deployed in a certain position, it will generate some new

frontiers points on the border between a sensed area (e.g., blue

area in Fig. 2) and an open area covered by no sensor (e.g., white

area in Fig. 2). In the case where no frontier point can be found,

it can be concluded that the whole environment is fully explored.

At the beginning, the robotRi deploys a new information node

and generates some new frontier points. Now, we will define the

utility function for frontier points k assigned to the robot Ri as

Ωik = λdik + (1 − λ)φik, (3)

where λ is a scalar that satisfies 0 ≤ λ ≤ 1, where dik represents

the distance between Ri and frontier point k and φik denotes the

distance between the frontier point k and the initial position of

Ri (i.e., the position of the first information node). The robot Ri

iteratively searches for the frontier node with the minimum Ωik.

Note that when λ = 0, the robots perform a breadth-first explo-

ration, that is, they explore all of the neighbor frontier points at

the present depth, prior to moving on to the frontier points at the

next depth level. On the contrary, if λ = 1, the robots will adopt

depth-first exploration, where the robots explore the frontier

Fig. 3. An example of Voronoi partition using three robots. The working areas
of all the robots are represented by different colors. Note that the Voronoi
partition is dynamically changing based on different locations of the robots
at different time instants, which is a more robust method for dealing with
unexpected disturbances in the environments.

points as far as possible before being forced to backtrack and

expand other frontier points. Based on different environments

and tasks, the value of λ should be fixed by the engineers to

achieve the best exploration and mapping performance.

Whenever robot Ri deploys a new information node, the

information graph I is updated and each robot broadcasts the

updated I so that every robot sharing the network can update I .

In order to reach the selected frontier point fRi
, a graph search

is performed. Ri locates the information node that generates

the selected frontier point first, then Ri selects the short-path

distance in the graph to reach the desired information node. We

define Iti as the subgraph of I at time t generated by the set of

nodes which can be observed by Ri. According to the definition

of Iti , this path is a collision-free path for Ri. Besides, the length

of each line segment along this path is bounded by rs. Once

Ri reaches fRi
, it deploys another new information node and

iterates this procedure until there is no frontier point in the map.

An example is shown in Fig. 2 for a single-robot exploration

task using the proposed strategy.

When there exist multiple explorers in the task, it can be

observed that, by using the aforementioned strategy, the robots

may move to the same direction and explore duplicated areas,

thus causing low efficiency and longer mission accomplishment

time. In order to avoid such scenarios, a Voronoi-based method

is introduced. For any robot i, based on the position of the neigh-

bor robot, Rj , a Voronoi partition is generated and only those

frontier points in its own Voronoi partition will be considered

for the next movement. This will effectively remove undesirable

frontier points to be selected by the explorers. An example of

the dynamic Voronoi partition of three robots in the autonomous

exploration task is illustrated in Fig. 3.

Towards this end, we consolidate the aforementioned multi-

robot cooperative exploration techniques into an algorithm (Al-

gorithm 1) which provides a systematic set of guidelines for the

robotic practitioners to implement.

C. Deep Reinforcement Learning Setup

A mapless collision avoidance algorithm is proposed for nav-

igating the mobile robots to go through the waypoints generated
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Algorithm 1: Voronoi-Based Cooperative Exploration

Strategy.

1: repeat

2: for each robot i ∈ {1, . . . , N} do

3: if robot Ri detects no information node inside the

circle with radius rs then

4: Ri drops an information node at the current

position;

5: end if

6: if fRi
is empty then

7: Ri searches for the next frontier point which is

inside its own Voronoi partition with minimum

Ωik;

8: The selected frontier point is set as fRi
;

9: Ri starts moving along the shortest path in Iti to

reach fRi
;

10: end if

11: if Ri meets fRi
then

12: Ri drops an information node at the position;

13: else

14: Ri keeps moving to reach fRi
;

15: end if

16: end for

17: until there is no frontier point for every information

node;

by the cooperative exploration algorithm. The mapless naviga-

tion algorithm allows the mobile robots to navigate through the

waypoints without having accurate information of static obsta-

cles in advance, which improves the safety of the mobile robots

significantly. As it is expected that some obstacles will appear

while the mobile robot is navigating through the waypoints, a

collision avoidance algorithm is required to generate reactive

maneuvering.

1) Observation and Action Space: The laser rangefinder

state lt, previous velocity state vt−1 and relative target position

state pt at the time t concentrate the observation state vector st.

The relative target state pt is represented in the polar coordinate,

i.e., the relative distance and angle between the robot and the tar-

get. The continuous action generated by the collision avoidance

policy includes linear velocity vl and angular velocity va.

2) Reward Space: Each robot is commanded to navigate

through the waypoints generated by the path planning algorithm,

while avoiding the potential collisions. The reward function is

defined as

r = rd + rcl + rav + rlv (4)

where r represents the sum reward, rd represents the distance

reward, rcl describes the safety clearance reward, rav denotes

the angular velocity reward, and rlv is the linear velocity reward.

rd can be calculated by

rd =

{

ra if dp < dpmin

∆dp
otherwise

(5)

Fig. 4. Actor network: the input layer is a concatenation vector of rangefinder
data (24-dimensional vector) and relative target position (2-dimensional vector)
and velocity (2-dimensional vector), followed by three dense layers and each
Relu layer has 512 nodes.

where ra is the arrival reward when the distance between robot

and target dp is less than threshold dpmin. Otherwise, rd is the

distance ∆dp
the robot moves towards the target at the last time

step. Safety clearance reward rcl can be calculated by

rcl =

⎧

⎪

⎨

⎪

⎩

rcp if domax ≤ dp < 2domax

rcpo if dp < domax

0 otherwise

(6)

where rcp denotes the negative reward/punishment when dis-

tance between target and robot dp is between clearance distance

threshold domax and 2domax. When dp is less than threshold

domax, negative reward rcpo will be applied. Otherwise, the robot

will not be punished. The angular velocity reward rav and linear

velocity rlv reward are given by

rav =

{

rap if |va| > vamax

0 otherwise
(7)

rlv =

{

rlp if vl < vlmin

0 otherwise
(8)

where vamax denotes the angular velocity threshold and vlmin

represents the linear velocity threshold. If angular velocity va is

bigger than vamax or linear velocity vl is smaller than vlmin, the

robot will receive punishment value rap or rlp, respectively.

3) Network Structure: As shown in Fig. 4, the input to the

neural network is the concatenation vector of rangefinder data

(24-dimensional vector), relative target position (2-dimensional

vector) and velocity data (2-dimensional vector). The input layer

is connected with three dense layers with each layer having 512

nodes. The actor network finally generates the linear velocity

command through a sigmoid function and produces the angular

velocity using a hyperbolic tangent function. These two velocity

commands are finally concatenated into the action state, which

is used as the input of the critic network shown in Fig. 5. The

state data of the robot (28-dimensional vector) is also used as

the input of the critic network and is processed by three dense

layers and each layer has 512 nodes. The action input is merged

with the second layer, and the Q-value is finally generated by a

linear activation function.

4) Integration of DDPG and PER: Deep Deterministic Pol-

icy Gradient (DDPG) algorithm is an actor-critic and model-free

algorithm that can operate over continuous action spaces. The



14418 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 12, DECEMBER 2020

Fig. 5. Critic network: the input layer includes range finder data (24-
dimensional vector), relative target position (2-dimensional vector), velocity
(2-dimensional vector) and action data (2-dimensional vector). Each dense layer
has 512 nodes.

Fig. 6. Human demonstration data collection.

performance of DDPG is demonstrated in 20 simulated physics

tasks [35]. However, randomly action exploration makes the

learning process inefficient in terms of mobile robot collision

avoidance application. In order to improve the performance and

learning speed of DDPG, we integrate DDPG with Prioritised

Experience Replay (PER) algorithm using human demonstra-

tion data. In this research, human demonstration data Rdemo

is recorded before training the networks, as shown in Fig. 6.

Through observing the robot behaviour and Gazebo environ-

ment, we manually control the robot to avoid obstacles and

move towards the goal. The reward value rt is calculated by

using reward function to evaluate the state data st and action

data at. Instead of sampling data uniformly, we integrate DDPG

and PER algorithm to sample important data more frequently by

calculating the priority of each state transition. The integration

of DDPG and PEG is shown in Algorithm 2.

In this research, the implementation of PER is given as fol-

lows: In Line 6 and 7 (in Algorithm 2), the random process for

angular velocity va and linear velocity vl actions are set as choos-

ing random values from ranges (−ϕ,ϕ) and (0, ψ) respectively,

whereϕ andψ are positive constants depending on the hardware

constraints of the robotic platforms. In Line 13, pi describes the

priority of a transition, δ means the Temporal Difference (TD)

Algorithm 2: Integration of DDPG and PER.

1: Randomly initialize critic neural network Q(s, a|θQ)
and actor neural network µ(s|θµ) with weights θQ and

θµ.

2: Initialize target network Q′ and µ′ with weights

θQ
′
← θQ, θµ

′
← θµ

3: Initialize replay buffer Rp with priority using

demonstration data Rdemo and default priority value

Pdemo: Rp ← [Rdemo, Pdemo]
4: for episode = 1, M do

5: Initialize a random process N for action

exploration:

6: va = getRandom(−ϕ,ϕ)
7: vl = getRandom(0, ψ)
8: Receive initial observation state s1

9: for t = 1, T do

10: Select action at = µ(st) +Nt according to the

current policy and exploration noise

11: Execute action at, calculate reward rt and

observe new state st+1

12: Calculate sampling priority of each transition:

13: pi = δ2
i + λ|▽aQ(si, ai|θ

Q)|2 + τp + τD

14: P (i) =
pα
i∑

k pα
k

15: Store transition (st, at, rt, st+1, P (i)) in Rp

16: Sample a minibatch of N transitions

(si, ai, ri, si+1) from Rp according to the

sampling priority P (i)
17: Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ

′
)

18: Set weighted updates to network:

ωi = ( 1
B
· 1
P (i) )

β

19: Update critic by minimizing the loss:

L = 1
N
ω
∑

i(yi −Q(si, ai|θ
Q))2

20: Update the actor policy using the sampled policy

gradient: ∇θµJ ≈
1
N
ω
∑

i ∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si
21: Update the target networks:

22: θQ
′
← τθQ + (1 − τ)θQ

′

23: θµ
′
← τθµ + (1 − τ)θµ

′

24: end for

25: end for

error, the second term λ|▽aQ(si, ai|θ
Q)|2 denotes the actor loss,

τp represents a small positive sampling probability for each tran-

sition, ensuring each transition data can still be sampled and τD
is used for increasing the sampling frequency of demonstration

data. Note that τp and τD are user-defined constant values based

on empirical experience. In Line 14, P (i) defines the sampling

probability of the ith transition. In Line 18, the sampling weight

ωi of each transition for updating the network is calculated,

indicating the importance of each transition data. B stands for

the total batch size, and β is a constant value for adjusting the

sampling weight. Correspondingly, the critic network and actor

network are updated using the equations shown in Line 19 and

Line 20.
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In terms of the computational complexity of the proposed col-

lision avoidance algorithm, the policy is trained end-to-end and

it maps discrete lidar information and relative goal positions into

action command directly instead of using the whole environmen-

tal map. As shown in Fig. 4, the computational complexity of ac-

tor neural networks can be denoted asO(SainFa1Fa2Fa3Saout),
where Sain, Saout denote the dimension of the input layer

and output layer for actor neural network, respectively. Fa1,

Fa2 and Fa3 represent the dimension of three fully connected

layers for actor network, respectively. As shown in Fig. 5,

the computational complexity of critic neural networks can be

represented by O((ScinFc1 + Saout)Fc2Fc3Scout), where Scin

and Scout represent the dimension of the input layer and output

layer for critic network, respectively. Fc1, Fc2 and Fc3 denote

the dimension of three fully connected layers for critic network,

respectively. Considering that the collision avoidance algorithm

can be deployed on each mobile robot independently, the to-

tal computational complexity can be described by O(NM),
where N is the number of mobile robots and M represents

the function of the dimension of input states, output states

and each fully connected layers: M = SainFa1Fa2Fa3Saout +
(ScinFc1 + Saout)Fc2Fc3Scout. Since the dimension of input

layer, output layer and each one-dimensional fully connected

layer are pre-defined and fixed, M can be considered as a

constant. Therefore, for the multi-robot scheme, the proposed

collision avoidance algorithm will ensure the computational

time increase linearly with the number of mobile robots.

IV. RESULTS AND ANALYSIS

A. Simulation Results

In this subsection, the performance of the proposed Voronoi-

based cooperative exploration strategy is tested with different

numbers of robots. The goal is to use mobile robots to explore

and map an unknown environment containing several obstacles.

The simulation results demonstrate the effectiveness and fea-

sibility of the proposed scheme and also show its efficiency

when coordinating multiple robots. Firstly, we used Gazebo

[36] as our simulation software, which is an open source robotic

platform, to train the collision avoidance policy. The comparison

of the proposed algorithm and DDPG is evaluated in terms

of training speed and final performance. Then, the simulation

results of three different scenarios (with two, three and four

robots, respectively) are provided to verify the feasibility of

the proposed Voronoi-based cooperative exploration techniques.

Finally, a comparison of the performance with a conventional

exploration approach based on multiple trials is provided to show

the efficiency of the proposed algorithm.

1) Collision Avoidance Policy Training and Evaluation: The

Turtlebot3 Waffle Pi model is applied in both Gazebo simulation

and the real-world experiment. In the Gazebo environment, as

shown in Fig. 7(a), cubes, cylinders, spheres and cuboids are

used as obstacles and the red sphere represents the target location

of the robot. The robot is commanded to go to the target position

while avoiding the obstacles. Once the robot arrives at the target

or collides with a simulated obstacle, the robot will be reset to

be at the origin position and the red sphere is placed randomly

Fig. 7. Gazebo environment for (a) training and (b) evaluation: The red sphere
represents the target location; the blue lines stand for the laser beam around the
Turtlebot3; the gray cubes, cuboids, cylinders and spheres are used as obstacles.

Fig. 8. Q-value comparison between DDPG and the proposed method.

Fig. 9. Reward comparison between DDPG and the proposed method.

in the outer area of the obstacles. 3000 steps of demonstration

data were sampled for training. In terms of the reward function,

the threshold values dpmin (0.2 m), domax (0.25 m), vamax (0.8

rad/s), vlmin (0.052 m/s) are set according to the geometry and

capacity of Turtlebot3 and can also be reconfigured for other

robotic platforms. We set τp = 0.1 and τD = 0.4 in Algorithm

2 based on empirical experience. The Q-value and reward value

comparison between DDPG and the proposed algorithm for the

training process are shown in Fig. 8 and Fig. 9 respectively.



14420 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 12, DECEMBER 2020

Fig. 10. Simulation results of the proposed cooperative exploration approach at different time instants are shown for different cases: (a) using two robots for
exploration; (b) using three robots for exploration; (c) using four robots for exploration. There are three obstacles in the environment represented by brown, blue
and gray areas respectively. The deployed information nodes from different robots are marked by solid circles with different colors. The existing frontier points in
the environment are marked by small points. The boundary of the Voronoi partition at the current time instant is shown by the dotted line.

In Fig. 8, the Q-value of the proposed method arrives at 67

using 8900 steps while the original DDPG needs 63310 steps,

showing that the proposed algorithms only needs 14% steps of

DDPG. As shown in Fig. 9, the reward value of the proposed

method increases faster than DDPG in the beginning and the

average reward of the proposed method between 20000 steps

and 100000 steps is 6.0782 and that of DDPG is just 2.9883.

The fluctuation range of the proposed method is also smaller

than DDPG, meaning that the proposed method is more robust.

To evaluate the performance of the trained models in an

unknown environment, a new Gazebo environment was applied,

as shown in Fig. 7(b). In the new environment, the locations of

obstacles are rearranged and a long wall is added, making the

environment more challenging than the training environment.

We used 20 random missions to evaluate the performance of

DDPG and the proposed algorithm. We compared the trained

model after only 10000 training steps of the proposed method

and the trained model after 50000 training steps of DDPG.

It was found that the proposed method enables the robots to

complete all 20 missions successfully and even find the targets

behind the wall three times. In comparison with the proposed

method, the DDPG method only completed 15 of the 20 random

missions. In these 15 successful missions, the mobile robot still

had unnecessary turns during 3 missions.

In terms of training time, collecting and training 10000 steps

data of the proposed algorithm only cost 40 minutes. However,

it cost 2 hours and 40 minutes to collect and train 50000

steps data using DDPG. In terms of trajectory quality, the

DDPG method makes the robot travel longer distances than the

proposed method and also generates unnecessary turns. There-

fore, the proposed method enables mobile robot to learn faster,

only requiring 14% steps and 25% of the training time required

by DDPG, and still achieves better performance than DDPG in

terms of safety and trajectory quality.

2) Performance of the Proposed Cooperative Exploration

Strategy: As shown in Fig. 10, the size of the arena is set to 20 m

× 10 m. There are three obstacles in this environment, which

are indicated by the brown, blue, and gray areas. To validate

the effectiveness of the proposed strategy, three different sce-

narios (using 2, 3 and 4 robots) are considered for comparison.

The sensing range of each robot is set as rs = 1.3 m and the

communication range is set as rc = 5 m. The tuning parameter

λ for each robot is set as 0.8 in all the three cases. Note that

different selections of λ may only affect total exploration time

due to different structures of the environment, but the exploration

mission will always be completed within finite time regardless

of the value of λ.

In the first case, two explorers are used for this autonomous

exploration task. Fig. 10(a) depicts the trajectories of the robots

and positions of the obstacles. At the beginning of the task (i.e.,

t = 0 s), both robots are placed at the top of the arena. Following

the proposed algorithm, they start deploying the first information

node at their initial positions and thus generate several frontier

points at the edge of the sensing area. The dotted line represents

the generated Voronoi partition based on their current locations.

As it can be seen from the second and third sub-figures in

Fig. 10(a), due to the effect of Voronoi partition, one robot

explores mainly the left part of the arena while the other moves

toward the right side. The information nodes deployed by the two

robots are marked by red and blue stars, respectively. Finally,

the cooperative exploration task is accomplished within 873 s

and no frontier point can be observed in the environment.
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In the second case, three robots are implemented to perform

the mission. Similar to the first case, they are placed at the top

of the arena in the beginning as shown in the first sub-figure in

Fig. 10(b). Due to the communication between the robots, the

arena is divided into three partitions and each robot will only

explore its corresponding area. Since the robots are moving, the

Voronoi partition of the whole environment is also time-varying,

which guarantees all the collaborative robots are working ef-

ficiently. The information nodes deployed by each robot are

represented by red, blue, and green stars respectively. From the

last sub-figure of Fig. 10(b), the mission accomplishment time is

598 s, which is significantly less than when using two robots and

shows the high efficiency in increasing the number of working

robots.

In the third case, we increase the number of robots to four

for the same autonomous exploration and mapping mission. The

simulation results are illustrated in Fig. 10(c) and the information

nodes deployed by each robot are represented by red, blue, green,

and pink stars, respectively. The mission is completed within

539 s, which is slightly shorter than when using three robots.

3) Comparing the Proposed Cooperative Exploration

Method With the Approach in [16]: In this subsection, we

compare the performance of the proposed exploration strategy

with the conventional approach presented in [16]. Note that

the exploration algorithm in [16] can only avoid the same

frontier point that is selected by different robots as their next

goal, which cannot guarantee the efficiency when coordinating

multiple robots in a large unknown environment. Alternatively,

the proposed Voronoi-based strategy ensures that each robot

explores a certain area without conflicting with others, thus

maximally decreasing the task completion time and saves more

resources and energy. Besides, the sudden obstacles can also be

handled in the proposed scheme via deep reinforcement learning

techniques, which provides more robustness to the multi-robot

systems when performing the real-world mission.

In order to verify the performance of both strategies, 50 trials

were tested for each case shown in the previous subsection

corresponding to 50 different sets of initial positions of the

explorers. Fig. 11 illustrates the task completion time of the

robots subjected to different scenarios. It can be seen that the

proposed control scheme leads to a faster exploration speed in

all cases, which can be viewed as a significant improvement over

conventional methods. Note that due to the limited size of the

arena and the density of the robots, the reduction in mission

completion time becomes insignificant when the number of

robots increases above five. Hence, a trade-off between the

exploration time and the available hardware resources should be

determined based on the specific environments and requirements

of the tasks to achieve better performance.

B. Experimental Validation

In the real-robot experiment, we used three Turtlebot3 Waffle

Pi mobile robots (as shown in Fig. 12) to test the feasibility of the

proposed autonomous exploration strategy and learning based

collision avoidance algorithm in the real world. Each robot was

equipped with a 360◦ Lidar for detecting the frontier points in

Fig. 11. Exploration accomplishment time of the robots using the proposed
strategy and conventional strategy in [16]. The results in each case are collected
from 50 trials with different initial positions.

Fig. 12. Three TurtleBot3 Waffle Pi mobile robots equipped with Lidar were
used in the experiments.

the unknown environment. The communication between neigh-

boring robots was achieved via Robot Operating System (ROS).

The Raspberry Pi 3 board was installed on each Turtlebot3 for

sending sensor information to and receiving control command

from the host computer with Nvidia GTX 1080 GPU and Intel

Core i9 CPU (2.9 GHZ). The lidar sensing range was set as 1 m in

the experiment. In the experiments, we used virtual information

nodes to validate the proposed exploration strategy. Those virtual

information nodes and associated frontier points were generated

in the synchronized map on the robots’ storage devices. In the

future, more advanced robotic platforms can be developed to

carry and place real information nodes via manipulator arms.

In this case study, the objective of the mobile robot team was

to explore an unknown room. The initial position of each robot

is shown in Fig. 13. All the robots were placed at the middle

of the room. Each robot deployed an information node at the

initial position and then started moving in different directions

due to the usage of Voronoi-based algorithms. In order to test

the robustness of the multi-robot system against dynamic envi-

ronments, an obstacle was suddenly placed during the mission.

In Fig. 14, a cuboid obstacle was placed in front of the second

mobile robot while it was approaching the next frontier point.



14422 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 12, DECEMBER 2020

Fig. 13. Real-world experiment: the map is generated using gmapping for
illustration. Real-time third person view and Turtlebots camera views are shown
on the left side.

Fig. 14. Obstacle interruption: one obstacle is placed randomly during the
Turtlebots mission.

Fig. 15. Final trajectories of three Turtlebot3.

Based on the deep reinforcement learning training, the robot

quickly adjusts its path to avoid the unexpected disturbance. The

final trajectories of the three robots are illustrated in Fig. 15.

No frontier point can be observed in the environment and the

cooperative exploration task is accomplished. Besides, it can

also be seen that the Voronoi-based strategy minimizes the

control effort with respect to the mission completion time and

the total travel distances. The video of the experimental results

is shown in the Supplementary Material.

V. CONCLUSION

In this paper, a novel cooperative exploration strategy and

deep reinforcement learning based mapless collision avoidance

algorithm are proposed for multiple mobile robots in unknown

environments. In order to navigate and coordinate the net-

worked robots efficiently during the collaborative tasks, dynamic

Voronoi partitions are generated to minimize duplicated explo-

ration areas when using multiple robots. A utility function that

takes into account both the path cost and the target distance is

designed to determine a desired next frontier point such that

depth-first and breadth-first modes can be chosen based on

different scenarios. To deal with sudden appearance of obstacles

in the unknown environment, a deep reinforcement learning

based collision avoidance algorithm was proposed which inte-

grated DDPG and PER algorithm to enable the control policy to

learn from human demonstration data and improve the learning

speed and performance of DDPG. The proposed algorithm was

able to perform collision free maneuvering during 20 random

missions in the new environment, requiring only 40 minutes

of training time. By comparison, the proposed method only

needs 14% training steps and 25% of the training time required

by DDPG and generates safer and smoother trajectories than

DDPG. Simulation results and hardware experiments using real

robots are provided to demonstrate the effectiveness of the pro-

posed multi-robot cooperative exploration scheme and learning

based collision avoidance algorithm. In the future, finite-time

consensus algorithm [37] will be exploited to coordinate het-

erogeneous robotic systems including both aerial and ground

vehicles.
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