
Voronoi-based Nearest Neighbor Search

for Multi-Dimensional Uncertain Databases

Peiwu Zhang #1, Reynold Cheng #2, Nikos Mamoulis #3, Matthias Renz ∗4

Andreas Züfile ∗5, Yu Tang #6, Tobias Emrich ∗7

#The University of Hong Kong, Pokfulam Road, Hong Kong

{pwzhang 1, ckcheng 2, nikos 3,ytang 6}@cs.hku.hk
∗Ludwig-Maximilians-Universität München, Munich, Germany

∗{renz 4, zuefle 5, emrich 7}@dbs.ifi.lmu.de

Abstract— In Voronoi-based nearest neighbor search, the
Voronoi cell of every point p in a database can be used to
check whether p is the closest to some query point q. We
extend the notion of Voronoi cells to support uncertain objects,
whose attribute values are inexact. Particularly, we propose the
Possible Voronoi cell (or PV-cell). A PV-cell of a multi-dimensional
uncertain object o is a region R, such that for any point p ∈ R,
o may be the nearest neighbor of p. If the PV-cells of all objects
in a database S are known, they can be used to identify objects
that have a chance to be the nearest neighbor of q.

However, there is no efficient algorithm for computing an
exact PV-cell. We hence study how to derive an axis-parallel
hyper-rectangle (called the Uncertain Bounding Rectangle, or UBR)
that tightly contains a PV-cell. We further develop the PV-index,
a structure that stores UBRs, to evaluate probabilistic nearest
neighbor queries over uncertain data. An advantage of the PV-
index is that upon updates on S, it can be incrementally updated.
Extensive experiments on both synthetic and real datasets are
carried out to validate the performance of the PV-index.

I. INTRODUCTION

Nearest neighbor queries are the fundamental procedures for

many similarity search and location-based query applications

for location-based services. In particular, a nearest-neighbor

query allows users to retrieve the most similar object to a

given query object or to retrieve a location from a geospatial

database that is closest to her current location. In recent

studies it is shown that a Voronoi diagram is a data structure

that is extremely efficient in exploring a local neighborhood

in a geometric space [1]. Given a set of points, a Voronoi

diagram uniquely partitions the space into disjoint regions

called Voronoi cells such that each cell is assigned to one

single point. The Voronoi cell corresponding to a point o
covers the points in space that are closer to o than to any

other point, as illustrated in Figure 1(a).

Attribute values of a traditional database are often assumed

to be exact. This is no longer true for many emerging applica-

tions. Consider a system that retrieves positions of pedestrians,

vehicles, and buildings from satellite images through human

effort (e.g., Wikimapia) and machine learning algorithms.

Due to the error-prone nature of the data transmission and

extraction procedures, the location values obtained from the

images may not be correct. This database, if released to the

public, may also be perturbed with noise, in order to alleviate

privacy concerns [2].

In natural habitat monitoring, information collected at sen-

sor nodes (e.g., temperature and humidity) can be contam-

inated with measurement error [3]. In order to satisfy the

increasing needs of managing imprecise data, several uncertain

databases have been developed [4]–[7].

In this paper, we study the efficient evaluation of the

probabilistic nearest neighbor query (PNNQ), a fundamental

query operator used in many uncertain databases, by adapting

the general concept of Voronoi-based nearest neighbor search.

Given a multi-dimensional point q (e.g., location of a vehicle,

a vector of (temperature, humidity, wind speed)), a PNNQ

returns the identities of objects whose (qualification) proba-

bilities of being the closest to q are larger than zero [8]. The

problem of evaluating this query in a scalable manner, which

is technically challenging, has attracted plenty of research

interest (e.g., [8]–[11]). In general, the execution of PNNQ

involves the following steps: Step 1: retrieving objects whose

qualification probabilities are larger than zero; and Step 2:

computing the qualification probabilities of objects obtained in

Step 1. Most previous work focused on the efficiency issues of

Step 2. Our goal is to propose a scalable solution for enhancing

the performance of Step 1.

(a) (b) (c)

Fig. 1. Illustrating the PV-cell of (circled) object o, whose uncertainty
region is: (a) point; (b) 2D rectangle; and (c) 3D rectangle (where
the PV-cell is composed of curved surfaces).

Specifically, we study a solution based on Possible Voronoi

cells (or PV-cells in short). To understand this concept, let

us consider a database that follows the attribute uncertainty

model [8], a model that is commonly used in the database

Administrator
 HKU CS Tech Report TR-2012-10

community in the context of uncertain data [9], [10], [12]–[14].

Consider a d-dimensional domain D, where D ⊆ ℜd. In the

model used in this paper the d-dimensional attribute values of

an object is a random variable specified by a given probability

distribution [5], [8] called uncertainty pdf. For instance, a

location value, obtained by a GPS sensor, can be represented

by a Gaussian distribution [15]; the temperature, humidity,

and wind speed values obtained at a sensor node is a three-

dimensional attribute with some probability distribution [3].

Here, we adopt the discrete model [13], [14], where o’s

uncertainty pdf is represented by a set of d-dimensional points,

or “instances”. Each instance is assigned the probability of

being the exact representation of o. Since we are interested in

retrieving all possible nearest neighbors of a given query ob-

ject q, i.e. objects with non-zero probability being the nearest

neighbor of q, we can use a more simplified approximation

of an uncertain object. Following the object representation

as proposed in [8], [10], [11], [13], an uncertain object o is

defined by an axis-parallel rectangular region u(o) ⊆ D which

we call uncertainty region of o. Specifically, u(o) minimally

bounds all possible values of o’s attributes o.a. Let us note

that our solution can also be used to handle the case when

u(o) is not a rectangle.

Based on the definition of an uncertain object we can now

formally define the Possible Voronoi Cell.

Definition 1: The Possible Voronoi Cell (PV-cell) of an

uncertain object o, denoted by V(o), is a d-dimensional region

R, such that for any point p ∈ R, o has a chance, i.e. a non-

zero probability, to be the closest to p among all the objects

in database S.

Here, “to be the closest to p” means to have the smallest

Euclidean distance to p among the objects in S. Notice that

when the objects in S are certain points, V(o) reduces to a

Voronoi cell of o, as illustrated in Figure 1(a). This example

shows the (2D) uncertainty regions of locations of five objects.

Given an uncertain database S and an object o ∈ S, a PV-

cell is a region R, where for any point p ∈ R, o has a non-

zero chance to be the closest to p. In Figure 1(b), the PV-cell

of o (in dotted circle) is a region bounded by solid curve

segments. To see whether o is the closest to q, we just check

whether q is inside the PV-cell of o. Moreover, if the PV-cells

of all objects in S are known, Step 1 of PNNQ evaluation

can be performed by retrieving objects in S, whose PV-cells

contain q. This approach, as shown by our experiments, is

much faster than previous solutions (e.g., [8], [11]). Figure 1(c)

shows another example of PV-cells, for uncertainty regions

that are 3D rectangles, respectively.

Unfortunately, computing exact PV-cells is rather complex.

To the best of our knowledge, there exists no efficient solution

for this problem. In fact any exact algorithm must scale

exponentially in the number of dimensions. To make this

clear, consider the simple case where the database consists

of only two uncertain objects o1 and o2. The border between

the two corresponding Voronoi cells is piece-wise curvilinear.

The number of pieces is linearly correlated with the number

of corners of an uncertain object, which is in O(2d) for

rectangles. (see [16] for a discussion on the computation of

such Voronoi planes).

To tackle this problem, we define the Uncertain Bounding

Rectangle, or UBR, which is an axis-parallel rectangle that

tightly approximates the PV-cell P in a conservative way, i.e.

completely contains P . We observed from our experiments

that if we use an UBR of P which is only slightly larger than

an UBR that minimally bounds P , the performance of PNNQ

will not be significantly affected. The advantage of such a

loose fitting UBR is that it can be quickly obtained as it does

not need to compute the exact PV-cell. The main idea is to ap-

proximate the PV-cell iteratively in an analytical way based on

distance relationships between uncertain objects. Specifically,

in each iteration we apply the concept of distance domination

following the studies made in [17] in order to check whether

the current UBR is still a conservative approximation of the

PV-cell. Based on this concept, we propose a Shrink-and-

Expand (or SE) algorithm. This solution runs in an iterative

manner; in each round, the UBR of P is either enlarged or

reduced, until its size is similar to that of the MBR of P . This

algorithm, which only needs a logarithmic number of steps,

can efficiently derive a UBR.

Based on the UBRs computed by SE, we develop the

PV-index to enable PNNQ evaluation. This space-partitioning

structure organizes the UBRs in a systematic manner, so

that a PNNQ can be efficiently executed. Through a detailed

experimental evaluation on real and synthetic datasets, we

show that our solution is efficient and scalable.

We further address the issue of updating the PV-index upon

insertion (deletion) of an object to (from) S. A straightforward

solution is to rebuild the index from scratch; however, this may

not be cost effective, since all UBRs have to be recomputed

and inserted to the index. We observe that the UBRs of object

o before and after the change are often similar in shape. Based

on this intuition, we develop an incremental version of SE ,

which derives the new UBR by shrinking or expanding the

old UBR. We make use of this result to develop an algorithm

that efficiently refreshes the PV-index.

The rest of the paper is organized as follows. We discuss

related works in Section II. We discuss preliminaries about

PNNQs and PV-cells in Section III. Section IV studies how

to express a PV-cell by the domination concept, and Sec-

tion V presents the SE algorithm. We present construction

and query algorithms of the PV-index, as well as how it can

be incrementally maintained, in Section VI. Our experimental

results are presented in Section VII. We conclude the paper in

Section VIII.

II. RELATED WORK

Our work is related to the Voronoi diagram and the PNNQ,

as detailed below.

The Voronoi Diagram is a partitioning of a multi-

dimensional space that contains point data. Each partition of

the diagram, called the Voronoi cell, is associated with a point

p, such that any point inside p’s cell has p as its nearest neigh-

bor (NN in short) [1]. Figure 1(b) illustrates a Voronoi cell.

The Voronoi diagram is primarily used to answer NN queries

over points [1], [18], [19]; the NN of a query point q is the one

whose corresponding Voronoi cell contains q. In this context,

the Voronoi diagram has been used to support nearest neighbor

queries in geo-spatial applications [19], [20], in spatial data

streams [21] and, recently, in distributed spatial environments

[22] as well as in spatial network environments [23], [24].

Furthermore, the Voronoi diagram has been used in wireless

database services [25], [26], location-based services [27], [28],

and virus spread analysis [29]. The PV-cell of object o defines

the area where any point inside it may have o as its NN. Hence,

the PV-cell is a generalized version of the Voronoi cell.

Constructing a Voronoi diagram for multi-dimensional

points is often costly. Hence, researchers studied its approxi-

mate form. In [30], the Voronoi diagram was approximated as

a disjoint set of convex polygonal objects. In [31], Berchold

et al. developed a linear optimization algorithm for finding

rectangles that tightly bound multi-dimensional Voronoi cells.

The authors demonstrated that these rectangles facilitate NN

queries on a large database. We show that for a PV-cell, there

does not exist any efficient solution for finding its MBR. We

then study how to compute the UBR, which is only slightly

larger than the MBR. These UBRs, as we will explain, support

PNNQ evaluation.

Relatively few works studied the use of the Voronoi diagram

for uncertain data. In [32], the Voronoi diagram is used to

support uncertain data clustering. In [33], [34], the Voronoi di-

agram is employed to find out all uncertain objects that must be

the nearest neighbor of a query point. Recently, [9] proposed

the UV-cell, which is a Voronoi cell for a circular uncertainty

region. For any point p inside an object o’s UV-cell, o has a

non-zero chance to be p’s nearest neighbor. Hence, the UV-

cell is a special case of the multi-dimensional PV-cell studied

in this paper. In [35], a Voronoi-diagram-based structure is

developed for a “continuous” nearest neighbor query, where

a 2D query point is constantly moving. A problem common

to [9] and [35] is that their solutions are customized for 2D

data – they make an extensive use of intersection and rotation

operations of 2D hyperbolic curves. These operations require

costly and high-precision matrix computation. As we can see

in Figure 1(c), the shape of the PV-cell of a 3D uncertainty

region is complex. The construction cost would thus be very

high if solutions of [9] or [35] are extended to derive PV-

cells with three or higher dimensions. Our approach does not

generate a PV-cell. Instead, we compute UBRs, which does

not require any intersection and rotation operation. We also

study how to update UBRs upon object insertion or deletion;

to our best understanding, this has not been addressed before.

As discussed before, evaluating the probabilistic nearest

neighbor query (PNNQ) involves two steps:

• For Step 1, i.e., retrieving answer objects that have non-

zero probabilities of being the query answer, [8] proposed a

branch-and-prune solution based on the R-tree. Due to the

high I/O costs involved in that solution, [9] proposed the UV-

index, which stores UV-cells, in order to obtain answer objects

from a 2D database. Our PV-index, on the other hand, uses

Symbol Meaning

S A database of |S| uncertain objects

d The no. of dimensions of S
D The domain of S
o An uncertain object of S
q A query point in D

distmax(o, p) max distance of o from point p
distmin(o, p) min distance of o from point p

u(o) The uncertain region of o.a
V(o) The PV-cell of o
M(o) The MBR of V(o)
B(o) The UBR of V(o)

TABLE I

SYMBOLS AND MEANINGS USED IN THIS PAPER.

PV-cells to support the retrieval of multi-dimensional objects.

While [9] assumes that the uncertainty of an object is bounded

within a 2D circle, we assume that the uncertainty region is

a rectangle, which is a common assumption in the uncertain

database literature [8], [10], [11], [13]. For 2D uncertain data,

the UV- and PV-indexes register a similar performance in our

experiments. Nevertheless, the construction time of the PV-

index is about 15 times faster than that of the UV-index. The

spatial requirement of the PV-index is also much less than that

of the UV-index. Another problem of the UV-index is that if

any change occurs in the database, it needs to be rebuilt from

scratch; however, the PV-index can be incrementally updated.

• For Step 2, i.e., computing the probabilities of answer

objects, [8] studied a systematic way of computing these prob-

abilities. Since expensive integration operations are involved

in this step, a number of efficient methods have been proposed.

In [11], [36], efficient methods were proposed to generate

answer objects’ probability bounds without performing expen-

sive integration operations.

While we focus on enhancing the performance of Step 1,

we will also evaluate how this impacts the overall performance

of PNNQ. Other variants of PNNQs, such as group NN [12]

and reverse NN [13], [14], have also been studied. In all these

works, the R-tree was used to support efficient object retrieval.

It would be interesting to see how the PV-index can be used

to facilitate these query algorithms.

III. THE POSSIBLE VORONOI CELL

As we have discussed, PV-cells can be used to evaluate Step

1 of PNNQ. Let us now examine them in more detail. In the

following we first discuss several important properties of a

PV-cell. Then, in Section III-B, we show how to approximate

a PV-cell. Table I shows the symbols used in our paper.

A. PV-cell: Basic properties

1. Shape of V(o). Given a point p ∈ ℜd, let distmax(o, p)
(distmin(o, p)) be the maximum (minimum) distance of o.a
from p. Suppose that S contains two uncertain objects, o and

o′. Consider the following d-dimensional hyperplane, Ho′,o:

Ho′,o = {p ∈ ℜd|distmax(o
′, p) = distmin(o, p)} (1)

o�

o q

Fig. 2. Illustrating o, o′, Ho′,o

(in solid line), and the PV-cell of o
(shaded).

b a

p

distmax(a,p)
distmin(b,p)

Fig. 3. dom(a, b) (grey) and
¬dom(a, b), separated by Ha,b

(dotted line).

Figure 2 illustrates o, o′, and Ho′,o, bounded within a 2D

domain. Equation 1 cuts the domain space into two half-

spaces. If a point q ∈ ℜd is located in the half-space containing

o′, then since distmax(o
′, p) < distmin(o, p), o must not be

the nearest neighbor of q. The corresponding PV-cell of o
includes the boundaries of the domain, as well as a portion of

H(o′, o). The PV-cell of o is shaded in Figure 2.

Computing Ho′,o is not straightforward. In particular, if the

uncertainty regions of o and o′ are rectangles, the domain

space needs to be decomposed into a number of small rect-

angular partitions [37]. Figure 2 illustrates these partitions in

dotted lines. In 2D space, Ho′,o consists of straight lines and

curves. For d-dimensional space, finding all the vertices of

Ho′,o involves solving complex equations. The PV-cell of o,

which consists of Ho′,o, can therefore be “irregular” in shape.

The above observation also applies to a database of more

than two objects. To find the PV-cell of an object o, we

conceptually find its PV-cell with respect to each of the other

objects in S. Then, the PV-cell of o must be the intersection

of these |S|−1 PV-cells. Consequently, the shape of V(o) can

also be quite complex (e.g., Figure 1(a)). In fact, the number

of edges required to represent an exact PV-cell increases

exponentially in the number of dimension. Thus the space

complexity to store a UV-cell, and thus the time complexity of

any algorithm using UV-cell must be exponential. An intuition

of the exponential number of edges is given as follows: As

pointed out by [9], a 2D PV-cell consists of a number of

curvilinear one-dimensional surfaces (called edges). As illus-

trated in Figure 1(c), the PV-cell of a 3D object consists of a

number of curvilinear 2D surfaces, each described by a number

of curvilinear edges. The PV-cell of a 4D object consists of

a number of 3D surfaces, each described by a number of

2D surfaces, each described by a number of edges. Clearly,

a d-dimensional PV-cell is composed of a number of (d-1)-

dimensional surfaces, resulting in an exponential number of

1d-surfaces. Further information on the complexity of higher

dimension Voronoi cells can be found in [38].

Due to this complexity, even in 2D space [9], we next study

an approximate form of the PV-cell.

B. PV-cell: Approximation

One way to avoid computing the PV-cell is to approximate

it with a polygon. Due to its simplicity, a minimum bounding

rectangle (MBR), which is a hyper-rectangle that tightly

contains a complex spatial object, is often used (e.g., [39]).

The authors in [31] also studied the derivation of the MBR of

a Voronoi cell. Let us now examine the efficiency of finding

the MBR for a PV-cell.

Lemma 1: Let M(o) be the MBR of V(o). There does not

exist any polynomial-time algorithm for finding M(o).
Proof: (Sketch) Since the surfaces of V(o) are concave

in shape, M(o) is determined by the vertices of V(o). These

vertices are not readily known, since we do not know the exact

shape of V(o). In fact, we can view the finding of a dimension

of M(o) as a convex optimization problem. In particular, any

dimension of M(o) must be located in the feasible region

(or solution space) V(o). Since a PV-cell is composed of

planes and curved surfaces, V(o) cannot be a convex polygon.

This implies that the feasible region of this problem is not

convex. According to [40], this kind of problems does not have

any polynomial-time solution. Correspondingly, no efficient

solution exists for M(o).
The detailed proof of the above lemma can be found in

Appendix A. We conclude that it is impractical to findM(o).
Hence, we derive the UBR of V(o) defined as follows.

Definition 2: Given an object o, its Uncertain Bounding

Rectangle (UBR), denoted by B(o), is a d-dimensional rect-

angle that completely contains V(o).
A trivial B(o) is the domain space D, whereas a UBR

that tightly contains V(o) is essentially M(o). Our goal is

to develop an efficient algorithm for finding a B(o), which

is only a bit looser compared to the corresponding M(o).
Our experiments show that the UBRs we found are only a

bit larger than their corresponding MBRs, and they enable

efficient nearest neighbor retrieval. In Sections IV and V, we

will study how to derive B(o). Section VI then explains how

to use UBRs to evaluate a PNNQ.

IV. PV-CELL AND DOMINATED REGIONS

Our main idea of finding B(o) is to interpret V(o) by

using dominated regions. Section IV-A presents the concept

of dominated regions. In Section IV-B, we use dominated

regions to derive some fundamental properties of V(o). These

properties form the basis of our solution, which will be

discussed in Section V.

For the detailed proofs of the lemmas discussed in this

section, please refer to Appendix B.

A. Dominated and Non-dominated regions

Let a and b be two uncertain objects, whose uncertainty

regions u(a) and u(b) are inside the domain D. Then,

Definition 3: The dominated region of a over b, denoted

by dom(a, b), is a subset of D, such that:

dom(a, b) = {p ∈ D|distmax(a, p) < distmin(b, p)}.
Definition 4: The non-dominated region of a over b, de-

noted by ¬dom(a, b), is D − dom(a, b), or

¬dom(a, b) = {p ∈ D|distmax(a, p) ≥ distmin(b, p)}.
Figure 3 illustrates these two regions, which are separated

by hyperplane Ha,b (Equation 1). When point p is inside

dom(a, b), according to Definition 3, a is always closer to

p than b. If p ∈ ¬dom(a, b), then b may be closer to p than

a.

Lemma 2: dom(a, b) = ∅ if and only if u(a) intersects

u(b).

Lemma 2 allows us to quickly determine dom(a, b),
by checking whether u(a) intersects u(b). Notice that

dom(a, a) = ∅.

Now, let A ⊆ S be a subset of S. We introduce two

notations to facilitate our discussions.

Definition 5: The non-dominated intersection of A over

o, denoted by I(A, o), is the intersection of non-dominated

regions of objects in A over o, i.e.,

I(A, o) =
∩

∀a∈A

¬dom(a, o).

Definition 6: The dominated union of A over o, denoted

by U(A, o), is the union of dominated regions of objects in A
over o, i.e.,

U(A, o) =
∪

∀a∈A

dom(a, o).

The following result relates I(A, o) and U(A, o).

Lemma 3: U(A, o) = D − I(A, o)

We next study how these concepts can be used to derive

some important properties of a PV-cell.

B. Other Properties of PV-cell

Lemma 4 below establishes the relationship between the

PV-cell of o and the non-dominated intersection of S over o:

Lemma 4: V(o) = I(S, o)

Proof: (Sketch) We want to show that 1) for any point

p ∈ I(S, o), o has a non-zero chance to be the closest to p
and, 2) for any p /∈ I(S, o), o has no chance to be the nearest

to p. If these two statements hold, then I(S, o) must be the

PV-cell of o.

We say that S is an V-set of V(o). As we will explain later,

V-sets other than S may exist. Formally, we represent the V-set

of V(o) by Vset(o), with the following definition:

Definition 7: The V-set of V(o), denoted by Vset(o), is a

subset of S such that V(o) = I(Vset(o), o).

We also define the candidate V-set of V(o), or simply C-

set:

Definition 8: The C-set of V(o), denoted by Cset(o), is a

subset of S such that V(o) ⊆ I(Cset(o), o).

Thus, V(o) is bounded within the non-dominated intersec-

tion of Cset(o) over o. Notice that when Cset(o) = S, Cset(o)
becomes Vset(o). Let us now study other properties of V(o).

Lemma 5: The uncertainty region of o, i.e., u(o), must be

completely inside V(o), i.e., u(o) ⊆ V(o).

Based on the above result, we can consider u(o) to be a

“lower bound” of B(o). This is used in our UBR construction

algorithm that will be detailed in Section V. Next, we have:

Lemma 6: V(o) is a connected region.

Hence, V(o) can be bounded by a single rectangle (e.g.,

B(o)). We next explain how to use these lemmas to derive

B(o).

l(o)

oo

(b) During the iteration (c) After the iteration(a) Before the iteration

R1
low

R2
high

R2
low

R1
high

i1(o)
low

h(o)

M(o)

o

Fig. 4. Illustrating an iteration of SE (x-dimension, low direction).

V. GENERATING A UBR

Ideally, B(o) is the MBR of o (i.e., M(o)). However, as

discussed before, finding M(o) is extremely expensive. We

now present the Shrink-and-Expand (or SE) algorithm for

efficiently computing a B(o), which is only slightly larger than

M(o).
The main idea of SE is to estimate M(o) with the aid

of a pair of d-dimensional rectangles: the lower bound l(o),
which is enclosed byM(o); and the upper bound h(o), which

containsM(o). In other words,M(o) is sandwiched between

l(o) and h(o). The algorithm iteratively adjusts the size of

these rectangles untilM(o) is accurately represented by them.

Specifically, in each iteration, SE performs either one of the

operations:

• Shrink: Reduce the size of h(o), by pruning regions that

must not be part of M(o), and;

• Expand: Increase the size of l(o), by including regions

that are assured to be inside M(o).

When the distance between l(o) and h(o) is smaller than

some threshold value ∆, SE outputs h(o) as the UBR of o.

Figure 4(a) illustrates V(o) (in grey), M(o), l(o), and h(o),
in 2D space.

Algorithm 1 shows the details of SE. Step 2 executes the

procedure chooseCSet, which returns a C-set of V(o). Here,

we assume that chooseCSet returns S, but we will discuss

another implementation of this procedure in Section V-A.

Notice that S is indeed a C-set, since according to Lemma 4,

V(o) = I(S, o). Step 3 initializes the bounds l(o) and h(o).
For l(o), we use the uncertainty region of o (i.e., u(o)) as

the initial value of l(o). This is correct, because u(o) ⊆ V(o)
(Lemma 5), and V(o) ⊆M(o). For h(o), we use the domain

D as its initial value. Next, in every iteration (Steps 4-12),

the shrinking of h(o) and the expansion of l(o) are carried

out, until the condition defined in Step 4 is satisfied. (We will

explain this condition later.) Finally, Step 13 returns h(o) as

the UBR of V(o).
We now discuss Steps 4-12 in more detail. Let ρ =

{low,high} be the “direction” of object o along the j-th

dimension (where j = 1, . . . , d). For example, in Figure 4(a),

ρ = low(high) denotes the left (right) of o along the x-axis.

As shown in Steps 5 and 6, shrinking and expansion are done

for each direction ρ of dimension j. Step 7 computes iρj (o),
which is a hyperplane in the middle of h(o) and l(o), in

direction ρ along the j-th dimension. Figure 4(b) illustrates

Algorithm 1: The SE algorithm

input : Database S, object o
output: UBR of o (i.e., B(o))

1 begin

2 Cset(o)← chooseCSet(o, S)
3 h(o)← D, l(o)← u(o)
4 while |h(o)− l(o)|d ≥ ∆ do

5 for each dimension j = 1, . . . , d do

6 for ρ ∈ {low, high} do

7 Let iρj (o) be the middle plane between

h(o) and l(o) in direction ρ of j-th

dimension

8 Let Rρ
j be the region between iρj (o) and

the plane of h(o)
9 if Rρ

j ∩ I(Cset(o), o) = ∅ then

10 Remove Rρ
j from h(o)

11 else

12 Expand l(o) to position of iρj (o)

13 return h(o)

ilow1 (o), where dimensions 1 and 2 denote the x- and the y-

axes respectively. In Step 8, we consider the region between

iρj (o) and h(o), denoted by Rρ
j . Figure 4(b) demonstrates these

regions. In Step 9, we test whether Rρ
j overlaps I(Cset(o), o).

According to Definition 8, V(o) is bounded by I(Cset(o), o).
Hence, if Rρ

j does not touch I(Cset(o), o), it must also not

touch V(o). This Rρ
j cannot be part ofM(o), and can be safely

removed from h(o) (Step 10). Otherwise, we expand l(o) in

direction ρ, dimension j, up to the position of iρj (o) (Step 11).

Figure 4(c) shows that h(o) is shrunk with the removal of

Rlow
1 . The shrinking-and-expanding process is repeated until

the maximum distance between the boundaries h(o) and l(o),
denoted by |h(o)− l(o)|d, is less than ∆, as indicated in Step

4. 1

Discussions. Observe that in each iteration, the distance

between h(o) and l(o) (in one direction) is halved. Let |D|max

be the maximum of the lengths of domain D projected to all

dimensions. Then, the number of iterations executed for each

direction is at most log(|D|max/∆), and the total number

of iterations required by SE is log(|D|max/∆) · 2d. Thus,

l(o) and h(o) converge to M(o) quickly. When ∆ = 0,

h(o) = l(o), and h(o) becomes M(o), the MBR of V(o).
In our experiments, by using a small ∆, the UBR returned by

SE is only a bit larger than its corresponding MBR.

However, SE is still not very efficient, because of Step 9:

• Problem 1: The whole database (i.e., S) is used to

compute I(Cset(o), o) in Step 9, since chooseCSet

(Step 2) returns S. If |S| is large, Step 9 can take a long

time to run.

1Specifically, |h(o) − l(o)|d is the maximum distance between h(o) and
l(o), among all dimensions.

Ho2,o

o1 o3o2

o5

Ho3,o Ho4,o

Ho5,o
o o4

Fig. 5. Illustrating how different objects affect the PV-cell of o.

• Problem 2: Evaluating Rρ
j ∩ I(Cset(o), o) is costly,

since this involves computing intersections of multi-

dimensional non-dominated regions, whose shapes can

be complex.

In the worst case, Step 9 has to be executed 2d ·
log(|D|max/∆) times. We next study how to tackle Problem

1, in Section V-A. We examine an efficient method for solving

Problem 2 in Section V-B.

A. Designing the chooseCSet Routine

To handle Problem 1, let us consider chooseCSet again,

which was made to return S in the previous section. In fact,

this is not necessary. Let us first show the following lemma,

the proof of which can be found in Appendix C.

Lemma 7: Given an object o ∈ S, any non-null subset T
of S is a C-set of V(o).

Hence, S is not the only C-set. Since any subset of S
can be a C-set, can we just tell chooseCSet to return an

arbitrary object o′ ∈ S? If we do this, I(Cset(o), o) is simply

¬dom(o′, o), and Step 9 of SE can be efficiently executed.

Unfortunately, the UBR of o returned by SE can be much

larger than its corresponding PV-cell, as illustrated by he

following example.

Example. In Figure 5, S = {o, o1, . . . , o5}. The boundary

of V(o) is drawn in bold lines, and one of the V-sets of V(o)
is {o2, o4, o5}. Notice that o1 and o3 are not in this Vset(o).
Recall that V(o) = I(S, o) (Lemma 4), or the intersection of

¬dom(o′, o), for every o′ ∈ S. Since u(o) overlaps u(o1),
by Lemma 2, ¬dom(o1, o) is D. Hence, o1 does not affect

the shape of V(o), and o1 can be excluded from Vset(o). For

o3, notice that dom(o3, o) (the grey region) does not intersect

V(o). Consequently, ¬dom(o3, o) does not affect V(o), and o3
can also be pruned from Vset(o).

Now, suppose that chooseCSet returns o1. Then,

I(Cset(o), o) becomes I({o1}, o), or just D. As a result, in

Step 9 of SE, Rρ
j ∩ D is always not null, and h(o) will not

be shrunk at all. Consequently, h(o), which is initialized to D
(Step 3), will be returned. This UBR returned by SE may not

be desirable, since it may be much larger than V(o) orM(o).
With a similar argument, when Cset(o) = {o3}, h(o) cannot

be shrunk to tightly bound M(o).

To ensure that SE returns a small MBR, a thoughtful

design of chooseCSet is important. Notice that if Cset(o) =

Vset(o), SE can attain the highest effectiveness. This is be-

cause the condition tested in Step 9 becomes Rρ
j ∩ V(o)

(Lemma 4). If ∆ = 0, the UBR returned is exactly M(o).
Again, S is one of the V-sets of o. To solve Problem 1,

however, it is desirable to obtain a Vset(o) with the minimal

size. For example, {o2, o4, o5} is the minimum V-set of o,

denoted by Vmin
set (o), in Figure 5. Unfortunately, it is not easy

to derive this set: for every s ∈ S, we have to compute the

boundary Hs,o, and check whether Hs,o constitutes V(o). This

is similar to the computation of V(o), which as discussed in

Section III, is extremely expensive.

We propose two implementations of chooseCSet. They

derive a small V-set based on some simple observations about

V(o), as detailed below:

1. Fixed Selection (FS). This algorithm returns k objects

whose mean positions are the closest to the mean position of

o. In Figure 5, for instance, if k = 2, then Cset(o) = {o1, o2}.
The FS solution assumes that if object a is closer to o than

object b, then a has a higher chance to be included in Vmin
set (o)

than b. In Figure 5, o2 is closer to o than o3, and so Vmin
set (o)

contains o2, but not o3.

Despite of the simplicity of FS, it faces four problems:

• The C-set returned is sensitive to k. If k is too small, the

C-set may not include all members of Vmin
set (o). In the

previous example, although o5 is a member of Vmin
set (o),

it is not returned by FS, since k = 2. On the other hand,

if k is too large, the C-set may contain objects that do

not belong to Vmin
set (o).

• Since the positions of the objects’ uncertainty regions

may not be uniformly distributed, the PV-cells of any

two objects can be very different in shape. Thus, the size

of the minimum V-set may not be the same for different

objects, and it is not easy to find a single value of k that

is close to the minimum V-set size of every object.

• Objects far away from o, but are in Vmin
set (o), may not

be chosen by FS. In Figure 5, if k = 2, o5, which is not

near to o, will not be selected. However, o5 ∈ V
min
set (o).

• FS does not discard objects whose uncertainty regions

overlap u(o). As explained before, these objects should

not be included in a C-set, since it does not affect V(o)
at all. In Figure 5, although u(o1) intersects u(o), o1 is

also returned by chooseCSet.

Let us see how the next solution alleviates the above

problems.

2. Incremental Selection (IS). In this approach, Cset(o)
is determined by examining objects in ascending order of

distance from o. This not only avoids the problem of setting

a fixed k (in FS), but also allows objects whose uncertainty

regions overlap u(o) to be skipped. Moreover, as discussed

next, the search of objects span the whole domain. This

increases the chance an object that is in Vmin
set (o) but far away

from o to be selected.

In detail, domain D is conceptually divided into 2d disjoint

partitions, based on the mean position of o. Figure 5 illustrates

the four partitions of a 2D object o separated by dotted lines.

Each partition is associated with a counter variable, which

tracks the number of NN’s that has been considered in the

partition so far. The solution examines the nearest neighbor

of o one at a time, using the algorithm in [41]. Suppose that

the current NN of o is n. If u(n) intersects any partition(s),

and u(n) does not intersect u(o), the counters associated with

these partitions will be incremented by one. The algorithm

stops either when the counter values of all partitions are at

least kpartition, or when kglobal nearest neighbors of o are

examined. Suppose that kpartition = 2 and kglobal = 10 in

Figure 5. Then, o4 and o5 will be retrieved by IS, since they

are the only two NN’s of o in the upper-right partition. On

the other hand, o1 is not returned, since IS detected that u(o1)
intersects u(o). In this example, IS returns {o2, o3, o4, o5},
which includes all members of o’s minimum V-set. The full

algorithm of IS can be found in Appendix E.

One benefit of IS over FS is that it does not need to set the

value of k anymore. Although IS needs to determine kpartition
and kglobal, our experiments show that the results not very

sensitive to these parameters. Another advantage of IS is that

objects that are far away from o and are not considered by FS

may also be returned. In Figure 5, for instance, o5 is ignored

by FS, but is returned by IS. This is because IS requires that

the number of NN’s found in every partition of D is at least

kpartition.

Remarks. Although IS and FS may not return Vmin
set (o),

they are still correct, since according to Lemma 7, any subset

of S can be Cset. For complexity, notice that FS executes a

k-NN query. The worst-case cost of IS is also that of a k-NN

query, with k = kglobal. Hence, the worst-case complexity

of both solutions is O(|S|). With the aid of a data structure

(e.g., an R-tree of objects’ uncertainty regions for efficient

NN retrieval), both IS and FS can be run efficiently. In our

experiments, the size of the C-sets returned is usually much

smaller than |S|, and so Problem 1 is addressed.

B. Non-Dominated Region Intersection Test

Recall that Step 9 of SE checks whether the intersection

of Rρ
j and I(Cset(o), o) is equal to null. This test, whether

there is any intersection at all, can be performed efficiently,

even though the task of computing the concrete intersection

set is hard. A simple way to perform this test is to com-

pute Rρ
j ∩ I(Cset(o), o) directly. As mentioned in Problem

2 (Section V-A), this involves calculating the intersection

of multi-dimensional non-dominated regions. Since the shape

of these regions can be complex, obtaining their precise

intersection points is extremely expensive. To check this con-

dition efficiently, we design a solution that does not compute

any intersection of non-dominated regions. The main idea is

to use the techniques proposed in [17] denoted as spatial

domination and domination count estimation. The concept of

spatial domination allows to efficiently decide, for three given

rectangles A, B and R whether it holds that for any triple of

points a ∈ A, b ∈ B, r ∈ R, a is closer to r than b. This equals

the decision whether B is completely contained in the region

dom(A,R). In Figure 6(a), this technique allows to decide that

R is completely contained in the dominating region dom(a, b).

b

a
R

(a)

b a1

a2

R

(b)

Fig. 6. Illustrating (a) spatial domination and (b) domination count estima-
tion.

The concept of domination count estimation, essentially splits

object R into a set of partitions, and applies the concept of

spatial domination to each partition individually. If for each

partition Ri of R, it holds that there exists an object X ∈ S
such that X spatially dominates Ri with respect to b, then

we can conclude that R cannot intersect the non-dominating

region of b. This test corresponds to testing whether the

domination count of b is greater than zero. An example is

given in Figure 6(b), where R is neither completely contained

in dom(a1, b) nor in dom(a2, b). However, it still holds that

any point r ∈ R is contained in either these regions. The

concept of domination count estimation aims at detecting this

situation.

Remarks. The intersection test as described above is an

approximate solution, specifically not all cases where Rρ
j does

not intersect I(Cset(o), o) are detected. The accuracy primarily

depends on the granularity of the partitioning of R. However,

the granularity of the partitioning process in turn influences

the runtime of the intersection test. Since for each partition of

R, the spatial domination test has to be performed for each

object in Cset(o), and the spatial domination test is linear in the

dimensionality of the dataset, the runtime of the intersection

test is in O(|part(R)| · |Cset(o)| · d), where |part(R)| denotes

the number of partitions of R.

Efficiency of SE. As discussed in Section V-A, if

chooseCSet is implemented by IS or FS, the cost of Step 2

is O(|S|). For Steps 4-12, a maximum of O(log(|D|max/∆) ·
d) iterations is needed. In each iteration, the most costly task

is the condition testing in Step 9. If the non-dominated region

intersection test is used, the cost of SE is O(log(|D|max/∆) ·
|part(R)| · |Cset(o)| · d

2). Notice that SE does not compute

any intersection on V(o). Finally, if the uncertainty region of

o (i.e., u(o)) is not rectangular, we can represent u(o) by its

minimum bounding rectangle. The size of the PV-cell for this

rectangle will not be less that of V(o). Thus, the UBR returned

by SE still contains V(o).

VI. THE PV-INDEX

We now discuss how the PV-index uses UBRs to support

PNNQ evaluation. Section VI-A presents the querying and

construction of this structure. We explain how to efficiently

update the PV-index in Section VI-B. In the sequel, we

assume that the UBR of every object in the database has been

generated, based on the solutions discussed in Section V.

disk page

root

non-leaf

node

leaf node

Primary

uID

...

o1

o2

o3

UBR Uncertainty Info

Secondary

... ...

B(o1)

o3 u(o3)

u(o1).pdf

B(o2)

B(o3)

u(o2).pdf

u(o3).pdf

Fig. 7. Illustrating the PV-index (2D).

A. Index Design

The PV-index contains two parts: a primary index, which

facilities data pruning, and a secondary index, which stores the

UBR and uncertainty information of each object. The primary

index is based on a multi-dimensional octree [42], while the

secondary index is an extensible hash table [43]. Figure 7

illustrates the PV-index for 2D uncertain objects. In this case,

the primary index is a quad-tree, whose root node covers the

whole domain. A non-leaf node contains pointers to its 2d

child nodes; the region associated with each child node is 1/2d

of that of its parent. We do not store the region represented

by each child node, because this information can be derived

from its parent. A leaf node stores the IDs of objects whose

UBRs overlap the region associated with the leaf node. The

uncertainty regions of these objects are stored there too. We

keep all the non-leaf nodes in the main memory. The leaf

nodes are stored in the disk, each of which is a linked list

of disk pages. For the secondary index, an entry is accessible

by the object ID. For every entry in this entry, we store the

object’s UBR, as well as its uncertainty pdf. The secondary

index is stored in the disk. 2

Query Evaluation. The PV-index supports Step 1 of PNNQ

evaluation, i.e., retrieval of objects with non-zero qualification

probabilities. Starting from the root of the primary index, we

access the child nodes whose associated regions contain the

query point q. This is repeated until we reach the leaf node

nleaf , whose region contains q. The list L of IDs stored

in nleaf correspond to objects that may constitute PNNQ

answers. Notice that the UBR of any object o in L overlaps

the region spanned by nleaf . Since q can be inside the PV-

cell of o, o is possibly a nearer neighbor of q. However,

some objects in L may not qualify for the answer; for these

objects, their PV-cells do not contain q. These objects can be

pruned by checking whether their minimum distances from

q are larger than the minimum of the maximum distances of

objects in L from q. Objects that remain in L are those whose

qualification probabilities exceed zero. Their probabilities are

then computed in Step 2, using the uncertainty information

stored in the secondary index. We implement Step 2 based

2Each uncertainty pdf is discretized by 500 samples in our experiments.
Moreover, the region spanned by a leaf node can be touched by up to |S|
UBRs. We thus store this in the disk.

on the method in [8]; in practice, any solution mentioned in

Section II can be used. Appendix F discusses this in detail. 3

Index Construction . The PV-index is created by inserting

UBRs to it sequentially. Initially, its primary index is a root

node with an empty page, and its secondary index is a hash

table. We also allocate a fixed amount of main memory to

store the non-leaf nodes of the primary index. The UBR B(o)
of every object o ∈ S is then inserted to the index as follows:

1) Perform a range search on the PV-index, using B(o),
and locate the leaf nodes whose regions overlap B(o).

2) For every node nleaf obtained in Step 1, if the first

page in the list of nleaf is not fully occupied, insert

(ID of o, u(o)) to it.

3) Suppose that all pages in nleaf are full. If there is not

enough main memory to allocate a new non-leaf node,

attach a new page to the head of the list in nleaf , and

insert (ID of o, u(o)) to it. Otherwise, make nleaf to

be the parent of 2d new child leaf nodes. (Thus, nleaf

becomes a non-leaf node.) We then re-insert the UBRs

whose corresponding objects were previously contained

in nleaf , to the new child nodes.

4) Insert an entry (B(o), u(o).pdf) to the secondary index.

Since both the region of a node and B(o) are rectangles,

checking whether they overlap is easy. Let M and K be the

sizes of the main memory and disk page respectively. Then,

the PV-index has at most ⌊M/2d+2⌋ · (1 + 2d) nodes. The

construction cost of the index is O((M + costSE) · |S|), where

costSE denotes the time complexity of SE. Evaluating Step 1

of PNNQ requires a cost of O(log⌊M/2d+2⌋ + |S|/K). For

details, please refer to Appendix G.

B. Updating the PV-Index

We now study the maintenance of the PV-index. After a

database has been changed, its associated PV-index also needs

to be refreshed, in order to allow queries to be answered

correctly. A simple yet expensive solution is rebuild the index

from scratch. We now introduce an incremental solution,

which only modifies part of the index. This solution supports

two common operations: object insertion and deletion.

Change of PV-cell. Our approach is based on understanding

how a PV-cell is impacted by an update on database S. We

found that a PV-cell may remain unchanged after an update is

applied to S. Specifically, let o′ be the object to be inserted

to (or removed from) S, and S′ be the resulting database.

Also, let V(X, o),M(X, o) and B(X, o) be the PV-cell, MBR,

and UBR of o derived from database X respectively, with

X ∈ {S, S′}. We say that an object o (where o ∈ S∧o ̸= o′) is

affected, if V(S, o) and V(S′, o) are different upon a database

update. Lemma 8 lists the conditions for o to be not affected:

Lemma 8: Object o is not affected if:

1) V(S, o) ∩ V(S, o′) = φ (for deletion of o′); or

2) V(S, o) ∩ V(S′, o′) = φ (for insertion of o′); or

3Alternatively, an R-tree can be used to implement the primary index. We
choose the octree, because its grids do not overlap. This enables efficient
evaluation of point query q.

(a) (b)

Fig. 8. Illustrating deletion of o′: (a) UBRs of o′ (dotted) and objects that
may be affected (bolded); (b) UBRs of an affected object before and after
deletion (dotted and bolded rectangles).

3) u(o) ∩ u(o′) ̸= φ

Condition (1) says that o is not affected if upon removal

of o′ from S, the PV-cells of o and o′ derived from S do not

intersect. In Condition (2), if o′ is inserted to S, and V(S, o)
does not overlap V(S′, o′), the PV-cell of o does not change.

As shown in Condition (3), if the uncertainty regions of o and

o′ do not intersect, than again o is unaffected. These conditions

can be proved by using the domination results in Section IV,

as detailed in Appendix D.

We can thus use the above conditions to discard unaffected

objects, whose PV-cells (and UBRs) do not change. For any

object that may be affected, the following summarizes how

their PV-cells evolve:

Lemma 9: The PV-cell of an affected object o:

• Cannot be smaller than before, if o′ is deleted from S;

• Cannot be larger than before, if o′ is inserted to S.

To show that the above is correct, we use Lemma 7. The

detailed proof is in Appendix D. Lemma 9 allows us to use

the old UBR of o, i.e., B(S, o) to derive the new one, i.e.,

B(S′, o). We next explain how to do this efficiently.

An Incremental Solution. We can now describe our incre-

mental update algorithm. We assume that S has been updated

to S′. Let us first describe a four-step solution for handling

the deletion of o′.

1) Retrieve B(S, o′) from the secondary index, using the

ID of o′.
2) Identify the set A ⊆ S of objects that may be affected.

3) Compute the new UBRs of objects in A.

4) Refresh the PV-index with the new UBRs.

We next describe the details of Steps 2-4:

[Step 2] We first issue a range query on the primary index,

using the range B(S, o′), and obtain leaf nodes whose space

in D overlap B(S, o′). Since the UBRs of the objects found in

these nodes overlap the regions represented by these nodes, the

PV-cell of these objects may also touch B(S, o′). Let the set of

all objects found in these nodes be A. Then, from the primary

index, we obtain the uncertainty regions of these objects, and

exclude any object o ∈ A where u(o)∩u(o′) ̸= φ. Next, from

the secondary index, we retrieve their UBRs, and discard any

object o where B(S, o) ∩ B(S, o′) = φ, or correspondingly,

V(S, o) ∩ V(S, o′) = φ. Notice that these discarded objects

satisfy Conditions (1) or (3) of Lemma 8. The remaining

objects in A may be affected. Figure 8(a) shows the UBRs

of o′ and the objects in A, in dotted and bolded rectangles,

respectively.

[Step 3] For every o ∈ A, V(S, o), as well as B(S, o), may be

changed after the update. To obtain B(S′, o), we use a slightly-

changed version of SE: in Step 3, rather than initializing the

lower bound l(o) to u(o), we set l(o) to be B(S, o), which

was stored in the secondary index. As discussed in Lemma 9,

V(S′, o) cannot be smaller than V(S, o); hence, B(S′, o) may

also be bigger than B(S, o). We can thus use B(S, o) as l(o). 4

Since B(S, o) cannot be smaller than u(o), the gap between

h(o) and l(o) is smaller in Step 3 of SE. As a result, the

shrinking-and-expansion process runs more quickly.

[Step 4] We first remove B(S, o′) from the primary index.

This is done by locating the leaf nodes whose regions overlap

B(S, o′) found in Step 2. We then remove all entries related

to o′ from these nodes. We also delete the entry of o′ from

the secondary index. For every affected object o ∈ A, we

extract the sets N and N ′ of leaf nodes, whose regions overlap

B(S, o) and B(S′, o) respectively. The entries of o are then

inserted to the set of nodes in N ′ − N . Figure 8(b) shows

the (grey) set of leaf nodes (N ′ − N) where the entry of an

affected object has to be inserted. Notice that since B(S, o)
is covered by B(S′, o), we do not have to handle the nodes

in N . The UBR information of o in the secondary index is

updated accordingly. 5

Insertion can be handled in a similar manner:

[Step 1] Retrieve B(S′, o′) by running SE on S′.

[Step 2] Identify the set A of affected objects, by issuing a

range query B(S′, o′) on the primary index. For any o ∈ A,

remove o from A if u(o)∩u(o′) ̸= φ or B(S, o)∩B(S′, o′) =
φ; as stated in Lemma 8, o satisfies Conditions (2) or (3), and

is an unaffected object.

[Step 3] For every o ∈ A, obtain B(S′, o) by running a

modified version of SE, where h(o) is set to B(S, o), instead

of D. This is correct, because Lemma 9 states that V(S′, o)
cannot be larger than V(S, o); also V(S, o) is completely inside

B(S, o). Since now B(S, o) is smaller than D, SE can start

with a smaller h(o) and yield a UBR more efficiently.

[Step 4] For every o ∈ A, retrieve the sets N and N ′

of leaf nodes, whose regions overlap B(S, o) and B(S′, o)
respectively. Remove entries of o from the set of nodes in

N − N ′. Then, insert the UBR of o′ to the PV-index, using

the index construction algorithm described in Section VI-A.

Complexity. For both deletion and insertion, the worst-case

cost of incremental is O((M + costSE) · |S|). Appendix G

describes how to derive this result, for both insertion and

deletion. Notice that this is the same as the cost of rebuilding

the PV-index. In our experiments, however, incremental is

about two orders of magnitude faster than constructing the

index from scratch.

4Even if B(S, o) is larger than M(S′, o), SE is still correct, since h(o) =
D is always an upper bound of M(S′, o).

5We choose not to update the non-leaf nodes in the primary index, because
this can trigger a lot of update operations. Our approach still returns correct
query answers efficiently, as shown in our experiments.

parameter values (synthetic) values (real)

|S| 20k, 40k, 60k, 80k, 100k 30k, 36k, 20k

d 2, 3, 4, 5 2, 3

|u(o)| 20, 40, 60, 80, 100 N/A

∆ 0.1, 0.5, 1, 10-1000 1

mmax 2-5, 10, 20, 40 10

k 20, 40, 100, 200, 400 200

kpartition 2, 5, 10, 20, 50 10

kglobal 200 200

TABLE II

PARAMETERS AND THEIR DEFAULT VALUES (IN BOLD).

VII. EXPERIMENTAL RESULTS

We now report our results. Section VII-A describes the

experiment setup. In Section VII-B, we compare the query

performance of different indexes. We then present a detailed

analysis of the PV-index in Section VII-C.

A. Setup

We have evaluated our approaches on synthetic and real

datasets. Synthetic data are generated by using Theodoridis et

al’s data generator 6. The mean attribute values of uncertain

objects are uniformly distributed in domain D = [0, 10K]d,

where d = 3 by default. The length of an attribute’s uncertainty

region, u(o), in each dimension is uniformly distributed in

[1, |u(o)|], where |u(o)| denotes the maximum length of u(o)
in a dimension. We adopt the discrete model [13], [14],

by representing an object’s uncertainty pdf with 500 points

randomly sampled within the uncertainty region, each of which

exists with a probability of 1/500. The number of instances

in our experiments is in the order of 107, and sizes of these

datasets are within 0.2 and 1 GB. Table II list the values of

parameters used in our experiments.

For the three real datasets used, two of them, called roads

(30k) and rrlines (36k), contain 2D rectangular regions 7.

The third one, named airports, records 3D coordinates (i.e.,

latitude, longitude, and height) of 20k airports in the US 8.

A airport location was collected by GPS devices, whose

measurement error is a 10m-radius sphere [15]. These uncer-

tainty regions are represented by their corresponding minimum

bounding rectangles. The uncertainty pdf of each object in

these datasets is a normal distribution, with mean equal to the

object’s reported location, and variance equal to 1. This pdf

is again discretized by 500 samples.

Each PNNQ is generated by randomly selecting a query

point from D. We compare three indexes, namely R-tree, UV-

index, and PV-index, in terms of their performance in retrieving

objects with non-zero qualification probabilities (i.e., PNNQ

Step 1). For R-tree, objects are indexed by an R*-tree [44]

with a fanout of 100. This R-tree is also used to build UV-

and PV-indexes. For UV-index, we implement the solution of

[9] for 2D uncertain data. The default settings of [9] are used.

6http://www.rtreeportal.org/software/SpatialDataGenerator.zip
7http://www.rtreeportal.org
8http://www.ourairports.com/data/

For PV-index, the default values of k, kpartition, and kglobal
are 200, 10, and 200 respectively. The IS strategy is used to

implement chooseCSet by default. The non-leaf nodes of

these three indexes are all stored in 5 Mb of main memory,

while their leaf nodes and object information are kept in 4kb

disk pages 9. For computing the actual probabilities of the

objects (i.e., PNNQ Step 2), we implement the solution in

[8]; the details of this step can be found in Appendix F.

In the following results, each data point reported is an

average of 50 runs. Unless stated otherwise, the discussion

below refers to synthetic datasets. We test our solutions on

a PC with an Intel Core2 Duo 2.83GHz processor and 2GB

RAM. The source codes of our implementation are publicly

available 10.

B. Query Performance

We first compare the query time Tq required by R-tree and

PV-index, on 3D datasets. Figure 9(a) shows that under a

wide range of database size |S|, PV-index is 38− 40% faster

than R-tree. To understand why, let us consider Figure 9(b),

which displays the major components of Tq: Step 1(i.e., object

retrieval, or OR), and Step 2 (i.e., probability computation,

or PC). While the amount of time spent on PC is the same

for both methods, the time invested by PV-index on OR is

about 1/6 of R-tree. Notice that OR involves traversing non-

leaf nodes (in main memory) and leaf nodes (in the disk), for

both methods. The time required for visiting non-leaf nodes

is very small (less than 0.1ms). However, as illustrated by

Figure 9(c), the cost of accessing leaf nodes for PV-index is

only 20% of that of R-tree. Given a query point q, in PV-index

only one leaf node and its list pages has to be accessed. Due to

the overlapping nature of the bounding rectangles in R-tree, q
may be contained by the regions associated with one or more

nodes. Thus, PV-index is much faster than R-tree in the OR

phase, and this leads to a superior query performance 11.

Figure 9(d) shows that for both PV-index and R-tree, Tq

increases with the size of uncertainty region, |u(o)|. This is

because the chance that an object contributes to a PNNQ

answer increases. Again, since PV-index has a better I/O

performance, it is consistently faster thanR-tree.

Dimensionality. Figure 9(e) shows that PV-index is 20 −
40% faster than R-tree in different dimensionality d. This is

because the time spent on the OR phase (i.e., TOR) by PV-

index is less than R-tree (Figure 9(f)). The improvement is due

to the fact that PV-index performs better than R-tree in terms of

I/O (Figure 9(g)). Moreover, when d ≥ 3, the fraction of time

Tq spent by R-tree on OR is over 60%. Thus, the performance

of PNNQ can be improved significantly by the decrease in

TOR. Although PV-index and UV-index perform similarly, UV-

index only supports 2D data.

9In our experiments, R-tree needs more main memory to store the non-leaf
nodes than both UV-index and PV-index.

10http://www.cs.hku.hk/˜pwzhang/pvc.zip
11Notice that fast solutions such as [11], [36] can be used to implement

PC. Then, the fraction of Tq time spent on OR is increased. Thus, enhancing
the time for OR becomes more important.

Figure 9(e) also reveals that for all the indexes tested, Tq

does not increase with d. When d increases, the volume of D
also increases, and objects in D tend to be more separated.

Since fewer objects qualify for the PNNQ, the amount of

time spent on the PC, i.e., TPC , drops with d. However,

the amount of time spent on OR, i.e., TOR, increases with

d (Figure 9(f)). As the drop in TPC is higher than the rise

in TOR, the performance at d = 2 can be worse than that of

other higher dimensions.

Real datasets. As shown in Figure 9(h), for 2D datasets

(roads and rrlines, UV and PV-indexes are about 40% faster

than R-tree. In the 3D dataset (airport), PV-index is 45% better

than R-tree. Hence, Voronoi-based techniques outperform R-

tree in PNNQ evaluation.

C. Analysis of the PV-Index

In this section, we study the effect of different parameters

on the performance of the PV-index. We also present results

about construction and update of this index.

(a) Parameter Testing. Figures 10(a)-(c) shows the effect

of ∆, k, and kpartition, on the query performance of the

PV-index. Observe that Tq is quite stable, except when the

parameter values are extremely high or low (e.g., ∆ > 500).

It is thus not very hard to choose parameters to attain a high

query performance. The indexes created by using FS and IS

strategies also yield a similar performance.

We then study the effect of these parameters on the index

construction time Tc. Figure 11(a) shows that Tc drops with

the increase of ∆. This is because SE needs fewer iterations to

compute the UBR. We further found that Tc increases with k
and kpartition; the results are skipped due to space limitation.

(b) Index Construction. We next study how FS and

IS, used in chooseCSet, affect Tc. We compare these

methods with a naive solution, called ALL, which instructs

chooseCSet to return S as the C-set. Figure 11(c) shows

that ALL is extremely inefficient; when |S| = 20k, the

construction time is 103 hours. However, FS and IS needs 10

minutes or less to complete. Figures 11(d) and 11(e) compare

IS and FS over different values of |S| and |u(o)| respectively.

Observe that IS is always better than FS. This is explained by

Figure 11(f), which shows the two major time components of

SE : (1) Run chooseCSet; and (2) Compute the UBR. (The

time for inserting the UBR to the PV-index, which is relatively

small (less than one second), is omitted here). Observe that

most of the time is spent on computing the UBR. Although

IS is slower than FS, it can select a smaller and better C-set. In

particular, while FS returns 200 objects, IS returns 120 objects

on average. Hence, IS can compute the UBR more efficiently

than FS.

Real datasets. As shown in Figure 11(g), IS is faster than

FS for all the datasets tested. Figure 11(h) compares the time

for constructing the PV- and the UV-index on 2D datasets.

We can see that the construction time of the PV-index is 15-

25 times faster than the UV-index.

(c) Index Update. We compare the incremental update algo-

rithm (Inc) and the solution that rebuilds the index. For dele-

0

20

40

60

80

100

120

140

160

20k 40k 60k 80k 100k

Tq
(m

s)

|S|

R-tree

PV-index

(a) Tq(ms) vs. |S|.

0

10

20

30

40

50

60

70

R-tree PV-index

Tq
(m

s)

OR

PC

(b) OR and PC.

0

1

2

3

4

5

6

7

8

20k 40k 60k 80k 100k

#
 p

a
g

e
 a

cc
e

ss
e

s

|S|

R-tree

PV-index

(c) Tq(I/O) vs. |S|.

0

20

40

60

80

100

120

140

160

180

20 40 60 80 100

Tq
(m

s)

|u(o)|

R-tree

PV-index

(d) Tq(ms) vs. |u(o)|.

0

50

100

150

200

250

2D 3D 4D 5D

Tq
(m

s)

d

R-tree

PV-index

UV-index

(e) Tq vs. d.

0

20

40

60

80

100

120

2D 3D 4D 5D

T
O

R
(m

s)

d

R-tree

PV-index

UV-index

(f) TOR vs. d.

0

2

4

6

8

10

12

2D 3D 4D 5D

#
 p

a
g

e
 a

cc
e

ss
e

s

d

R-tree

PV-index

UV-index

(g) Tq(I/O) vs. d.

0

20

40

60

80

100

120

140

roads rrlines airports

Tq
(m

s)

R-tree

PV-index

UV-index

(h) Real DBs.

Fig. 9. PNNQ Performance.

20

30

40

50

60

70

80

90

0 200 400 600 800 1000

T
q
(m
s
)

(a) Effect of ∆.

0

50

100

150

200

0 100 200 300 400

T
q
(m
s
)

k

(b) Effect of k (FS).

0

50

100

150

200

250

0 10 20 30 40 50

T
q
(m
s
)

kpartition

(c) Effect of kpartition (IS).

Fig. 10. Sensitivity of Tq to PV-index parameters.

0

200

400

600

800

1000

0 200 400 600 800 1000

T
c
(s
)

(a) Effect of ∆.

1

10

100

1,000

10,000

0 10 20 30 40

T
c
(s
)

mmax

(b) Effect of mmax.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

20k 40k 60k 80k 100k

Tc
(s

)

|S|

FS

IS

ALL

(c) Tc(s) vs. |S|.

0

500

1000

1500

2000

2500

3000

20k 40k 60k 80k 100k

Tc
(s

)

|S|

FS

IS

(d) Tc(s) vs. |S|.

0

200

400

600

800

1000

1200

20 40 60 80 100

Tc
(s

)

|u(o)|

FS

IS

(e) Tc(s) vs. |u(o)|.

0

200

400

600

800

1000

1200

FS IS

Tc
(s

)

UBR

C-set

(f) Analysis of SE.

0

50

100

150

200

250

roads rrlines airports

Tc
(s

)

FS IS

(g) Real DBs.

0

10

20

30

40

50

roads rrlines

Speed up over UV-index

FS IS

(h) Speedup on 2D Real DBs.

0

1

10

100

1000

10000

20k 40k 60k 80k 100k

T
u

(s
)

|S|

Insertion

Inc

Rebuild

(i) Insertion

0

1

10

100

1000

10000

20k 40k 60k 80k 100k

T
u

(s
)

|S|

Deletion

Inc

Rebuild

(j) Deletion

Fig. 11. Construction and Update Performance of the PV-Index.

tion, we randomly remove 1K objects from S. For insertion,

we use the database where the 1K objects have been removed,

and re-insert all these objects to it. We measure the average

time Tu to handle insertion/deletion per object. Figure 11(i)

shows that Inc is more than two orders of magnitude faster

than Rebuild. For example, at |S| = 20K, Tu = 350s for

Rebuild, but Tu = 2s for Inc. For deletion, Figure 11(j) also

shows that Inc is much faster than Rebuild. We remark that the

query performance of the indexes generated by Inc and Rebuild

is highly similar: for object insertion (deletion), the average

difference of Tq between Inc and Rebuild is 1.44% (0.88%).

Thus, Inc does not impact query performance significantly.

VIII. CONCLUSION

Evaluating PNNQs over a multi-dimensional uncertain

database is an important and challenging problem. In this pa-

per, we study a PNNQ algorithm based on PV-cells. We found

that while a PV-cell is difficult to derive and store, finding its

MBR can be much more efficient. We also propose the PV-

index, which stores these MBRs in a systematic manner, in

order to efficiently answer a PNNQ. The PV-index can be

incrementally refreshed to reflect the changes occurring in

the underlying database. In the future, we will study how

to use the PV-index to support other queries, e.g., group

NN [12] and reverse NN [13], [14]. We are also interested in

developing other precomputation techniques (e.g., bulkloading

and compression) for facilitating the access of uncertain data.

REFERENCES

[1] F. Aurenhammer, “Voronoi diagrams: a survey of a fundamental geo-
metric data structure,” ACM Computing Surveys (CSUR), 1991.

[2] C. Aggarwal, “On unifying privacy and uncertain data models,” in ICDE,
2008.

[3] A. Deshpande et al., “Model-based approximate querying in sensor
networks,” VLDBJ, 2005.

[4] J. Widom, “Trio: A system for integrated management of data, accuracy,
and lineage,” Technical Report, 2004.

[5] S. Singh et al., “Orion 2.0: native support for uncertain data,” in
SIGMOD, 2008.

[6] J. Boulos et al., “Mystiq: a system for finding more answers by using
probabilities,” in SIGMOD, 2005.

[7] J. Huang, L. Antova, C. Koch, and D. Olteanu, “Maybms: a probabilistic
database management system,” in SIGMOD, 2009.

[8] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Querying imprecise data
in moving object environments,” TKDE, 2004.

[9] R. Cheng et al., “UV-diagram: A Voronoi diagram for uncertain data,”
in ICDE, 2010.

[10] G. Beskales, M. Soliman, and I. IIyas, “Efficient search for the top-k
probable nearest neighbors in uncertain databases,” VLDB, 2008.

[11] R. Cheng et al., “Probabilistic verifiers: Evaluating constrained nearest-
neighbor queries over uncertain data,” in ICDE, 2008.

[12] X. Lian and L. Chen, “Probabilistic group nearest neighbor queries in
uncertain databases,” TKDE, 2008.

[13] M.A. Cheema et al., “Probabilistic reverse nearest neighbor queries on
uncertain data,” TKDE, 2010.

[14] T. Bernecker et al., “Efficient probabilistic reverse nearest neighbor
query processing on uncertain data,” VLDB, 2011.

[15] B. Parkinson, “GPS error analysis,” Global Positioning System: Theory

and applications., vol. 1, pp. 469–483, 1996.

[16] T. Emrich et al., “Incremental reverse nearest neighbor ranking in vector
spaces,” Advances in Spatial and Temporal Databases, 2009.

[17] ——, “Boosting spatial pruning: on optimal pruning of mbrs,” in
SIGMOD, 2010.

[18] C. Shahabi and M. Sharifzadeh, “Voronoi diagrams for query process-
ing,” in Encyclopedia of GIS, 2008, pp. 1235–1240.

[19] M. Sharifzadeh et al., “Vor-tree: R-trees with voronoi diagrams for
efficient processing of spatial nearest neighbor queries,” PVLDB, 2010.

[20] L. Hu, W.-S. Ku, S. Bakiras, and S. C., “Verifying spatial queries using
voronoi neighbors,” in SIGSPATIAL, 2010.

[21] M. Sharifzadeh and C. Shahabi, “Approximate voronoi cell computation
on spatial data streams,” VLDB J., vol. 18, no. 1, pp. 57–75, 2009.

[22] A. Akdogan et al., “Voronoi-based geospatial query processing with
mapreduce,” in The 2nd International Conference on CloudCom, 2010.

[23] M. Kolahdouzan and C. Shahabi, “Voronoi-based k nearest neighbor
search for spatial network databases,” in VLDB, 2004.

[24] U. Demiryurek and C. Shahabi, “Indexing network voronoi diagrams,”
in DASFAA 2012, 2012.

[25] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. Lee, “Location-based
spatial queries,” in SIGMOD, 2003.

[26] B. Zheng et al., “Grid-partition index: a hybrid method for nearest-
neighbor queries in wireless location-based services,” VLDBJ, 2006.

[27] J. Xu et al., “Energy efficient index for querying location-dependent data
in mobile broadcast environments,” in ICDE, 2003.

[28] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik, “The v*-diagram: a
query-dependent approach to moving knn queries,” VLDB, 2008.

[29] P. Wang et al, “Understanding the spreading patterns of mobile phone
viruses,” Science, vol. 324, no. 5930, p. 1071, 2009.

[30] J. Vleugels and M. Overmars, “Approximating voronoi diagrams of
convex sites in any dimension,” International Journal of Computational

Geometry and Applications, 1998.

[31] S. Berchtold, B. Ertl, D. Keim, H. Kriegel, and T. Seidl, “Fast nearest
neighbor search in high-dimensional space,” in ICDE, 1998.

[32] B. Kao, S. Lee, D. Cheung, W. Ho, and K. Chan, “Clustering uncertain
data using voronoi diagrams,” in ICDM, 2008.

[33] W. Evans et al, “Guaranteed voronoi diagrams of uncertain sites,” in
20th Canadian Conference on Computational Geometry, 2008.

[34] M. Jooyandeh, A. Mohades, and M. Mirzakhah, “Uncertain voronoi
diagram,” Information processing letters, 2009.

[35] M. Ali et al., “Probabilistic voronoi diagrams for probabilistic moving
nearest neighbor queries,” Data and Knowledge Engineering, 2012.

[36] T. Bernecker et al., “A novel probabilistic pruning approach to speed up
similarity queries in uncertain databases,” in ICDE, 2011.

[37] T. Emrich et al., “Constrained reverse nearest neighbor search on mobile
objects,” in SIGSPATIAL, 2009.

[38] R. Seidel, “The complexity of voronoi diagrams in higher dimensions,”
in the 20th Annual Allerton Conference on CCC. IEEE, 1982.

[39] T. Brinkhoff, H. Kriegel, and R. Schneider, “Comparison of approxima-
tions of complex objects used for approximation-based query processing
in spatial database systems,” in ICDE, 1993.

[40] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[41] G. Hjaltason and H. Samet, “Distance browsing in spatial databases,”
TODS, 1999.

[42] H. Samet, The design and analysis of spatial data structures. Addison-
Wesley Longman Publishing Co., Inc., 1990.

[43] A. Rathi et al., “Performance comparison of extensible hashing and
linear hashing techniques,” in Proc. ACM SIGSmall/PC Symposium on

Small Systems, 1990.

[44] N. Beckmann et al., “The r*-tree: an efficient and robust access method
for points and rectangles,” SIGMOD, 1990.

APPENDIX

A. Section III

[Lemma 1] Since the surfaces of V(o) are concave in shape,

M(o) is determined by the vertices of V(o). Specifically, in

each dimension, the lower (upper) bounds of M(o) is the

smallest (largest) coordinate value among the vertices of V(o).
Unless we can find the exact form of V(o) (which is extremely

complex), the vertices of V(o) are not readily known.

We next show that the problem of finding M(o) can be

classified as a convex optimization problem. Let lowj and upj
be the lower and upper bounds of M(o) in dimension j (1 ≤
j ≤ d) respectively. For each j, obtaining {lowj , upj} involves

solving two equations:

lowj = min{pj |p ∈ V(o)} (2)

upj = max{pj |p ∈ V(o)} (3)

where pj is the coordinate of a point p in dimension j.

The problem of solving Equation 2 can be viewed as an

optimization problem, whose feasible region (i.e., solution

space) must be V(o), sinceM(o) is determined by the vertices

of V(o). However, since V(o) is not a convex polygon, the

feasible region of this problem is neither convex. According

to [40], this kind of optimization problem has no efficient

solution.

We can similarly conclude that there is no efficient solution

for Equation 3. Since finding M(o) involves solving Equa-

tions 2 and 3 over d dimensions, it is not possible to derive

M(o) efficiently.

B. Section IV

[Lemma 2] consists of the if and only if parts:

• (If) Since u(a) overlaps u(b), there exists a point p′

such that p′ ∈ u(a) and p′ ∈ u(b). For any point

p ∈ D, distmin(b, p) ≤ dist(p′, p), and dist(p′, p) ≤
distmax(a, p). Therefore, distmax(a, p) ≥ distmin(b, p).
According to Definition 3, dom(a, b) = ∅.

• (Only if) Since dom(a, b) = ∅, using Definition 4,

¬dom(a, b) = D. This means for every p ∈ D,

distmax(a, p) ≥ distmin(b, p). Suppose by contrary that

u(a) does not overlap u(b). Then, we can find a point

p ∈ u(a) such that distmax(a, p) ≥ distmin(b, p) does

not hold, resulting in a contradiction.

[Lemma 3] Notice that D−I(A, o) = D−
∩

∀a∈A

¬dom(A, o).

By using set algebra, this becomes
∪

∀a∈A

(D − ¬dom(A, o)).

This expression is equal to
∪

∀a∈A

dom(A, o), or U(A, o). The

lemma is thus proved.

[Lemma 4] We want to show that 1) for any p ∈ I(S, o), o
has non-zero probability to be the closest of p and, 2) for any

p /∈ I(S, o), o has no chance to be the nearest to p. If these

two statements hold, then Lemma 4 holds.

• For statement (1), based on Definition 4 we know that

∀s ∈ S, distmax(s, p) ≥ distmin(o, p). Hence, if

every object s (except o) is at the position ds such

that distmax(s, p) = dist(ds, p), and that o is at the

position do where distmin(o, p) = dist(do, p), every

object s ∈ S −{o} is farther away to p than o. Hence, o
has a non-zero probability to be the closest to p.

• For statement (2), we know that there exists an object

s ∈ S where p is located in dom(s, o). Note that s ̸= o,

because dom(o, o) = ∅ (cf. lemma 2). According to

Definition 3, distmax(s, p) < distmin(o, p), meaning

that s is always closer to p than o. Hence, o must not

be the closest to p.

[Lemma 5] ∀p ∈ u(o), distmin(o, p) = 0. Since

distmax(s, p) ≥ 0, there does not exist any s ∈ S such that

p ∈ dom(s, o). Thus, p ∈ I(S, o), or equivalently, V(o) (by

Lemma 4). Thus, u(o) ⊆ V(o).
[Lemma 6] By using Lemma 4, we can rewrite V(o) as:

V(o) = {p ∈ D|∀s ∈ S, distmax(s, p) ≥ distmin(o, p)} (4)

Now, let ⊙(c, r) denote a circle of centre c and radius r.

Also, suppose by contrary that V(o) is not connected. Without

loss of generality, suppose V(o) consists of two disjoint parts,

namely R1 and R2, as shown in Figure 12. Since u(o) ⊆ V(o),
suppose that u(o) ⊆ R1. Now, given a point p ∈ R2,

based on Equation 4, we know that ∀s ∈ S, distmax(s, p) ≥
distmin(o, p). Let distmin(o, p) be dist(v, p), where v is a

point in u(o). Let the uncertainty region of s be u(s). Then

there must not exist s ∈ S such that u(s) is enclosed by circle

⊙(p, dist(v, p)); else, distmax(s, p) < distmin(o, p).
Since R1 and R2 are not connected, there exists a point p′

on line segment lvp such that p′ /∈ V(o), which means that

R1 R2

v pp�
o

Fig. 12. Proof of Lemma 6.

o o�

R

V(S,o) V(S�,o�)

Fig. 13. Proof of Lemma 8.

∃s ∈ S such that distmax(s, p
′) < distmin(o, p

′). Hence,

u(s) is enclosed by circle ⊙(p′, distmin(o, p
′)). However,

p′ ∈ lvp, which means distmin(o, p
′) ≤ dist(v, p′). Hence,

⊙(p′, distmin(o, p
′)) is enclosed by ⊙(p, dist(v, p)). This

contradicts with the fact that ∄s ∈ S such that u(s) is enclosed

by ⊙(p, dist(v, p)). Hence, V(o) must be a connected region.

C. Section V

[Lemma 7] Notice that

I(S, o) = (
∩

∀s∈T

¬dom(s, o)) ∩ (
∩

∀s∈S/T

¬dom(s, o)) (5)

Since V(o) = I(S, o) (by Lemma 4), we can see from

Equation 5 that V(o) ⊆
∩

∀s∈T

¬dom(s, o), or equivalently,

I(T, o). By Definition 8, T = Cset(o).

D. Section VI

[Lemma 8] The proof is equivalent to showing that the

following three claims are correct:

• Claim 1: If object o′ is deleted from S, and V(S, o) ∩
V(S, o′) = φ, then o is not affected.

• Claim 2: If object o′ is inserted to S, and V(S, o) ∩
V(S′, o′) = φ, then o is not affected.

• Claim 3: If object o′ is inserted to (or deleted from) S,

and u(o) ∩ u(o′) ̸= φ, then o is not affected.

The following explains why these claims are correct.

[Claim 1] Let S′ = S − {o′} be the database after

o′ is removed. We want to show that if V(S, o) does not

intersect V(S, o′) (Figure 13), then V(S, o) = V(S′, o) after

the deletion. Using Lemma 4, this is equivalent to showing

the following:

V(S, o) = V(S′, o) (6)

From Lemma 4, we know that V(S′, o) = I(S′, o). Based

on Lemma 7, since S′ ⊆ S, we have V(S, o) ⊆ V(S′, o).
Suppose that V(S′, o) = V(S, o)∪R where R is some region

in D such that V(S, o) ∩ R = ∅. Hence, if R = ∅, Equation

(6) is true. The following explains why R = ∅.

First, we show that R ⊆ V(S, o′) (i.e., Figure 13). Suppose

by contrast that this is not true. That is, there exists a point

p ∈ R such that p /∈ V(S, o′). Since p ∈ R, p /∈ V(S, o) and

p ∈ V(S′, o). Moreover, as V(S, o) = V(S′, o)∩¬dom(o′, o),
p cannot be inside ¬dom(o′, o); otherwise, p ∈ V(S, o). Thus,

p ∈ dom(o′, o). On the other hand, because p /∈ V(S, o′), there

exists s ∈ S such that p ∈ dom(s, o′). Since p ∈ V(S′, o),
s /∈ S′. Thus s = o′. Because dom(o′, o′) = ∅ (Lemma 2), p
cannot exist. Hence, R ⊆ V(S, o′).

Now, since R ⊆ V(S, o′) and V(S, o) does not intersect

V(S, o′), if R ̸= ∅, V(S′, o) = V(S, o)∩R will be unconnect-

ed, which violates the result of Lemma 6. Thus, R = ∅, and

the claim is correct.

[Claim 2] Let S′ = S∪{o′}, i.e., the database after inserting

o′. From Lemma 9, we know that the new PV-cell of any

object o ̸= o′ must not be smaller than before, i.e., V(S′, o) ⊆
V(S, o). Hence, V(S′, o) ∩ V(S′, o′) = φ. Next, we apply the

result of Claim 1 in Lemma 8, by viewing S as result of

removing o′ from S′, i.e., “If object o′ is deleted from S′, and

V(S′, o) ∩ V(S′, o′) = φ, then o is not affected.” The lemma

is thus proved.

[Claim 3] For deletion, since u(o′) overlaps u(o), Lemma 2

tells us that dom(o′, o) = ∅. Thus, ¬dom(o′o) = D, and

V(S, o) = I(S, o) = I(S − {o′}, o) = V(S′, o)

For insertion, we can similarly argue that V(S, o) = I(S ∪
{o′}, o) = V(S′, o). Hence, Claim 3 is correct.

[Lemma 9] For deletion, let S′ be the database after deleting

o′. Given an object o ̸= o′, according to Lemma 4, V(S, o) =
I(S, o) and V(S′, o) = I(S′, o). Since S′ ⊂ S, S′ is a C-set

of V(S, o) (Lemma 7). Using Definition 8, we know that

V(S, o) ⊆ I(S′, o)

Hence, V (S, o) ⊆ V (S′, o). In other words, the PV-cell of o
cannot be smaller than before.

For insertion, S′ contains o′. We can use the proof in the

above paragraph, by substituting S with S′ and S′ with S.

We can then show that V (S′, o) ⊆ V (S, o). Thus, o’s PV-cell

cannot be larger than before.

E. The IS Algorithm (Section V-A)

The Incremental Selection (IS) is a heuristic used by

chooseCSet. Its details are shown in Algorithm 2. Step 2

divides the space of D into 2d disjoint partitions, based on

the coordinates of o. Each partition Pi (where i = 1, . . . , 2d)

is associated with a counter ci, which records the number of

NN’s that intersect Pi (Step 3). The variable cglobal records the

total number of NN’s scanned (Step 4). Steps 5-11 perform the

incremental scanning of NN’s. We first retrieve the next NN,

on, of o (Step 6). If u(on) overlaps u(o), we skip it, increment

cglobal, and scan the next NN (Steps 7 and 11). Otherwise, for

partition Pi that intersects u(on), we increment ci, and insert

on to Cset(o) (Steps 8-11). These steps are repeated until either

(1) the number of NN’s scanned exceeds kglobal; or (2) the

counter value of every partition is larger than kpartition (Step

5). Finally, Step 12 returns Cset(o).

Algorithm 2: Incremental Selection (IS)

input : Object o, kglobal, kpartition
output: Cset(o)

1 begin

2 Let P1, ..., P2d be the 2d partitions of D based on the

d-dimensional coordinates of o
3 Let ci = 0 be the counter for partition Pi

(i = 1, . . . , 2d)

4 cglobal ← 0; Cset(o)← ∅
5 while cglobal < kglobal or

min{c1, . . . , c2d} < kpartition do

6 Let on be the next nearest neighbor of o
7 if u(on) does not intersect u(o) then

8 for each partition Pi do

9 if Pi intersects u(on) then ci ← ci + 1

10 Insert on to Cset(o)

11 cglobal = cglobal + 1

12 return Cset(o)

F. PNNQ Evaluation

This section summarizes how to evaluate a PNNQ.

1. Answer object retrieval. First, we retrieve the answer

objects (i.e., objects with non-zero qualification probabilities).

In particular, we use the query point q of the PNNQ to traverse

the PV-index, and find the leaf node nleaf whose region

contains q. We then retrieve the objects from the disk pages

that are associated with nleaf . Let L be the objects retrieved

from nleaf . Since for every object o ∈ L, B(o) overlaps with

nleaf , q may be located in V(o). Let A be the answer object

set of the PNNQ, then A ⊆ L. To determine A, we can simply

perform a min/max refinement in [8]. Specifically, we find out

the minimum of maximum distances of objects in L from q.

We denote this distance by dminmax. Any object within L
that has a minimum distance from q larger than dminmax is

removed, since this object has no chance to be the closest to

q. The answer objects are those that are not deleted from L.

2. Probability computation. For this step, we adopt the so-

lution from [8]. We assume that the uncertainty pdf of attribute

o.a is discrete. In particular, o.a is characterized by a set of

d-dimensional points, w1,...,wt, which are regularly spaced in

uncertainty region u(o). Each instance wj is associated with

a probability P (wj), to denote the probability that o.a = wj .

Also,
∑t

j=1 P (wj) = 1. A possible world W = {w1, .., w|S|}
is a set of instances, with exactly one instance chosen from

each object. The probability of W is P (W) =
∏|S|

i=1 P (wi).
The qualification probability of object o is then equal to:

t∑

j=1

P (wj) · Q(wj). (7)

where:

Q(wj) =
∏

s∈S/{o}

(1−
∑

ws∈s,dist(ws,q)<dist(wj ,q)

P (ws)). (8)

G. Complexity Analysis of the PV-index

Let M be the number of bytes of main memory, and K be

the disk page size. If each pointer to the child nodes occupies

4 bytes, the PV-index has at most ⌊M/2d+2⌋ non-leaf nodes.

Since each non-leaf node has at most 2d leaf nodes, the PV-

index has at most ⌊M/2d+2⌋ · (1 + 2d), or O(M) nodes.

To insert a UBR, we first have to compute it by using SE,

with a cost costSE = O(mmax log(|D|max/∆) · |S| ·d2). In the

worst case, each UBR needs to traverse all the O(M) nodes

in the PV-index. Once a leaf node is located, the entry of an

object can added to the head of the list in the leaf node in

O(1) times. Since |S| UBRs are inserted, the complexity of

constructing the PV-index is O((M + costSE) · |S|).

For Step 1 of PNNQ evaluation, log⌊M/2d+2⌋ non-leaf

nodes need to be retrieved for a query point q, and once the leaf

node is found, at most O(|S|/K) pages need to be accessed.

Thus, the total querying cost is O(log⌊M/2d+2⌋+ |S|/K).

Incremental update algorithm. Let us consider deletion

and insertion.

(A) For deletion,

• Step 1 needs a cost of O(1).
• Step 2: in the worst case, the range search of B(S, o′)

touches all the nodes of the primary index, with a cost of

O(M). For each of the leaf nodes, we examine O(|S|/K)
pages to retrieve the objects and their UBR information,

and this costs O(M · |S|/K). Retrieving the UBRs from

the secondary index requires a cost of O(|S|), for all

objects in S in the worst case. Thus, the total cost of this

step is O(M · |S|/K).
• Step 3: For every affected object in A, we run a slightly-

changed version of SE which requires the same cost of

SE, i.e., costSE. In the worst case, A = S, and so the cost

of this step is costSE · |S|.
• Step 4 deletes the entries of o′ from the leaf nodes in

O(M · |S|/K) times. Finding N and N ′, as well as

inserting the entries of every affected object to N −N ′,

needs a cost of O(M). Updating the information of an

affected object in the secondary index requires O(1)
times. Since we have O(|S|) affected objects, the total

cost is O(M · |S|/K +M · |S|) times.

The total cost of the above steps is O((M + costSE) · |S|).

(B) For insertion,

• Step 1 needs a cost of costSE;

• Step 2: in the worst case, the range search of B(S′, o′)
touches all the nodes of the primary index, with a cost of

O(M). For each of the leaf nodes, we examine O(|S|/K)
pages to retrieve the objects and their UBR information,

and this costs O(M · |S|/K). Retrieving the UBRs from

the secondary index requires a cost of O(|S|), for all

objects in S in the worst case. Thus, the total cost of this

step is O(M · |S|/K).
• Step 3 runs a slightly-changed version of SE for every

affected object in A. In the worst case, the cost of this

step is costSE · |S|.

• Step 4: Finding N and N ′, as well as inserting the

entries of an affected object to N ′ −N , run at a cost of

O(M). Updating the information of an affected objects

in the secondary index requires O(1) times. Since we

have O(|S|) affected objects, the cost of handling affected

objects is O(M · |S|). Inserting the entries of o′ to the

leaf nodes costs O(M). Thus, the total cost of this step

is O(M · |S|) times.

The total cost of the above steps is O((M + costSE) · |S|).
In the worst case, incremental has the same complexity

as the cost of reconstructing the index. In our experiments,

however, incremental runs much faster than rebuilding the

index.

