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Abstract. We propose a uniform and general framework for defining and 

dealing with Voronoi diagrams. In this framework a Voronoi diagram is a 

partition of a domain D induced by a finite number of real valued functions 

on D. Valuable insight can be gained when one considers how these real 

valued functions partition D ×R. With this view it turns out that the 

standard Euclidean Voronoi diagram of point sets in R d along with its 

order-k generalizations are intimately related to certain arrangements of 

hyperplanes. This fact can be used to obtain new Voronoi diagram al- 

gorithms. We also discuss how the formalism of arrangements can be used to 

solve certain intersection and union problems. 

1. Introduction 

Figure 1.1 depicts a diagram of a type known as Dirichlet tessetation, Thiessen 

polygons, or as we call it, Voronoi diagram. The formation rule for such a 

diagram is simple. The location of a finite number of "sites" is known. For each 

"site" s one wants to form the region of all points for which s is the nearest 

among the finite set of "sites." If "nearest" is understood with respect to the 

Euclidean distance measure, then for each "site" its associated region is polygo- 
nal. 

In the context of computational geometry Voronoi diagrams were first 

introduced in a paper by Hoey and Shamos [31]. The usefulness of the Voronoi 

diagram (referred to from now on as VoD) for solving a large number of 

problems, the fact that it can be constructed efficiently, and maybe also its 
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Fig. 1.1. A Voronoi Diagram 

aesthetically pleasing appearance subsequently kindled the interest of many 

researchers. They tried to apply the VoD to other problems, and if this was not 

possible directly, attempted to adapt and generalize the notion of a VoD 

appropriately. Among the generalizations are higher order VoDs [21], [31], VoDs 

of line segments and/or  circular rcs [12], [20], [23], [32], [34], VoDs of point sets 

in R a, d > 2 [5], [33], weighted Voronoi diagrams [3], power diagrams, or VoDs 

with respect to the Laguerre geometry [1], [19], VoDs with respect to the L p 

metric, 1 < p _< oo [22], [24], and VoDs with respect to other "funny" metrics [2], 

[91. 
The types of VoDs just mentioned are quite different and there is little doubt 

that even more generalizations will be investigated in the future. However, instead 

of pursuing ever more diversification one can also attempt unification and ask: 

What  do all these different types of VoDs have in common: What constitutes a 

VoD in its most general form? What are the underlying mathematical concepts? 

Does one, for instance, need the notion of a metric in order to define VoDs? 

In this paper we try to answer some of these questions. We offer a very 

general definition of VoDs which shows that they can be defined naturally on any 

domain D via a finite set of real valued functions on D. Thus no notion of metric 

is needed. We show that higher order and higher degree VoDs can be obtained in 

a similar manner and demonstrate how all these VoDs are related to the partition 

of the product space D × R induced by the finite set of real valued functions 

on D. 
This view already proves useful when applied to the standard Euclidean VoD 

of point sets in R d. It turns out that this kind of VoD, along with its higher order 

and higher degree versions, can be defined using a finite set of affine functions 

from R a to R. Consequently these diagrams are intimately related to arrange- 
ments of hyperplanes in R d+l, an insight which leads to new algorithms for 

Euclidean VoDs. 
Section 2 of this paper deals with arrangements, i.e., partitions of D × R 

induced by a finite number of real valued functions on D. In Section 3 we show 

how VoDs can be defined on any domain D via finite sets of real valued 

functions. We demonstrate how VoDs are related to arrangements and we discuss 

a number of examples in some detail. Section 4 deals with higher order and higher 

degree VoDs and their relationship to arrangements which turns out to be 

particularly attractive. Section 5 contains a short outline of how the formalism of 

arrangements can be used to solve certain intersection and union problems. In the 

last section we discuss possible directions for further research. 
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2. Arrangements 

In this section we consider the interactions among a finite number of real valued 

functions on an arbitrary domain D. The structure imposed on D x R by such a 

finite set of functions promises to be an interesting object of study, provided the 

domain D and the functions as well as their interactions are restricted ap- 

propriately. For instance, when D = R d and all the functions are affine, the 

structure of D x R has been studied to a fair extent as so-called hyperplane 

arrangement [17], [18], [35]. Similarly, in a slight generalization, when D = R d and 

all functions are continuous and satisfy certain finite intersection axioms, the 

structure imposed on D × R has been studied as so-called arrangement of pseudo- 

hyperplanes, and also in the context of oriented matroids [26]. 

In this section we do not intend to study the effect of any other function or 

domain restriction. We rather want to give some general definitions and results in 

order to provide a convenient framework to argue about Voronoi diagrams, the 

main topic of this paper. 

Let D be some domain. For a real valued function f on D we call the subset 

of D x R  

f + =  ((x,r)lr<f(x)} 

the lower hemispace off, the set 

f-= {(x,r)Ir> f(x)} 

the upper hemispace off, and, with a slight abuse of terminology, 

f o =  {(x,r)lr=f(x)} 

the surface off. Note the f+, f - ,  and f0  properly partition D x R .  

Throughout this paper let E denote a finite index set with n elements. For 

each e ~ E let fe be a real valued function on D and let fE denote the indexed 

collection of these n functions. For each point y e D x R ,  let Try(y) denote the 

partition of E induced by the functions in fE applied to point y, i.e., 

=/(y) = ( e - ,  e °, e + ), 

where 

E-= {e~Elye f~} ,  

e ° =  {eeely ZO}, 

E + =  {e~Ely~f~ +}. 

In a natural way ~rf defines an equivalence relation on D × R, making two points 

y and z equivalent iff ~rl(y) = ~r/(z). We call the partition of D × R induced by ~'y 

an re-arrangement. We call each equivalence class of an fE-arrangement a cell. 
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Fig. 2.1. The two-level of an arrangement. 

Each cell can be uniquely named by a partition ( E - ,  E °, E ÷ ) of E: 

C<E ,E,,,e+> = ( y ~ D × a l ~ r / ( y ) = ( E - , E ° , E + ) } .  

Equivalently, a cell can be represented as an intersection: 

, E o , E + >  = N .f: n n /e°n n s:. 
e ~  E -  e ~  E o e ~  E + 

As there are only a finite number of partitions of the index set E, the number of 

cells in an fe-arrangement  is finite and hence fE-arrangements can be studied as 

combinatorial  objects. 

We call a cell C<e-eoE+> a fullcell iff E ° = ~ .  For an integer k, 0 < k < n, 

we call a full cell C<E- ~ E+> a k-belt cell iff IE-I = k. We call a cell C(E- Eo.E.+} 

a k-level cell iff I E - I  "~/~ and I E - I  + IE°I >- k. Note that a cell C(E ,E0. E+> is in 

IE°l different levels. Figure 2.1 shows the two-level cells of an arrangement of 

three real valued functions on R. Figure 2.2 depicts the two-belt cells of the same 

arrangement.  Note  that cells are not necessarily "connected." 

I f  see and gE are two indexed collections of real valued functions on a 

common domain D, then we call fE and gE order-equivalent iff for all x ~ D and 

/ C < {b,O.O,{a} 

~c 

Fig. 2.2. The two-belt of an arrangement. 
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for every pair i, j ~ E 

s i g n ( f , ( x ) - f j ( x ) )  = s i g n ( g , ( x ) - g j ( x ) ) .  

If two function collections fe and gE are order-equivalent, then the rE-arrange- 

ment and gE-arrangement of D × R are isomorphic in the following sense: 

Lemma 2.1. Let fE and gE be two order-equivalent function collections on D. 
Let ( E- ,  E o, E + > be a partition of E. 
(i) There exists a nonempty cell C(E- EO E+> in the fE-arrangement iff there 

exists a nonempty cell C~E- "~o e+ > in the gE-arrangement. 
Moreover, 

(ii) proj(C(E- eo E+>) = proj(C('E- e0 e+>), where for Ca_ D ×R the expres- 
sion proj(C) denotes ( x  ~ D[(x, r) ~ C for some r ~ R}. 

Proof. To prove (i) and (ii) it suffices to show that for every y = (x, r)  ~ D × R  

there exists an r '  ~ R such that ~rj((x, r)) = ~rg((x, r')). 

Let ( E - ,  E °, E + > = qr/((x, r)). Because of the order-equivalence between fe  

and gE we know that for e - ~ E - ,  e + ~ E  +, and e , e ' E E  ° the relations 

ge-(x)  < ge(x) < ge+(x) and ge(X) = ge,(X) hold. 

Now let l = max(g f ix ) le  ~ E -  U E°},  and u = nfin{gf ix) le  ~ E + U E ° }. 
In case l does not exist choose r ' =  u - l ;  if u does not exist choose r ' = l + l ;  

and otherwise choose r ' =  ½(1+ u). Such a choice of r '  forces ~rf((x, r ) ) =  
%((x, r')). 

In the remainder of this section we consider two important classes of 

arrangements. Let the domain D be R d for some d > 1. For e E E let f~ be an 

affinefunction given by 

fe(X) = <ae,x > + b e , 

where a e ~  R d, b ~ R, and (- ,  .> denotes the usual scalar product between 

vectors. The surface fe ° of such an affine function is usually called a nonvertical 

hyperplane in R d × R = R a+ ~. The upper and lower hemispaces f~- and f~+ are in 

this case usually referred to as upper and lower (open) halfspaces. The fE- 

arrangement of R d÷ 1 is usually called an arrangement of hyperplanes, and is, as 

mentioned in the beginning of this section, a fairly well studied mathematical 

object. Every cell C<E- e0 e+> in an arrangement of hyperplanes is the intersec- 

tion of a finite number of halfspaces and hyperplanes and hence a polyhedron. In 

the literature_ of hyperplane arrangements one usually considers the topological 

closure C(e_ ,eve+> of a cell C(E-eoe÷>, with 

n (s:us:)n n (f ;u/y)n n f o. 
e ~  E -  e ~ E + e ~  E o 

- o + is usually called a face of the arrangement. Faces are assigned a 

di(r~ensio~,>namely the dimension of the smallest flat containing the face. It is 

known that the number of faces is an arrangement of n hyperplanes in R d÷ ~ is 
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O(n d+ 1). More specifically, let c i(n, d)  denote the maximum possible number of 

faces of dimension i in an arrangement of n hyperplanes in R J. 

Fact 2.1. [35]. 

(j,,)(n)j 
c,(n,d) = ~ fo r0  < i < d. 

d-i<<_j<_d 

The algorithmic problem of identifying all cells of an arrangement of hyperplanes 

has been solved completely in [14]. 

Fact 2.2. [14]. A combinatorial description of all the faces of an arrangement of 
n hyperplanes in R d+l can be constructed in time and space O(nd+l) ,  which is 

asympotically worst case optimal. 
This description consists in essence of a directed graph representing the 

lattice formed by the faces under set inclusion. By increasing the space and time 

requirement by a constant factor this description can be extended such that for 

each face C(e- Eo e+)its level or belt number can be determined in constant time 

and the index'sets E- ,  E °, or E ÷ can be listed in time proportional to their 

respective sizes. 
Not much is known about lk(n,d ) and bk(n, d), the maximal possible 

number of k-level or k-belt faces in an arrangement of n hyperplanes in R d. 

Obviously bk( n, d) = b,_k(n, d) and lk(n, d) = 1~+ 1 _k(n, d) for all appropriate 

values of k. Furthermore, from the upper bound theorem for convex polytopes 

[25] and from the work in [13], [15], [16] the following is known: 

Fact 2.3. 

l l(n,d +1) = bl(n,d +1) = ®(n[d/2]). 

For k <_n-k 

lk(n,2 ) = ~(n log(k +1)) ,  

lk(n,2 ) = O(nf'ff ), 

lk(n,d + 1 ) =  f~(nkd-llog(k + l)+ knmi~(la/2l'k) ), 

¢ ( n ,  d + 1) = O(.d+1). 

The same asymptotic bounds hold for b k as well. 

As finding the one level faces is equivalent to constructing the polyhedron 

formed by the intersection of all lower halfspaces, [6], [28], [29], [30] imply 

Fact 2.4. All one-level faces (or equivalently all n-level faces) of an arrangement 

of n hyperplanes in R d÷ 1 can be found in time 

O(nlogn) f o r d  = 1,2, 

O(n l(d+x)/21) for d >_ 3. 

This is worst case optimal for odd d and d = 2. 
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Much less is known about complexity bounds for constructing all k-level 

faces for arbitrary k. 

Fact 2.5. [13]. All k-level faces of an arrangement of n planes in R 3 can be 

found in time O(v~ log nlk(n,3)). 
This concludes our elaboration on the first class of examples of fE-arrange- 

ments. 
Our second class of examples deals with paraboloids. Let again the domain D 

of the functions be R a, d >__ 1. Let A be a d x d symmetric real matrix. For e ~ E 

let g~ be a quadratic function of the form 

ge(x )  = ( x - p ~ ) r A ( x - p ~ ) + t e ,  

where Pe ~ Ra and te E R. The surface gO is usually called a paraboloid and we 

thus call such gE-arrangement in R d÷ 1 a paraboloid arrangement. To our knowl- 

edge paraboloid arrangements per se have not been studied in the literature. 

However, as the following important lemma shows, there is really no need to do 

SO. 

Lemma 2.2. For e ~ E let g~ be quadratic functions defined by 

g e ( X )  = ( x - p e ) V A ( x - p ¢ ) + t e ,  p ~ R d a n d t e ~ R .  

For e ~ E let fe be affine functions defined by 

re (x )  = (X, ae) + b e, ae -- -2APe  , b e = p~Ap~ + t e. 

The collection of functions fE and gE are order-equivalent. 

Proof. We have to show that for every r ~ R d and any pair i, j ~ E 

s i g n ( f ~ ( x ) -  f j ( x ) )  = s i g n ( g , ( x ) - g j ( x ) ) .  

However, it can be checked easily that in our case even 

6(x)  = g , (x ) -  gj(x) = ( pTAp, + t3 

- (  p Apj + tj) + 2(p j -  p,) Ax 

holds. [] 

Lemmas 2.1 and 2.2 imply that the paraboloid arrangement and the hyper- 

plane arrangement generated by ge and fE, respectively, are combinatorially 

indistinguishable with respect to their cell structure. As a matter of fact, the even 

stronger relation holds that every cell in the hyperplane arrangement is the 

homeomorphic image of the corresponding cell in the paraboloid arrangement 
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under the differentiable and invertible mapping F A of R a+ 1 onto itself defined by 

FA((X,Z)) = ( x , z - x r A x ) ,  wherex ~ Rdand z ~ R. 

In other words, F A "warps" R a+ 1 in such a way that all paraboloids generated by 

the matrix A are flattened out into hyperplanes, but all intersection patterns are 

preserved. Thus all the results stated above about hyperplane arrangements apply 

to paraboloid arrangements as well. 

3. Voronoi Diagrams 

As in the previous section let E be a finite index set of n elements and let 

f e =  { f ~ l e ~ E }  be an indexed collection of real valued functions on some 

common domainD. Let R / b e  a function from D to E defined by 

R / ( x )  = {eE  Elf~(x ) = minf,.(x)}. 
i ~ E  

R/  induces in a canonical way an equivalence relation p/ on D, where for 

x, y ~ D, x#fy ~ Ry(x)= Ry(y). We call the partition of D induced by this 

equivalence relation p/ the Voronoi Diagram on D with respect to fE, for short 

VOD(fE). The equivalence classes of the partition are called Voronoi cells or 

V-cells. We denote each V-cell by Vr, where T __ E and 

A V-cell V r with I TI = 1 is sometimes also called a Voronoi region or V-region. 
This general, functional definition of Voronoi diagrams might look somewhat 

startling and unorthodox to a reader only familiar with the usual definition of 

VoDs. Thus it seems appropriate to show that for the right choice of functions fE, 

the Voronoi diagram of fE obtained using our definition conforms with the 

standard Euclidean Voronoi diagram as presented, for instance, in [31]. 

Let D be R 2, the plane, and let d(x, y) denote the Euclidean distance 

function. For each e ~ E let pe be a point in the plane and define the real valued 

function f~ as 

L ( x )  = d ( p . x ) .  

For some e ~ E consider the V-region V(e) in VOD(fE ). V(e ) contains all points 

x ~ R 2 with the property that 

{e~El f e ( x )= l~ ln f~ (x ) }  = {e) ,  

or, in other words, V(e ) contains all x with 

fe (x)  < f~(x) for a l l i  ~ E,  i4= e, 
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i ~ P2 I r  S %% 

/ L "-, 
I Fig. 3. I. 

i.e., all x with 

d ( p ~ , x )  < d ( p , , x )  f o r a l l i  ~ E , i  4: e. 

Thus .V~ is exactly the interior of what is usually considered the Voronoi region 

of point p~. 

Similarly, if a V-cell V~,,j} exists in VOD(fE) for some pair i, j ~ E, then this 

V-cell, by the same reasoning as above, contains all x with 

d ( p t , x )  = d ( p j , x )  < d(pe ,  X ) for all e ~ E, i 4= e * j .  

Thus V(, j) is exactly the relative interior of the edge between the two V-regions 

1,1{,} and'V{f}.  

Finally, V-cells of the form V r with I T{ > 3 turn out to be the vertices in the 

traditional VoD (see Fig. 3.1). 

The reader may convince himself that with the right choice of functions other 

kinds of VoDs, such as Voronoi diagrams with respect to the L p metric [22], 

VoDs of line segments [23], [20], [32], [34], and weighted VoDs [3], can be 

expressed using our functional formalism. 

An almost trivial but very important observation is the fact that for a 

function collection rE, the Voronoi diagram of fE in D and the rE-arrangement 

in D × R are intimately related. We have the following: 

Theorem 3.1. Let fE be a collection of real valued functions on a domain D, and 
let ~ 4= T c_ E,  and T '  = E - T. V r is a V-cell in VOD(fe)  iff C(~ r r') is a cell in 
the fr-arrangement.  Moreover, V r = proj(C(~,r,r,)).  (Note that t'he cells C(s.r.tj) 

with S = 0 4= T are exactly the one-level cells.) 

Proof  By the definitions of this and the previous section, we have x ~ V r if and 

only if for some r ~ R, f~(x)  = r for e ~ T, and fe(X) > r for e ~ T ' ,  which is the 

same as saying a r i ( ( x , r ) ) = ( O , T , T '  ), which in turn holds if and only if 

(x,  r)  E C(~,r,r,  ). [] 
Theorem 3.1 and Lemma 2.1 immediately yield the important 

Corollary 3.1. I f  fE and ge are order-equivalent function collections, then 
VOD()rE) = VOD(gE). 
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Applying Theorem 3.1 to collections of affine functions or collections of 
quadratic functions on R d and using the algorithmic facts stated in Section 2 we 

obtain the following important unifying algorithmic result. 

Theorem 3.2. Let D = R d for some d > 1. Let f e be a collection of affine functions 
on R a given by 

fe(X)  = ( a , , x )  + be, a~ ~ R d ,b  e ~ R 

or let f e  be a collection of quadratic functions of the form 

re(x)  = (X-- p ~ ) T A ( x -  Pe) + te, Pe E R a, t e E R, 

where A is a d x d real symmetric matrix. 
VOD(fe)  can be constructed in worst case time 

O ( n l o g n )  fo rd  = 1,2 and 

O(n |(a+1~/21) fo rd  > 3. 

Th& is optimal for odd d and for d = 2. 

Proof. By Theorem 3.1 and Corollary 3.1 it suffices to construct the one-level 

cells in an arrangement of hyperplanes in R d÷t, which can be done in the given 

time bounds by Fact 2.4. [] 
Theorem 3.2 is quite important because it unifies a number of algorithmic 

results in the literature about different kinds of VoDs. Below we give examples of 

what kind of planar VoDs are generated by collections of quadratic (or, equiv- 

alently, affine) functions. 

Example 3.1. (Ordinary Euclidean VoD [31].) For each e ~ E let Pe be a point 
in R 2. Let ! denote the 2×2  identity matrix. For each e ~ E let ge be the 

quadratic function 

= p ~ )  I(x - p e ) .  gAx) ( x -  T 

Note that g¢(x) is the square of the Euclidean distance function between p¢ and 

x, i.e., 

ge(x)  = ( f~(x))  2, wheref~(x) = d(pe,  x ) .  

Earlier we argued that VOD(fe) is the traditional Euclidean Voronoi diagram of 

the points Pe- As the distance function is nonnegative, the collection ge is 

order-equivalent to rE, and hence VOD(ge) is the traditional Euclidean Voronoi 

diagram as well. 

Note 3.1. The ordinary Euclidean VoD is of such importance that it seems 

worthwhile to spell out again the geometric intuition that is hidden behind the 

formalism. 
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For each e ~ E the function ge describes a paraboloid of rotation gO in R 3 

which is tangent to the x~-xz-plane at point Pe, has its axis parallel to the z-axis, 

and "opens upward" towards z = + oo. Imagine the set { g°le ~ E } of paraboloids 

in R 3 penetrating each other. Furthermore, imagine each paraboloid to be opaque 

and having a unique color. Finally, imagine an observer standing at z = - o o  

looking in the positive z-direction. The visible parts of the paraboloids would 

appear like the VoD of the point set (p~le ~ E } with each V-region colored 

differently. 

Now imagine that the entire 3-space is "warped" by the function Ft, with 

FI(X1,X2, Z ) m_ (XI, X2, Z__X2 X2). 

Since the mapping Fz leaves the x 1 and x 2 coordinates invariant, and since it also 
does not change the difference in z-coordinate of points with identical xl-x 2 
-coordinates, nothing changes for the observer at z = - oo. He still sees the same 

colored tiling of the plane. 

The point is, however, that F I maps every paraboloid gO to the plane fo ,  

where 

re(x) = --2(pe, X) "1- (Pe' Pe)" 

Thus what the observer at z = - oo sees, is the projection onto the xl-xz-plane of 

the boundary of the polyhedron P formed by the intersection of the lower 

halfspaces { f~+ l e ~ E }. Algorithmically, of course, this means that in order to 
construct the VoD it suffices to construct the polyhedron P. As a matter of fact, 

if one analyzes Hoey and Shamos' Voronoi diagram algorithm, it is indeed a 

disguised halfspace intersection algorithm, namely a dual version of Preparata 

and Hong's convex hull algorithm [28]. 

Finally, we want to point out that the planes fo  are not arbitrary planes in 

R 3, but each fo  is the tangent plane to the "upside down" paraboloid of rotation 

q0=  ((xl, xz, z ) l z = _ x Z l _ x  2) at point p~ which has the same x 1 and x 2 

coordinates as p~ but has z-coordinate - ( P e ,  Pe)" 

Example 3.2. (Euclidean furthest point VoD [31].) Let the set E and the matrix 

I be as in Example 3.1. Again, for e ~ E let pe be a point in the plane and let g~ 
be a function defined by 

ge(x) = ( x - - p e ) r ( - - I ) ( x - - p e ) .  

For the collection ge of functions of this kind, VOD(gE) turns out to be what has 

been traditionally known as the furthest point Voronoi diagram of the planar 
point set ( p~te ~ E }. 

Note 3.2. One of the reasons why the Euclidean closest point and furthest point 

Voronoi diagram are of such importance is the usefulness of their geometric dual 

graphs, the so-called closest point and furthest point Delaunay triangulations [31]. 

It seems worthwhile to point out that these triangulations can be naturally derived 

from the polyhedron P in the paraboloid construction in Note 3.1. 
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Let X be the set of points ( pile ~ E } on the upside down paraboloid q0 (as 

in Note 3.1). Let P* be the convex hull of X. Then the closest point Delaunay 

triangulation of the planar point set { p~le ~ E } is exactly the projection of the 

faces of P*  which are "on top of" P*, i.e., which could be seen by an observer 

at z = + ~ looking in the negative z-direction. Similarly, the furthest point 

Delaunay triangulation is exactly the projection of the faces of P* which are 

"underneath" ,  i.e., the faces visible to an observer at z = - ~ .  

Example 3.3. (Power diagrams [1], or VoDs in the "Laguerre geometry" [19].) 

Again let I denote the 2 × 2 identity matrix. For e ~ E let p~ = (xe, Ye) be a point 

in the plane and let te be a real number. Define functions g~ by 

ge(x) = (x -- pe)rl(x - p~) + t e. 

The VoD defined by the collection gE of such functions was first discussed in the 

context of computational geometry in [1] where it is called "power diagram," and 

in [19] where it is called Voronoi diagram in the Laguerre geometry. Apparently, 

it is also known as a Dirichlet cell complex [27]. 

Note 3.3. We want to point out that VoDs as defined in Example 3.3 model a 

seemingly natural growth process. Imagine a set of nonoverlapping circular cells 

C e in the plane, each increasing with time in such a way that the growth rate of its 

radius is inversely proportional to its diameter. Whenever two cells come into 

contact, they cease to grow in the directions in which overlap would occur. The 

eventual shape of each cell of such a growth system is given by a VoD as in 

Example 3.3, where the collection gE consists of a function ge for each cell C e, 

where pe is the center of C¢, and t¢ is the time when it started growing, i.e., the 

last time when its radius would have been zero. 

This can easily be seen as follows: The growth rate of each cell C e defines a 

real valued function g¢ telling for each point in the plane at what time it would 

be covered by C¢ if it grew uninhibitedly. For each point in the plane one wants 

to know which cell(s) overgrow it first. Thus the Voronoi diagram of the functions 

in gE is indeed the desired object. Now it remains to show that the functions ge 

have the form given in Example 3.3. 

We want the radius of an uninhibited circular cell C e with center pC to grow 

at a rate inversely proportional to the diameter of C e starting at time t¢. If r( t )  
denotes the radius changing with time, then it must satisfy the differential 

equation 

dr 1 

dt 2 r ( t )  

with initial condition r ( te )= 0. The solution to this equation is given by r( t )  
= ~/t - t e, or r ( t )  z =  t -  te. Expressing the radius r( t )  in terms of Cartesian 

coordinates yields 

t = (x - pe)rl(x - p~) + t e. 
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v(~j ~ V(3) f e  

P3 

v(s) 

• p 5  

Fig. 3.2. 

Examt, le3.4. F o r e e E  let Pe again be a point in theplane, andlet  J b e a 2 × 2  

diagonal matrix with entries 1 and - 1. 

Let ge be the collection of functions ge, with 

g A x )  = ( x  - p , ) D ( x  - p , ) .  

The way VOD(gE) partitions the plane is rather peculiar. It appears to be a 

mixture of a Euclidean closest point VoD in the x-direction and an Euclidean 

furthest point VoD in the y-direction. An example is given in Fig. 3.2. To our 

knowledge this type of planar VoD has appeared in the literature only once, in a 

marginal remark in [19]. It is unclear whether it has any applications. 

4. Order-k and Degree-k Voronoi Diagrams 

Recall our definition of a Voronoi diagram at the beginning of the previous 

section. We defined it via an equivalence relation pf on a domain D with respect 

to a set fE of real valued functions on D, where Of was defined by 

xpyy ~ R f ( x )  = R f ( y ) ,  

where R / ( x )  = ( e ~ ElL(x) = mince EL(x)}. 
Obviously, there are ways of generalizing this definition by replacing the 

equivalence relation p! by another one which is not based on the minimum 

of the function values, but rather on the kth smallest. With this in mind we give 

the following definition of a k-minimum: Let E be an index set, and for i ~ E let 

x i ~ R. For an integer k, k: mini~ EXi is then defined to be the least real number 

z such that x~ < z for k elements i of E. 

We can now generalize the mapping Rf of Section 3 in two interesting ways. 

For an integer k, 1 < k < n, define the mappings R~ and Sf k from D to subsets 

of E by 

R ) ( x )  = { e ~ E l f ~ ( x ) = k : m i n f ~ ( x ) )  and 
i E E  

S (x) = 
i ~ E  ! 

For every k, R~ and S~ induce equivalence relations p~ and of k on D, 
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respectively, here for x, y ~ ,/9 

xp~y ¢* R ~ ( x ) =  R~(y )  and 

xa~y ~, S ~ ( x )  = V ( Y ) -  

For  1 < k < n we call the partition of D induced by the equivalence relation p} 

the degree-k Voronoi diagram on D with respect to fE, or degree-k-VOD(fe) for 

short. We call each equivalence class in the degree-k-VOD(f~:) a degree-k V-cell, 
and we denote such a cell by k : V r, where T _c E, and 

k : V r =  ( x ~ D I R ~ ( x ) = T  }. 

As in the case of the ordinary VoD, as defined in the previous section, we call a 

degree-k V-cell k : V r a degree-k Voronoi region if I TI = 1. 

In the same manner we define the order-k Voronoi diagram on D with respect 
tofE, order-k-VOD(fe) for short, to be the partition of D induced by o:.  We call 

each equivalence class an order-k V-cell and denote it by k: W r, where 

k:w = 

Order-k Voronoi regions are order-k V-cells k: W r with t TI = k. 

It should be clear that both order-l-VOD(fE) and degree-l-VOD(fE) are the 

same as VOD(fE). In the Euclidean case (i.e., fE is chosen as in Example 3.1) the 

degree-k Voronoi diagram partitions the plane by the k th nearest neighbor, 

whereas the order-k Voronoi diagram partitions the plane by the k nearest 

neighbors. 

Both the order-k and the degree-k Voronoi diagram appear to be fairly 

natural generalizations of the ordinary VoD. So it is somewhat surprising that 

except for a short remark in [10] so far only the order-k VoD has been considered 

in the computational geometry literature [41, [11], [21], [31]. 1 The main reason for 

this appears to be the fact that in the Euclidean case order-k V-regions are always 

convex and connected, whereas degree-k V-regions generally consist of several 

convex components. 
As in the case of VOD(f~), and perhaps even more so, it turns out to be 

beneficial to view degree-k-VOD(fE) and order-k-VOD(fE) as derived from the 

f : a r r a n g e m e n t  in D X R. To this end we have the following theorems. 

Theorem 4.1. For e ~ E let fe be a real valued function on D. For some T c E let 
k: V r be a degree-k V-cell: 

k: VT = U{proj(C)lC is a k-level cell in the 

rE'arrangement of the form C = (7(E-, r. e • ) }. 

1The reader may convince himself that our definition of order-k-VOD(fE) actually agrees with 
the definitions offered in these papers, when fE is chosen as in Example 3.1 of the previous section. 
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Proof Let x ~ k : V r and let r = k : min i ~ Ef,(x).  By definition we have f~(x)  = r 

for e ~ T. Let  E -  = { e Ife(x) < r }. By the definition of the k : rain it must  be  the 

case that  [ E - I < k ,  but I T I +  I E - l > k .  But this is the case if and only if 

(x,  r )  E C<E-,r,E+), where E + = ( E  - T ) -  E -  and C ( e - r , e +  > is a k-level cell. [] 

We state similar theorems for the order-k Voronoi  diagram. The proofs  

follow directly f rom the definition and are omitted. 

Theorem 4.2. For some T c_ E let k" W r be an order-k V-cell. 

k:  W r  = U { p r o j ( C ) I C  is a k-level cell in the fe-arrangement with 

C = C ( E - , E o  E+ ) a n d T =  E - U  E ° } .  

Even more  useful might be the following 

Theorem 4.3. For some T c_ E let k : W r be an order-k V-cell. 
If  k :  W r is an order-k Voronoi region, then 

k : W  r = p r o j ( C ( r , e , e _ r >  ) and 

C(r, e,  E-  r> is a k-belt cell in the rE-arrangement .  

Otherwise 

k: Wr = U{proj(C<e- eo e÷>)lE- u E ° =  T and C(E .Eo e+> is 

a k-level cell as well as a (k  + 1)-level celt}. 

Figures 4.1 and  4.2 illustrate the contents of the preceding theorems. 

The preceding theorems and L e m m a  2.1 have an important  corollary. 

C < (bM,~x},¢> C<(el.Co.c).¢> 

fa C<(b},(c},{,,}> / ~. fb / # ' ,  ,1 

C< (O.~M.~}> • " C -., / C <  ( ~ / , ( b M O >  
. . . . .  _ ~  t <Co}.(,}.(O> 

/ /  c<ec...~.,~> ,. 

~ -  . . . . . . . . . . .  * ~  . . . .  * * 4  . . . . . . . . . . . .  ~ - - -~ ' -  . . . . . . . . . . . .  . . . . . . . . . .  

- -  2 -V {b . t  } 

Fig. 4.1. 
agram. 

A degree-2 Voronoi Di- 
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fc 

R 
q ~, I ,  

2-W(e,b,c} ~ 2-W(a,b} 

Fig. 4.2. An order-2 Voronoi Diagram. 

Corollary 4.1. Let fE and ge be two order-equivalent collections of functions on a 
common domain D. For 1 < k <_ n 

degree-k-VOD( fE) = degree-k-VOD( gE) and 

order-k-VOD( fE) = order-k-VOD( gE). 

Using the theorems and corollaries of this section along with the facts stated 

in Section 2 we obtain the following algorithmic results. 

T h e o r e m  4.4. Let D = R d for some d >>. 1, and let fE be a collection of n affine 
functions from R d to R, or let fE be a set of n quadratic functions on R d generated 
by one common real symmetric matrix A as in Theorem 3.2. For 1 < k < n all 
degree-k and order-k Voronoi diagrams with respect to f E can be constructed in time 
and space O( nd+l). This is worst case optimal. 

Proof. By the preceding results it suffices to construct all cells in the fE-arrange- 

ment. By Fact 2.2 (and in case of the quadratic functions because of Lemma 2.2) 

this can be done optimally in the given time and space bound. [] 

The reader may again consult the examples in Section 2 to see that this result 

covers a rather general class of Voronoi diagrams, among them, of course, the 

ordinary Euclidean VoD of point sets. Our result should also be contrasted with 

the O(n 4) algorithm proposed in [11] to construct all Euclidean order-k VoDs of 

a planar point set. The optimality claim made there clearly has to be taken with a 

grain of salt. 
Finally there remains the question of how to construct single order-k or 

degree-k VoDs for affine or quadratic function collections. As a consequence of 

the main theorems in this section this is equivalent to constructing all k-level or 

k-belt cells in an fE-arrangement. Thus the time bounds stated in Fact 2.5 apply. 

However, they appear to be rather weak and we cannot make any claims about 

optimality. 
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5. Intersection Problems 

In this section we want to show briefly how an rE-arrangement can be a useful 

tool for solving certain intersection or union problems for finite sets of objects. 

Note that using de Morgan's laws, union can be reduced to intersection. We 

therefore restrict ourselves to intersection problems. At first we describe our 

method abstractly, later we apply it to solve intersection problems for finite sets 

of discs and, more generally, finite sets of similar conic sections in R d. 

For e ~ E let B e be some subset of our domain D and assume for each e 

there is a real valued function fe on D with fe (x)< 0 iff x ~ B e. We are 

interested in describing fqe ~ EBe in terms of the fE-arrangement. For this purpose 

let us identify every subset B c_ D with its injection ((x,O)lx ~ B} into D ×R.  

This way we can write for every e ~ E that B e = f e n  D. 
The intersection Ne~ EBe can then be written as 

n (/Z n D ) = D n  ns:-, 
e ~ F  e ~ E  

which is of course nothing but D n C(E ~ o). 

This means one can construct Ne ~ E'/~ " by first constructing the " top"  full cell 

C(E,~,;o> of the fE-arrangement and then intersecting this cell with the "base 

plane ( (x ,0 ) lx  ~ O}. 

As an example consider the problem of constructing the intersection of a 

finite set of open discs in the Euclidean plane R 2, where each disc B e has center 

% ~ R 2 and radius r e > 0. 

Associate with each disc B e the real valued function fe on R 2, where for 

x ~ R  2 

= - - C e )  - r L  

and I is the identity matrix. 

Note that as desired the condition x ~ B e iff je(X) < 0 holds. Therefore the 

idea outlined above is applicable. 

First construct the cell C(E ~ ~> formed by the intersection of the upper 

hemispaces f~-. As all the function's fe are quadratic functions generated by the 

same matrix I,  the results of Section 2 imply that C(E ~ ~) can be constructed in 

O(n logn)  time. This cell can then be intersected with' tlae base plane {(x,0)lx 

R 2 } in O(n) time to yield the intersection fqe ~ EBe of all the discs in O(n log n) 

time overall. The same approach can be used to construct the intersection of n 

open balls in R d in time O(n [(a+1)/21) for d > 2. 

This method of constructing the intersection of discs is very closely related to 

the one proposed by Brown [8]. He uses spheres and spherical inversion to reduce 

the problem to one of the intersecting halfspaces, whereas we, if one analyzes our 

method in detail, use paraboloids and the "warping" function F I given at the end 

of Section 2. 

We briefly want to mention some more general applications of our method of 

using the re-arrangement  formalism to solve intersection problems. One concerns 
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intersecting regions B e of the form 

Be= (x ~ RdlL(x) ~0}, 

where 

L ( x )  = (x  - ce )TA(x  - ce) + re, Ce R re R, 

and A a fixed nonsingular symmetric matrix. 

Such regions B e are general conic sections. For instance, in the case d---2 

and A indefinite, B e might be the unbounded (nonconvex) region between the 

two branches of a hyperbola. With our formalism the intersection of n such 

regions B e can be accomplished in O(nlogn)  time in case d = 2 ,  and 

O(n [td+t)/21) time in case d > 2. Note that Brown's method cannot be used for 

this purpose as it relies on spherical inversion. 

The machinery of fe-arrangements can also be used to solve intersection 

problems of the form "find all x that lie in exactly k regions Be." Finding such a 

set reduces to the problem of intersecting the k-belt cells of an fe-arrangement 

with the "base plane." Similarly, the boundary of the set of all x that lie in at 

least k regions B e can be constructed via intersecting the k-level cells with the 

"base plane". We leave the details to the reader. 

6. Conclusions 

The initial seed for the ideas in this paper was the observation that Voronoi 

diagrams of point sets in the plane are related to three-dimensional polyhedra 

whose facets are tangent to a common paraboloid. We discovered this while 

scrutinizing Brown's use of spherical inversion to relate Voronoi diagrams in the 

plane with three-dimensional polytopes whose vertices all lie on a common sphere 

[7]. 2 At first these relationships seemed rather mysterious and inexplicable. Only 

after we turned our attention to the question of what Voronoi diagrams really are, 

did we arrive at the (we think) satisfying explanation of these relationships 

presented in this paper. 
An important concept in this paper is the notion of an fE-arrangement over a 

domain D, i.e., the partition of D × R induced by a finite collection )rE of real 

valued functions on D. Of course, in its full generality this concept is quite 

useless. However, with appropriate restrictions fe-arrangements can provide 

intersetting geometric-combinatorial research. For instance, if D = R d and the 

functions in fE are continuous and satisfy certain simple finite intersection 

properties, fE-arrangements have been studied fairly extensively as pseudoplane 
arrangements [17], [18] and also in the context of oriented matroids [26]. From the 

point of view of computational geometry, pseudoplane arrangements still offer 

~Actually, it turns out that the use of paraboloids and spheres to relate Voronoi diagrams and 
polyhedra are projeetively equivalent. 
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some interes t ing algori thmic problems.  How difficult  is it, for instance, to 

construct  al l  cells in such an ar rangement  when only fE is given? It  seems that  the 

O(n a÷l) a lgor i thm in [14] actual ly generalizes to that case. How difficult  is it to 

const ruct  all  k-level cells? In par t icular ,  for D = R 2 is it  possible  to construct  the 

one-level  cells in O(n log n)  time? This would yield a fast construct ion a lgor i thm 

for a large class of  p lanar  Voronoi  diagrams. 

F ina l ly  there is the question whether  there are o ther  interest ing classes of  

rE-ar rangements .  There appear  to be several natural  and  promis ing  ways of  

arr iving at  such arrangements .  One would be to relax or  change the finite 

intersect ion proper t ies  of  funct ions pos tu la ted  in the case of  pseudoplane  arrange-  

ments.  F o r  instance,  in the case D = R 2, al lowing two surfaces to intersect  and 

cross e i ther  in a line or  in a s imple closed curve would give rise to a class of  

a r rangements  that  includes the ones that  cor respond to weighted Voronoi  d iagrams  

[3]. A n o t h e r  interest ing way of generalizing would  be to change the under ly ing 

doma in  D to, say, a torus, and  totry to postula ted appropr i a t e  intersect ion 

proper t ies  for  that  case. 
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