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Abstract

Given a set of sites in a simple polygon, a geodesic Voronoi diagram partitions the polygon into re-

gions based on distances to sites under the geodesic metric. We present algorithms for computing

the geodesic nearest-point, higher-order and farthest-point Voronoi diagrams of m point sites in a

simple n-gon, which improve the best known ones for m ≤ n/ polylog n. Moreover, the algorithms

for the nearest-point and farthest-point Voronoi diagrams are optimal for m ≤ n/ polylog n. This

partially answers a question posed by Mitchell in the Handbook of Computational Geometry.
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1 Introduction

The geodesic distance between any two points x and y contained in a simple polygon is the

length of the shortest path contained in the polygon connecting x and y. A geodesic Voronoi

diagram of a set S of m sites contained in a simple polygon P partitions P into regions based

on distances to sites of S under the geodesic metric. The geodesic nearest-point Voronoi

diagram of S partitions P into cells, exactly one cell per site, such that every point in a

cell has the same nearest site of S under the geodesic metric. The higher-order Voronoi

diagram, also known as the order-k Voronoi diagram, is a generalization of the nearest-point

Voronoi diagram. For an integer k with 1 ≤ k ≤ m − 1, the geodesic order-k Voronoi diagram

of S partitions P into cells, at most one cell per k-tuple of sites, such that every point in

a cell has the same k nearest sites under the geodesic metric. Thus, the geodesic order-1

Voronoi diagram is the geodesic nearest-point Voronoi diagram. The geodesic order-(m − 1)

Voronoi diagram is called the geodesic farthest-point Voronoi diagram. Hence, the geodesic

farthest-point Voronoi diagram of S partitions P into cells, at most one cell per site, such

that every point in a cell has the same farthest site under the geodesic metric.

In this paper, we study the problem of computing the geodesic nearest-point, higher-order

and farthest-point Voronoi diagrams of a set S of m points contained in a simple n-gon

P . Each edge of a geodesic Voronoi diagram is either a hyperbolic arc or a line segment

consisting of points equidistant from two sites [2, 3, 11]. The boundary between any two

neighboring cells of a geodesic Voronoi diagram is a chain of O(n) edges. Each end vertex
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of the boundary is of degree 1 or 3 under the assumption that no point in the polygon

is equidistant from four distinct sites while every other vertex is of degree 2. There are

O(k(m − k)) degree-3 vertices in the geodesic order-k Voronoi diagram of S [11]. Every

degree-3 vertex is equidistant from three sites and is a point where three Voronoi cells meet.

The number of degree-2 vertices is Θ(n) for the geodesic nearest-point Voronoi diagram and

the geodesic farthest-point Voronoi diagram [2, 3]. For the geodesic order-k Voronoi diagram,

it is known that the number of degree-2 vertices is O(kn) [11], but this bound is not tight.

The first nontrivial algorithm for computing the geodesic nearest-point Voronoi diagram

was given by Aronov in 1989 [2]. Their algorithm takes O((n + m) log2(n + m)) time. Later,

Papadopoulou and Lee [15] improved the running time to O((n + m) log(n + m)). However,

there has been no progress since then while the best known lower bound of the running time

remains to be Ω(n + m log m). In fact, Mitchell posed a question whether this gap can be

resolved in the Handbook of Computational Geometry [13, Chapter 27].

For the geodesic order-k Voronoi diagram, the first nontrivial algorithm was given by Liu

and Lee [11] in 2013. Their algorithm works for a polygonal domain with holes and takes

O(k2(n + m) log(n + m)) time. Thus, this algorithm also works for a simple polygon. They

presented an asymptotically tight combinatorial complexity of the geodesic order-k Voronoi

diagram for a polygonal domain with holes, which is Θ(k(m − k) + kn). However, it is not

tight for a simple polygon: the geodesic order-(m − 1) Voronoi diagram of m points in a

simple n-gon has complexity Θ(n + m) [3]. There is no bound better than the one by Liu and

Lee known for the complexity of the geodesic order-k Voronoi diagram in a simple polygon.

For the geodesic farthest-point Voronoi diagram, the first nontrivial algorithm was given

by Aronov et al. [3] in 1993, which takes O((n + m) log(n + m)) time. While the best known

lower bound is Ω(n + m log m), there has been no progress until Oh et al. [14] presented

a faster O((n + m) log log n)-time algorithm for the special case that all sites are on the

boundary of the polygon in 2016. They also claimed that their algorithm can be extended to

compute the geodesic farthest-point Voronoi diagram for any m points contained in a simple

n-gon in O(n log log n + m log(n + m)) time.1

Our results. Our main contributions are the algorithms for computing the nearest-point,

higher-order and farthest-point Voronoi diagrams of m sites in a simple n-gon, which improve

the best known ones for m ≤ n/ polylog n. To be specific, we present

an O(n + m log m log2 n)-time algorithm for the nearest-point Voronoi diagram,

an O(k2m log m log2 n + min{nk, n(m − k)})-time algorithm for the order-k Voronoi

diagram, and

an O(n + m log m + m log2 n)-time algorithm for the farthest-point Voronoi diagram.

Moreover, our algorithms reduce the gaps of the running times towards the lower bounds.

Our algorithm for the geodesic nearest-point Voronoi diagram is optimal for m ≤ n/ log3 n.

Since the algorithm by Papadopoulou and Lee is optimal for m ≥ n, our algorithm together

with the one by Papadopoulou and Lee gives the optimal running time for computing the

diagram, except for the case that n/ log3 n < m < n.

Similarly, our algorithm for the geodesic farthest-point Voronoi diagram is optimal for

m ≤ n/ log2 n. Since the algorithm by Aronov et al. [3] is optimal for m ≥ n, our algorithm

together with the one by Aronov et al. gives the optimal running time for computing the

diagram, except for the case that n/ log2 n < m < n. This answers the question posed by

1 Details will be found in the journal version of their paper.
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Mitchell on the geodesic nearest-point and farthest-point Voronoi diagrams, except for the

short intervals of n/ polylog n < m < n stated above.

For the geodesic order-k Voronoi diagram, we analyze an asymptotically tight combinator-

ial complexity of the diagram for a simple polygon, which is Θ(k(m−k)+min{nk, n(m−k)}).

Other contributions of this paper are the algorithms for computing the topological

structures of the geodesic nearest-point, order-k and farthest-point Voronoi diagrams which

take O(m log m log2 n), O(k2m log m log2 n) and O(m log m log2 n) time, respectively. These

algorithms allow us to obtain a dynamic data structure for answering nearest or farthest

point queries. In this problem, we are given a static simple n-gon P and a dynamic point

set S ⊆ P . We are allowed to insert points to S and delete points from S. After processing

updates, we are to find the point of S nearest (or farthest) from a query point efficiently.

This data structure requires O(
√

m log(n + m)) query time and O(
√

m log m log2 n) update

time, where m is the number of points in S at the moment.

1.1 Outline

Our algorithms for computing the geodesic nearest-point, higher-order and farthest-point

Voronoi diagrams are based on a polygon-sweep paradigm. For the geodesic nearest-point and

higher-order Voronoi diagrams, we fix a point o on the boundary of the polygon and move

another point x from o in clockwise direction along the boundary of the polygon. While

x moves along the boundary, we compute the Voronoi diagram of sites contained in the

subpolygon bounded by the shortest path between o and x and the part of the boundary of

P from o to x in clockwise order. For the geodesic farthest-point Voronoi diagram, we sweep

the polygon with a curve consisting of points equidistant from the geodesic center of the

sites. The curve moves from the boundary towards the geodesic center. During the sweep,

we gradually compute the diagram restricted to the region we have swept.

To achieve algorithms faster than the best known ones for m ≤ n/ polylog n, we first

compute the topological structure of a diagram instead of computing the diagram itself

directly. The topological structure, which will be defined later, represents the adjacency of

the Voronoi cells and has complexity smaller than the one of the complete Voronoi diagram.

Once we have the topological structure, we can compute the complete Voronoi diagram in

O(T1 + T2 log n) time, where T1 is the combinatorial complexity of the complete Voronoi

diagram and T2 is the combinatorial complexity of the topological structure of the diagram.

We define four types of events where the topological structure changes. To handle each

event, we compute a point equidistant from three points under the geodesic metric. There is

no algorithm known for computing a point equidistant from three points efficiently, except

an O(n)-time trivial algorithm. We present an O(log2 n)-time algorithm assuming that the

data structure of Guibas and Hershberger [9] is constructed for P . This algorithm allows us

to handle each event in O(polylog{n, m}) time.

One application of an algorithm for computing the topological structure is a data structure

for nearest (or farthest) point queries for a dynamic point set. To obtain this data structure,

we apply the framework given by Bentley and Saxe [4]. We observe that we can find the

Voronoi cell of the diagram containing a query point in O(log(n + m)) time once we have

the topological structure of the diagram.

2 Preliminaries

Let P be a simple n-gon and S be a set of m points in P . For ease of description, we use

VD[S], k-VD[S] and FVD[S] (or simply VD, k-VD and FVD if they are understood in the

SoCG 2017
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context) to denote the geodesic nearest-point, order-k and farthest-point Voronoi diagrams

of S in P , respectively. We assume the general position condition that no vertex of P is

equidistant from two distinct sites of S and no point of P is equidistant from four distinct

sites of S. This was also assumed in previous work [3, 11, 15] on geodesic Voronoi diagrams.

This condition can be obtained by applying a slight perturbation of the positions of sites [6].

Consider any three points x, y and z in P . We use π(x, y) to denote the shortest path

(geodesic path) between x and y contained in P , and d(x, y) to denote the geodesic distance

between x and y. Two geodesic paths π(x, y) and π(x, z) do not cross each other, but may

overlap with each other. We call a point x′ the junction of π(x, y) and π(x, z) if π(x, x′) is

the maximal common path of π(x, y) and π(x, z). Refer to Figure 1(a).

Given a point p ∈ P and a closed set A ⊆ P , we slightly abuse the notation π(p, A) to

denote the shortest path contained in P connecting p and a point in A. Similarly, we abuse

the notation d(p, A) to denote the length of π(p, A). It holds that d(p, A) ≤ d(p, q) + d(q, A)

for any two points p, q ∈ P and any closed set A ⊆ P .

We say a set A ⊆ P is geodesically convex if π(x, y) ⊆ A for any two points x and y in A.

The geodesic convex hull of S is the intersection of all geodesic convex sets containing S. The

geodesic convex hull of a set of m points can be computed in O(n + m log(n + m)) time [9].

The geodesic center of a simple polygon P is the point c that minimizes maxp∈P d(c, p).

The center is unique [16] and can be computed in O(n) time [1]. Similarly, the geodesic

center of S can be defined as the point c that minimizes maxs∈S d(c, s). It is known that the

geodesic center of a set S of m points in P coincides with the geodesic center of the geodesic

convex hull of S [3]. Therefore, we can compute the center of S by computing the geodesic

convex hull of S and its center. This takes O(n + m log(n + m)) time in total.

Due to lack of space, some of the proofs are omitted. All missing proofs can be found in

the full version of this paper.

3 Computing the Geodesic Center of Points in a Simple Polygon

We first present an O(log2 n)-time algorithm for computing the geodesic center of three points

contained in P , assuming that we have the data structure of Guibas and Hershberger [9, 10].

This algorithm will be used as a subprocedure for computing the geodesic Voronoi diagrams.

3.1 Computing the Geodesic Center of Three Points

Let p1, p2 and p3 be three points in P , and let c be the geodesic center of them. The geodesic

convex hull of p1, p2, p3 is bounded by π(p1, p2), π(p2, p3), and π(p3, p1). The geodesic convex

hull may have complexity Ω(n), but its interior is bounded by at most three concave chains.

This allows us to compute the geodesic center of it efficiently.

We first construct the data structure of Guibas and Hershberger [9, 10] for P that allows

us to compute the geodesic distance between any two points in O(log n) time. To compute c,

we compute the shortest paths π(p1, p2), π(p2, p3), and π(p3, p1). Each shortest path has a

linear size, but we can compute them in O(log n) time using the data structure of Guibas

and Hershberger. Then we find a convex t-gon with t ≤ 6 containing c such that the geodesic

path π(x, pi) has the same combinatorial structure for any point x in the t-gon for each

i = 1, 2, 3. To find such a convex t-gon, we apply two-level binary search. Then we can

compute c directly in constant time inside the t-gon.

The data structure given by Guibas and Hershberger. Guibas and Hershberger [9, 10]

gave a data structure of linear size that enables us to compute the geodesic distance between
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Figure 1 (a) p′

i is the junction of π(pi, pj) and π(pi, pk) for three distinct indices i, j and k in

{1, 2, 3}. (b) The subdivision of △ with respect to p′

1. (c) The subdivision of e with respect to p′

2.

any two query points lying inside P in O(log n) time. We call this structure the shortest path

data structure. They showed that this data structure can be constructed in O(n) time.

In the preprocessing, they compute a number of shortest paths such that for any two

points p and q in P , the shortest path π(p, q) consists of O(log n) subchains of precomputed

shortest paths and O(log n) additional edges. In the query algorithm, they find such subchains

and edges connecting them in O(log n) time. Then the query algorithm returns the shortest

path between two query points represented as a binary tree of height O(log n) [10]. Therefore,

we can apply binary search on the vertices of the shortest path between any two points.

Computing the geodesic center of three points: two-level binary search. Let △ be the

geodesic convex hull of p1, p2 and p3. The geodesic center c of the three points is the geodesic

center of △ [3], thus is contained in △. If the center lies on the boundary of △, we can

compute it in O(log n) time since it is the midpoint of two points. So, we assume that the

center lies in the interior of △. Let p′

i be the junction of π(pi, pj) and π(pi, pk) for three

distinct indices i, j and k in {1, 2, 3}. See Figure 1(a).

We use the following lemmas to apply two-level binary search.

◮ Lemma 1 ([9]). We can compute the junctions p′

1
, p′

2
and p′

3
in O(log n) time.

◮ Lemma 2 ([5]). Given a point p ∈ △ and a direction, we can find the first intersection

point of the boundary of △ with the ray from p in the direction in O(log n) time.

The first level. Imagine that we subdivide △ into O(n) cells with respect to p′

1
by extending

the edges of π(p′

1
, p′

2
) ∪ π(p′

1
, p′

3
) towards π(p′

2
, p′

3
). See Figure 1(b). The extensions of the

edges can be sorted in the order of their endpoints appearing along π(p′

2
, p′

3
). Consider the

subdivision of △ by the extensions, and assume that we can determine which side of a given

extension in △ contains c in T (n) time. Then we can compute the cell of the subdivision

containing c in O(T (n) log n) time by applying binary search on the extensions. Note that

any point x in the same cell has the same combinatorial structure of π(x, p1) (and π(x, p′

1
)).

We also do this for p′

2
and p′

3
. Then we have three cells whose intersection contains c.

Let D be the intersection of these three cells. We can find D in constant time by the the

fact that D is a convex polygon with at most six edges from extensions of the cells.

We do not subdivide △ explicitly. Because we have π(p′

1
, p′

2
) and π(p′

1
, p′

3
) in binary trees

of height O(log n), we can apply binary search on the extensions of the edges of the geodesic

paths without subdividing △ explicitly. In this case, during the binary search, we compute

the extension of a given edge of π(p′

1
, p′

2
) ∪ π(p′

1
, p′

3
) using Lemma 2 in O(log n) time.

There is a vertex p on the boundary of △ such that for any point x contained in D we

have d(p1, x) = d(p1, p) + ‖p − x‖, where ‖p − x‖ is the Euclidean distance between p and x.

SoCG 2017
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Moreover, we already have p from the computation of the cell containing c in the subdivision

with respect to p′

1
. The same holds for p2 and p3. Therefore, we can compute the point c

that minimizes the maximum of d(c, p1), d(c, p2) and d(c, p3) in constant time inside D.

Therefore, we have the following lemma.

◮ Lemma 3. Assuming that we can determine which side of an extension in △ contains c

in T (n) time, we can compute the geodesic center c in O((T (n) + log n) log n) time.

The second level. In the second level binary search, we determine which side of an extension

e in △ contains c. Without loss of generality, we assume that e comes from the subdivision

with respect to p′

1
. Then π(p1, x) has the same combinatorial structure for any point x ∈ e.

This subproblem was also considered in previous works on computing the geodesic center of

a simple polygon [1, 16]. They first compute the point ce in e that minimizes maxp∈P d(p, ce),

that is, the geodesic center of the polygon restricted to e. Based on ce and its farthest point,

Pollack et al. [16] presented a way to decide which side of e contains the geodesic center of

the polygon in constant time. However, to compute ce, they spend O(n) time.

In our problem, we can do this in logarithmic time using the fact that the interior of △ is

bounded by at most three concave chains. By this fact, there are two possible cases: ce is an

endpoint of e, or ce is equidistant from p1 and pi for i = 2 or 3. We compute the point on e

equidistant from p1 and p2, and the point on e equidistant from p1 and p3. Then we find the

point ce among the two points and the two endpoints of e. In the following, we show how to

compute the point on e equidistant from p1 and p2 if it exists. The point on e equidistant

from p1 and p3 can be computed analogously.

Observe that e can be subdivided into O(n) disjoint line segments by the extensions of the

edges of π(p′

2
, v1) ∪ π(p′

2
, v2) towards e, where v1 and v2 are endpoints of e. See Figure 1(c).

For any point x in the same line segment, π(p2, x) has the same combinatorial structure.

There is at most one point on e equidistant from p1 and p2. (For a proof, see the full

paper.) Thus we can apply binary search on the line segments in the subdivision of e. As we

did before, we do not subdivide e explicitly. Instead, we use the binary trees representing

π(p′

2
, v1) and π(p′

2
, v2). For a point x in e, by comparing d(p1, x) and d(p2, x), we can

determine which part of x on e contains the point equidistant from p1 and p2 in constant

time. In this case, we can compute the extension from an edge towards e in constant time

since e is a line segment. Thus, we complete the binary search in O(log n) time.

Therefore, we can compute ce in O(log n) time and determine which side of e in △
contains c in the same time using the method of Pollack et al [16]. The following lemma

summarizes this section.

◮ Lemma 4. Given any three points p1, p2 and p3 contained in a simple n-gon P , the

geodesic center of p1, p2 and p3 can be computed in O(log2 n) time after the shortest path

data structure for P is constructed in linear time.

Similarly, we can compute a point equidistant from any three points in P (or, two points

and a line segment). They are used as subprocedures for computing the Voronoi diagrams.

Note that the geodesic center of three points may not be equidistant from all of them.

Moreover, there may be an infinite number of points equidistant from the three points (or,

two points and a line segment). In this case, we compute the one closest to them.

◮ Lemma 5. Given any three points contained in a simple n-gon, we can compute the closest

equidistant point from them under the geodesic metric in O(log2 n) time if it exists.
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Figure 2 (a) The adjacency graph of a Voronoi diagram. (b) The number of edges in the common

boundary of two adjacent Voronoi cells is bounded by the total complexity of π(s′

1, v), π(s′

1, u),

π(s′

2, v) and π(s′

2, u), where u and v are endpoints of the common boundary.

◮ Lemma 6. Given any two points and any line segment contained in a simple n-gon, we

can compute the closest equidistant point from them under the geodesic metric in O(log2 n)

time if it exists.

Combining the result in this subsection with the algorithms for computing the center of

points in the plane [12] and computing the geodesic center of a simple polygon [16], we can

compute the geodesic center of m points contained in P . (For details, see the full version.)

◮ Theorem 7. The geodesic center of m points contained in a simple polygon with n vertices

can be computed in O(m log m log2 n) time after the shortest path data structure for the

simple polygon is constructed.

4 Topological Structures of Voronoi Diagrams

In this section, we define the topological structure of Voronoi diagrams and show how to

compute the complete Voronoi diagrams from their topological structures. The topological

structure of a Voronoi diagram represents the adjacency of their Voronoi cells.

The common boundary of any two adjacent Voronoi cells is connected for the nearest-point

and farthest-point Voronoi diagrams of point sites in a simple polygon [2, 3]. Similarly, it

can be shown that this also holds for the higher-order Voronoi diagram of point sites in a

simple polygon.

The topological structure of k-VD is defined as follows for 1 ≤ k ≤ m − 1. Imagine

that we apply vertex suppression for every degree-2 vertex of the Voronoi diagram while

preserving the topology of the Voronoi diagram. Vertex suppression of a vertex v of degree 2

is the operation of removing v and adding an edge connecting the two neighbors of v. We

call the dual of this graph the adjacency graph of the Voronoi diagram. See Figure 2(a). It

represents the topological structure of the Voronoi diagram. The adjacency graph is a planar

graph with complexity O(k(m − k)), because the number of degree-1 and degree-3 vertices

of k-VD is O(k(m − k)) [11].

Assume that we have the adjacency graph of the Voronoi diagram together with the exact

positions of the degree-1 and degree-3 vertices of the diagram. Consider two Voronoi cells V1

and V2 which are adjacent to each other. Each Voronoi cell is defined by k sites, but any two

adjacent Voronoi cells share k − 1 sites. Let s1 and s2 be the two sites defining V1 and V2,

respectively, which are not shared by them. There are two Voronoi vertices v and u defined

by a triple (s1, s2, s) and a triple (s1, s2, s′) of sites defining v and u, respectively, for some

SoCG 2017
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sites s, s′. Each Voronoi edge in the common boundary of V1 and V2 is a part of the bisector

of s1 and s2 lying between v and u. See Figure 2(b).

To compute the Voronoi edges in the common boundary of V1 and V2, we consider the

geodesic paths π(s′

i, v) and π(s′

i, u) for i = 1, 2, where s′

i is the junction of π(si, v) and

π(si, u). Then for any vertex x in π(s′

1
, v) ∪ π(s′

1
, u), there exists a point q in the bisector of

s1 and s2 lying between v and u such that π(s1, q) and π(s1, x) have the same combinatorial

structure. The same holds for s2. Thus, the number of edges in the common boundary is

bounded by the total complexity of π(s′

1
, v) ∪ π(s′

1
, u) and π(s′

2
, v) ∪ π(s′

2
, u). Thus, we may

compute the geodesic paths explicitly and consider every edge of the geodesic paths.

Therefore, we can compute the common boundary of two adjacent Voronoi cells in time

linear to its complexity plus O(log n). This leads to O(T1 + T2 log n) time for computing the

complete Voronoi diagram from its topological structure, where T1 is the complexity of the

complete Voronoi diagram and T2 is the complexity of the adjacency graph.

◮ Lemma 8. We can compute the complete Voronoi diagram of m points in a simple polygon

with n vertices in O(T1 + T2 log n) time once its adjacency graph, and the degree-1 and

degree-3 vertices at their places are given, where T1 is the complexity of the complete Voronoi

diagram and T2 is the complexity of the adjacency graph.

Therefore, in the following, we focus on computing the topological structure of VD, k-VD

and FVD, that is, the adjacency graphs of them with degree-3 vertices at their places.

5 The Geodesic Nearest-Point Voronoi Diagram

Fortune [7] presented an O(m log m)-time algorithm to compute the nearest-point Voronoi

diagram of m points in the plane by sweeping the plane with a horizontal line from top to

bottom. During the sweep, they compute a part of the Voronoi diagram of sites lying above

the horizontal line, which finally becomes the complete Voronoi diagram in the end of the

sweep. To do this, they define two types of events and handle O(m) events in total. Each

event can be handled in O(log m) time, which leads to O(m log m) total running time.

In our case, we sweep the polygon with a geodesic path π(o, x) for a fixed point o on the

boundary of P and a point x moving along the boundary of P from o in clockwise direction.

The point x is called the sweep point. If we compute all O(n + m) degree-1, degree-2 and

degree-3 vertices of the Voronoi diagram during the sweep, we may not achieve the running

time better than O((n + m) log(n + m)). The key to improve the running time is to compute

the topological structure of the Voronoi diagram first which consists of the degree-1 and

degree-3 vertices of the Voronoi diagram and the adjacency graph of Voronoi cells. Then we

construct the complete Voronoi diagram, including degree-2 vertices, from its topological

structure using Lemma 8.

Let o be an arbitrary point on ∂P , where ∂P denotes the boundary of P . Consider the

sweep point x that moves from o along ∂P in clockwise order. We use P (x) to denote the

subpolygon of P bounded by π(o, x) and the part of ∂P from o to x in clockwise order. Note

that P (x) is weakly simple. See Figure 3. As x moves along ∂P , P (x) does not decrease.

That is, P (x1) ⊆ P (x2) for any two points x1 and x2 on ∂P such that x1 comes before x2

from o in clockwise order.

For a site s ∈ P (x), let Rs(x) be the region {p ∈ P (x) | d(p, s) ≤ d(p, π(o, x))}. By

definition, Rs(x) does not decrease as x moves along ∂P in clockwise order.

◮ Lemma 9. Rs(x) is connected.
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Proof. To prove the lemma, we show that π(p, s) ⊆ Rs(x) for any point p ∈ Rs(x). This

implies that Rs(x) is connected because s is contained in Rs(x) if s ∈ P (x) by definition.

Let p be a point in Rs(x). Consider a point r ∈ π(p, s). We have d(r, s) = d(p, s) − d(p, r).

Moreover, we have d(p, π(o, x)) − d(p, r) ≤ d(r, π(o, x)). Since p ∈ Rs(x), it holds that

d(p, s) ≤ d(p, π(o, x)). Thus, d(r, s) ≤ d(r, π(o, x)). Therefore, r is in Rs(x), and therefore,

Rs(x) is connected. ◭

We say that a subset A of P is weakly monotone with respect to a geodesic path π′ if the

intersection of π(p, π′) with A is connected for any point p ∈ A.

◮ Lemma 10. The boundary of Rs(x) consists of one polygonal chain of ∂P and a simple

curve whose both endpoints lie on ∂P (x) unless s ∈ π(o, x). Moreover, the simple curve is

weakly monotone with respect to π(o, x).

Proof. For any point p ∈ Rs(x), the geodesic ray from p in direction opposite to the

edge of π(p, π(o, x)) incident to p is contained in Rs(x). This is because d(r, π(o, x)) =

d(p, π(o, x)) + d(p, r) ≥ d(p, s) + d(p, r) ≥ d(r, s) by triangle inequality for any point r in the

geodesic ray. The lemma follows from this fact and Lemma 9. ◭

Now we consider the union of Rs(x) for every site s in P (x) and denote it by R(x). The

dashed region in Figure 3(a) is R(x). Note that for any point p ∈ P (x) and any site s ∈ S

lying outside of P (x), it holds that d(p, π(o, x)) < d(p, s). This implies that for any point

p ∈ R(x), the nearest site of p is in P (x). Therefore, to compute VD restricted to R(x), we

do not need to consider the sites lying outside of P (x).

◮ Corollary 11. The closure of P (x) \ R(x) is weakly simple.

◮ Corollary 12. Each connected component of R(x) consists of a polygonal chain of ∂P and

a connected simple curve with endpoints on ∂P unless π(o, x) contains some site. Moreover,

the union of such curves is weakly monotone with respect to π(o, x) at any time.

We maintain the nearest-point Voronoi diagram of sites contained in P (x) restricted

to R(x) while x moves along ∂P . However, after the sweep, R(x) does not coincide with

P . This means that we cannot obtain VD in this way. To solve this problem, we attach a

long and very thin triangle to ∂P to make a bit larger simple polygon P ′, as illustrated in

Figure 3, so that once we finish the sweep (when the sweep point returns back to o) in P ′ we

have the complete Voronoi diagram in P . (The triangle has height of the diameter of P .)

The beach line and the breakpoints. There are O(m) connected components of R(x) each

of whose boundaries consists of a polygonal chain of ∂P and a connected simple curve.

The beach line is defined to be the union of O(m) simple curves of R(x). It has properties

similar to those of the beach line of the Euclidean Voronoi diagram. It consists of O(n + m)

hyperbolic or linear arcs. We do not maintain them explicitly because the complexity of the

sequence is too large for our purpose. Instead, we maintain the combinatorial structure of

the beach line using O(m) space as follows.

A point on the beach line is called a breakpoint if it is equidistant from two distinct sites.

Each breakpoint moves and traces out some Voronoi edge as the sweep point moves along

∂P ′. We represent each breakpoint symbolically. That is, a breakpoint is represented as the

pair of sites equidistant from it. We say that such a pair defines the breakpoint. Given the

pair defining a breakpoint and the position of the sweep point, we can find the exact position

of the breakpoint using Lemma 6 in O(log2 n) time.
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Figure 3 (a) The site event defined by s with key k. Two (degenerate) breakpoints appear in

B(k). (b) Two (degenerate) endpoints appear in B(k). (c) The vanishing event defined by the

breakpoint of (s1, s2) with key k. The endpoint defined by s1 and the breakpoint merge into the

endpoint defined by s2.

Additionally, we consider the endpoints of O(m) connected curves of the beach line. We

simply call them the endpoints of the beach line. For an endpoint p, there is the unique site

s with d(p, s) = d(p, π(o, x)). We say that s defines p.

By Corollary 11 and Corollary 12, we can define the order of these breakpoints and these

endpoints. Let B(x) = 〈β1, . . . , βm′〉 be the sequence of the breakpoints and the endpoints of

the beach line sorted in clockwise order along the boundary of P (x) \ R(x) with m′ = O(m).

We maintain B(x) instead of all arcs on the beach line. As x moves along ∂P ′, the sequence

B(x) changes.

While maintaining B(x), we compute the adjacency graph of VD together with the

degree-1 and degree-3 vertices of VD restricted to R(x). (Recall that a cell of VD restricted

to R(x) is associated with a site in P (x).) Specifically, when a new breakpoint defined by a

pair (s, s′) of sites is added to B(x), we add an edge connecting the node for s and the node

for s′ into the adjacency graph.

Events. We have four types of events: site events, circle events, vanishing events, and

merging events. Every event corresponds to a key, which is a point on the boundary of P ′.

We maintain the events with respect to their keys sorted in clockwise order from o along

the boundary. Given a sorted sequence of ν events for ν ∈ N, we can insert a new event in

O(log ν) time since we are given each point on the boundary of P ′ together with the edge of

P ′ where it lies. The event occurs when the sweep point x passes through the corresponding

key. The sequence B(x) changes only when x passes through the key of an event.

The definitions of the first two events are similar to the ones in Fortune’s algorithm. Each

site s in S defines a site event. The key k of the site event defined by s is the point on ∂P ′

closest to o among the points x′ with s ∈ π(o, x′). When the sweep point passes through k,

the site s appears on the beach line. Moreover, new breakpoints defined by s and some other

site s′, or new endpoints defined by s appear on B(x). See Figure 3(a) and (b).

The other events are defined by a pair of consecutive points in B(x) or a single breakpoint

in B(x). Before the sweep point reaches the key of an event, the points in the pair defining the

event may become non-consecutive, or the breakpoint defining the event may disappear from

B(x) due to the changes of B(·). In this case, we say that the event is invalid. Otherwise,

we say that the event is valid.

A pair (β1, β2) of consecutive breakpoints in B(x) defines a circle event if a point c

equidistant from s1, s2 and s3 exists, where (s1, s2) and (s2, s3) are two pairs of sites defining



Eunjin Oh and Hee-Kap Ahn 52:11

β1 and β2, respectively. The key k of this circle event is the point on ∂P ′ closest to o among

the points x′ with d(c, π(o, x′)) = d(c, s1)(= d(c, s2) = d(c, s3)). Assume that this event is

valid when x passes through k. At that time, c appears on the beach line. Moreover, β1 and

β2 disappear from the beach line, and a new breakpoint defined by (s1, s3) appears on the

beach line. (One may think that β1 and β2 merge into the breakpoint defined by (s1, s3).)

Each breakpoint β in B(x) defines a vanishing event. Let (s1, s2) be the pair of sites

defining β. Consider two points on ∂P ′ equidistant from s1 and s2. We observe that

exactly one of the two points lies outside of R(x). We denote it by p. See Figure 3(c).

The key k of the vanishing event is the point on ∂P ′ closest to o among the points x′ with

d(p, π(o, x′)) = d(p, s1). Assume that this event is valid when x passes through k. Then, β

traces out a Voronoi edge and reaches p, which is a degree-1 Voronoi vertex. Moreover, B(x)

changes accordingly as follows. Right before x reaches k, an endpoint defined by s1 or s2 is

a neighbor of β in B(x). (Otherwise, the beach line is not weakly monotone.) Without loss

of generality, we assume that an endpoint of s1 is a neighbor of β. When x reaches the key,

this endpoint and β disappear from B(x), and an endpoint defined by s2 appears in B(x).

(One may think that this endpoint and β merge into the endpoint defined by s2.)

A pair (β1, β2) of consecutive endpoints in B(x) defines a merging event if β1 and β2 are

endpoints of different connected curves of the beach line. Let s1 and s2 be the sites defining

β1 and β2, respectively. Without loss of generality, assume that β1 comes before β2 from

o in clockwise order. Let p be the (unique) point equidistant from s1, s2 that comes after

β1 and before β2 from o along ∂P ′ in clockwise order. The key k of the merging event is

the point on ∂P ′ closest to o among the points x′ with d(p, π(o, x′)) = d(p, s1). Assume that

this event is valid when x passes through k. Then, as the sweep point x moves along ∂P ′,

β1 and β2 are closer and finally meet each other at p. This means that the two connected

curves, one containing β1 and the other containing β2, merge into one connected curve. At

this time, β1 and β2 merge into a breakpoint defined by (s1, s2).

5.1 An algorithm

Initially, B(x) = B(o) is empty, so there is no circle, vanishing, or merging event. We compute

the keys of all site events in advance. For each site, we compute the key corresponding to its

event in O(log n) time [8].

As B(x) changes, we obtain new pairs of consecutive breakpoints or endpoints, and new

breakpoints. Then we compute the key of each event in O(log2 n) time using the following

lemmas and Lemma 5. In addition, as B(x) changes, some event becomes invalid. Once

an event becomes invalid, it does not become valid again. Thus we discard an event if it

becomes invalid. Therefore, the number of events we have is O(|B(x)|) at any time.

◮ Lemma 13. Given a point p in P ′ and a distance r ∈ R, the point on ∂P ′ closest to o

among the points x′ with d(p, π(o, x′)) = r can be found in O(log2 n) time.

◮ Lemma 14. For any two sites s1 and s2 in P ′, we can compute the two points equidistant

from s1 and s2 lying on the boundary of P ′ in O(log2 n) time.

Handling site events. To handle a site event defined by a site s with key k, we do the

following. By definition, the site s appears on the beach line when the sweep point x passes

through k. Thus, two breakpoints defined by (s, s′) for other sites s′ (or two endpoints

defined by s) appear on B(k). See Figure 3(a) and (b). We find the positions of them in

B(x) and update B(x) by adding them using Lemma 15.
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◮ Lemma 15. We can obtain B(k) from B(k′) in O(log2 n log |B(k′)|) time, where k′ is the

key previous to k.

Adding two breakpoints or two endpoints to B(x) makes a constant number of new pairs

of consecutive breakpoints or endpoints, which define circle or merging events. This also

makes a constant number of new vanishing events. We compute the key for each event in

O(log2 n) time and add the events to the event queue in O(log |B(x)|) time. Recall that

the number of events we have is O(|B(x)|) at any time. Therefore, each site event can be

handled in O(log2 n log |B(x)|) time.

Handling the other events. Let k be the key of a circle, vanishing, or merging event. For

a circle event, two breakpoints defining the event disappear from the beach line, and a

new breakpoint appears. For a vanishing event, the breakpoint defining the event and its

neighboring endpoint disappear from the beach line, and a new endpoint appears. For a

merging event, two endpoints defining the event are replaced with a new breakpoint. In any

case, we can update B(x) in O(log |B(x)|) time.

After updating B(x), we have a constant number of new pairs of consecutive breakpoints

or endpoints, and a constant number of new breakpoints. We compute the keys of events

defined by them in O(log2 n) time.

Analysis. During the sweep, we handle O(m) events in total. Each event can be processed

in O(log2 n log m) time since the length of B(x) is O(m) at any time. Thus we have the

following lemma and theorem.

◮ Lemma 16. After computing the shortest path data structure for P ′ and the shortest

path map for P ′ from the point o, we can compute the topological structure of VD in

O(m log m log2 n) time using O(m) space (excluding the two data structures).

◮ Theorem 17. Given a set of m point sites contained in a simple polygon with n vertices, we

can compute the geodesic nearest-point Voronoi diagram of the sites in O(n + m log m log2 n)

time using O(n + m) space.

6 The Geodesic Higher-order Voronoi Diagram

In this section, we first present an asymptotically tight combinatorial complexity of the

geodesic higher-order Voronoi diagram of points. Then we present an algorithm to compute

the diagram by applying the polygon-sweep paradigm introduced in Section 5. In the plane,

Zavershynskyi and Papadopoulou [17] presented a plane-sweep algorithm to compute the

higher-order Voronoi diagram. We use their approach together with our approach in Section 5.

In the following, we assume that 1 ≤ k ≤ m − 1.

6.1 The Complexity of the Diagram inside a Simple Polygon

Liu and Lee [11] presented an asymptotically tight complexity of the geodesic higher-order

Voronoi diagram of points in a polygonal domain with holes, which is Θ(k(m − k) + nk).

However, it is not tight for a simple polygon.

Figure 4 shows an example that the order-k Voronoi diagram has complexity of Ω(k(m −
k) + min{nk, n(m − k)}). We construct a simple polygon P and a set of sites with respect to

a reference point o. Let ℓ1 be a sufficiently long horizontal line segment whose right endpoint

is o and ℓ2 be a sufficiently long line segment with a positive slope whose left endpoint is
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k sites

m− k sites

n− 4 vertices
v1 o

ℓ1

ℓ2

u1

Figure 4 An example that the order-k Voronoi diagram has complexity of Ω(k(m − k) +

min{nk, n(m − k)}).

o. (ℓ1 and ℓ2 are not parts of the simple polygon, but they are auxiliary line segments to

locate the points.) We put m − k sites on ℓ1 such that the sites are sufficiently close to each

other. Similarly, we put k sites on ℓ2 such that sites are sufficiently close to each other and

‖vm−k − o‖ ≪ ‖u1 − o‖, where vi’s are sites on ℓ1 sorted along ℓ1 from o and u′

j ’s are sites

on ℓ2 sorted along ℓ2 from o, for i = 1, . . . , m − k and j = 1, . . . , k.

As a part of the boundary of P , we put a concave and y-monotone polygonal curve with

n − 4 vertices below ℓ2 such that the highest point of the curve is sufficiently close to u1.

Then we put another four vertices of P sufficiently far from the sites such that P contains

all sites and there is no simple polygon containing more Voronoi vertices than P contains.

In the full version, we show that k-VD of this example has complexity of Ω(k(m − k) +

min{nk, n(m − k)}). Moreover, we show that k-VD for any simple polygon and any point

set has complexity of O(k(m − k) + min{nk, n(m − k)}).

◮ Lemma 18. The geodesic order-k Voronoi diagram of m points inside a simple polygon

with n vertices has complexity of Θ(k(m − k) + min{nk, n(m − k)}).

6.2 Computing the Topological Structure of the Diagram

Due to lack of space, we present only an outline of our algorithm. For details, refer to the full

version. The algorithm is similar to the one in Section 5. Recall that for a site s ∈ P (x), the

boundary of Rs(x) consists of one polygonal chain of ∂P and a simple curve with endpoints

on ∂P . We call the simple curve the wave-curve for s. The wave-curve for s is monotone

with respect to π(o, x).

We say that a point p ∈ P (x) lies above a curve if π(p, π(o, x)) intersects the curve.

We use Li(x) to denote the region of P (x) consisting of all points lying above at least i

wave-curves for sites contained in P (x). The ith-level of the arrangement of wave-curves of

sites contained in P (x) is defined to be the boundary of Li(x) excluding ∂P . The ith-level

for each i is weakly monotone with respect to π(o, x) and consists of at most m simple curves

with endpoints lying on ∂P .

k-VD[S] restricted to Lk(x) coincides with k-VD[S ∩ P (x)] restricted to Lk(x). Therefore,

we can obtain the topological structure of k-VD[S] by maintaining the topological structure

of the kth-level of the arrangement of wave-curves. In addition to this, we maintain the

topological structures of the ith-levels of the arrangement for all i < k to detect the changes

to the topological structure of the kth-level.

There are four types of events; site events, circle events, vanishing events and merging

events. The definitions of the event types are analogous to the ones in Section 5. We can

handle the site and circle events in a way similar to the one for the Euclidean order-k Voronoi

diagram given by Zavershynskyi and Papadopoulou [17]. We can handle the other events in

a way similar to the one in Section 5.
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◮ Theorem 19. Given a set of m points contained in a simple polygon with n vertices, we can

compute the geodesic order-k Voronoi of the points in O(k2m log m log2 n+min{nk, n(m−k)})

time using O(n + km) space.

7 The Geodesic Farthest-Point Voronoi Diagram

We present an outline of our algorithm for computing the topological structure of FVD. For

details, refer to the full version. Aronov et al. [3] showed that FVD forms a tree whose root

is the geodesic center c of the sites. They first compute c and the geodesic convex hull of

the sites. Then they compute FVD restricted to the boundary of the polygon. Then they

compute the edges of FVD towards the geodesic center by a reverse geodesic sweep method.

We follow the framework of the algorithm by Aronov et al. [3], but we can achieve a faster

algorithm for m ≤ n/ log2 n by applying their approach to compute the topological structure

of FVD.

In the reverse geodesic sweep, a sweep line is a simple curve consisting of points equidistant

from c. Let B be the (circular) sequence of the sites that have their Voronoi cells on the

sweep line in clockwise order. As an exception, in the initial state, we set B to be the

sequence of the sites whose Voronoi cells appear on ∂P .

No site, vanishing, or merging event occurs during the sweep because FVD forms a tree.

So we handle only circle events. Every triple of consecutive sites in B defines a circle event.

The key defined by a triple (s1, s2, s3) is d(c, c′) for the point c′ equidistant from s1, s2 and

s3. We can compute the key of each triple of consecutive sites in B in O(log2 n) time.

◮ Lemma 20. We can compute the topological structure of FVD in O(m log m log2 n) or

O(n + m log m + m log2 n) time after computing the shortest path data structure for P .

◮ Theorem 21. Given a set of m points contained in a simple polygon with n vertices, we can

compute the geodesic farthest-point Voronoi diagram of the points in O(n+m log m+m log2 n)

time using O(n + m) space.

8 Dynamic Data Structures for Nearest or Farthest Point Queries

We showed that the topological structure of a Voronoi diagram can be computed without

considering the whole polygon. The topological structure can be used for data structures for

answering nearest or farthest point queries for dynamic point sets.

We apply the framework given by Bentley and Saxe [4]. At all times, we maintain O(
√

m)

disjoint sets each of which consists of O(
√

m) points. For each set, we compute the topological

structure of the nearest-point (or farthest-point) Voronoi diagram of the points in the set.

For a nearest (or farthest) point query, we simply find the Voronoi cells containing the

query point for O(
√

m) Voronoi diagrams. Then we have O(
√

m) candidates for the nearest

(or farthest) point from the query point. We find the nearest (or farthest) point from the

query point directly among them. Inside a simple polygon, the complexity of each complete

Voronoi diagram is O(n +
√

m). Thus each update takes O(n +
√

m polylog{n, m}) time

if we maintain the complete Voronoi diagrams. This is why we compute the topological

structures of the Voronoi diagrams.

In the full version of this paper, we show how to find the Voronoi cell containing a query

point using the topological structure of a Voronoi diagram. The key idea is to approximate

the Voronoi diagram into a polygonal subdivision of complexity O(
√

m) using its adjacency

graph and the exact positions of degree-1 and degree-3 vertices.
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◮ Theorem 22. We can construct a data structure of size O(n + m) that supports a nearest-

point (or a farthest) query for point insertions and deletions. Each query time is O(
√

m log(n+

m)) and each update time is O(
√

m log m log2 n)).
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