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Abstract

A new generalized Voronoi diagram is defined on the surface of a river with

uniform flow; a point belongs to the territory of a site if and only if a boat starting

from the site can reach the point faster than a boat starting from any other site.

If the river runs slower than the boat, the Voronoi diagram can be obtained from

the ordinary Voronoj diagram by a certain transformation, whereas if the river

runs faster than the boat, the Voronoi diagram can be constructed by a plane

sweep method.

1. Introduction

The Voronoi diagram is one of fundamental concepts in applied geometry

[Lee and Preparata, 1984] [Preparata and Shamo" 1985] [Boot" 1986], [Edel,­

brunner, 1987] (Aurenhammer, 1988] and has many fields of application, such as

geography [McLain, 1976], operations research [Id, 1986) and pattern recognition

[DeFloriani, 1989], to mention a few. Also this concept has been generalized in

various directions, including Voronoi diagrams with respect to weighted distance

[Aurenhammer and Edelsbrunner, 1984] [Imai, Iri and Murata, 1985), Voronoi

diagrams with respect to Lp·metric [Chew and Drysdale, 1985], Voronoi dia­

grams generated by lines and areas [Yap, 1987} [Srinivasa and Nackman, 1987],

Voronoi diagrams generated by subsets ,of sites [Lee, 1982] [Edelsbrunner and

Seidel, 1986] and Voronoi diagrams on nonplanar surface [Mount, 1985] [Dehne
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and Klein, 19871.

In this paper 1 we present another natural extension of the Voronoi diagram,

which we call a "Vacanoi diagram in a river". The surface of a river is divided

into territories of sites according to time required to reach a surface point by

a boat starting from a site. We also consider algorithms for constructing the

Voronoi diagram in a river. If the speed of water flow is smaller than the speed

of the boat, the Voronoi diagram in a river can be obtained from the ordinary

Voronoi diagram by a simple transformation. Otherwise, the Vacanoi diagram

can be constructed by a plane sweep method.

2. Voronoi Diagram Based on a Boat-Sail Distance

Let S = {51, 52, ... ,Sn} be a set of distinct points, called sites, in the plane

m2 , where ~ is the set of real numbers. Let us fix an (x I y) Cartesian coordinate

system, and let (Xi,Yi) be the coordinates of site Sj. Suppose that there is a

constant flow of speed w in the positive direction of the x axis. Suppose also

that each site has a boat that runs at constant speed v (that is, the boat moves

distance v per unit time if there is no flow). We assume that w :2:: 0 and v > o.
We define

Wa=-,
v

(1)

and call a the relative flow speed.

For any point p = (x,y), let Ti(P) denote the shortest time required by the

boat to travel from site Sj to p. In this paper we sometimes call Tj(p) the "boat­

sail distance" from 8j to p though Ti(P) does not satisfy the distance axioms. Since

the flow is uniform, the shortest time is attained when the boat keeps facing in

a fixed direction, in which case the boat travels along a straight line, as shown

in Fig. 1. Let () be the angle between the positive direction of the x axis and the

direction in which the boat faces while it travels from Sj to p. Then, we get

x - Xi = Ti(P)vcosO +Ti(P)W,

Y - Yi = Ti(p)vsin O.

2
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Eliminating efrom (2) and (3), we get T;(p) explicitly. The resnlt is as follows.

Case 1. a < 1.

-.,(X - x,) + V(x - Xi)' + (1 - .,')(y - Yi)'
Ti(P) = v(l- .,')

Case 2. ., = I.

(4)

(x - Xi)' + (y - Yi)'
for x> Xi,

2v(x - Xi)
Ti(P) = 0 for x;::: Xi and Y ;::: Vi, (5)

00 for x < x· and Y # Yo·- ,

Case 3. ., > I.

Ti(P) =

-.,(X - Xi) + J(x - Xi)' + (1 - .,')(y - Yi)'
v(1 _ .,')

for x-xi~IY-Yihla2-11 (6)

00 otherwise.

Fig. 2 shows the contours defined by Tj (p) ;::: canst. for all the three cases.

Let us note that there is a critical difference between the case where a < 1 and

the case where 0' 2:: Ij Ti(P) has a finite value for any p E ~2 if a < 1, whereas

this is not true if a 2:: 1. This intuitively corresponds to the fact that if ex 2: 1, the

boat cannot travel against the flow of the river. The region in which Ti(P) ;::: 00

is represented by shaded area in the figure. The region with finite values of Tj(p)

forms a fan~shape area whose angle is 2arcsin(lja). Note that for a = 1 the

boundary of this region except for the site itself does not belong to the region,

whereas for Q' > 1 the boundary of this region belongs to the region. That is,

any point p on the vertical line passing through the site 8j in Fig. 2(b) satisfies

Tj(p) = 00 provided that p =f:. 8i, whereas any point p on the halp lines emannting

from Sj in (c) satsifies Tj(p) < 00.

For each 8j E S, let us define

Va(Si) = {p ITi(p) < Tj(p) for any j # i),

3
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and call it the Voronoi region for 8j. Let us also define VO'(s;) by

Va(S,) = {p IT;(p) ::; Tj(p) for any j # i). (8)

Note that VO'(Si) depends on the relative flow speed Q, but not on v itself though

Tj(p) explicitly contains the factor l/v. This is because this factor is canceled

out when we compare 1i(p) and Tj(p). The collection

Va(S) = {Va(s,), Va(s,), ... ,Va(s.)) (9)

is called the Voronoi diagram in a river generated by S with respect to relative

flow speed a. A line segment shared by the boundary of two Voronoi regions

is called a Voronoi edge and a point shared by the boundaries of three or more

Voronoi regions is called a Voronoi point.

If a < 1, Tj(p) has a finite value for any point p and hence the Voronoi

regions and their boundaries cover the whole plane. H a ~ I, on the other hand,

there exists a nonempty region in which Ti(P) = 00 for all Si E S, and hence the

Voronoi regions and their boundaries do not exhaust the plane.

In general a Voronoi edge is composed of two types of segments. A segment

of one type consists of points that have the same finite boat-sail distance from

two sites. The set of points equally far from Sj and Sj is represented by equations

T,(p) = Tj(p) < 00, (10)

which is a hyperbola. A segment of the other type comes from the boundary of

the region where the boat-sail distance is infinite. The boundary of the region

whose boat-sail distance from Sj is infinite is represented by

x - Xi = Iy - Yib/""-1 (11 )

(see equations (5) and (6)). A segment of this type arises only for", 2: l.

If a = 0, Tj(p) coincides with the Euclidean distance between.9i and P (up to

the factor l/vL and hence Vo(S) is the ordinary Voronoi diagram generated by

S.

Fig. 3 shows the Voronoi diagrams generated by two sites.9} and S2 for various

value of 0, where 82 is jn the downstream of s}. As shown in (a), if 0 = 0,
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the Voronoi diagram in the river coincides with the ordinary Voronoi diagram

and consequently the boundary of the two regions is the perpendicular bisector

between the two sites. If 0 < a .$ 1, the boundary is a hyperbola, as in (b). If

a = 1, then as shown in (c), the boundary hyperbola contains the right site S2 as

its leftmost point, and also the diagram has the boundary between the Voronoi

region of Sl and the region to which the boat cannot reachj see the vertical line

passing through Sl.

Next consider the case where a > 1 and Ti(S2) < 00, that is, a > 1 but a

is not very large and hence S2 is reachable by a boat starting at SI. Then, as

shown in (d), the slope of the boundary of a Voronoi region has discontinuity at

the site. The boundary of Vcr (SI) consists of two half lines. The upper half of the

boundary of Va (S2) consists of a segment of a straight line (segment S2P) and a

segment of a hyperbola (the curved line to the right of p). The lower half of the

boundary of Va (S2) also consists of a straight line segment and a part of the same

hyperbola, though the latter is out of the figure region. Note that the straight

line segment S2P belongs to Va (S2) but does not belong to Va (SI), because points

in the line segment have smaller boat-sail distances from S2 than from Sl. On the

other hand, the segments of the hyperbola belong to neither Va(sI) and Va(S2),

because points in these segments have equal boat~sail distances from Sl and from

82. If a becomes still larger so that T1 (82) = 00, then, as shown in (e), both of

the Voronoi regions Va(sI) and Va(S2) are adjacent to the leftmost area which

is unreachable by any boat. In this case, the boundary of Va(sI) consists of a

half line and a straight line segment (the segment SlQ in (e)) and the boundary

of Va (82) consists of a half line, a straight line segment (the segment S2P in (e))

and part of a hyperbola.

As shown by this example, there is a great difference between the Voconoi

diagram for 0 < a < 1 and that for a > 1. If a < 1, a point on a Voronoi edge

has the equal boat-sail distance from two sites, and a Voronoi point has the equal

boat-sail distance from three or more sites. If a > I, on the other hand, a point

on a Voconoi edge does not necessarily have the equal boat-sail distance from two
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sites. Indeed, if a point is on a straight-line portion of the boundary of a Voronoi

region, there is only one site that has the shortest boat-sail distance to the point.

For example, point p in Fig. 4(a) is equally far from the three sites 51, 52 and

53, whereas point q in (b) is closest to 53 only. Hence, in particular, Va (5j) is a

closed region if 0 ::; a < 1, but it is not necessarily closed if a :2: 1.

3. Basic Properties

Let C(X,Yir) denote the circle with radius r centered at (x,y). For any a

(~O), point (x +ar,y) is called the a-center of the circle C(X,Yir). If point p is

the a-center of circle C, we say that C is a circle a· centered at p.

The a-center has the following physical meaning. Suppose that a boat which

is initially on circle C(X,Yir) moves toward the center at speed v. If there is no

flow, the boat reaches the center in time r/v. IT there is a flow of speed w, on

the other hand, the boat is carried by (r/v)w = ar from the center of the circle

in the direction of the flow. Thus, the a-center of C(x, Yi r) represents the point

reached by a boat that starts from a point on the circle, initially facing toward

the center. Moreover, r/v, the time required for the boat to reach the a-center,

does not depend on the actual start point on the circle. Hence, the a-center p of

circle C(X,Yir) has the same value of Ti(P) for any site Sj on C(x,Yir). Thus,

the a-center of a circle is the point equally "far" from any point on the circle in

the sense of the boat-sail distance. This is why we chose the name "a-center".

Fig. 5 shows circles with a common a-center for the three cases a < 1, a = 1

and a > 1. It is suggested by this figure, and can be proved easily, that if a 5 I,

a circle is contained in any larger circle with the same a-center, whereas if a > 1,

circles with a common a-center have a pair of common tangent lines that pass

through the a-center.

A circle is called a hitting circle if it passes through at least one site in S.

For any point p E ~2, let F(p) be the smallest hitting circle centered at p, and

let fa(P) be the ",-center of F(p). Conversely, for any q E l)/', let Ga(q) he the

smallest hitting circle a-centered at q, if such a circle exists, and let gO'(q) be the
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center of G.(q).

Fig. 6 shows examples of the smallest hitting circles for the case where a > 1.

(a) shows the case where there is only one site 31. Let us fix our attention on

point p in the figure. Then, we get F(p), the smallest hitting circle centered at

p, q = f~(p), the a-center of F(p), Gcx(q), the smallest hitting circle a-centered

at q, and p' = 9.(q), the center of G.(q), as shown in the figure. F(p) and G.(q)

are circumscribed by the pair of half lines emanating from q forming apex angle

2arcsin(ljo<). In this example we see F(p) '" G.(f.(p)) but F(p') = G.(9.(P')).

Indeed, we can see that F(p) = G.(f.(p)) holds if and only if T1(p) < 00, and

hence F(p) '" G.(f.(p)) for any point p in the shaded area in the figure.

The situation is more complicated if there are two or more sites. Fig. 6(b)

shows the case where there are two sites 81 and 82. Let us choose point p as

shown here. Then, we get F(p), q = fcr(p) and Gcr(q) M illustrated. Moreover,

we have two more hitting circles, C and G', a-centered at q. In this case, the

circle F(p) hits'l while the circle G.(q) hits '2. Thus, F(p) and G.(J.(p)) does

not necessarily coincide with each other even if Tt{p) < 00.

F(p) and !.(p) are defined for any point p in the plane (unless S is empty).

On the other hand, Ga(q) and 9a(q) are not necessarily definedj they are defined

if and only if there exists at least one site Sj from which the point q is "reachable1
'

in the sense that Ti(q) =f:. 00. Hence, in particular, if a < I, Gcr(q) and 9a(q) are

defined for any point q in the plane.

A circle is called an empty circle if it contains no site in its interior. F(p)

and Ga(q) are both empty circles, because they are the hitting circles we obtain

for the first time when we continuously increase the radius of the circle from 0 to

00 while fixing the center or the a-center, respectively, of the circle.

If the smallest hitting circle centered at p passes through site Sj, Sj is the

nearest site from p in the sense of Euclidean distance and hence p is in the region

Vo(sd in the ordinary Voronoi diagram (Sj is in VO(Si) if Sj is the only site on the

circle, while Sj is on the boundary of VO(Si) if another site is also on the circle).

Similarly, if the smallest hitting circle a-centered at p passes through site Si, Si
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is the nearest site from p in the sense of the boat-sail distance and hence p is in

the region VO'(8d in the Voronoi diagram in the river.

Proposition 1. Suppose that p,q E 31' and F(p) = Ga(q). Then, p E Vo(s,) if

and only if q E vats,).
Proof. p E Vo(8i) is equivalent to the fact that Si is on F(p), the smallest hitting

circle centered at p. Similarly, q E Vcr(Si) is equivalent to the fact that Si is on

Ga(q), the smallest hitting circle a-centered at q. Since F(p) = Ga(q), p E Vo(s,)

is equivalent to q E VO'(si).

o

Proposition 1 tells that the nearest site to p in the sense of Euclidean distance

coincides with the nearest site to q in the sense of the boat-sail distance, if and

only if the smallest hitting circle centered at p coincides with the smallest hitting

circle a-centered at q. Hence, if we find the correspondence between such a pail'

of points p and q, we can reduce the construction of Vcr(S) to the construction of

Vo(S). So, our next question is when F(p) = Ga(q) holds.

Proposition 2. For any q E iJ/' for which ga(q) is defined, Ga(q) = F(ga(q))

holds.

Proof. Let p = go:(q). By the definition, GO'(q) is the smallest hitting circle

a-centered at q, and p is its center. Hence, GO'(q) is a hitting circle centered at p.

Assume that Ga(q) '" F(p). Since F(p) is a hitting circle, there exists at least one

site, say Si, on F(p). On the other hand, F(p) and GO'(q) has the common center

p, and hence F(p) is contained in the interior of Go:(q), and so is Sj. However,

this is impossible because Go:(q) is the smallest hitting circle. 0

Proposition 3. Suppose that a < 1. Then, for any p E 31', F(p) = GaUa(P))·

Proof. Let q ::;: fcr(p). The circle F(p) is a hitting circle a-centered at q, but

not necessarily smallest in general. Assume that F(p) '" Ga(q). Since Ga(q) is
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a hitting circle, there exists at least one site, say 8i, on Ga(q). Since a < I, a

circle a-centered at q is contained in the interior of any larger circle a-centered

at q. Hence, Ga(q) is contained in F(p), and consequently so is Si. However, this

is impossible because pep) is the smallest hitting circle. 0

proposition 4. Suppose that a = 1. Then, for any p E ~2 such that fcr(p) does

not coincide with any site, F(p) = G.(f.(p)) holds.

Proof. Let q = fa(P). Since a = 1, q is the rightmost point on the circle F(]J).

Assume that F(p) l' G.(q). By the definition G.(q) is the smallest hitting circle

a-centered at q, the circle F(p) should be larger than Ga(q). Since Ga(q) is a

hitting circle, there exists at least one site, say Si, on Ga(q). On the other hand,

F(p) is an empty circle and hence should not contain Sj in its interior. This

implies that Si is on both the circles F(p) and Gn(q)j this is possible only when

Sj = fcr(p), Thus we get the proposition. 0

Combining Proposition 1 with Proposition 2, 3 and 4, we immediately get

the following propositions.

Proposition 5. For any point q E ~2 for which 9cr(q) is defined, q E Va(s;) if

and only if 9.(q) E VO(Si).

Proof. Suppose that q E !R2 is a point such that gcr(q) is defined, and let

p = ga(q). Then, from Proposition 2, we get Gcr(q) = F(p) and consequently

q = fa (p). Hence, the proposition follows from Proposition 1. 0

Proposition 6. Suppose that a :$ 1. Then for any p E !R2 , P E VO(Si) if and

only if f.(p) E V.(Si).

Proof. For any p, let q = ga(P). Case 1. First suppose that a < 1. Then, from

Proposition 3 we get F(p) = Gcr(q), and hence it follows from Proposition 1 that

p E VO(Si) if and only if q E V.(Si). Case 2. Next suppose that ex = 1. Case 2a.

If f.(p) l' Si for any site Si, it follows from Proposition 4 that F(p) = G.(f.(p)),
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and hence from Proposition 1 we get that p E Vo(Si) if and only if q E V(I'(Si).

Case 2b. If fa(P) = Si for some site Si, we get directly from the definition of the

Voronoi diagram in the river that p E Vo(sd and q E V(I'(Sj). If, beside Si, there

is also another site si on the circle F(p), p is the midpoint of the line segment

connecting Sj and sj, and hence p E Vo(Sj) and q E Va(Sj). Thus, we get the

proposition. 0

Proposition 6 says that if a ::; I, the mapping 1(1' gives the one-to-one cor­

respondence between the Voronoi diagram in a river and the ordinary Voronoi

diagram, and hence, in particular, the topological structure of the Voronoi dia­

gram in a river is isomorphic to the topological structure of the ordinary Voronoi

diagram. If a = 0, the Voronoi diagram in a river coincides with the ordinary

Voronoi diagram. For positive 0', the Voronoi diagram is deformed by the stream

of water, but if a is small, the deformation is also small, so that we can expect that

the resultant diagram does not differ much from the ordinary Voronoi diagram.

Proposition 6 states this intuition more explicitlYi if Q ::; 1, the deformation does

not give any topological change.

On the other hand, Proposition 5 says that if a > 1, the Voronoi diagram

in a river reflects the ordinary Voronoi diagram only in the area at which g(l' is

defined.

4. Interpretation as a Forest of Cones

The ordinary Voronoi diagram can be considered as an orthographic projec­

tion of a three-dimensional scene composed of cones. In this section we will see

that this way of interpretation can be generalized for any a.

Consider (x,y,z) Cartesian coordinate system fixed to the three-dimensional

space, and suppose that the sites Sl, S2, ... ,Sn are given in the x-v plane. For

each site Sj, we consider the cone defined by

z = -J(z - z;)' + (y - Yo)'. (12)

As shown in Fig. 7(a), this cone has the apex at Si, has apex angle rr/2 and is
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open downward. The intersection of this cone with plane z = -t, where t is a

positive constant, forms a circle, and the orthographic projection of this circle

onto the x-v plane can be considered as the front of the wave at time t created

at Si at time 0 and growing at the unit speed in every direction.

The cones associated with all the sites intersect each other and altogether form

a l'forest of cones". Assume that the cones are made of opaque surface. Then,

the ordinary Voronoi diagram coincides with the picture obtained by seeing this

forest of cones from the view point at infinity in the positive direction of the

z axis. This is because the cones can be considered as the fronts of the waves

created at all the sites simultaneously, and a Voronoi edge is a set of points at

which two wave fronts meet.

Recall that if 0 > 0, the front of the wave created at 8j still forms a circle

but the center is displaced from Sj. If the radius of the circle is r, the center is

at (Xi +or, vi). Hence, as shown in Fig. 7(b), the front of the wave at various

times can be obtained by viewing the cone in the direction

-., -1
d. = (0, ';1 + .,2' ';1 + .,2)· (13)

In particular, if 0 = 0, dO' = (0,0,-1), which coincides with the direction of the

orthographic projection, and if 0 = I, da = (1,-1/...12, -1/...12), which is parallel

to the y-z plane and forms angle 1r/4 with both the y axis and the z axis. Hence,

the Voronoi diagram with respect to the relative flow speed Q can be obtained

by projecting the visible portion of the forest of cones in the direction parallel to

dO' onto the X-v plane.

If 0 :::; Q < 1, the surface of the cone is entirely visible from the viewer who

sees the cone in the direction dO' unless the surface is intersected by other cones.

Hence, the topological structure of the diagram does not change while the view

direction dO' is altered within 0 .$ 0 < 1. If 0 > 1, on the other hand, a portion

of the surface is occluded by the cone itself, and consequently the topological

structure of the resultant diagram differs from the ordinary Voronoi diagram.

This is another way of intuitively understanding Proposition 6.
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5. Algorithms

On the basis of our observations, here we design algorithms for constructing

the Vacanoi diagrams in the river. First, let us consider the case where a ~ l.

Proposition 6 tells us that in this case a Vacanoi region in the Voronoi diagram

in the river is obtained from the Voronoi region for the same site in the ordinary

Vacanoi diagram by mapping fal that is) Va(Si) = fn(Vo(sj)). Hence we get the

next algorithm.

Algorithm 1 (Vacanoi diagram with relative flow speed a ::; 1)

Input: Set S = {81,S', ... ,Sn} of sites, and" (0 < " S 1).

Output: Vacanoi diagram Vcr(S).

Procedure:

Step 1. Construct the ordinary Vacanoi diagram Va(S).

Step 2. Transform Vacanoi edges and Vacanoi points in Vo(S) by mapping fen

and return the resulting diagram.

For Step 1 we can employ existing algorithms for ordinary Voronoi diagrams:

for example, an incremental algorithm (Ohya, lri and Murota, 1984] which runs

in O(n) time on the average for uniformly distributed sites, its robust version

[Sugihara and hi, 1989a, 1989b], a divide-and-conquer algorithm [Shamos and

Hoey, 19751 [Guibas and Stolfi, 19851 which runs in O(nlogn) time both in the

worst-case sense and in the average-case sense, its improved version [Katajainen

and Koppinen, 1988] which runs in O(n log n) time in the worst case and in O(n)

time on the average, and its robust version [Ooishi, 1990] [Sugihara, Ooishi and

Imai, 1990}. The number of Voronoi edges and Voronoi vertices in the ordinary

Voronoi diagram is of O(n), and hence if we assume that each Voronoi edge

is mapped by In in constant time, Step 2 can be done in O(n) time. Thus,

Algorithm 1 runs in O(nlogn) time in the worst case and in O(n) time on the

average.

Next let us consider the case where a > 1. If a 2: 1, the Voronoi diagram
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in a river has the remarkable property that any site Si is the leftmost point of

the corresponding region Va(si). This can be understood easily if we note that

all the points reachable from site Sj form a fan·shape area open rightward from

the apex at Si, as shown in Fig. 2(b) and (c), and that the region Va(Si) is

contained in this fan-shape area. This property implies that the plane sweep

method, one of fundamental techniques in computational geometry, can be used

for the construction of the Voronoi diagram.

In the plane sweep method the plane is swept by a vertical line, called a

sweepline, from left to right, and every time a new event happens a problem at

hand is solved partially along the sweepline. Hence, by this method we can reduce

a two-dimensional problem to a set of "ahnost one-dimensional" problems. Since

site Sj is the leftmost point of the region Va(Si), all the events related with this

region happen only after the sweepline hits Sj. Thus, it is natural to apply the

plane sweep method to the construction the Voronoi diagram.

Indeed, the plane sweep method for constructing ordinary Voronoi diagrams

proposed by Fortune (1986, 1987) is essentially a method for constructing the

Voronoi diagram in the river for n = 1. In his method, first the Voronoi diagram

in the river is constructed by the plane sweep technique in O(nlogn) time, and

next it is transformed by the mapping 9a to get the ordinary Voronoi diagram,

where n = 1.

To construct the plane sweep method for the Voronoi diagram for n > 1, let

us consider the boundary of two Voronoi regions in more detail. Let Si and Sj be

two sites such that Xj ~ Xj. If there is no other sites, the boundary of Voronoi

region of Sj can be divided at Sj into two portions, the portion extending in the

right upper direction and the portion extending in the right lower direction. We

call them the upper wing and the lower wing, respectively, of Sj with respect to

Sj and denote them by w+(Sj,Sj) and by W-(Si,Sj)j see Fig. 8.

In general, the upper and lower wings consist of part of a straight line and

part of a hyperbola. As shown in Fig. 8, let 1+ and 1- be two half lines emanating

from Sj with angle arcsin(1/n) and -arcsin(1/n), respectively, with respect to
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the x axis. As we saw in equation (11), the left portions of the wings coincide with

those half lines. Let hi be the perpendicular bisector of Sj and 8j, and let p+ and

p- be the points of intersection between iij and the half lines emanating from Si

with angle 1r /2 +arcsin(1/a) and 31r/2 - arcsin(l/a), respectively. Furthermore,

let q+ and q- be the points of intersection between i+ and the horizontal line

passing through p+ and between 1- and the horizontal line passing through p-,

respectively. Then, from equations (5) and (6) we can see that the upper wing

W+(Si,8j) is composed of the straight line segment Sjq+ and part of the hyperbola

defined by equation (10), and similarly the lower wing W-(8i,Sj) is composed of

the straight line segment Sjq- and part of the same hyperbola. Another way to

understand this is to interpret the diagram as the picture of the forest of cones. If

we consider a picture of the cone seen from above, the triangle SiP+P- corresponds

to the picture of the surface of the cone that are invisible from the viewer with

view direction d", and hence the line segment 8iP+ and Sjp- (when considered as

the line segments on the surface of the cone) correspond to the silhouette of the

cone for that viewer. Thus, if the cone is projected in the direction parallel to

deo the line segments siq+ and Sjq- are the images of the silhouette of the cone

and the other parts of the wings are the images of the line of intersection of the

two cones associated with Si and Sj.

Fig. 8 illustrates the case where Tj(Si) < 00. If Tj(Si) = 00 and Yi < Yj (this

happens when the slope of [ij is positive and smaller than the slope of [+), q­

goes to infinity and W-(Si,Sj) becomes the half line 1-. Similarly, if Ti(si) = 00

and Yi > Yj, q+ goes to infinity and W+(Si,8j) becomes the half line [+.

We formally define W+(Si,Soo) = 1+ and W-(Si,800 ) = 1-. This intuitively

corresponds to that we introduce new site Soo that is at infinity in the negative

direction of the x axis and consider W+(8j,8oo ) and W-(8i,800 ) as the wings of Si

with respect to soo.

Now, we are ready to describe the plane sweep method. Suppose that we are

given the set of sites. In the preprocessing stage, we first put the sites in priority

queue Q, and next choose and delete from Q the site, say Sj, with the smallest x

14



coordinate, and generate list

which represents the alternating sequence of regions and wings which one meets

as one travels from the bottom upward along the vertical sweepline that lies

just to the right of 8ij see vertical line £1 in Fig. 9. In the main stage of the

processing, while Q is not empty we choose and delete from Q the point p with

the smallest x coordinate and modify the list £ according to the change that

happens when the sweepline hits p from left to right. That is, if p is a site, say

8;' we change the list £ so that Va (8j) and its upper and lower wings are inserted

in an appropriate position, and also we add to Q the points of intersection of the

newly inserted wings with the wings adjacent in £ if they exist (see sweepline £2

in the figure). If p is a point of intersection of two wings, we change £ 50 that

one of Voronoi regions and its upper and lower boundaries are replaced by a new

wing (see sweepline £3 in the figure). During the processing, all the changes in

£ are stored and thus the Voronoi diagram is constructed.

We refer to Fortune (1986, 1987) for the formal description of the algorithm

and its analysis, because the algorithm is the same except for the actual shape

of the upper and lower wings. Thus, because of the same reason as in Fortune

(1986, 1987), we can construct the Voronoi diagram with respect to the relative

flow speed" (" > 1) in O(nJogn) time.

Finally, some examples of Voronoi diagrams in a river are shown in Figs. 10

and 11. Fig. 10 shows the Voronoi diagram for (a)" = 0, (b)" = 0.5, (c)" = 1.0,

and (d) Q = 2.0, generated by the set of 30 sites randomly located in a square

region. Fig. 11 shows the Voronoi diagram for (a) ,,= 0.0, (b) ,,= 0.8, and (c)

Q' = 1.5 generated by 500 sites randomly located in a square.

6. Concluding Remarks

The concept of the Voronoi diagram is extended to that in a river, where each

site generates its Voronoi region according to the boat-sail distance. The Voronoi

diagram thus extended has one parameter Q, which is the ratio of the speed of

15



the water stream to the speed of a boat.

For 0' = 0, the Voronoi diagram in the river coincides with the ordinary

Voronoi diagram. As the speed of the water stream increases, the Voronoi diagram

in the river changes its shape gradually. However, while 0' ~ I, the change is

not drastic in the sense that the topological structure of the diagram remains

unchanged; consequently we can construct the Voronoj diagram in the river from

the ordinary Voronoi diagram by a simple transformation. When the speed of the

river stream is faster than that of the boat (i.e., 0: > 1), the topological structure

of the ordinary Voronoi diagram is no more preserved, and hence the Voronoi

diagram cannot be constructed by a simple transformation from the ordinary

Voronoi diagram. Fortunately, however, Voronoi regions are generated only to

the downstream of the corresponding sites, and consequently the plane sweep

method can be applied naturally for the construction of the Voronoi diagram.

For ex = I, the Voronoi diagram coincides with the diagram used by Fortune

(1986, 1977) in his plane sweep algorithm for constructing the ordinary Voronoi

diagram. Indeed, the actual motivation of the present work was to give physical

meaning to the transformation used in Fortune's plane sweep method. It seems

interesting to note that among all possible values of the parameter 0', ex = 1 is

the only case where the topological structure of the ordinary Voronoi diagram is

preserved and still the plane sweep method can be applied.

The author would like to express his thanks to Prof. C. M. Hoffmann, Dr. J.

Vanecek and J. Zhou of Department of Computer Science, Purdue University, for

their valuable comments. This work is partly supported by the Grant in Aid for

Scientific Research of the Ministry of Education, Science and Culture of Japan

(Grant No. 01550279) and by the Computing-About-Physical-Object Project at

Purdue Univeristy.

Reference

F. Aurenhammer, 1988: VOTonoi Diagram - A Survey. Report 263, Institute fiir

Informationsverarbeitung, Technische Universitat Graz und Osterreichische

16



Computer Gesellschaft.

F. Aurenhammer and H. Edelsbrunner, 1984: An optimal algorithm for con­

structing the weighted Voronoi diagram in the plane. Pattern Recognition,

vol. 17, pp. 251-257.

B. N. Boots, 1986: Voronoi (Thiessen) Polygons. Geo Books, Norwich.

L. Chew and R. Drysdale, III, 1985: Voronoi diagrams based on convex distance

functions. Proceedings of the ACM Symposium on Computational Geometry,

Baltimore, June 1985, pp. 235-244.

L. DeFloriani, 1989: A pyramid data structure for triangle-based surface descrip­

tion. Computer Graphics and Applications, vol. 9, pp. 67-78.

F. Dehne and R. Klein: An optimal algorithm for computing the Voronoi dia­

gram on a cone. Technical Report, SCS-TR-122, School of Computer Science,

Carleton University, Ottawa.

H. Edelsbrunner, 1987: Algorith71l,J in Combinatorial Geometry, Springer-Verlag,

Berlin.

H. Edelsbrunner and R. Seidel, 1986: Voronoi diagrams and arrangements. D~­

crete and Computational Geometry, vol. 1, pp. 25-44.

S. Fortune, 1986: A sweepline algorithm for Voronoi diagrams. Proceedings of

the 2nd A CM Annual Symposium on Computational Geometry, Yorktown

Heights, pp. 313-322.

S. Fortune, 1987: A sweepline algorithm for Voronoi diagrams. Algorithmica,

vol. 2, pp. 153-174.

L. Guibas and J. Stolfi, 1985: Primitives for the manipulation of general sub­

divisions and the computation of Voronoi diagrams. A eM Transactions on

Graphics, vol. 4, pp. 74-123.

H. Imai, M. hi and K. Murata, 1985: Voronoi diagram in the Laguerre geometry

and its applications. SIAM Journal of Computing, vol. 14, pp. 93-105.

M. hi, 1986: Practical computational methods in geometrical/geographical op­

timization problems. in M. J. Beckmann, K.-W. Gaede, K. Ritter and H.

Schneeweiss (eds.): MethodJ of Operations Research, 54 (Proceedings of the

17



X. Symposium on Opera~ions Research, Munchen, 1985), Verlag Anton Hain,

Part II, pp. 17-37.

J. Ka~a.jainen and M. Koppinen, 1988: Constructing Delaunay ~riangula~ions by

merging buckets in quadtree order. Fundamental Informatica, vol. XI, pp.

275-288.

D. T. Lee, 1982: On k·nearest neighbor Voronoi diagram in the plane. IEEE

Tran.'Jaction.'J on ComputertJ, vol. C-31, pp. 478-487.

D. T. Lee and F. P. Prepara~a, 1984: Computational geometry - A survey.

IEEE Tra'Mactio'M on ComputertJ, vol. C-33, pp. 1072-1101.

D. H. McLain, 1976: Two dimensional interpolation from random data. Com­

puter Journal, vol. 19, pp. 178-181.

D. M. Mount, 1985: Voronoi diagrams on the surface of a polyhedron, Tech­

nical Report CS-TR-1496, Department of Computer Science, Universi~y of

Maryland, College Park.

T. Ohya, M. Iri and K. Murota, 1984: Improvements of the incremental method

for the Voronoi diagram with computa~ionalcomparison of various algorithms.

Journal of the Operation.'J RetJearch Society of Japan, vol. 27, pp. 306-336.

Y. Ooishi, Y, 1990: Numerically robust implementation of the divide- and­

conquer algorithm for constructing Voronoi diagrams (in Japanese). Bach­

elor's Thesis, Departmen~ of Mathema~ical Engineering and Information

Physics, Faculty of Engineering, University of Tokyo.

F. P. Preparata and M. 1. Shamos, 1985: Computational Geometry - An Intro­

duction. Springer-Verlag, New York.

M. I. Shamos and D. Hoey, 1975: Closest-point problems. Proceeding3 of the 16th

IEEE Annual SympotJium on Foundation Compute Science, pp. 151-162.

V. Srinivasan and L. R. Nackman, 1987: Voconoi diagram for multiply-connected

polygonal domains, I - Algorithm, IBM Journal of Re3earch and Develop­

ment, vol. 31, pp. 361-372.

K. Sugihara and M. hi, 1989a: Construction of the Voronoi diagram for one

million generators in single-precision ari~hmetic. Paper presented at the First

18



Canadian Conference on Computational Geometry, August 21-25, 1989, Mon­

treal , Canada, and submitted for publication.

K. Sugihara and M. Iri , 1989b: VORONOI2 reference manual. Research Mem­

orandum RMI 89·04, Department of Mathematical Engineering and Informa­

tion Physics, Faculty of Engineering, University of Tokyo, 1989.

K. Sugihara, Y. Ooishi and T. hnai, 1990: Topology-oriented approach to robust­

ness and its applications to several Voronoi-diagram algorithms. Abstracts of

the Second Canadian Conference on Computational Geometry, Ottawa, Au­

gust 1990, pp. 36-39.

C.-K. Yap, 1987: An O(nlogn) algorithm for the Voronoi diagram of a set of

simple curve segments, Discrete and Computational Geometry, vo1. 2, pp.

365-393.

19



y w ..

v
/

o

x

Fig. 1 Sh. ortest path £or a boat· .In a river.

w .. w
•

(b)(a)

F·.g. 2. Conto li (c)
ur nes generaLed by T;(p) -- const.: (a) 0 <_ a < 1· (b), a=l·(),ca>l.



81
•

(al

. 8,

p

8,

(d)

81
•

•

(b)

8,

q

(e)

p

(e)

8,

Fig. 3. Voronoi diagram in a river generated by two sites: (a) a: = OJ (b) 0' = 0.5j (c)

" = 1.0; (d) ,,= 1.2; (e) ,,= 2.0.



81

82

82

(a)

(b)

p

q

l'

Fig. 4. Two types of Voronoi vertices for 0' > 1.



Fig. 5. Circles with a common a-center: (a) 0 .::; a < 1; (b) a = 1; (c) a> 1.
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Fig. 11. Voronoi diagra.m in a flver generated by 500 sites: (a) Q

(c)" 1.5.

0.0; (b) " 0.8;



(b)

Fig. 11 (continned).
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Fig. 11 (continued).
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