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Abstract. The paper bounds the combinatorial complexity of the Voronoi diagram of a
set of points under certain polyhedral distance functions. Specificaflysia set oh points

in general position ifRY, the maximum complexity of its Voronoi diagram under thg

metric, and also under a simplicial distance function, are both shown @xi€/?"). The

upper bound for the case of the, metric follows from a new upper bound, also proved in
this paper, on the maximum complexity of the uniomadxis-parallel hypercubes iR¢.

This complexity ig9 (n[4/21), ford > 1, and itimproves t® (n'%/2), ford > 2, ifallthe hy-
percubes have the same size. Undelthmetric, the maximum complexity of the Voronoi
diagram of a set afi points in general position iR is shown to bed(n?). We also show

that the general position assumption is essential, and give examples where the complexity
of the diagram increases significantly when the points are in degenerate configurations.
(This increase does not occur with an appropriate modification of the diagram definition.)
Finally, on-line algorithms are proposed for computing the Voronoi diagrampaints in

RY under a simplicial oL, distance function. Their expected randomized complexities
areO(nlogn + nl¥/21) for simplicial diagrams an®(n'%2! log~* n) for L ,.-diagrams.
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1. Introduction

Voronoi diagrams are among the most fundamental constructs in computational geom-
etry, and, as such, have been studied a lot during the past two decades. Most of these
studies, however, concentrated on Voronoi diagrams in the plane, with only few studies
of diagrams in higher dimensions.

We assume in this paper familiarity of the reader with the standard definition and
properties of Voronoi diagrams. They can be found in basic textbooks on computational
geometry [8], [17]-[19] and in several survey papers [3], [15]. There are many variants
of Voronoi diagrams. The three main parameters that can vary are (i) the type of sites
defining the diagram (points, lines, etc.), (ii) the metric defining the distance to a site,
and (iii) the dimensionl. The “classical” case is when the sites are points and the metric
is euclidean. In this case, a standard lifting transform maps the Voronoi diagfh in
onto the boundary of a polyhedronitd** and implies that the maximum combinatorial
complexity of the diagram i® (n'%/2). When the sites are spheres, Aurenhammer and
Imai[4] have shown that the euclidean Voronoi diagram can be mapped onto the boundary
of polyhedron ofR9*+2? which implies a complexity bound @ (n@+1/21) However, for
other metrics, or for other kinds of sites, such an analysis does not apply. In this paper
we only consider Voronoi diagrams for point sites, so the only relevant parameters for
us are the metric and the dimension.

As observed in [9], the Voronoi diagram of a g2of n sites inRY can be interpreted
as the lower envelope of a setrotil-variate functions, each measuring the distance from
an arbitrary point ofRY to a site ofS. Under reasonable assumptions concerning the
shape of the sites and the metric, these functions are (piecewise) algebraic of some fixed
degree. Hence, applying the recent results of [21] concerning the complexity of the lower
envelope of such a collection of functions, we immediately conclude that the complexity
of the Voronoi diagram i© (n?+¢), for anys > 0, where the constant of proportionality
depends or, d, and the maximum degree of the relevant functions. Since this is a
much weaker bound than the one known for the euclidean case, one might be tempted to
conjecture that the actual complexity of the diagram is smaller, perhaps cloge/t4?))
for fairly general sites and metrics. This conjecture has been confirmed at ledist By
where linear bounds on the complexity of the diagram are known in fairly general settings.
Unfortunately, a recent construction due to Aronov [1] shows that, for pairwise disjoint
convex polyhedral sites id > 3 dimensions, the Voronoi diagram can hawén?-1)
complexity, even under the euclidean metric. However, no such construction is known
for point sites. Note also that, fat = 3, Aronov’s construction does not violate the
above conjecture.

Surprisingly, very little is known about generalized Voronoi diagrams in higher di-
mensions. Recently, Chew et al. [6] have shown that the complexity of the Voronoi
diagram of a set afi lines inR2 under a convex polyhedral distance function (see below
for a precise definition), induced by a convex polytope with a constant number of faces, is
O(na(n) logn). Thus the conjecture holds in this case. The simpler case, of point sites
under similar distance functions, has not been investigated yet, and this paper initiates
the study of such diagrams.

For certain technical reasons, the case of point sites is harder to analyze than the case
of lines in 3-space. We have not been able to come up with a sharp bound for point sites
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and arbitrary polyhedral distance functions, eveiRi Nevertheless, we managed to
substantiate the conjecture in the following special cases:

e We show that the maximum complexity of the Voronoi diagranm bints inR3
under thel; metric is®(n?).

e We show that the maximum complexity of the Voronoi diagrann gbints inRY
under thel , metric is®(nld4/21y.

e We show that the maximum complexity of the Voronoi diagram gbints inR¢
under a simplicial distance function is al€gn'¥/2).

In these bounds we assume that the given sites ageneral positiorwith respect to

the relevant distance function (see below for a precise definition). It is interesting to
note that this requirement is essential for the bounds to hold. We give examples of point
sets in degenerate configurations for which the complexity of theWoronoi diagrams

is much larger. Nevertheless, with an appropriate modification of the definition of the
diagram, this increase in complexity does not occur.

To obtain the bound concerning,-Voronoi diagrams, we first derive a related new
bound on the complexity of the union ofaxis-parallel hypercubes iRY. We show
that if the hypercubes have arbitrary sizes, then the maximum complexity of their union
is ©®(n%/2l) for d > 1. If all the hypercubes have the same size, then the maximum
complexity of their union ig®(nl%/2)), for d > 2. These results were known, and are
easy to derive, fod = 1, 2. An alternative proof of a linear bound for equal-size cubes
in R® has been around for the past several years, but was not published.

The proofs of these bounds borrow ideas from the preceding paper [6]. The main
ingredient of most of the proofs is a new technique for obtaining recurrence relationships
for the number of vertices of the union, which is a special case of a more general analysis
technique recently developed by Tagansky [22]. This technique is obtained by modifying
and simplifying the proof technique developed in [11] and [21] for the analysis of lower
envelopes of multivariate functions. This improved technique has already been used in
[2], [6], and [22] to obtain improved combinatorial bounds for the complexity of various
substructures in arrangements and related problems.

Finally, we propose on-line algorithms to compute the Voronoi diagramrpoints in
RY under a simplicial ok, distance function. Their randomized expected running times
are, respectivelyQ (n logn+ n%/21) for simplicial diagrams, an®(n'%/2! log®~* n) for
L .-diagrams.

2. Preliminaries

Let P be a convex polytope iR? with a reference poin in its interior. A homothetic
copy of P, having the forma + pP for a € RY andp € R, is called aplacemenof P.
The placemend + p P is said to be centered atand scaled by factgs. We define the
distance induced b from a pointa to a pointb as the smallest scaling factprsuch
thatb belongs to the placemeat+ pP. That is,

de(a,b) =min{p:bea+ pP}.



488 J.-D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec

We refer todp as a ¢onve) polyhedral distance functiofinduced byP). Note that
dp(a, b) is not symmetric, and thus is not a metric, unlPssdmits a center of symmetry
and this center is chosen as the reference point.

Let S be a set oh points inRY and letP be a convex polytope witm facets. The
Voronoi diagram Vog (S) of S for the distancelp is defined as the decomposition of
RY into Voronoi cells, one for each point &, where the Voronoi cel/ (s) of a point
s € Sis the set of points oRY which are closer ts;, under the distance functiadp,
than to any other point i§; that is,

V(s)={peR!|dp(p,s) <dp(p,§), V5 €S}

Each cellV(s) is a star-shaped, generally nonconvespolyhedron. More generally,
for 1 < k <d + 1, consider the locus of pointssuch thatp is equidistant (undedp)
to the points of a subsé of cardinalityk of S, and such thap is strictly closer to the
points of S than to any other point i&\Sk. This locus is ad — k + 1)-dimensional
piecewise linear surface, and each of its faces (of any dimension) is a face of the Voronoi
diagram Vok (S). (For this locus to have this dimension, the pointsSofmust lie in
general positiorwith respect tdP—see below for a precise definition and Section 7 for
further discussion.) The complexity of the Voronoi diagramp(d?) is defined as the
total number of its faces of all dimensions. If we assume general position, then each
face of Vo (S) must have at least one vertex, and each vertex is incident to only a
constant number of faces of any dimension. It follows that the complexity of the diagram
is proportional to the number of its vertices, so we concentrate in the foregoing analysis
on bounding the number of vertices of the diagram.

We denote placemendst pP of P by P = P(a, p). A placemen® is said to bdree
if it contains no points of inits interior. If f is aface ofP, f refers to the corresponding
face of P. If a pointp € S belongs to a facef of P, the pair(p, f) is said to be a
contact pairof the placemen®. A point p is said to be aimple contact poinof P if
it belongs to the relative interior of some fadeof P. A point p of S which belongs to
the relative interior of a face dP of codimensiork, is said to be @ontact point with
multiplicity k. Thus, a contact point with multipliciti is involved in at leask contact
pairs (and exactlik contact pairs if the polytopP is simple).

The setP of all placements of a polytope is a(d + 1)-dimensional manifold. The
set of placements such that a given pgiriielongs to the hyperplane which is the affine
hull of a facetf is a hyperplane if? and the set of placemenissuch thatp belongs to
a specific facef is ad-polytope.

In the following we assume that the setis in general positiorwith respect to the
distancedp. Formally, this means that the following property holds:

Let P be any placement d?, which involves contacts with points in some subset
S' C S.Foreachy € 8, let f be the face of of smallest dimension, saly,
thatq touches. The locus of placements®fat whichqg toucheszq is a portion

of a(jq + 1)-dimensional flatHg, in P. Then the flat§hg}qes must be linearly
independent, in the sense that their intersection has codimepgjor (d — jq).

This implies that no placemert of P has anyredundantcontact point, namely a
point whose removal fror§’ does not gain new degrees of freedom for placemen®s of
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in the vicinity of P, at which all other contacts are maintained. For example, if two points
touch the relative interior of the same facet®fthen any of these points is redundant.
Similarly, if P has two pairs of parallel facets and there is a placerReattwhich each

of these four facets touches a point&fthen each of those four points is redundant.
Indeed, let the four contact points bg s;, 3, &4, S0 thats; ands, touch parallel facets
and so dosz ands;. If we removes,, say, then the contacts sf ands; fix the scaling
factor of P. Hence the contact & with P fixes the plane containing the facet tlsat
touches, so we get the same degrees of freedom regardless of wheathpresent or
not. Thus none of these configurations can arise whenin general position.

A consequence of the general position assumption is that the multiplicities of the
contact points of any placement sum up to at nabst1.

A placement whose contact points multiplicities sum uglte 1 is called arigid
placement. The free rigid placements®fare centered at the vertices of the Voronoi
diagram Voe(S), and each vertex is the center of such a placement, as follows easily
from the definitions. The free rigid placements®fwith d + 1 distinct contact points
are centered at what we call thegular vertices of the diagram. The center of such a
placement is a point dRY which is equidistant (undeDp) to d 4+ 1 points ofS and
closer to these points than to any other pointSofAny other vertex of the diagram is
calledsingular, it corresponds to a free rigid placement®ft which some points of
lie on lower-dimensional faces &f. More generally, points in &-face of the Voronoi
diagram are centers of maximal free placements whose contact points multiplicities
sum up tod + 1 — k. Thek-face isregular if all points in these contacts are distinct,
and singular otherwise. The general position assumption implies that each (regular or
singular) Voronoi vertex is incident td + 1 Voronoi edges, and, more generally, that
eachk-face, for 0< k < d, of Vorp(S) is incident tod + 1 — k (k + 1)-Voronoi faces.

Thus the number of faces of the Voronoi diagram incident to each vertex is bounded by a
constant depending ah Hence, as already mentioned above, bounding the complexity
of the Voronoi diagram reduces to bounding the number of Voronoi vertices and thus the
number of free rigid placements.

3. The Complexity of the Union of Axis-Parallel Hypercubes inRY

In this section we obtain a result that will be needed in our analysis,gfVoronoi
diagrams, but which is interesting in its own right.

Let C be a set of axis-parallel hypercubes iR. Let A(C) denote the arrangement
of these hypercubes, and lé{C) denote their union. We may assume, with no loss of
generality, that the given hypercubes are in general position, meaning that no two distinct
facets of the hypercubes lie in a common hyperplane. Otherwise, we can always perturb
them slightly, so as to put them in general position, in such a way that the number of
faces of the union does not decrease. (This holds for hypercubes of arbitrary sizes. If
all the hypercubes have the same size, and we want to maintain this property under the
perturbation, then a more refined argument, which we omit here, shows that there is no
loss of generality in assuming general position in this case too.) We want to bound the
combinatorial complexity of{(C), which we measure by the number of vertices of the
union (the number of all other faces of the union is clearly proportional to the number of



490 J.-D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec

vertices, where the constant of proportionality depends only, evhen the hypercubes
are in general position). The main result of this section is:

Theorem 3.1. The maximum number of vertices of the union of n axis-parallel hyper-
cubes inRY is ©(n/4/21), for d > 1. If all the given hypercubes have the same gtzen

the maximum number of vertices of their unio®ig19/2)), for d > 2 (it remains Q(n)

for d = 1). The constants of proportionality depend on d

3.1. The Upper Bounds

We first prove the upper bounds by inductiondrThe bounds hold fod = 1, 2. This
is trivial for d = 1 and follows ford = 2 from the results of [13], or by a simpler and
more direct proof, which we omit here. Fik> 3, assume that the theorem holds for all
d’ < d -1, and letC be a collection of axis-parallel hypercubes R, as above.

For each hypercube € C, definexj+ (©), X (c) to be, respectively, the largest and
smallestx;-coordinate of the points in, for j = 1,..., d. Any hypercubec € C has
two facets normal to the;-axis, for eachj = 1,...,d, lying on the two respective
hyperplanes; = xj+(c), xj = X; (c). The facet ak;" (c) is said to bepositive(facing
the positivex; direction as we leave) and the facet at;” (c) is said to benegative

We use the following notational system for representing vertices of the arrangement

of the given hypercubes. For a given ordetketlple, (¢, ¢z, ..., Cq), Of hypercubes
in C, let cj* be one of the symbols;, T, for j = 1,...,d. The tuple(c], cs, ..., c))
represents the intersection poiptof the facetsfy, ..., fq, where f; is a facet ofc;

normal to thex;-axis; it is the positive facet if = ¢; and the negative facetdf =t;.
Whenever we use this notation, we assume implicitly that the intersectionpekists
(and is then unique). The intersection pomis said to bepositiveif all the intersecting
facets are positive.

Such an intersection point (or, rather, a vertex4’)) is said to beouter if it is
contained in g&d — 2)-face of some hypercube, anther otherwise. If(c], ..., c}) is
an inner vertex, then the hyperculgs. . ., ¢4 are distinct.

Avertex of A(C) is said to be &-level vertexfitis contained in the interiors of exactly
k of the hypercubes ii. The vertices of the (boundary of the) union are 0-level vertices.
Let Vk(C) denote the number of inndrlevel vertices ofA(C), and letDy(C) denote
the number of outek-level vertices. We also denote by(n, d) the maximum o (C)
over all possible collections af axis-parallel hypercubes iR, and, similarly, denote
by Dk (n, d) the maximum ofDy(C) over all possible such collections of hypercubes.

We first estimate the number of outer vertices of the ubda®). Such an outer vertex
p belongs to at least on@ — 2)-face of some hyperculiee C. Since every hypercube
contains only &(d — 1) such(d — 2)-faces, we can reduce the problem tal2d — 1)
“smaller” problems, as follows. Fix & — 2)-face f of some hypercube € C, and let
K be the affine hull off . Form the intersections Nc’, forc’ € C —{c}. Theseara—1
axis-parallel hypercubes in thid — 2)-dimensional spack (and if the hypercubes of
are of equal size, so are these intersection hypercubes). Any outer véteX) tfiat lies
on f is clearly an (inner or outer) vertex of the union of these intersection hypercubes.
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It follows that
Do(n, d) <2nd(d —1)(D§(n—1,d —2) + V{(n—1,d — 2)),

where the function®* andV* count, respectively, only outer and inner vertices of the
union which lie inside some fixe@ — 2)-dimensional hypercube. By the induction
hypothesis, we have

Di(n—1,d—2)+Vi(n—1,d—2) = O(n'@-2/2)),
If the hypercubes are of equal size, then we have
Di(n—1,d—2)+Vi(n—1,d—2) = O(nl@-2/2),

Indeed, this holds fad = 3, because the complexity of the union of equal intervals on a
line, intersected with another interval of the same lengtl) (). Ford > 3, the bound
follows by the induction hypothesis. Hence we obtain

Do(n, d) = O(n'¥/?), €
for hypercubes of arbitrary sizes, and
Do(n, d) = O(n'/2), @)

for equal-size hypercubes.

In what follows we will also need a bound @ (n, d). This is easy to obtain by a
standard application of the Clarkson—Shor probabilistic technique [7] (using a random
sample of, sayn/2 of the hypercubes). This yields, as is easily verified,

Da(n, d) = O/, €)
for hypercubes of arbitrary sizes, and
Da(n, d) = O(n'¥/?), )

for equal-size hypercubes.

We next estimate the number of inner vertices of the unionple¢ a O-level inner
vertex, and assume, without loss of generality, fhiatpositive and has the representation
(C1, ..., Cq). For each coordinatg , we slide fromp along an edge; in the negativex;
direction. This edge is contained in the intersection of the correspondding positive
facets of the hypercubes, fork = 1, ..., d andk # j. As we start tracing; from p
in the negativex;-direction, we enter the hypercubg We stop the sliding process as
soon as we first encounter one of the following three types of events:

(i) We meet the negative facetqfat the O-level vertexcy, ..., ¢j_1, G, Gj41, . . .,
Cq). This can happen only & is smaller than the othel — 1 hypercubes. For
equal-size hypercubes, this cannot happen.

(i) We meet another facet (necessarily the negative facet orthogonal xp-thés)
of one of the hypercubez, for some 1< k < d andk # j, at the 1-level outer
vertex(cy, .. ., Gj—1, C, Cj+1, - - ., Cq), Which is contained in the interior af.



492 J.-D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec

(iii) We meet a new hypercub@ at a (necessarily positive) 1-level inner verjgx
contained in the interior afj and represented l{gy, ..., Cj_1, ¢, Gj41, ..., Cq).
We say thatp’ and p areneighborg(in the arrangement (C)).

If we encounter an event of type (i), we simply ignore this edge, and do not use it in our
charging scheme that we are about to describe. As just noted, at most one such edge will
be ignored.

If we encounter an event of type (ii), we charge the 1-level outer vertex by one unit.
Since we can reach the outer vertex, . . ., ¢j_1, C, Gj+1, . . ., Cg) from an inner vertex
only along one of the two corresponding facetgofin a direction normal to the other
facet), this outer vertex can be charged, by type (ii) events, at most twice, for a total of
two units (recall thaty is the unique hypercube appearing more than once in the tuple
representing the outer vertex).

If we encounter an event of type (iii), we charge the 1-level inner veptdxy one
unit. The problem is that the vertgX may be charged in up td events of type (iii),
and we need to account for such multiple charges. Suppos@'timtharged byw of
its O-level inner neighbors. i = 1 (orw = 0), thenp’ pays one unit of charge for its
unique charging neighbor (or does not pay at allw It 1, we distributew — 1 of the
w units thatp’ is charged with to other outer vertices, so tphastill has to pay only one
unit of charge.

Suppose thap’ is positive, has the representati@n, ..., ¢g), and is contained in
the interior ofcy. Suppose thap; = (¢, ¢z, C3, ..., Cq) andp, = (€1, Co, C3, - - -, Cq)
are two O-level inner neighbors @f. Leth be the two-dimensional plane = x* (¢)),
fori =3, ..., d, which contains the three verticg§ p;, p.. Letr be the axis-parallel
rectangle irh having these points as three of its vertices (see Fig. 1). For each hypercube
¢ € C, lets(c) = cnN h. The collectionS of the nonempty intersections of this form is a
set of at mosh axis-parallel squares im By construction, the two edges p’, pop’ of
r do not cross the boundary of any squar&iriLet q be the fourth corner af. Clearly,
g is an outer vertex ofA(C) with the representatiog = (Co, Co, C3, ..., Cg).

If r does not intersect the interior of any hypercube other thathenq is a O-level
outer vertex of4(C), to which we pass one unit of charge frquh The vertexg can be
charged in this manner at most once. Indeed, giyehere is only one two-dimensional

T2

T

Nonempty rectangle r

kel

Fig. 1. Charging outer vertices within the rectanglgp,.
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plane in whichg can be charged: this is the plane passing thrapyghd spanned by the
normal directions of the unique pair of facets in the representatiqniait belong to the
same hypercube (recall the, cs, ..., cq are all distinct, by construction). Moreover,
r is the unique maximal rectangle @ N h with cornerq which is disjoint from (the
interior of) any other square i§. This implies thaty can be charged at most once,
namely, only by the opposite cornerrof

If the rectangle meets some other squaresfletq’ be the pointirr N4 (C’) closest
to p’, whereC’ = C —{cop, Cy, . . ., Cq}. Note thaig’ cannot lie on the edggs p’ or p2p/,
since these edges do not cross any hyperculdg iand thatg’ must be a 1-level outer
vertex of A(C) having the representati@n’, ¢/, ¢, . . ., Cq), for somec’ € C'; see Fig. 1.
Letr’ be the axis-parallel rectangle mhaving p’ andq’ as opposite corners. Again,
(the interior of)r’ is contained only in the interior a, and meets no other hypercube
of C. We pass one unit of charge frophto q’. We claim that, in this case toq; can be
charged in this manner at most once. Indeed, giyethere is only one two-dimensional
planeh in which g’ can be charged, which is shown by the same argument given above
(sincec, cs, ..., ¢y are all distinct). Moreover,’” is the unique maximal rectangle in
¢o N h with cornerq’ which is disjoint from (the interior of) any other squareSrand
lies in the quadrant off opposite to that containing. This implies, as above, that
can be charged at most once, namely, only by the opposite cornérTafgether with
the previous charges in the case of type (ii) events, any 1-level outer vettlgptan
be charged a total of three units.

If the vertexp’ hasw > 1 O-level inner neighbors, the number of pairs of these
neighbors is always at least— 1, so there is no problem in distributing— 1 units of
charge fromp’ to nearby outer vertices, in the manner described above.

Summing up the charges, each 0O-level inner veparceives at least — 1 units,
by sliding in all directions parallel to the coordinate axes, with the possible exception
of one direction in which we encounter a type (i) event (for equal-size hypercpbes,
always receives units). Each O-level outer vertex pays at most one unit, each 1-level
outer vertex pays at most three units, and each 1-level inner vertex pays at most one unit.
We can thus conclude that

(d = DVo(C) < V1(C) + 3D1(C) + Do(0), ©)
for hypercubes of arbitrary sizes, and
dWo(C) < Vi(C) + 3D1(C) + Do(C), (6)

for equal-size hypercubes. We can now apply the following probabilistic argument,
similar to that used in [6] and [22]. In the case of hypercubes of arbitrary sizes, we have

n—1 n—d
V, = Vi
- 0(C) - b(C) + -

1 3 1
—Vo(@©) + =VA(C) + ~D1(C) + -Do(C)
= E(W(R)) + O(nl¥/21-1),

Vo(©)

whereR is a random sample of— 1 hypercubes af, and wherdé= denotes expectation
with respect to the choice & (see (1) and (3)). For the case of equal-size hypercubes,
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we obtain, in much the same way, the improved recurrence (see (2) and (4))
Vo(C) < E(Vo(R)) + O('/271),
We can thus write, for the case of hypercubes of arbitrary sizes, the recurrence
n—1
n
whose solution, fod > 3, is easily seen to be

Vo(n, d) = O(nl¥/2y,

Vo(n, d) < Vo(n — 1,d) + O(n'¥21-1),

For the case of equal-size hypercubes, we obtain the recurrence
Vo(n, d) < Vo(n — 1, d) + O(n'/27H),
whose solution, fod > 2, is easily seen to be
Vo(n, d) = O(nl9/2)y,

This completes the proof of the upper bounds.

3.2. The Lower Bounds

We next prove the lower bound for equal-size hypercubes, by constructing the following
setC of mA hypercubegy; ,fork =1,..., Aandi = 1,..., m, in R?, for integer
parametersn, A. SetM > mand, forj = 1, ..., 2A, let thex;-coordinate of the center

of the hypercubey ; be

R j=2k—1orj =2k,
2, jisoddandj # 2k — 1,
0, j iseven and # 2k.

The common size of all these hypercubes is 2.
Let V be the set of the following® points inR?2:

il il iA iA
pia=l—+1,—=>-21,...,—+1 — -1},
Viy,....ia <|\/| + M M + M )
whereix € {1,...,m},fork = 1,..., A. Foreachr € {1,2,..., A} we have, as is
easily verified,
X (@) <Xy, i) < X6 for j=1,...,24,

with two of the inequalities being equalities (i}, (ci,) andx; (c:.i,)). Thus each
pointv € V lies on ad —2)-face of each of th& hypercubes; ;, and is thus an outer ver-
tex of A(C), which is represented, in the above notation(cas, Ci.i,, - - - » Ca.is» CaLiy)-
Next we note that, fok = 1, ..., A and forq > ik, we have

q

ik _
Xok (Viy,.ia) = Vi 1< M 1= x5 (Cq)s
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and forg < iy we have

Xok—1(Viy,....i) = Imk +1> % + 1= X5_4(Ckq)-

Thus no poinb € V lies in the interior of any hypercube, so they are all outer vertices of
U(C). Thisis easily seento prove the lower bound for equal-size axis-parallel hypercubes,
in any dimensiord > 2.

To prove the lower bound for axis-parallel hypercubes of arbitrary sizes, it suffices
to consider the case whetkis odd, sayd = 2A + 1. Take the numbeM above
to be (m 4 1)2. All the points inV c R? now lie in the interior of the hypercube
b, whose center is atl, —1, ..., 1, —1) and whose size is/2m + 1). Let s’ be the
segment iR?2*! connecting the origin with the poir®, . .., 0, 2), and lets' < s/, for
i =1,..., m, be the segment iR?*** connectingO, ..., 0, (2i —1)/m—1/(m+ 1))
and(0,...,0,(2i —1)/m+ 1/(m + 1)). Define themA hypercubesy; in R?4, as
above, and embed them in the hyperplapgge,; = 0. Now define, for each andk, a
new(2A + 1)-hypercubeg, ; as the Minkowski sungg; @ s'. Define another collection
{b, ..., b} of m smaller hypercubes iR, wherebl = b & §. We thus obtain a
collectionC of m(A + 1) hypercubes iflR?2*, Associate with each vertaxe V the
vertical edgev @ s/, which intersects the boundary of each of theairwise-disjoint
hypercubesy at points that are clearly vertices @fC). This shows thai/(C) has at
least 2n**1 vertices, thus establishing the lower bound for axis-parallel hypercubes of
arbitrary sizes (in odd dimensions). Note that we only used two different sizes in this
construction. This completes the proof of Theorem 3.1. O

4. TheLy-Voronoi Diagram of Points in R

In this section we study the complexity of the,-Voronoi diagram of a set af points
inRY. ThelL ,.-distance function is the distance function associated with an axis parallel
hypercube ifR® whose side length is 2, where the reference point is the center of the
hypercube. We show the following result:

Theorem 4.1. The maximum complexity of the,kEVoronoi diagram of a set of n
points inRY is ®@(n'%/21), provided that the set is in general position with respect to the
L -distance function

4.1. The Upper Bound

Let S be a set oin points in general position iR, with respect to an axis-parallel
hypercubeC. We denote by Vag, (S) the Voronoi diagram of under thel . -distance.
SinceC is a simple polytope, the discussion in Section 2 implies that a vertex gf \®r
corresponds to a free rigid placement@fvith exactlyd + 1 contact pairs. The vertex

is regular if all the contact points are distinct, and singular otherwise. By the general
position assumption, no facet of any placem@ntf C can contain more than one point

of S, and thed + 1 contact pairs involve + 1 facets ofC. SinceC hasd pairs of parallel
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facets, a free rigid placement has at least two parallel contact pairs, namely, contact pairs
involving parallel facets. Moreover, by the general position assumption, there can be
only one pair of parallel contacts pairs, as already noted. It follows that at this placement
there is a vertex of C incident tod (mutually orthogonal) facets &, each containing

a point ofS. We can represertt as

C={x|x(C)<x <x"(C), forj=1,....d}

wherex" (C) —x (C) = 2p(C) forall j, wherep(C) is the scaling factor of . With no
loss of generality, assume thais incident to the facetg; = xj‘(é), forj=1,...,d,
and that the facet; = xj*(é) touches a poinp; € S, for j = 1,...,d (sov is the
vertex ofC all of whose coordinates are the smallest possible). As remarked above, these
points do not have to be distinct:kfof the p;’s are equal (to some € S), thenp lies
on a(d — k)-face ofC incident tov.

We now shrinkC towardv, keeping fixed. We lose one contact 6fwith a point, but
retain thed remaining contact pairs (between the poists. . . , pg and the corresponding
facets ofC incident tov). We stop the shrinking when one of these points comes to lie on
another facet o€. With no loss of generality, assume that this is the ppintand that
the new facet it lies on i, = x5 (C) (because each negative facet already has a contact,
the new facet has to be a positive facet). The new placement that we have reached is
free and rigid but singular. Lat be the vertex of incident to the facetg; = x[(é),
xo = x3(C), andx; = x7(C), forall j = 3,....d. These facets are incident to the

points py, Ps, . . ., Pa. We now shrinkC towardv’, losing the contact betweem and
the facetx; = x5 (C), but retaining the othett contact pairs, and stop when one of the
contacting points comes to lie on another face€of

We keep iterating this process. In the general step, just before starting a shrinking
process, we have some numberof remaining points, call themy, .. ., gk, such that
eachg; lies in the relative interior of some fadg of codimensiort;, WhereZ:‘:lti =
d + 1. By the general position assumption, there is exactly one parallel pair of facets
among thed + 1 facets ofC that are incident to the faces.

Suppose first that in the present placemer dhere is a facef; of codimension 1
(thatis, f; is a facet), and that; is one of the pair of parallel facets. Then the remaining
k — 1 facesfj, for j # i, have a common vertex, and we can keep shrinkir@toward
w, losing only the one contact pair involvirgy and maintaining the othet contact
pairs. We stop the shrinking, as above, when one of the &thet points comes to lie
on another facet of.

Suppose next that the preceding subcase does not occuy; ket g, be the two
(distinct) points incident to the (unique) pair of parallel facets. By assumption, the
corresponding face$;, f, have each codimension at least 2. Hence, by the general
position assumption, there are at least three coordinates; s&y, X3, such than; is
incident to a pair of facets orthogonal to theandxs axes, andy, is incident to a pair of
facets orthogonal to the, andxs axes. Let us fix the pointg andg;, (there areO(n?)
choices for such a pair), and also fix fhie= 3 coordinates such that the facets incident to
g; andg, are orthogonal to these coordinates (there is a constant number of such choices).
Note thatg is equal to the sum of the multiplicities of the two points involved in the
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parallel contact pairs minus 1. Then the scaling faptoe p(C) of C is fixed (under the
above assumptions, it is equal%txg(ql) — X3(Q2)]), andp coordinates of its center are

also fixed. Hence the center@fmust lie on an appropriate — g)th-dimensional flak .

For each poinp € S\{d1, 02}, Iet(fp be the intersection df with the cubep + poC. It

is easily checked that the centet®fn placements under consideration must be a vertex
of the union of the equal-size axis-parallel hypercuﬁgsBy Theorem 3.1, the number
of such vertices i©(nl4=#/2l) 'so the number of placements under consideration is

O(nz) . o(nl(d—ﬁ)/ZJ) — O(n[d/Z])’

sinceg > 3.

To recap, the number of terminal placement€ahat we can reach by our iterated
shrinking process i©(n%21). This also includes the case where the iterated shrinking
process can continue all the way through, until the hypercube shrinks to a point; the
number of such terminal placements is clearly o@lgn).

We claim that any such terminal placeméhtan be reached from only a constant
number of initial placements @&. To see this, suppose first that the shrinking process
has not terminated at a singleton hypercube. Pick a terminal placénant reverse
the shrinking process: choose a vertesf C incident to all but one of the + 1 facets
touched by points of. By construction, there is always at least one such vertex at the
end of a shrinking step, and the discarded facet is necessarily one of the pair of parallel
contact facets. When we expafrifrom v, none of the points touching can enter
into the interior ofC (the point touching the discarded facet also touches another facet
incident tov, so it remains on the boundary®fwhile we expand). We stop the expanding
process whei€ hits another point, and then continue to expand from some (possibly
different) vertex ofC. There are at most expanding steps, and in each of them we have
a constant number of choices for the vertex from which we expand, implying that only a
constant number of initial placements (where the constant depends exponentially on the
dimensiord) can reach the same terminal placen@na similar (and actually simpler)
argument also applies to the case where the terminal placement is a singleton hypercube.

So far we have only counted vertices of the diagram, but the arguments in Section 2
imply that the overall complexity of the diagram is proportional to the number of its
vertices, which thus completes the proof of the upper bound in Theorem 4.1.

4.2. The Lower Bound

We next prove the lower bound in Theorem 4.1. We first give a sufficient condition
for d + 1 points p1, P, ..., Pas1 in RY to lie on the boundary of some axis-parallel
hypercube. The condition is:

Xi(p) = min{x(p) | j=1,...,d+1}, for i=1,...,d,
X1(Pa+1) = max{xu(p) | j=1,....d+1}, ()
X1(Pa+1) = X1(P1) = |IPa+t — Pilloe = maX{|[pi — pj[[, | 1. ] =1.....d+1}.
Indeed, under this conditiomy, p2, ..., Pd+1 are on the boundary of the hypercube

of sizea(c) = || Pa+1 — P1lls, and whose smallegt-coordinate is (C) = X; (p;), for
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Table 1. A 6-tuple of points inR® used in the lower bound construction fog,-Voronoi diagrams.

p1(ka) pi(ki + 1) p2(k2) p2(kz + 1) p3(Ks) ps(kz + 1)
ki (k1 + D 2+ koo 2+ (ko + Do 4 + kza 4+ (ks + Da
—kiar —(ki + D 2+ koo 2+ (k2 + D 2+ kaa 2+ (k3 + Da
2+ ko 2+ (k1 + Do koo (k2 + D 2+ ks 2+ (k3 + Do
2+ ki 2+ (k1 + D —koar —(k2 + D 2+ kaa 2+ (ks + Da
2+ ki 2+ (k1 + Do 2+ ko 2+ (k2 + D kzar (ks + Do

i =1,...,d. (Notice that any ordere@ + 1)-tuple of points that lie on the boundary of
a hypercube fulfills the above condition, up to a permutation of the axes or of the points
and up to inversion of the orientations of some of the axes.)

We assume that the dimensionis odd. The idea of the construction is to take
| = (d+ 1)/2 lines inRY andn points on each line, such that any appropriately ordered
(d + 1)-tuple of points, formed by choosing a pair of consecutive points on each of
those lines, satisfies the above condition. Then, since any line intersects the boundary
of a hypercube in at most two points, the hypercube passing throughdhedepoints
is a free rigid placement for the whole set, which implies that the complexity of the
L .-Voronoi diagram of this set i (n'%/2!). To implement this idea, choose a real
such that O< @ < 1/2n, and define the following lines:

— Forr =1,...,1 — 1, lineé; is directed along, = —ey + Ziﬁr e (whereg
denotes the unit vector directed along the positjvaxis) and passes through the
point p; whose coordinates are all equal to 2 exceptthat; (pr) = Xor (pr) = O.

— The last lineg; is directed along; = Zlea and passes through the point
whose coordinates are all equal to 2 except thap) = 4 andxq(p) = 0.

— Forr =1, ...,1, then points on the liné, are the pointg, (k/) = pr + kravy
forkk =0,...,n—1.

It is now easy to verify that, for any choice &f, k, ...,k in {0,...,n —1}!, the
(d + D)-tuple{pi(ky), piki + 1), ..., p(k), pi(k + 1)} fulfills condition (7). Table 1
shows the coordinates of the points in such a tuplafer 5.

Thus, ifd is odd, thel .-Voronoi diagram of a set afpoints inRY can have (n[4/21)
complexity in the worst case. The result obviously also holds for any even dimehsion
by using the above construction in dimensaba- 1.

5. Voronoi Diagrams for Simplicial Distance Functions

In this section we consider the Voronoi diagram M&) of a point setS in RY for a
distance functior, induced by a-simplexo, and prove the following:

Theorem 5.1. The maximum complexity of the Voronoi diagram of a set of n points in
RY, under the distance function induced by a d-simpie® (n/9/21), provided that the
points are in general position with respect to the simplex
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5.1. The Upper Bound

Our goal is to bound the number of free rigid (homothetic) placementslefimplexo
among a sef of n points in general position with respecttoEach free rigid placement
¢ hasd + 1 contact pairs involving Z k < d + 1 distinct contact points;, S, . . ., S-
Letu(s) be the multiplicity of the contact poiwst at this placement. Then, by the general
position assumptior}y ;_;  u(s) =d+ 1.

The number of free rigid placements involving at most + 1)/2] = [d/2] distinct
contact points is obviousl®(n/9/21). In particular, this also bounds the number of free
rigid placements with all contact points having multiplicity 2. The number of free
rigid placements with two contact points of respective multiplicities 1cigdO(n) (a
contact point with multiplicityd arises when a vertex éf touches a point of).

We consider a free rigid placemehtwith at least one simple contact point (i.e., with
multiplicity 1) and with no contact point with multiplicitgl. Let ¢ be a vertex o6
opposite to a facef touching a simple contact point. We shrink the simplex towiard
dropping at once the contact pair involvirigout keeping the othet contact pairs. The
shrinking process stops as soon as one of the contact poieeches a new facet 6f
thus augmenting the multiplicity gb by one.

This shrinking scheme can be repeated as long as the free rigid placement has a simple
contact point and no contact point with multiplicitly(in the latter case, the shrinking
will collapseo to a single point). At the end, we reach either a free rigid placement of
o such that each contact point has multiplicity at least 2, or a free rigid placement with
two contact points of respective multiplicities 1 athd

Each such terminal placement can be reached from only a constant number, depending
ond, of initial free rigid placements. To show this, we consider, as above, the reverse of
the shrinking process. Each step of the reverse process expdraia a vertexo, such
that the facetf opposite to) does not touch any point with contact multiplicity 1, and
stops as soon ak hits a new point ofs. There are at most expanding steps (actually,
only about half as many steps), and at each step we have a constant number of choices,
showing that the reverse process can reach at most a constant number (depedgling on
of free rigid placements. Thus, the number of free rigid placements is proportional to the
number of terminal placements in the shrinking process, which, as easily follows from
the preceding analysis, @(n/%/21), thus proving the asserted upper bound.

5.2. The Lower Bound

We prove the lower bound in a manner similar to that used fot.thedistance. Without
loss of generality, we may assume that the simplex defining the distance is the unit
simplexo, whose vertices are the origin and one point at positive unit abscissa on each
coordinate axis. Indeed, any simplexan be transformed into the unit simplex by an
affine transformation which maps any free rigid placement tuf a free rigid placement
of the unit simplex and vice versa. This implies that the complexity of the Voronoi
diagram does not change under this transformation.

A sufficient condition ford 4 1 points inRY to be contact points of a rigid placement
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of oy is the following:

Xi(p) =min{x(p) | j=1,...,d+1} for i=1,...,d,

: d . ®)
Y o Xi(Pas) = maxqy xi(p) | j=1....d+1}.
i=1 i=1

As in the case of the . -distance, we assume first that the dimensiagmodd, and we
choosed + 1)/2 lines inRY andn points on each line, such that any setief 1 points,
formed by choosing a pair of consecutive points on each of those lines, satisfies the above
condition, for an appropriate permutation of the points. In fact, it is easily seen that the
lines constructed in Section 4.2 fulfill this requirement, provided that the parameter
is chosen so that & « < 1/2nd. This proves that, ifl is odd, the complexity of a
simplicial Voronoi diagram oh points inRY can be2(n®/?1), a result which holds a
fortiori for even dimensions too.

6. Thels-Voronoi Diagram of Points in R3

This section analyzes the complexity of Voronoi diagrams of point sets undér;the
norm. TheL ;-distance between two poinsandq of RY is

d
du,(p.q) =) Ip —ql.
i=1

This distance function is polyhedral, and is induced bydipolytope which is the dual
of thed-cube. This polytope, called the cross polytope, is the convex hull ofdhai2
vectorsteg, whereg is the unit vector in the positivg -direction, fori = 1,...,d.
As thed-dimensional cross polytope is dual to tialimensional hypercube, it ha& 2
facets; intuitively, this is why, in the case of the-distance function, we have only been
able to prove tight bounds fal = 3:

Theorem 6.1. If S is a set of n points ifR® in general position with respect to the
L,-distance then the maximum complexity of the Voronoi diagran$ afinder the -
distance i (n?).

6.1. The Upper Bound

In the three-dimensional case the cross polytope is just the regular octal@@evrbich
is the convex hull of the six verticeg (+1, 0, 0), U7 (—1, 0, 0), u»(0, 1, 0), uz(0, —1, 0),
uz(0, 0, 1), anduz(0, 0, —1). The octahedron has twelve edges and eight faces and is
shown in Fig. 2.
Let S be a set of points inR? in general position with respect to the octahed@n
Our goal is to bound the number of free rigid placement®among the points of.
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NV,

Fig. 2. The regular octahedron.

For this, we bound, in succession, the number of

(P1) free rigid placements with at least one contact point of multiplicity at least 2
(which we call hereafter double contact poing

(P2) freerigid placements with three contact pairs involving three fac@ssbiaring
a common vertex; and

(P3) all other free rigid placements.

Let O be a placement of type (P1), with a double contact point. That is, there is a point
p € S that lies on an edgéof O; we denote this double contact by the p@r e). For
each pair(p, e) of a pointp of S and an edge of O, the subset of placements attaining
the double contact paiip, e) is contained in a two-dimensional linear subspace, e)
of the setP of placements. The subspa@ép, €) can be parametrized by the position
t of one of the endpoints @& on the line parallel te through p, and by the scaling
factor p. In this subspace any other contact p@, f) of a placemenO appears as
a (possibly empty) segmentp’, f). Then a rigid placement with the double contact
pair (p, €) corresponds to a vertex of the planar arrangement of those segments, and a
free placement with the double contact p@ €) corresponds to a point which lies on
or below the lower envelope of those segments, relative tpitlieection. This follows
from the observation that if we fixand increase, thenO expands, so that once a point
enters the expanding octahedron, it will never leave it again (see also [6] for a similar
argument). Hence, the number of free rigid placements with the double contagi,pair
is at most the number of vertices of the lower envelope of the at niost &) segments
representing the contact pairg’, f) in P(p, €). (Note that (a) the vertices formed by
the intersection of two segments represent placements with three contact points (one of
which is p), whereas segment endpoints represent placements with two contact points
(one of which isp), each being a double-contact point, and (b) by the general position
assumption, the two facets 6f incident toe are not involved in those contact pairs.)
Moreover, it is easy to verify that the segments that represent contacts with a fixed face
f of O are all parallel, thus we have six families of at mast 1 parallel segments
each, so the complexity of their overall lower envelope is linear. Summing over the 12
possible pairgp, €), we conclude:

Lemma 6.2. Given a setS of n points inR? in general position with respect to the
regular octahedron Qthe number of typéP1)free rigid placements of O amidst the
points ofS is O(n?).
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We next bound the number of free rigid placemedisf type (P2), that is, with contact
pairs involving three facets sharing a vertex. If such a placement has no double contact
point, we apply a shrinking process @, in which the vertex ofO incident to three
contact faces is fixed. This process maintains at least three contact pairs and does not
encounter any new contact point, since at any time during the shrinking the octahedron
is contained in the initial placement. The shrinking process stops as soon as one of the
contact points reaches an edge of the octahedron. Then the reached placement is a free
rigid placement with a double contact point. Moreover, each free rigid placement with a
double contact point can be reached in this way from at most two rigid free placements
without double contact points. Indeed, from a terminal placement with a double contact
point on edges we can recover an initial free rigid placement without a double contact
point by expanding the octahedron from one of the two vertices opposite toeddge
the two facets incident te. Thus the number of type (P2) placements without double
contact point is no more than twice the number of free rigid placements with a double
contact point, which proves the following lemma.

Lemma 6.3. Given a point sef as abovethe number of free rigid placements of O
with contact pairs involving three facets sharing a common vertex(ig 0

Finally, we bound the number of all other rigid free placements, that is, placements
of type (P3). We consider a rigid placemedtwith no double contact point and with
no vertex common to three facets involved in contact pairs. Only two cases are then
possible:

(a) The four contact facet$;, f,, f;, f; of O form two pairs(fy, f2), (f;, f}) of
adjacent facets (i.e., with a common edge) and two complementary pairg ),
(fo, f)) of parallel facets.

(b) The four contact facets have no pair of adjacent facets. This case can be re-
alized only by one of the two following complementary subsets of four facets
of O: the first set is{uiuouz, UUzUs, UrUoU3, U UoU3} and the second set is
{U1usu3z, U UZU3, U1ULU3,UTULUG); See Fig. 2.

The first case does not occur for sets of points in general position with resgect®
already noted. Thus it remains to bound the number of free rigid placements in case (b).
For this we apply the following scheme. Létbe a rigid free placement as in case (b)
with the four contact pairéps, f1), (p2, f2), (ps3, f3), and(ps, f4). We choose three of
these four contact pairs, sép:, f1), (p2, f2), (ps, f3), and slideO while maintaining
these three contact pairs, and having the fourth ppjmenetrate the octahedron. The
three contact pairépy, f1), (p2, f2), and(ps, f3) determine a line in the spade of
placements, and we just have to follow this line in the (unique) direction whgre
penetrates into the octahedron. We ad®tthe three internal square faceigi,u; Uy,
u1U3U;U3, andu,UsUzUs (see Fig. 2); these are the intersections of the octahedron with its
three symmetry planes, each containing four vertice® .dh the following we refer to

the octahedron augmented with these three internal facets asgheented octahedron
The sliding process is stopped as soon as one of the following events occurs:

1. Pointp, reaches one of the three internal facets.
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2. One of the pointgs, p2, ps reaches an edge @ and thus becomes a double
contact point.

3. A contact with a new point is encountered on a face other fhan

4. A contact with a new point on fack is encountered.

In the first case, we reach a rigid placement ofahgmented octahedroiihis rigid
placement is called quasi-free because it has no poifitio§ide the octahedron, except
for one point on an internal facet. Consider the number of gairs ), wheref is one
of the contact facets andis a vertex ofO incident to f. Since we have three triangular
contact facets and one quadrangular contact facet, the number of these pairs is 13, which
implies that one of the six vertices 6f has to be shared by three of those contact facets.
Since f;, f, and f3 do not share a common vertex, one of the contact facets sharing
the common vertex has to be the internal facet reachqal bye can thus apply to this
placement the shrinking scheme used in the proof of Lemma 6.3, retaining the three
contact pairs whose facets share the common vertex, and stopping when we reach a
quasi-free rigid placement @ with a double contact point. As argued above, such a
terminal placement can be reached by at most two initial quasi-free rigid placements
of O.

To bound the number of these terminal placements, we proceed as above. The place-
ments that achieve the double contépt e) belong to a two-dimensional subspace
P(p, e) of P. In this subspace the locus of all placements with an additional contact pair
(with an external or an internal facet) is a line segment. The quasi-free placements that
we are interested in appear as vertices of the arrangement of these segments lying at level
at most 4 (i.e., with at most four segments lying below the vertex inptdéection).
Indeed, if we fix the position of one endpoint®bn the line parallel t® and passing
throughp, and increase the scale factofrom zero until we reach a terminal placement,
the point on the internal facet could have crossed at most two external fac2{svbien
it gets into the octahedron through an edge; this point cannot get into the octahedron
through a vertex because the set of points would then not be in general position) and
two internal facets (because it cannot cross the internal facet incident t@edégng
standard arguments (based on the Clarkson—Shor analysis technique [7]), itis easily seen
that the number of such vertices@(n). Hence the number of stopping events of the
first type isO(n?).

Inthe second stopping case, the reached placementis arigid placement of the (nonaug-
mented) octahedron with a double contact pair and at most one point inside the octa-
hedron. Arguing as in the preceding paragraph, it is easily seen that such a placement
corresponds to a vertex of level at most 2 in the planar arrangement of segments rep-
resenting the contact pairs (of the nonaugmented octahedron) in the two-dimensional
subspace of associated with the reached double contact pair. Thus the number of
placements reached in this case is also bounded (o).

In the third case, the reached placement is a rigid placement of the octahedron with
three contact facets sharing a vertex and at most one point inside the octahedron. Again,
arguing as above and applying the Clarkson—Shor technique, it follows that the number
of terminal placements that we reach in this case is proportional to the number of free
rigid placements of type (P2) for a subsample of the sites. Thus the number of placements
reached in the third case is aléqn?).
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In the last case, the reached placement is a rigid placement of the octahedron with
four contact pairs involving four nonadjacent facets and one point inside the octahedron.
In the following we denote by, (S) the number of rigid placemen€ with four contact
pairs involving four nonadjacent facets and wjtpoints ofS inside the octahedron.

Before continuing, it is important to observe that each terminal placement reached in
case 4 of the above sliding process is reached from a unique initial rigid free placement.
Indeed, since the single poip} inside the octahedron did not cross during the sliding
process any internal facet of the augmented octahedron, it lies in one of the eight octants
into which the three internal facets partiti@d, and the external facet bounding that
octant must be the contact fackt so the initial placemer is uniquely determined.

On the other hand, we have four choices of the triple of the contact pairs that are
preserved in the sliding process. If in one of these choices we reach a terminal placement
of one of the first three types, we charge the initial free rigid placement to this terminal
placement, observe that any such terminal placement can be charged in this manner
only a constant number of times, and thus conclude that the number of initial free rigid
placements of this kind i©(n?). If each of the four sliding processes terminates in a
placement of type 4, then the initial free rigid placement can be charged to four terminal
placements. Moreover, every initial and terminal placement in this case involves four
contact pairs with four nonadjacent contact facets, except that the initial placements are
free and the terminal placements contain a point inside the octahedron.

Thus, the preceding case analysis leads to the following recurrence relationship:

4co(S) < ¢1(S) + O(n?),

from which we obtain
n—4 1
Co(S) < TCO(S) + 501(8) + O(n).

Now, ((n — 4)/n)ce(S)+(1/n)ci(S) isjustthe expected number of free rigid placements
with four contact pairs involving four nonadjacent facets, for a random saRpfer — 1
points ofS; see [6] and [22], and the analysis in Section 4 for similar arguments. Thus, if
we denote by, (n) the maximum oty (S) over all setsS of n points in general position
with respect taO, we obtain the recurrence

Co(N) < Co(n — 1) + O(n),
whose solution is
co(n) = O(n).
Thus, the number of free rigid placements with four contact pairs involving four non-

adjacent facets is also bounded ®yn?), which thus completes the proof of the upper
bound in Theorem 6.1.

Remark. An obvious open problem is to extend this result to higher dimensions.
Informally, the reason we have failed in doing so is thatdfer 4, thed-cross polytope

has a large number of facets (that i§, facets). Consequently, there are too many
combinatorially different types of free rigid placements ofdheross polytope, which so

far impeded a successful analysis of their number. A first goal in this direction would be
to obtain a sharp bound on the complexity of theVoronoi diagram in four dimensions.
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6.2. The Lower Bound

As in Sections 4.2 and 5.2, a configuration that attains the lower bound in Theorem 6.1
can be built by choosing points on two lines in 3-space such that, for any subset of four
points, consisting of a pair of consecutive points on each line, there is a free placement
of O in contact with these points.

The first lined; is the liney = 0,z = 1, parallel to thex-axis; the set of points
oné; is taken to beS; = {pn, = (h/n,0,1) : h=0,...,n—1}. The second line
3, is the linex = 0, z = —1, parallel to they-axis; the set of points ofy is taken to
beS; = {gk = (O,k/n,—1) : k =0,...,n— 1}. See the left part of Fig. 3. Let
S = &1 U Ss. First consider the two-dimensionhl -Voronoi diagram of each subset
S1, 82, within the respective planes= 1 andz = —1. Let O; (resp.O_;) denote
the 2-cross polytope within the plaze= 1 (resp.z = —1). In the planez = 1, the
linex = (h+ %)/n, z =1, foreach 0< h < n — 2, is the bisecting line of the pair
(pn, pPhe1) and the locus of the centers of free placement®pfvith p, and p,.1 as
contact points. Similarly, in the plarze= —1, the liney = (k + %)/n, z= —1,foreach
0 < k < n— 2, is the bisector of the paigk, gk-1) and the locus of the centers of free
placements ofD_; with g« andqgx.1 as contact points. Thus, for each péir h), with
0 <k, h<n-2,thereis afree placemeél(h, k) of Oy, which is centered at the
point((h+ 3)/n, (k + 3)/n, 1) and touches the points, and 1, and there is a free
placement_;(h, k) of O_;, which is centered at the poitth + 3)/n, (k + 2)/n, —1)
and touches the poindg andgy1. Such placemenél(h, k) andO_1(h, k) are drawnin
dotted linesinthe left part of Fig. 3. The scale factors of these placements are, respectively,
p1= (Kk+21/nandp_y = (h+ 1)/n. Since|ps — p_1| < 2, itis easily verified that
the two placement®; (h, k) and O_1(h, k) are cross sections of a placeménpf the
three-dimensional octahedron, centered at the gdint %)/n, (k+ %)/n, (k—h)/2n),
and scaled by the factor (p; + p_1)/2 = 14 (2+ h +k)/2n. The right part of Fig. 3
shows the cross section of the placemérby the planey = (k + %)/n.
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Fig. 3. TheQ(n?) lower bound construction fdr;-Voronoi diagrams ifR3.
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Thus, for each of thén — 1)? pairs(k, h) with 0 < k, h < n—2, there is a free rigid
placement of the octahedrd@» among the sef of 2n points, which touches the points
Ph, Phi1, Ok, @andgyy1; this proves the lower bound of Theorem 6.1.

7. Degenerate Configurations

Next, we show that the general position assumption is essential for the upper bounds of
Theorems 4.1, 5.1, and 6.1 to hold. Specifically, we show:

Theorem 7.1. For any polyhedral convex distance functiop dnd any dimension
d > 2, there exist set§ of n points inRY, not in general position with respect to the
distance @, whose Voronoi diagramsgorp (S) have complexity2 (n9).

Figure 4 shows th& ;-Voronoi diagram of a degenerate set of point®f

Proof. Letdp be a convex distance function, anddebe a set o points contained in

a hyperplanéd ¢ RY parallel to a facef of P, such thatS is in general position with
respect to the distance function induced byn H. For eachx € S, the locus of the
centers of the pIacemerﬁ’sof P for whichx liesonf isa polyhedral con€, with apex

atx. All the conesC, are translates of each other, and, because of the general position of
S with respect tof , the complexity of the arrangemedtof these cones i€ (n®). Each

cell c of A has the property that all maximal free placementB akentered at points af

touch the same subset of pointsfMoreover, it is easily verified that there apgn?)
distinct subsets of this kind. This clearly implies the assertion of the theorem. O

Note that in those degenerate situations, the high complexity of the Voronoi diagram
arises from the fact that the bisector of two sites (i.e., the locus of center of maximal
free placements with those two sites as contact points) is full-dimensional. In their study

Fig. 4. A degenerate configuration for thg metric.
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of two-dimensional diagrams [14], Klein and Wood propose using a lexicographical
ordering of the sites, so that each point in the plane is assigned a unigque nearest site—
the smallest in this order among all the nearest sites. In this way bisectors are always
one-dimensional and the complexity of the modified diagram drops to linear. The same
method can be applied to tHe,,, L1 or simplicial diagram of point sites in higher
dimensions. A slight modification of the method used in the preceding sections show
that the upper bound obtained in nondegenerate cases continues to hold for the simplified
diagram, also for degenerate configurations.

8. Algorithms

Inthis section we present an efficient algorithm for constructindithe/oronoi diagram

of a setS of point sites inRY. The algorithm is incremental and on-line, that is, it
adds the sites one by one, and maintains the Voronoi diagram of the set of all the
already inserted sites; it does not require previous knowledge of the whafe $ae
algorithm uses the method of théstory graphdescribed in [5] (see also [10]). We
show that if the sites are inserted in random order, then the expected running time
of the algorithm isO(n'¥?! log®~* n). A simple modification of the technique yields

a randomized algorithm for constructing Voronoi diagrams under simplicial distance
functions, whose expected running timedsn’®/?! 4+ nlogn).

8.1. Algorithm for L,-Voronoi Diagrams

We subdivide the Voronoi cell of each siteinto 2d subcells, one for each of thel2
facets of the hypercube, where the subcell corresponding to the ffazmisists of the
centers of all maximal free placements having the contact(gaif ). For example, the
Voronoi diagram of a single site subdivides the whole space intd polyhedral cones
with apex atx. This subdivision increases the overall complexity of the diagram by only
a constant factor (depending dih

For technical reasons, and for simplicity of presentation, we prefer not to treat the
unbounded faces of the diagram explicitly. This is done by surrourlimigh additional
sentinel sitesso that all Voronoi cells of the sites $ibecome bounded, and no original
Voronoi vertex is lost. This technical issue is discussed in detail in the description of the
initial phase of the algorithm, given below.

Before describing the algorithm itself, it is worth observing some facts about the
faces of the diagram. Eadtiface ® of the diagram can be described as a connected
component of the locus of the centers of those maximal free placements that realize a
given set ofd 4+ 1 — k contact pairs. We refer to these contact pairs as the contact pairs
of ®. We distinguish between two types of Voronoi faces (of dimensidt): (i) sliding
faces whose sets of contact pairs include two parallel contact pairs, argh(ipking
faces whose sets of contact pairs involve facets of the cube which are all incident to
some common vertex of the cube.

Lemma 8.1. Each subface of a sliding face is a sliding faaed all the maximal free
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placements centered on a sliding face have the same scaling.fAcstiding edge is
parallel to some coordinate axiand more generallyhigher-dimensional sliding faces
are axis-parallel polyhedra

Proof. The set of contact pairs of a subfa®é of a Voronoi face® is a superset

of the set of contact pairs @b. Moreover, the scaling factor of a maximal placement
centered on a sliding face is determined by the two parallel contact pairs. This proves
the first claim. The second claim follows from the fact that, as in the analysis of the
complexity of the diagram, a sliding edgean be identified with an edge of the union

of axis-parallel hypercubes (whose size is equal to the fixed scaling factor associated
with €), and thus must be parallel to some coordinate axis. A similar argument applies
to higher-dimensional sliding faces. O

It is possible that several faces of the diagram have the same set of contact pairs.
However, Lemma 8.3 below shows that this is not true for edges (1-faces).

The fact that there is a unique Voronoi edge for each given stttohtact pairs is a
consequence of the following lemma, which considers sliding faces of any dimension.

Let Q be a set ok contact pairs, including two parallel contact pairs, andUet
denote the locus of the centers of the free maximal placements that realize the contact
pairs of Q. Note thatQ determines the scaling factpg, of these placements akd- 1
coordinates of their centers. Ll denote th&d — k + 1)-flat that contains the centers
of these placements. L&, denote the subset of points Sfappearing in the contact
pairs of Q, let | o denote the intersection of the placements with gigecentered at the
points of Sy, and letUg denote the union of the placements with sizge centered at
the points ofS\Sg.

Lemma 8.2. The locus lg of the centers of the maximal free placements that realize a
setQ of contact pairgwhich include two parallel contact paiyss, in the above notation

Ho N (Ig\Ug).

Proof. Let C = C(c, po) be a maximal free placement whose certés in Lo.
Then clearlyc € Ho, andC contains all points 05 on its boundary, and does not
meet any point inS\Sg. This implies thatc must lie on the boundary of all cubes
C(s. po), for s € So, and outside all cubeS(s, po), for s € S\Sq. Hence we have

Lo € Hg N (Ig\Ug). The converse containment is proved in much the same manner,
observing thatit € Hg N 1o, thenc must lie on the boundary of all cub€ss, po), for

s € So, which, together with the fact that¢ U, implies thatC (c, po) is a maximal

free placement that realizes the §kbf contact pairs. O

Lemma 8.3. The locus of centers of all maximal free placements that realize a given
set of d contact pairs is a line segment

Proof If the setQ of d contact pairs contains two parallel contact pairs, then the
result follows from the previous lemma. Indeed, in that cékejs an axis-parallel line,
Ho N 1o is the intersection of some line segments of lenath andHg N Ug is the
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union of some other line segments with the same lepgthThis is easily seen to imply
thatL o cannot have more than one connected component.

If @ does not contain two parallel contact pairs, the faces of the cube involved in
the contact pairs of share a common vertax Moreover, the locatior of that vertex
must be the same for all maximal free placements whose centerdlig iand all these
placements can be obtained from one another by a homothety whose céntderse,
for any pair of such placements, the larger placement contains the smaller one, and the
locusL ¢ of their centers is contained in a line (passing throtugind parallel to some
vector of the form(£1, £1, ..., £1)). Moreover, the above nesting property is easily
seen to imply that o cannot contain more than one connected component, and is thus
a line segment. O

It also follows from Lemma 8.2 and from the proof of Lemma 8.3 that a line parallel
to a coordinate axis and contained in the affine hull of a sliding fa@géther misses or
intersectsf along a single line segment. The maximal free placements centered on such
a segment (or on a sliding edge) are obtained from any one of them by an axis-parallel
translation and have a nonempty intersection. Moreover, these observations also imply:

Lemma 8.4. Each of the maximal free placements centered on a sliding edgme
generally on any axis-parallel line segment e contained in a sliding fé&eeontained
in the union of the maximal free placements centered at the endpoints of e

The following lemma is a consequence of the proof of Lemma 8.3:

Lemma 8.5. Each of the maximal free placements centered on a shrinking edge e is
contained in the placement centered at one of the endpoiite. The setQ, of contact

pairs definingv involves one more site than the $2f of the contact pairs defining. e

All such placements contain the maximal free placement centered at the other endpoint
v’ of e The setQ,, of the contact pairs defining involves the same sites & but the
multiplicity of one of the sites i@, is one more than its multiplicity iQe.

The algorithm builds incrementally the 1-skeleton of the Voronoi diagram, i.e., the set
of vertices and edges of the diagram, together with their incidence relations. In addition,
each vertex and edge is represented with its set of contact pairs. Lemma 8.2 is easily seen
to imply that each sliding face is homeomorphic to a ball of the appropriate dimension. A
similar result can be proved for shrinking faces. Thus itis easy to construct, in time linear
in the output size, the full set of Voronoi faces, together with their incidence structure,
from the final 1-skeleton. We omit details of this final construction step.

The algorithm maintains the following data stuctures:

e a history graph;

e adictionaryD, containing one entry for each set of contact pairs associated with a
sliding face constructed by the algorithm;

e a multilevel dynamic segment tree data structure associated with each entry in
D, which supports efficient ray-shooting queries along some fixed axis-parallel
direction within each sliding face.
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The history graph is a directed acyclic graph, each node of which represents a rigid
placement of an axis-parallel hypercube, so that, during some stage of the incremental
algorithm, this placement has been maximally free and thus centered at a Voronoi vertex.
The graph has the property that the placement associated with a node is contained in the
union of the placements associated with its parents, a property that we refer to hereafter
as theinclusion property Furthermore, each vertex of the current Voronoi diagram is
linked via a double pointer to the node of the history graph corresponding to the same
placement. See [5] and [10] for earlier uses of similar history graphs.

When a new sites is inserted, it may be contained in some of the maximal free
placements centered at the current Voronoi vertices. These placements are no longer
free, and the corresponding Voronoi vertices and history graph nodes are said to be
killed by s. The insertion of generates new Voronoi vertices. A new node is created in
the history graph for each new Voronoi vertex; this node is made a child of some of the
older nodes in the graph, which represent free placements in the current diagram, whose
associated placements overlap the placement associated with the new node, in a manner
that ensures the inclusion property. The precise manner in which this is accomplished is
described in detail below. A parent node may or may not have been killed by the insertion
of s.

A node of the history graph, the corresponding Voronoi vertex, and the corresponding
placement, are said to be conflict with a sites if this placement of the hypercube
containss in its interior.

Each entry in the dictionarfp corresponds to a s€ of contact pairs, including two
parallel contact pairs, that appeared, at some stage of the algorithm, as the set of contact
pairs of some sliding faces of the current diagram.

Let Fo be the union of the sliding faces whose set of contact paig Bach entry
in D points to a dynamic ray-shooting structuR, that supports fast ray-shooting
queries in some fixed axis-parallel direction within the current versidifThe ray-
shooting structures are based on standard (dynamic) multilevel segment trees [16], and
are described in more detail later.

For technical reasons, and for simplicity of presentation, we prefer not to treat the
faces at infinity of the diagram explicitly. Therefore, we introduce aSsetf additional
sites, calledentinel sitesand first compute the Voronoi diagram®ftJ Sy, from which
the diagram ofS is easy to derive. The sentinel sites are chosen in such a way that
each site ofS has a bounded cell in V@i(S U Sp), and each vertex of Vr(S) is a
vertex of VoL, (S U Sp). We initialize the algorithm with the Voronoi diagram 68§,
and then insert the sites &f In this way, no unbounded faces will be created during the
incremental insertion stages. In what follows, we assume that the sitediefvithin
a large axis-parallel hypercub}b centered at the origin of the coordinate system. The
sentinel sites are chosen to be tievrtices ofCy; see Fig. 5 for an illustration. Any
placement of the hypercul@that intersect€o and has a sufficiently large scaling factor
must contain one of the sentinel sites. It follows that each sitetads a bounded cell in
the diagram Vog (S U Sp). Moreover, it is easily checked that any free rigid placement
whose contact pairs involve only sites 8fdoes not contain any sentinel site. Hence,
each vertex of Vo, (S) is also a vertex of VQE (S U Sp), so the chosen set of sentinel
sites has the required properties. Furthermore, it is easy to check that the union of the
maximal free placements centered at the vertices of, \Ss) contains all the free rigid
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@ sentinel sites

[ Voronoi vertices

Fig. 5. Initialization of theL .-Voronoi diagram; if the sites af all lie in the shaded region, their Voronoi
cells are all bounded.

placements of the hypercube among any subsstofS, that containsSy. Thus it will
always be possible to ensure the inclusion property.

Initial Step The data structures are initialized with the Voronoi diagram (shown in
Fig. 5) of the 2 sentinel points. Each vertex of this diagram is associated with a node
of the history graph which is a child of the root node.

Incremental Updating of the Diagram Each subsequent step inserts a newsikeS

into the diagram. Hereafter, the Voronoi diagram before the insertioni®talled the
currentdiagram, while the diagram after the insertionxa$ called thaupdateddiagram.

Each vertex or edge of the current Voronoi diagram that is not a feature of the updated
diagram is said to bkilled (as above), while each vertex or edge of the updated diagram
that is not a feature of the current diagram is calhesu The following substeps are
performed:

The first substep identifies the killed vertices and edges. The killed vertices are
identified by a traversal of the history graph. This traversal starts at the root node of the
graph, and then visits all the nodes conflicting witand their children, backtracking at
each node that is not in conflict with

Next, we scan the 1-skeleton of the current diagram to identify all the killed edges.
Observe that each killed edgenust be incident to at least one killed vertex, because, by
Lemmas 8.4 and 8.5, each maximal free placement centered on ae edgentained
in the union of the maximal free placements centered at the verti@slehce, if some
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maximal free placement, centered at some poirg,ds in conflict withx, then at least
one endpoint of must be a killed vertex. The killed edges and vertices are discarded
from the 1-skeleton.

The next two substeps create the new vertices and edges of the Voronoi diagram. For
each new vertex, a new node is added to the history graph in such a way that its incoming
arcs satisfy the inclusion property. The last substep updates the dictidriargreating
new entries for the sets of contact pairs of the new sliding faces that do not correspond to
already existing entries d@. In addition, this substep creates the ray-shooting structures
associated with these new entries, and updates the structures for the old entries.

In accordance with the definition in Section 2, we say that a placement or some
Voronoi face hax-multiplicity kif it has k contact pairs involving.

Thesecond substegreates the new vertices with a simple contact, @nd the new
edges with no contact at To do this, we consider in turn each killed edgef the
current diagram that is incident to only one killed vertex. Tleis contained in only
some of the maximal free placements centere@ @whose centers form a connected
portion ofe, by Lemma 8.3). The edgeis replaced by a new and shorter edféhat
joins the nondiscarded vertex efwith a new vertexr whose placement has a simple
contact atx. A new node, corresponding tg is appended to the history graph. This
node becomes a child of the discarded verter dfe is a shrinking edge, or a child
of both vertices ok if eis a sliding edge. This guarantees the inclusion property for
by Lemmas 8.4 and 8.5. The above process provides all the new vertices of the updated
Voronoi diagram with a simple contactatas well as all the new edges with no contact
atx. Indeed, any new vertex with a simple contact and any point on a new edge with
no contact ak is the center of a maximal free placement wdthontact pairs involving
previously inserted sites, and thus belongs to a Voronoi edge of the current diagram, so
it will be found by the above procedure.

Thethird substep proceeds by induction on themultiplicity of vertices and edges,
to create new Voronoi vertices and edges with higherultiplicity. Assume that all new
vertices and edges witkrmultiplicity up tok andk — 1, respectively, are known. Then
the algorithm creates the new Voronoi vertices and edges wittultiplicities k + 1
andk, respectively, as follows. Each Voronoi vertexvith x-multiplicity k is incident
tod + 1 — k Voronoi edges withk-multiplicity k, whose sets of contact pairs can be
obtained, in constant time, from the contact pairs,dfy relaxing each of thd + 1 — k
contact pairs not involving. Moreover, we have:

Lemma 8.6. If e is a Voronoi edge with x-multiplicity, kthen at least one endpoint of
e is a vertex with x-multiplicity k

Proof. Assume to the contrary that there exists an eglgigat does not satisfy this
property; that is, both endpoints ehavex-multiplicity k + 1. Suppose first thais a
sliding edge, parallel to some coordinate a%isThen the two new contact pairs at the
endpointa, v, of emust be(x, f1) and(x, fz), wheref; and f, are the two facets of the
hypercube orthogonal to thg-axis. If pe is the common scaling factor of the maximal
free placements of the hypercube centereé,dhen the length o must be 2. Since
eis a sliding edge, it must involve some contact ggir f ), for y # x. However, then,
by the general position assumption, tecoordinates ok andy are different, which
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implies that the length af must be smaller thand, a contradiction that establishes the
asserted property.

If eis a shrinking edge, then all contact paireafivolving x are of the form(x, f),
where all those facet have a common vertex of the hypercube, and all maximal free
placements centered @nare obtained by shrinking or expanding the hypercube with
respect taw. This is easily seen to imply that we can gain a new contact pair invok/ing
only when the hypercube is shrinking, but not when it is expanding. Again, this implies
the asserted property. O

Lemma 8.6 implies that all Voronoi edges withmultiplicity k can be obtained from
the Voronoi vertices withk-multiplicity k, by relaxing one contact pair not involving
X. More precisely, this procedure generates each suchedieer once (if it has one
endpoint withx-multiplicity k and one endpoint witk-multiplicity k 4+ 1) or twice (if
both endpoints of havex-multiplicity k). We detect edges that are generated twice using
a dictionary data structure. For each edgbat is generated only once, from a vertex
with x-multiplicity k, we compute the other endpoint®fthe one withx-multiplicity
k + 1) in constant time. For this, we iterate over all possible contact pairs that involve
and are not present in the €2t of the contact pairs af. We add in turn each such contact
pair to Q, compute the position of the center of the corresponding free rigid placement,
if such a placement exists, and choose the placement whose center is clos&hte
each vertex withk-multiplicity k + 1 is incident tok + 1 edges withx-multiplicity k,
the above procedure will produce all Voronoi vertices witmultiplicity k + 1.

It remains to create a new node in the history graph for each new vertex, and to link
it to earlier nodes so that the inclusion property still holds. This is done as follows. If
the new vertex’ with x-multiplicity k 4 1 is linked to a vertex with x-multiplicity k
via a shrinking edge, the node forbecomes a child of (cf. Lemma 8.5). Otherwise,
by Lemma 8.6, all the edges witimultiplicity k incident tov” are sliding edges. This
means that if we relax any of the contacts involvinign the set of contact pairs defining
v/, then we preserve the unique pair of parallel contact pairs. This clearly implies that
thed — k contact pairs of’ that do not involvex contain the two parallel contact pairs.

It follows thatv’ is located in a slidingk + 1)-face f of the current diagram. We
use the ray-shooting data structures to find parents for the node associated, with
follows. Let Q be the set of contact pairs df. The ray-shooting structure associated
with the entry forQ in the dictionaryD supports fast ray-shooting queries in some fixed
axis-parallel direction withirf . We first shoot from’ in the fixed given direction within
f, both forward and backward. Latandh’ be the two subfaces df hit by these rays,
and letw andw’ denote the corresponding impact points. We know, by Lemma 8.4,
that the maximal free placement centered’as contained in the union of the maximal
free placements centeredwatand atw’. Then we perform similar ray-shootings from
w in h and fromw’ in h’, forward and backward, along the corresponding shooting
directions within those subfaces (note that these new directions are orthogonal to the
first shooting direction), using the data structures availabldnfandh’ (recall that a
subface of a sliding face is a sliding face). This yields four new impact points on lower-
dimensional subfaces, and we keep iterating these shootings until we reach ediges of
By taking the set of endpoints of these edges, we obtéih Yoronoi vertices (of the
current diagram), and the node of the history graph associatediigdtomes a child of
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each of the 2! nodes corresponding to these vertices, provided that the corresponding
placements overlap. Clearly, this implies that the inclusion property holds.for

Finally, thefourth substep updates the dictionarl and the ray-shooting structures.
First we have to create an entrylhand a ray-shooting structure for each set of contact
pairs of any new sliding face that involves These sets of contact pairs are found
inductively, by decreasing the cardinality of these sets (i.e., by increasing the dimension
of the corresponding faces). That is, we obtain the sets of contact pairs of the new sliding
k-faces from the sets of contact pairs of the new sliding- 1)-faces, by relaxing one
contact pair, as long as the resulting subset of the contact pairs still involegs!
still contains two parallel contact pairs. For each such newdsef contact pairs, we
associate an entry iD and form a listC o of all the contact pairs that have been relaxed
to obtain the se from sets of contact pairs of new slidiig— 1)-faces (that is, this list
represents allk — 1)-subfaces of the new slidirigface). We then use this list to build
the ray-shooting structur® o, which facilitates fast ray-shooting queries in some fixed
axis-parallel direction within the union of the faces of the updated diagram sharing the
contact set. This is done as follows.

Let Q be the set of contact pairs of some new sliding facesdebe the corresponding
scaling factor, and lefg be the subset of the sites that are involved in the paig.of
The unionL ¢ of the faces of the updated diagram, whose common set of contact pairs
is Q, is contained in &-dimensional flaHg. We know from Lemma 8.2 thdt is the
set differencelo N Ho)\(Ug N Hy), wherel 5 is the intersection of the axis-parallel
hypercubes of sizgg that are centered at the sites&j, andUg is the union of the
axis-parallel hypercubes of sige, that are centered at the sites®{So. (In fact, it is
not necessary to consider all the sitesSef andS\Sq: let 1, be the intersection of the
hypercubes of sizeg centered at the sites 8%, that are involved in the contact pairs in
the listLg, and letU, be the union of the hypercubes of sjzg centered at the sites of
S\Sg thatare involved inthe contact pairs. Clearly,L o = (15NHo)\(UgNHo).)

Thek-flat Hg is parallel tok coordinate axes, s&y, . . ., Xk. To buildR o, we choose
a fixed shooting direction parallel to one of those axesxgayhe ray-shooting structure
is a multilevel data structure that stores the intersectiohiplvith the facets orthogonal
to thexg-axis of the hypercubes of size, centered at the sites involved £y

In the following description @ubedenotes gk — 1)-dimensional hypercube which
is the intersection withH o of a facet orthogonal to the.-axis of one the hypercubes of
sizepg centered at the sites involvedAly, . The ray-shooting structure hlagevels. The
firstk — 1 levels of the structure constitute a multidimensional segment tree representing
the projections of the cubes onto ttke— 1)-subspace spanned Ry, . .., xc_1. The last
level is a balanced binary tree storing, in the order of¢heoordinates of their centers,
the “canonical” collection of cubes assigned to each node ofkthe 1)st level of the
segment tree. Clearly, this structure allows us to compute efficiently the first cube hit by
any query ray parallel to the-axis, from which we immediately obtain the contact set
of the sliding subface hit by the ray. The cost of a ray-shooting query in this structure
is O(log* n): Querying the multilevel segment tree tak®slog"—* n) time [16], and
the output of this query is a collection @ (log“"* n) nodes of the segment tree at the
(k — D)st level. We then have to locate thkecoordinate of the origin of the query ray in
each corresponding binary tree, which takes logarithmic time per node. A cube can be
inserted into such a structure also@tlogk n) time, as described in [16], and the cost
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of building R ¢ is thus at mosD(Iogk n) times the number ofk — 1)-subfaces of the
Voronoi faces of the current diagram with the same@eif contact pairs.

Next, the older ray-shooting structures also need to be updated with the appropriate
new subfaces induced by so the above data structures need to be maintained dynam-
ically. The modification of the structure corresponding to an (old) e@tigmounts to
inserting a new cube with scaling factop centered ak. As just argued, this can be
done in timeO(log* n) per update, wherkeis the dimension of the relevant sliding face.

This completes the description of the algorithm. Putting everything together, we
obtain:

Theorem 8.7. The L,.-Voronoi diagram of a set of n points R in general position
can be constructed on-line in randomized expected tiri@ ! log®~* n).

Proof. The randomized analysis of this algorithm uses the formalism of objects, re-
gions, and conflicts, introduced by Clarkson and Shor [7]. The objects are the sites; the
regions, each defined by a set of objectsSoare the rigid placements of a hypercube
among the points aof; a site conflicts with a region when it belongs to its interior. Each
region is fully described by itd + 1 contact pairs and is thus triggered by a set of at
mostd + 1 sites. Thus, for any subs&t C S, a region defined by a subset &f of

size < d + 1 and without any conflict with the sites o is a free rigid placement

for S§’. Then, by standard analysis (see, e.g., [5]), the expected number of new Voronoi
vertices created at step(i.e., when inserting theth object) isO((1/r) fo(r)), where

fo(r) is the expected number of free rigid placements for a random subset of gize

S. By Theorem 4.1 fo(r) is O(r [9/21), and thus the expected total number of Voronoi
vertices (and thus also of Voronoi faces of all dimensions) created by the algorithm is
ZLl O(r'9/21-1y = O(nld/21y,

We first ignore the cost of traversing the history graph in the first substep, the cost of
ray-shooting queries, the cost of building and maintaining the ray-shooting structures,
and the cost of searching and updating the dictiomaryhe remaining cost at each step
is clearly proportional to the number of Voronoi faces killed or created at that step. (This
also applies to the cost of updating the history graph, which follows from the fact that
each node in the history graph has a bounded number of parents, so the expected number
of arcs in the history graph is proportional to the expected number of nodes.) Hence,
except for the items just excluded, the overall expected running time of the rest of the
algorithm is proportional to the total number of faces ever created, whiokn&'/?1).

We now analyze the cost entailed in ray shooting. In dimension 2 there is no need for
ray-shooting data structures, because we only need to shoot along sliding edges, which
is trivial. If d > 3, the number of ray-shooting queries is at most proportional to the
number of vertices that the algorithm creates, and the total number of subfaces inserted
into the ray-shooting structures is at most proportional to the total number of subfaces
of the new sliding faces. Each structure has at rdostl levels, which implies that the
cost for each ray-shooting query @(log®~* n), and the cost for the construction and
updating of the structures ®(log®~ n) times the number of faces. Hence, the total
expected cost entailed in ray shootingdsn'®/2 log?~* n).

Consider next the cost of handling the dictionary. In dimension 2 there is no need for
a dictionary. Ifd > 3, the number of operations (insertions and queries) performed in
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the dictionaryD storing the sets of contact pairs of sliding faces is proportional to the
number of sliding faces (of all dimensions) that have been created. It follows that the
total expected cost entailed in handling the dictionar@ig%/2! logn).

Finally, we estimate the expected cost of traversing the history graph. This can be
done using the notion dfiregions as in [5]. A biregion is defined as a pair of regions
that can appear as a parent—child pair in the history graph. More precisely, a biregion is a
pair (Cl, Cz) whereC;, C, are two placements of the hypercube, such that there exists
a subsetS* of S and a sitex € S\S* such that (|)C2 is a free rigid placement in the
setS* U {x} and contain on its boundary, (ii}C; is a free rigid placement in the set
S*, which overlap€s, and may or may not containin its interior, and either (jii(a){:
andC, share a common vertex a4 is contained irCy, or (iii(b)) C; andC; have the
same sizg, and there exists a sequerGe= C®, C@ ... €D = C, of hypercube
placements of sizg, such that all of them are free in the st each placemer@ (2
is obtained from the preceding placeméit by translation along some axis-parallel
direction (during which the hypercube remains free), @id™ has one more contact
pair thanC® (relative to the sef*).

A site is said to be in conflict with a biregion if it conflicts with one of the two
regions forming the biregion (except for the siethat may have killed the parent
region and lies on the boundary of the child region). Then the total cost of the graph
traversals is at most proportional to the sum of wesghtsof the biregions appearing
in the history graph, where the weight of a biregion is the number of sites in conflict
with it (recall that an edge of the history graph is traversed only when the new site
is in conflict with the parent region of the biregion corresponding to the edge). Using
standard analysis, as in [5], one can show that the expected value of this sum of weights
isOQ . _(n=r)/r? f3(r)), wherefj(r) is the expected number of biregions with
no conflicting site in a random samplerasites. (This bound holds because a biregion is
defined in a purely local manner from a bounded number of “trigger sites,” which are the
at most 2d + 1) sites involved in the contact pairs of the two regions. Moreover, any such
set of trigger sites determines only a constant number (dependidpadrbiregions, as
follows from the above definition. This locality condition implies the above bound, as
follows easily from the analysis in [5] (see also [7]).) We hdyer) = O(r '%/21), since
the expected number of regions appearing in the history graph of the sar@gre4§'),
and since each such region Hasl) parents. It therefore follows that the above cost is
O(nlogn + nf¥/21, O

8.2. Algorithm for Simplicial Voronoi Diagrams

Simplicial Voronoi diagrams have only shrinking edges satisfying Lemma 8.5 and no
sliding edges. Thus, it is easy to adapt the above algorithm and obtain a similar algorithm
for simplicial Voronoi diagrams in any fixed dimensidnln this case the algorithm is
in fact much simpler, since the Voronoi diagrams have no sliding faces and there is no
need for the dictionary and ray-shooting structures.

As in the case ot -Voronoi diagrams, we wish to avoid having to deal with un-
bounded Voronoi edges and faces. To do so, we initialize the construction with the
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[0 Voronoi vertices

@ sentinel sites

Fig. 6. Initialization of a simplicial Voronoi diagram.

diagram of some s&fy of a constant number afentinel sitesconstruct the diagram of
S’ = SU S, and then remove the sentinelsSyf The sentinels are thie+ 1 vertices of
a simplexc’q obtained as follows: Consider a placeménbf the simplex defining the
distance function, which contains the origin of the coordinate system, anthlbe a
homothetic copy o6 with a negative scaling factor, whose absolute value is chosen to
be sufficiently large, so that the simple, contains all the sites &. (Theo-Voronoi
diagram of the vertices af g is illustrated in Fig. 6 in the two-dimensional case.) Each
placemen®, which intersects’q and has a sufficiently large scaling factor, contains
one of the sentinels, which implies that each sit&dfas a bounded cell in Vp(S’).
Each maximal free placement whose set of contact pairs includes only sitesofains
no sentinel, because it is contained in the placemgnbbtained fromo’o through a
homothety with scale factor2, which has one contact pair with each sentinel. Thus it
is easy to recover the Voronoi diagram y@§) from Vor, (S').

The randomized analysis of this algorithm is the same as given above, except for the
cost of handling the dictionary and the ray-shooting structures, which is simply ignored.
Hence we obtain:

Theorem 8.8. Any simplicial Voronoi diagram of a set of n pointsIif in general
position can be constructed on line in randomized expected tigmdoQ n 4 n[4/21),

The above algorithms crucially rely on the fact that each maximal free placement
centered on an edge of the diagram is included in the union of the two maximal free
placements centered at the vertices of this edge. Unfortunately, this no longer holds for
L, diagrams and the above algorithm does not easily extend to compute the Voronoi
diagram of point sites for the;-distance, even in three dimensions.
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9. Conclusion

In this paper we have studied the complexity of Voronoi diagrams of point sets in
higher dimensions under certain special polyhedral convex distance functions, including
simplicial distance functions and thhg andL ., horms. We have obtained tight worst-

case bounds for all the cases that we studied. Some of these bounds match the known
maximum complexity of euclidean Voronoi diagrams, nant{yn'%/?'), lending support

to the conjecture that this bound holds for fairly general cases of Voronoi diagrams of
point sites in higher dimensions, even though it is known not to hold for more general
sites [1].

For the simplicial and thé ., distance functions, we have presented efficient on-line
randomized algorithms, whose expected running times are, respec®@lypgn +
n'4/21y and O(n'%21 log?~1 n). The first algorithm is thus worst-case optimal, and the
second is very close to being worst-case optimal.

There are quite a few open problems that this paper raises. The first problem is to
extend the bound obtained far,-Voronoi diagrams to four and higher dimensions.
Another, more challenging problem is to extend our analysis to Voronoi diagrams under
arbitrary polyhedral convex distance functions. An even more challenging problem is to
extend our analysis further to cases where the sites are general convex polytopes, rather
than points. (Here, based on [1], the goal is to obtain bounds clo®¢né1).) This is
open even in three dimensions (where the goal is to obtain near-quadratic bounds). For
this, one would probably need an appropriate combination of the techniques used here
and in the previous paper [6]. Finally, of course, there is the challenge of extending our
results to nonpolyhedral convex distance functions. Such distances have to be handled
with care in higher dimensions as indicated by the analysis of [12].
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