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Abstract

In this paper, we give a new, simple, purely analytic proof of the
Voronoi formula for Maass forms on GL(3) first derived by Miller and
Schmid. Our method is based on two lemmas of the first author and
Thillainatesan which appear in their recent non-adelic proof of the con-
verse theorem on GL(3). Using a different, even simpler method we derive
Voronoi formulas on GL(n) twisted by additive characters of prime con-
ductors. We expect that this method will work in general. In the final
section of the paper Voronoi formulas on GL(n) are obtained, but in this
case, the twists are by automorphic forms from lower rank groups.

1 Introduction

The classical Poisson summation formula states that for any function f in the
Schwartz class S(R!), we have

S i)=Y fm),

nezt meZt

where
l
fla) = /f(y)€ ( Z%Zh) dy
e i=1

is the Fourier transform of f, and e(x) = ¢?™™ throughout the paper.

Voronoi formulas associated to automorphic forms are Poisson summation
formulas weighted by Fourier coefficients of automorphic forms with possible
twists by characters or other arithmetic weights. They usually serve as tools to
study the shifted sum > «(n)B(n+k) where a(n), 5(n) are Fourier coefficients

n<N
of automorphic forms. Such problems are often encountered when evaluating
power moments of L-functions, see, for example, [DFI], [LS], [Sa]. Voronoi
formulas for automorphic forms on GL(2) were well-established in the past (see
[Me]) and play important roles in the theory of GL(2) L-functions (see the
excellent survey papers [IS], [MS1]).
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Voronoi formulas associated to Maass forms on GL(3) which have twists
by additive characters were first derived by Miller and Schmid [MS2] using the
theory of automorphic distributions. In section 3, we give a new, simple, purely
analytic proof of Miller and Schmid’s formula. The proof is based on [JPS] and
two lemmas proved by the first author and Thillainatesan, see [Go, Chapter
VII] which they use to give a new proof of the converse theorem on GL(3).

In section 4, we start from the functional equation of L-functions on GL(n)
twisted by Dirichlet characters to derive Voronoi formulas for Maass forms on
GL(n) twisted by additive characters of prime conductors. The method is ex-
pected to work in general modulo some technical difficulties involving imprimi-
tive characters. Our main result is Theorem 4.1.

In the last section, we derive Voronoi formulas for Maass forms on GL(n)
with n > 3 twisted by Fourier coefficients of automorphic forms on lower rank
groups. The results are direct consequences of the functional equations of the
Rankin-Selberg L-functions ([Go, Chapter XII}, [JPS]).

2 Background on automorphic forms

The facts in this section can be found in [Go].
For n > 2, let G = GL(n,R),I' = SL(n,Z) and

h" = GL(n,R)/(O(n,R)-R*)

be the generalized upper half plane. Every element z € h™ has the form z = zy
where

1 12 *13 ... T1,n
1 23 ... T2.n
xTr = s
1 Tn—1,n
1

y = diag(y1y2---Yn—1, Y1¥2---Yn—2, - Y1, 1),
withz;; e Rfor1<i<j<nandy >0forl1 <i<n—-1
Let v = (v1,v,...,vp_1) € C* L. The function

n—1n—1
bn—i,jVj
(2.1) L =111
i=1 j=1
with

[ ifi+j<n,
(2.2) bij = { (n—1i)(n—j) otherwise,

is an eigenfunction of every differential operator D in D", the center of the uni-
versal enveloping algebra of gl(n,R). Here gl(n, R) is the Lie algebra of GL(n,R).
Let us write

(2.3) DI, (z) = Apl,(2)



for every D € D™. An automorphic form of type v for T' = SL(n,Z) is a smooth
function on h"which satisfies

1) f(vz) = f(2) for all y € T}

2) Df(z) = Apf(z) for all D € D".
If f also satisfies

3) [ fluz)d*u=0

I'NnU\U

where d*u =[] du;; for all upper triangular matrices of the form
1<i<jsn

I

m,

with 7y + 79+ --- 4+ 7, = n, then [ is called a Maass form of type v.
For z € b, let U,(R) denote the group of n x n upper triangular matrices
with ones on the diagonal. Let

(24) W]acquct (Zv v, ’l/}m) = / Il/ (wnuz)wm (u)d*u
Un(R)
be Jacquet’s Whittaker function which has rapid decay as y; — 00,1 < i < n—1.

Here
wm(u) = €(m1U1,2 + moug 3 + -+ mn_lun_lm)

and
+1

Wy =

1

Every Maass form f(z) of type v = (v1,...,vp—1) has the following Fourier-
Whittaker expansion:

(2.5) f(z)= Z Z Z Z Aszlllan-ymnfl)

E(n—k)
YEU,—1(Z)\SL(n—1,Z) mi=1 Mp—2=1 Mp_170 H |mk|T

k=1

'W]acquet (M (7 1> Zv”fvdﬁ;--l,l) )

where U, (Z) is the group of unipotent n x n upper triangular matrices with coef-
ficients in Z, and M = diag (mq - - mp—_s|mu_1|, - ,mimea, mq, 1) . It is easy to




prove that (see Chapter 9 in [Go]) the dual Maass form f(z) := f(w,'z"1w,) is
a Maass form of type (v_1,- - ,v1) with Fourier coefficients A(m,_1,...,m1).

Next let’s recall some facts about Hecke operators. Let £2(I'\ h™) be the
space of square integrable automorphic forms on I' equipped with the inner
product:

(f.9) = / 1230 d(2),

\p»

n—1
for all f,g € L2(T\ h"), where d*(z) = [ dzi; ] y,;k(nfk)fldyk is the
1<i<j<n k=1
G left invariant measure. For every integer N > 1, we define a Hecke operator
Ty acting on £2(T'\ h") by the following formula:

i €2 ... Cin
T f( ) 1 f Co - C2pn
Vi) = ——r % R
Nn21 B . :
=N
chl Cn

=
0<c;, 1< (1<i,<I<n)

The Hecke operators are normal operators. They commute with each other as
well as with the G invariant differential operators. So we may simultaneously di-
agonalize the space £2(I'\ h™) by all these operators. Let f be a Maass form with
Fourier expansion (2.5) which is also an eigenfunction of all the Hecke operators.
We normalize A(1,...,1) to be 1. Then we have the following multiplicativity
relations:

Almaml, ..., mp_1ml 1) = A(ma, ..., my_1) - A(m}, ..., ml,_,),

if (my...mp_1,m}...ml,_1) =1, and

micCp Ma2Cy Mp—-1Cn—2
A(m,1,...,D)A(my,...,mp_1) = E A( , ey )
n C1 C2 Cn—1
I1 cai=m
=1
c1|lma, calma, ..., Cpn—1|Mp—1

3 Voronoi formulas on GL(3)

In this section, we will give a new poof of the Voronoi formula for Maass forms
on GL(3) first proved by Miller and Schmid [MS2].



Suppose f is a Maass form of type (v1,12) for SL(3,Z). Let

100
_ |k -
A= q 10 ) § = (hv q)a
0 0 1
10 us 1
u = 1 (51 s W9 = 1 ,
1 1
1 2o w3\ [y1y2
z = 1 Y1 S f)s.
1 1
If f is automorphic then
(3.1) F(Auz) = f(ws' (Auz) ).

For k£ =0,1, let

L 11
(3.2) Fy.(y,h,q) <8m2) //f (Auz)e(—qui)duidus ;
00

r1=x9=0

with y = diag(y1y2, v1, 1).

Lemma 3.1. For fized yi, the function Fy(y, h,q) has rapid decay as yo — o0
or ys — 0.

Proof [Go, Chapter VII, pp. 8]. Suppose f has the following Fourier expansion:

mlamZ

R I b
Cmafma|

~EU(Z)\SL(2,Z) m1=1 my7#0

'WJacquet <diag(m1|m2>m17 1) (,Y 1) Z, (Vla V2)ﬂ/’1,1>
(3.3)

A(ma, mg) azg +b
Z Z Z “alal <m1(0x3+dx1)+m2§)‘3022+d>

(e,d)=1m1=1ma#0

. my|mal|y1y2
W, a dia, TR + d ) 1 ) ) ) ’
Jmcquet< 1 g( |022+d| miy1|cza | ) (v1,v2) 1/’1,1>
where zo = xg + iys. For any n; # 0,ny # 0, we may compute the Fourier
coefficient:
A(mq,m .
MWJacquet (diag(jm1ma|y1y2, miy1, 1), (v1,v2),¢1,1)
[myma|
111

:///f@dﬂmm—mﬂﬂﬁﬂmﬂg

000



Since every Maass form for SL(3,7Z) is even (see [Bu, (4.13)] or [Go, Chapter
IX]) it follows that A(mq,ms) = A(£my, £ms).
A simple matrix computation shows

a b 1 0\ _ [a+bh/q b (d b
c d)\h/q 1) \c+dh/q d) \d d)°
Applying this to (3.3), yields

11

//f(Auz)e(—qul)duldU3

00
-y oy Y Amem)
(cd) 1m1=11my£0 mafma|
1
a'zo +b
//e (ma(c (w3 +uz) + d'(x1 +u1)))e(—qui e <m2§R 2 )
czo+d
00
(3.4)
Wiacquet (diag(ma|maly1y2/|c' 22 + d|, miy1 |’ 22 + d|, 1), (v1,v2),¥1,1)
-duidus.
Because of the simple fact
1
Yz = 1 if a=0,
e(za)dz = 0 otherwise,
0
the integrals over wup,us are zero unless ¢ = —@7 mid = q. It follows that
my = 6. Setting g5 = q¢0 %, hs = hd~!, we have
(3.5)
A(6,m3) [ mohs 2mime k
Fk yahaq = €
wha =2 =5\ ) T

mo ;éO

'WJacquet (diag(5|m2|y1y2q5—1, 52/1Q67 1)7 (Vh 1/2), ¢1,1) .

Obviously Fi(y, h, q) has rapid decay as y2 — oo because of the decay property
of the Jacquet-Whittaker function. On the other hand, using the following
Fourier expansion of f(z) :

(3.6)

Z Z Z Alm, m1) <m1(0x3+dx1)+m2%az2+b>

mi|m czo +d
(¢,d)=1m1=1ma#0 1| 2| 2t

Wiacques (diag(ma|malyiya/|cze + d|, miyi|cze +d|, 1), (v2,v1),%1,1) 5



toghether with the identity

1 —us—x3 —uy —xq + 2Ustas)

— _ z2"'92
T T T
1
Yi1y2
/2242
T e | mod(03,R)RX),
z5+Yy3
1

and the identity (3.1), we obtain

11

/ / F(Auz)e(—qur)dus dus

00
o A 11
= 3 3 A [ (e (g 2 ))
(c;d)=1m1=1ma£0 ma || 5 x5 +y3
(cma G+ i) -+ menS )
e\ Trma| — qui + moRt
q x3+y;
(3.7)
. mi|ma|yiys miyz|czh + d| ,
W, acque d 5 7]_ s
Jaca t(( P d 0 g Y
~du1du?,.
Here

(3.8) zh = —ug — &3 + iy1\/ 23 + 3,

V' = (v9,11), and we have supressed the character 1 1 in the Jacquet-Whittaker
function in order to simplify notation. For the same reason as before, the

uy intgeral disappears unless mic = —¢q. Note that %Idb =2 - m Let

d=lc+rwithl €Z and 1 <r <|c| with (r,¢) = 1. After changing variables
ug — ug+1— = in formula (3.7), it follows that the right side of (3.7) becomes

m2 m1 _
e(gz1) Z Z \;ng| S(h, ma; qm; 1)

mi|g ma2#0
14—
—qxa(us + T3 -1
Z / e( x2(+ 3 )+m2%<c2z’>)
1L |_tmy 2T Y3 2
q

(3.9)

/
. ma|meol|yiye mays|cz
'WJacquet ((dlag 1| 2| 172 ) : 2| 2| ’ 1) 7(7/27 Vl)a 1;[}1,1) dU3,

VI3 + y3|czb) 3+ y32



where

(3.10) S(m,n;c) = Z e (md—!—nd)
d (modc) ¢
dd=1(c)

is the classical Kloosterman sum. Making succesive transformtaions

usz — uz — T3, U3—>U3?J1\/$§+y§»
(3.9) becomes

m2,m1 _
e(gz1) Z Z m1|m2 S(h,ma; qm; 1)

mi|q m2#£0

o0
qrayius mimaous
’ € 2 5T 5 2 30,2
- Vs +ys  Pyiv/as +ys(ug +1)

. m3|malys qy1y2/uz +1
'WJacquet dlag 2 2 > ) > > 9 1 9 (V2v Vl)v ¢1,1
a(z3 +y3)Vui +1 a3+
“y1y/ a3 + y3dus.

Taking partial derivatives with respect to x1,x2 and setting x1 = x2 = 0, we
have

A(ma, mq) _
Fi(y.h,q) = e(qr1) > Y ———28(h,ma;qmy ")

mq|m
m1|q ma#0 1‘ 2

®° . k
/ (—2mqy1U3> < m2maus )
’ ) 2
Y2 ¢*y1y2(uz + 1)

— 00

o milma| [
. WJacquet dlag 7(191 u3 + 1 1 V21 Vl ¢1,1
qy2/u3 +

“y1yedus,

(3.11)

which has rapid decay as y2 — 0 because of the decay property of the Jacquet-
Whittaker function. [J
It follows from the above lemma, for £ = 0,1, Rs; large, that

) yl 3/2

is absolutely convergent for all s € C and hence an entire function of ss.
The following two lemmas on Fi(h,q,s) were used by the first author and
Thillainatesan to give a new proof of the GL(3) converse theorem (see [Go,
Chapter VII]). These lemmas are crucial for the Voronoi formula:



Lemma 3.2. ([Go, Lemma 7.1.12]) For Rss large,

1 A(5,m omima \" [ mah
Fi(hsq,5) = 2 e Z (0,1m2) ( 2 2) 8( : 6) Gi(s1,82,v)
s

ma#0 |m2|82 Q(S qs
with
(o152,7) = [ [ Wscer(diog(yayas i 1), G, o~z 2
yi y2
00
Remark: This follows directly from (3.5).
Lemma 3.3. ([Go, Lemma 7.1.13]) For —Rsy large,
Fiulh,q,5) = (—2mig)* Z Z A(ma, mq) img \*
kL 4G, - q91+92F 91+92 k+1 252‘m |k+1 s2 |m2|
ma1| qmg;éO
-S(h,ma; qmi ) Ga(s, v, k)
with

GQ(S v, k //WJacquet(y7 (1/27V1) wl 1) 71+52 1-2k (27Ty2)

0
yfk—ﬁ—sl Szy% % @?
Y1 Y2

and K, (x) is the K-Bessel function.

Remark: Lemma 3.3 follows from (3.11) by making the transformations

Y1 mz|mo|
V= Yo = —F—=
q\/uz +1 g/ uz + 1y132
and invoking the following formulas:

oo

[ om0 + 1) au = Tl (),
2 = 577 TY2al).
4 clu)(® 1) *udu =2 (i) il 2l

Now, for s, > 3, we define

(3.15)  Li(h,q,52) = (izmzf) {6 <m2%> (1)t (M)]

mas0 12 a5 as
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and

m27m1)
(3.16)  Li(h,q.s2) Z Z m2t2s =T ke
my

mailq m2>0

- [S(hyma;gmi") + (=1)FS(h, —ma;gmi )] .

By Lemmas 3.2 and 3.3, these functions have analytic continuation to the whole
complex plane and satisfy the following functional equation

,L'k

(3.17) mLk(ﬁ,q,Sz)Gl(Shszw)
qs 051

s1+s2
T 2 ~
= q51+52—kr(51‘552 ) Lk(h, q, 1-— 82)G2(81, So, UV, k‘)

Define

(3.18) W*(y, (v1,00)) = w957 (32) g (32>

T (3a32=L) W (y, (v1,v2), ¥11)-
Then by [Bu, (10.1)],

rr dyy dyy 71
(3.19) / / W* (g, (1, )y~ Hyge L B2 G (51, 82, 0),
J Y1 Y2 4

where

D(5 o)D) ()LD (7 (257

n(5) |

GT(Sl,Sg,V) =
and
(3.20) a=vy —2v+1, fB=-v1+1vs, =211 +1vy— 1
By ([St, pp. 357]), we have

2ktsy—sa-1 dyy
// (v2, 11 )Kw(%yz) Fhtsimeay, — 2 %%
1 Y2

—3s;] —6k+3s9—3

(321) =TT 2 G2(81a32vy7 k)

where G'z(sl, s2,v, k) is equal to

11“ 1—s59+2k+« r 1—s3+2k+0 r 1—so+2k+7
4 2 2 2

_F(sl+a)r(81 —l-ﬁ)l_‘(Sl +’Y>
2 2 2 '
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From the above formulas, we obtain

(3.22)
Lk (Bv q, 52) = f/k(hﬂ q, 1- SQ)i_kq_332+1+3k7T332_3k_%5282_1_2kG(82a k) V)7
where
T 1—so+2k+a T 1—so4+2k+3 T 1—so+2k+y
(3.23) G(sg, k,v) = ( 2 ) 2 )T 2 )

(2500 (252)T (2257

x

Assume ¢(x) € C2°(0,00) and ¢(s) = [ d(x)x % is its Mellin transform. Then
0

for o > 3, by Mellin inversion, we have

(3.24) S A, mo) [e (mz]”) +(=1)ke (—mmﬂ b(ms)

mael qs qs

1
T o

/ ¢(s2 — k) Ly (h, q, s2)ds>.

Rso=0

Moving the line of integration to —o, applying (3.22) and letting sy — —s3, it
follows that (3.24) is equal to

—3k—2 143k sk
T 2q57%6 A(ma,my)
91 +k §: 2k+1, k+1
milgssma>0 1 T2

[S(8hs, ma; dgsmy ) + (—=1)*S(6hs, —ma; Sgsmy )| P <m2m1> ’

q30
where
(3.25)
1+so42k+a 1+s2+2k+08 r 1tso+2k+yy
(bk(l‘) = /(7'1’356)_82 ( 2 s Ja( _33_/8 ) —(52—7 2 )¢(—82 - k‘)dSQ.
L(==)I(=2)M(=%)

Rso=0
Set a := hs and ¢ := g5, we end up with the Voronoi formula on GL(3) :

Theorem 3.1. Let k = 0,1, and ¢(xz) € C(0,00). Let A(m,n) denote the
(m,n)-th Fourier coefficient of a Maass form for SL(3,Z) as in (3.3). Let
a,a,c,d € Z with § > 0,¢ # 0, (a,c) = 1, and aa = 1(mod c¢). Then we have

> Adm) [e ("20) + (-1 (2] otm)

m>0
5
_ g 3k—35 13k gk Z A(mg, ml)
- 2;1+k 2k+1, k+1
myq|cd m2>0 my My

2
-(S(éa,mg; Semi ) + (=1)kS(6a, —my; 5cmf1))<1>k (m;r?) :



12

Next let
-3 36
0 ()= T %
0.1() 0($)+m%m2i 1()
and
-3 35
®l  (2) = Bo(z) — 2, (2).
ba(0) = 2ola) - T 000

We obtain the following:

Corollary 3.1. Let k = 0,1, and ¢(x) € C°(0,00). Let A(m,n) denote the
(m,n)-th Fourier coefficient of a Maass form for SL(3,Z) as in (3.3). Let
a,a,c,0 € Z with § > 0,¢# 0, (a,c¢) =1, and aa = 1(mod ¢). Then we have

S A m)e (m{‘) o(m)

-3 2
2 A(mao, m1) _ mam

E g =22 8(8a, my; demy MBS 3 !
mM1ma ’ c36

m1|cd m2>0

5 2
Lo A(mag,mq) _ mam
E E ——2 2 5(8a, —ma; demy @Y, (1 .
: 35
myma c

my|cd m2>0

4 Voronoi formulas on GL(n) twisted by additive
characters

In this section we will derive Voronoi formulas on GL(n) twisted by additive
characters. The method of proof is much simpler, even for GL(3), than the
method presented in section 3, at least in the case of additive characters where
the conductor ¢ is a prime. We expect this method to work in the most gen-
eral case modulo some technical difficulties involving imprimitive characters.
For simplicity we assume ¢ is a prime. Without loss of generality, let f be
an even Maass form on GL(n) of type v = (v1, -+, vp—1) € C""1, which im-
plies its Fourier coefficients A(xmq, £ms,...,tm,_1) = A(m1,ma,...,mp_1).
We also assume f is a Hecke eigenform with normalized Fourier coefficient
A(1,...,1) to be 1. The Godement-Jacquet L-function defined for Rs large
by

= A(m,1,...,1
Lf(s);zz(Ts)
m=1

has analytic continuation to the whole complex plane and satifies the following
functional equation:

(4.1)
r Ly(s) T (1_8(1/)> L:1-s),
H < ) (s 11 7
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where f is the dual Maass form of f and where \;(v) and A;(v) are linear forms
in v as defined in ([Go, Remark 10.8.7]). Let x be an even primitive character
modulo ¢. Then, for s sufficiently large,

Lis) =Y ’me)
m#0

has analytic continuation to the entire plane and satisfies the following functional
equation:

s

(4 11 (=53 L5

is the Gauss sum. Let
B . s—Ai(v) ~ B . 1—5—5\1-(1/)
(4.3) G(s)ile<2>, G(1S)Hr< 5 .
Then (4.2) implies that
_ n_—ns_—2+4ns — 5 -
(44) Lf(S7X) _T(X) q T2 G(S) f(l _Sax)
For (m,q) =1, (g, h) = 1 we have the following identities:

5 Y 0 xm) = T (Kacamg) + Kaoa(-m,q)) + (1),

2
X (mod q)
X7#X0

x(=1)=1
where
(4.6) Kp_1(m,q) = 3 e (W)

1T Tp—1=m(q) q
is the hyper-Kloosterman sum and
mh 1 1

4. — | =— x(mh -
(@7 (M) - X st -
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Let
(4.8)
A(m,1,...,1) (mh

Lighs) =3 e (M)

= Iml q

B A(m,1,...,1) /mh A(m,1,...,1) /mh
D T SO AP Dl T )
m=0(mod q) (m,q)=1

In the above, by (4.7), we have

(4.9)
Z A(m,l,,l)e<7nh>
(et Im| q
1 A(m,1,...,1 _
LAl S Sy
g-1=  |m|
m x (mod q)
X#Xo0

x(-1)=1
_ 1 Z A(m, 1, . 5 1)
q-— lm[s 7

where the odd characters don’t contribute due to f being an even Maass form.

Applying the functional equation (4.4) and the identity (4.5), the first term
in (4.9) becomes

gt . G- s) A(1,...,1,m)
4.1 2 _— _
@0 T e 2 T

. {Q; 1 (Kp_1(mh,q) + Kn_1(—mh,q)) + (—=1)"

after analytic continuation. Let

o) = Y H

ks
k=0 q
—1
(4.11) = [1+> ()" DAL g1, )+ (D)™
1<i<n—1 M

position [

Then for Rw sufficiently large,
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So the following identity is obvious

A(L, ..o, 1 A(L, ..o, 1,
Z ( e m):Z ( g m)

m#0 m#0
(m,q)=1

(4.12) -y M(l - (;Bq(w)—l).

mU}

When g|m, we have K,,_1(mh,q) = (—1)""2, so using (4.12) with w = 1 — s,
we have

—ns+1,_—Z4ns A
q T2 G(l—s)ZA(l,...,l,m)

1-s
2 GG 2= Il
—ns+1,_—2+ns A
_q 72t G(1 — ) —A(1,...,1,m)
= 5 10 7;) i Eam1(mh, @)+ Kooy (~mh, )]
(4.13)
o Gl — ) AL,...,1,m) - B
_1\n—1 ns+1 5 +tns ) ) _ _ 1
+H(=1) g o n;) i (1-d,0-97").

It is obvious that
et G- A,... 1
@1a)  (cp g GU =) 3 Al 1,m)

q—1 G(s)

—nstl L G- A(l,...,1,m) -
— (_l)nq ﬂ_ngrnsG( S) Z ( ) ) 7m)

g—1 G(s) =

It follows from (4.13) and (4.14) that we can write (4.10) as

—ns+1l—%+ns (1 _ A(l,...)1 7 h
q ™ G( S)Z ( ) ) 7m) [Kn_l(mh,q)‘i‘Kn—l(_mh’qﬂ

1-s
2 G0 2 ml
(4.15)
o Cny . G(1 =) A(1,...,1,m) - _
—1)" 1 _—ns+1 5 +tns ’ i) 1— 1— 1 )
+(-1) q Q G(s) n;ﬂ) lm[1=s ( bq( s) )
WgT G- s) A(l,...,1,m) - 3
+(—1 T2 1—-s)7".
( ) q-— 1 G(S) ’mz?éo \m\l_s ¢q( )
The second term in (4.9) is equal to
1 Am, 1,1
oA G(1—s) A(l,...,1,m) 1
BT O D Y
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after analytic continuation, where

(417) o0l :iA ...1)

k=0
-1

= |1+ Z (-Dlg A1, ..., 1,q,1,...,1) + (=1)"g™™®

ISisn—1 position [

by the Hecke relations. The first term in (4.8) is equal to

(4.18)
A(m DA(m,1,...,1
Z (l Z Z ks)m(s )
m=0(mod q) k=1 (m,q)=1
_ _ s —-17 . nsng(l_s) A(]-vv]-vm)

after analytic continuation. By combination of (4.15), (4.16) and (4.18), it
follows that (4.8) may be written in the form:

(4.19) Ly(q,h,s) = 7"~ % G(1 - S)Z A(L,...,1,m)

) 2o

—ns+1 _ _ ~
(K () K (=B )+ (~1)" (1 (1= )7
) 5,1 = ) = () 1 4y(0))
g—1 %1 s q 1¢(15 q\$ J

qfnerl _ = 1 1 1

()" a1l =)™ = o) 7 1= ()
= > (DAL Lgl 1) Y gt Y ¢
1<i<n—1 position o<y<n—1-1 0<i<n—2

Applying the Hecke relation

A, ..., L,m)A(L, ..., 1, q,1,... 1) =A(1,...,1,¢,1,...,1,m)
——— ——

position [ position [

(4.20) +A(1,...,1,q,1,...,1,@),
—— q

position [—1
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where the second term is nonzero only if g/m, we have

(4.21)
A(L,...,1,m) g st - - 1 - -
Z [m[1=s {(_1)n -1 Pg(1— 5) 1_%71%(5) P 1= gg(s)!
m=#£0
position
A1, 1,¢,1,...,1,m)
_ ., Lg ... 1,m 41 e
- Z Z |m|1—s (=1 Z q ’
1<I<n—1 m#0 o<jgn—1l—-1

position [—1

Al 1,q,1 1
+ Z Z ( s bygyly oy 7m)(_1)l+1 Z q(flJrl)sflfj.

=+
2<I<n—1 m#£0 0<j<n—1—1

Similarly by the Hecke relation (4.20), one can verify the following
(4.22)
A(l,...,1 ~
3o A L) gyt (1 G, 1 - )

1—
= ml

position [

——
_ _ A(l,...,1,q,1,...,1,m)
— Z (—1)lq1 n+l(1—s) Z

1—.
1<Ii<n—1 m#0 |m| ’

position [—1

—
l S—7L+l(1—s) A(l,...J,q,l,...,l,m)
+ > (D > -

|m|175
2<i<n—1 m#0

Combining (4.19), (4.21) and (4.22) we arrive at

(4.23) Li(q,h,s) =n""2 ég(;)s)ﬁf(q,ﬁ, 1—3s),
where
(4.24)
Lyi(q,h,s) = T AR Lm) (Kn,l(mﬁ,q) + K1 (—mbh, q))
= EE

position 1

. oo, Lg1,...,1,m
2 : ( ])l+1q 1( k+1)§ : .

1<I<n—2 m=#£0 |m|5

Note that when n = 2 the second term on the right side of the above formula
doesn’t exist.
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After analytic continuation, we obtain the following functional equation

(1-s) ~

(4.25) 7T G(s)Ly(q, hys) =77 Gl —s)Ls(q,h,1—5).

o
Assume w(z) € C*(0,00) and @(s) = gw(a:)xs%z is the Mellin transform of

w(zx). Then for o large, we have

> A(m,1,...,1) [e <”;h> +e (‘qm)] w(m) = ;m%[U @(s)Ly(g,h,s)ds.

mEZ

If we shift the line of integration to —o and apply the functional equation (4.23),
we end up with the Voronoi formula. To state it, let

(4.26) Ql(x):% / ga(s)wﬁwxms,
Rs=—0o

(4.27) Qg(x):% / &(S)W;Wxsds.
Rs=—0o

We now state the main theorem in this section.
Theorem 4.1. (Voronoi formula on GL(n)): Let f be an even Maass Hecke
eigenform for SL(n,Z) with n > 2. Let A(mq, ..., mp_1) be the Fourier coef-

ficient of f as in (2.5). We assume A(L, ..., 1) = 1. Let w(z) € CZ(0, o0),
q = prime, and hh = 1(mod q). Then

o (2) () s

m>0
= Z AL, Lm) (Kn_l(mi_z, q)+ Kn_l(fmi_z,q))ﬁl <m77n>

= |m| q"
position [
AL, ..., 1,¢,1,...,1,m) |m|m™
+ Z (_1)l+1 Z ) P a| 7|7 s Ly Q2 ( l )
1<i<n—2 m##0 m q

where K,_1(m,q) is the hyper-Kloosterman sum (4.6) and Qy(x),Qa(z) are
defined by (4.26) and (4.27) respectively.

Remark. When n = 2 the second term on the right side of the above formula
doesn’t exist.
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5 More general Voronoi formulas on GL(n)

For 2 < 1 < n, let f, g be Maass forms of type vy € C*~ 1, v, € C!=* for SL(n,Z)
and SL(l,7Z), respectively, with Fourier expansions:

= = A (ml,...7mn,1)
61 fE@= Y D D D v
YEUR—1(Z)\SL(n—1,Z) m1=1 Mp—2=1 My_17#0 H |mk|%

k=1

'WJacquet <M (’Y 1) Za”fvdﬁ,...l,l) )

(5.2) g(z) = Z Z Z Z Bgl(_T‘la-“ymlfl)

~EUI_1 (Z)\SL(1—1,Z) m1=1 my_2=1m;_17#0 H |mk| T

Set

(5.3) L(s)=> W

(5.4) INOESS w
m21

to be the associated L-functions which satisfy the following functional equations:

(5.5 Ag(s) ;:war (W) Ly(s) = A;(1 —5),

(5.6) Ay(s) == war (3_;(”‘7)) Ly(s) = Ay(1—s),

where f,§ are the dual forms. Then the Rankin-Selberg L-functions Lyxs(s)
defined by

= St B(mg,...7ml)Af(m17...,ml,l,...,l)
5.7 Loxf(s) = 9
(5.7) axs() Z Z (mllml2_1 coomy)®

m1:1 mlzl

for $s > nl has a holomorphic continuation to all s € C. It also satisfies the
functional equation

2o e op (s — Ni(vg) — A (v
(6.8 Ager()i= [[[[r 5 2r (SN0

i=1j=1

= A_F)Xf'(l — S)
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For ¢(x) € C°(0, 00), let

~ 7 dx
(5.9) o(s) = [ op(x)z* —
/

be its Mellin transform. Then by Mellin inversion

(5.10) Z ZB mg,...,7nl)Af(ml,...,ml,l,...,l)gb(mllml2 Looomy)

mi=1 m;=1

(oo} oo
=5 Z Z g(ma,...,mp)Ar(m,...,my,1,...,1)

-é()@nﬁnél -my) " ds
~ omi / V(5)Ligs (s
(o)
Moving the line of integration to f8s = —o and applying the functional equation,

it follows that (5.10) equals

ori | POy (1= Gy, )ds
(=o)

where

o w = (L )
(5.11) Vfal/g HH nls 2 (vy) '
: :1

2T (S*Ai(Vg;*Aj(Vf) )

Expanding L, (1 — s), it follows that (5.10) is equal to

ZZ Bz(ma, ..., m)Af(ml,...,ml,l,...,l)q)( L1

mymy ),
m1m2 ceemy

Since

(5.13) Bg(ma,...,my) = Bg(my, ..., ma),

and

(5.14) Af(ml,...,ml, L...,0)=A1,....,1,m,...,mq).

We end up with the following theorem.
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Theorem 5.1. (Voronoi formula on GL(n)): Let f, g be Maass forms for
SL(n,Z), SL(l,7Z), respectively where 2 < I < n. Let A(my, ..., mp_1),
B(my, ..., my_1) denote the Fourier coefficients of f and g as in (5.1) and
(5.2) .Then for ¢(z) € C°(0,00), we have

Z Z Bg(mg,...,ml)Af(ml,...,ml,l,...,1)¢(ml1ml2_1-~-ml)

m1:1 ml:1

= >\ By(my,...,ma)Ar(1,...,1,my,...,m _
-y 3 o 21) J;El D p(mlmb - my).
’ITL1:1 m,,:l m1m2 e ml
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