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Voronoil Networks and Their Probability of
Misclassification

K. Krishna, M. A. L. Thathachar~ellow, IEEE and K. R. Ramakrishnan

Abstract—Nearest neighbor classifiers that use all the training All these algorithms, though need a training phase, are shown
samples for classification require large memory and demand large to perform better than NNC in many cases, apart from reducing
online testing computation. To reduce the memory requirements o compytational effort and memory requirements

and the computation cost, many algorithms have been developed . . -
that perform nearest neighbor classification using only a small All the above-mentioned algorithms share the same classifi-

number of representative samples obtained from the training set. cation model, i.e., perform NN classification using some repre-
We call the classification model underlying all these algorithms sentative samples instead of all the training samples. This classi-
as Voronoi networks(Vnets), because these algorithms discretize fication model is called thgoronoi networkVnet) in this paper

the feature space into Voronoi regions and assign the samples injya05,56 it discretizes the feature space into Voronoi regions [8]
each region to a class. In this paper we analyze the generalization . . . ? .
capabilities of these networks by bounding the generalization and assigns samples in gach region to a class. Voronoi reg|0n§
error. The class of problems that can be “efficiently” solved by —are formed by a set of points in the feature space. Each Voronoi
Vnets is characterized by the extent to which the set of points on region contains those points of the space that are closest to a
the decision boundaries fill the feature space, thus quantifying point among points in the set. From now on, the representative
how efficiently a problem can be solved using Vnets. We show g4yhjas are referred to as ¥aonoi centergVeenters). In this

that Vnets asymptotically converge to the Bayes classifier with L .

arbitrarily high probability provided the number of represen- paper, W? f';malyze the capabilities of Vnets to generalize from a
tative samples grow slower than the square root of the number Se€t of training samples to unseen test samples and address some

of training samples and also give the optimal growth rate of issues in their design pertaining to the solution of pattern clas-
the number of representative samples. We redo the analysis for sification (PC) problems.

decision tree (DT) classifiers and compare them with Vnets.

The bias/variance dilemma and the curse of dimensionality with A A Note on the Name “Voronoi Network”

respect to Vnets and DTs are also discussed.

The considered classification model is referred to by various

names which have mostly originated from different learning
algorithms. For example, we have LVQ classifier [3], nearest
prototype or multiple prototype classifier [6], prototype-based
I. INTRODUCTION NNC [4], nearest-neighbor-based multilayer perceptron

NE OF THE most popular and simple pattern classifiefN-MLP) [5], etc. One of the most popular among these
O is the nearest neighbor classifier (NNC). NNC assigns fiMes 1S the LVQ class_|f|er. However, LVQ is also used to refer
an unclassified sample the class label of the nearest sampl&Pirfhe class of clustering algorithms (see, for example, [9])
the set of training examples. Though there is no training phad20Ugh it was originally used to refer to a class of supervised
NNC needs sufficient memory to store all the training sampl&&2ring algorithms [3]. In view of the above facts, a need was
and needs to compute, for every test sample, its distance frifii [©© denote the classification model underlying the above
each training sample. There is a class of algorithms that ov8{90rithms by an appropriate name. Since the fundamental
come this problem. These algorithms find a small number grilding block for the classification model is a Voronoi region,

representative samples using the training set and use these d8fclassification model is referred to as Vnet in this paper.

ples to perform nearest neighbor classification. Some of the %I—
gorithms in this class find a set of representative samples, which o )
is a proper subset of the training set, such that the classificationr>ince Bayes decision rule (BDR) is the best map that can be
error over training samples is minimized [1]. The other algdéarned, it is proper to judge the generalization capability of a

rithms obtain the representative samples, which need not be/ig by the error between the rule and the BDR, which is re-

subset of the training set, by applying an iterative algorithm d@fréd to as the generalization error (GE) in this paper. GE is
the training set, [2]-[7]. The popular learning vector quantiz&i-EC'dEd by two factors in case of Vnets, as in any other neural

tion (LVQ) algorithm [3] belongs to this category of algorithmsnetwork. One of the factors is the representational capacity of
the network. There could be some error between the BDR and

. . , the mapv which is the best among those generated by Vnets
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best Vnetvg. The reason for this error is the limited informathe number of Vcenters is derived so as to minimize GE. The
tion available on the underlying distribution of samples becaueorem also sheds light on the tradeoff between the number of
of finite number of training samples. This error is called the e§/centers and the number of training samples which has been re-
timation error (EE). Previously, these two issues have been &ekred to as the bias-variance dilemma in [15]. The phenomenon
dressed in isolation [10]-[13] as well as together [14]-[16] fasf “curse of dimensionality” in Vnets is also analyzed.
some class of networks. In this paper, we address both thesBecision tree (DT) is another popular classification model
issues for Vnets under a common framework as in [16], [14R2], [23] that shares a structure similar to that of Vnet. DT is
however, the analysis in [16], [14] deals with the problem & binary tree where each nonleaf node contains a split rule that
learning real-valued functions. decides whether a sample belonging to the left or right subtree,
The approximation capabilities and the behavior of approxnd each leaf node is assigned to a class. The bound obtained
mation error of various function approximation schemes, neufal the Vnets can be rederived for DTs too. A bound on GE is
networks in specific, have been analyzed in the past (for exbtained for DTs and is compared with that obtained for Vnets.
ample, see [10] and [11]). In all the studies the functions afidhis kind of analysis suggests a basis for analytical comparison
assumed to be real valued and the problem of PC, where tife@ny two different classification models. Moreover, it appears
functions map to a finite set of class labels, is considered aghat, the observations made with respect to Vnets are applicable
special case [11]. In classical approximation theory, the ratetofother classification models too.
convergence of AE with respect to the number of parameters ofT his paper is organized as follows. The following section de-
the approximating function is obtained in terms of the degreelops Vnet classification model. The generalization error in
of smoothness of the function that is to be approximated. In th@ets is formulated in Section Ill. Section IV contains the main
case of PC problems any such characterization does not appeaultviz.,a bound on GE. Proofs of most of the results stated
to have been done in the past. In this paper, the rate of converthis section are relegated to Appendix for clarity in presen-
gence of AE of the maps, that take values from a finite set tsftion. Various implications of the main result are discussed in
symbols,viz., the maps associated with PC problem, has be&ection V. The bound on GE for DTs is rederived and is com-
characterized by the extent to which decision boundaries fill tip@red with that of Vnets in Section VI. Section VIl makes some
domain of the maps. One of the contributions of the presetnmments on and discusses some possible extensions of the pre-
work is that the above-mentioned property is captured by a fursented results. Finally, the paper ends with a summary in Sec-
tion called theP-coarse index functiowhose value at infinity tion VIII.
is thegeneralized fractal dimensiomnder a given probability
measure’. The approximation error made by Vnets is bounded [I. V ORONOINETWORKS
in terms of this function exploiting the nice geometric proper-
ties of Voronoi regions. This analysis, first of its kind to the be§

of our knowledge, gives insights into the sources of errors m &h respect to a set of training sampleEhe mapping that is

by Vnets. N . . learned should be able to map unknown samples (samples that
Blumeretdal. [.17] analyzed the es_tlmatlon errorin Iearnlngare not present in the training set) into their correct class labels.

Sl_Jbsets of® using the results of uniform convergence O_f en,ml'he ultimate aim of learning is to find a map that minimizes the

pirical process from [i8]' [19] under the framewor_k of valiant Saverage misclassification over the feature space. This is a well

[20] probably approxmately correct (PAC) learning. Haus.SI%liudied topic in pattern recognition literature [24]. The map that

[13] generalized the analysis to learning real valued funCt'oﬂﬁs the least average misclassification error is the BDR. Vnet

a;}r.]d Ben—Davt|)det acli. [21]ht0 {0’. o N}—valuﬁd fLE)nCt'OSS'.In OIalg)proximates Bayes decision regions by Vornoi regions.
this paper, a bound on the estimation error has been derived by, o+ giscretizes the feature space into disjoint convex sets,

considering a class ofo, 1}-valued functmns_that IS derlVedviz., Voronoi regions and assigns each region to a class label. Let
from the class of maps generated by Vnets using the results fr&mc ¢ denote the feature space anid= {1, l» In} the
— ) R J

[13]. Elsewherg 71, we havg also derived a bound on estimatiggt of class labels. Each Voronoi region is specified by a point
error by boundingl-dimension of the class of maps generat z.,the Vcenter, inX. Let{¢; € X, i = 1, 2 K} be aset
by Vnets using the results from [21] and found that the formef \./,centers Thén V i X Ty

approach gave better results.

The task of pattern recognition is to learn a mapping from the
ature space to the set of class labels. The learning takes place

net is defined as

K
The main theorem of this paper gives a bound on the general- v(e, a, x) 2 Z a;xs, (), a; €Y (1)
ization error of Vnets obtained by separately bounding the com- = '
ponents corresponding to AE and EE. As stated earlier, this (gheree — [e1, ¢2y ..., cx], @ = [a1, ag, ..., agl, a; €Y,

sult characterizes the approximating capabilities of maps takng(,) is the indicator function of sef’ and S, are as defined
values from a finite set of class labels that is used to find thg|ow. Let

rate of decrease of AE of Vnets. Furthermore, it gives a suffi- g é{ Az =l < |z =, 5 1, ¥}
cient condition on the relative growth of the number of Vcenters T TG TGl JES VI
in Vnet with respect to the number of training samples for trend
asymptotic convergence of the probability of misclassification S é{x: z €SN 85}, Jj>1i, Vj}

to the Bayes error, thus proving the asymptotic convergence o
y P g ymp 9 IThe word “samples” is used to refer to a pair of a feature vector and its class

Vn_e.ts to a corresponding BDR under fan_‘ly large class of profipe;as well as to a feature vector alone. The particular reference would be clear
ability measures. As a corollary, the optimal rate of growth @fom the context of usage.
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where|| - || is the Euclidean norm ari@iS is the boundary of the The aim of learning is to find a that minimizesR[v]. Let
sets, i.e., if z is at an equidistant from two or motgthenz is
assigned to the set with the least index. Then define v (z) = Z Lixs, () (5)

A o p—
. . . (_ ) be a BDR that minimize&[v] i.e.,v* = argmin, R[v], where
5; are convex sets. Observe that } partition.X into K disjoint B, are appropriately defined. Since we are interested in ana-

convex setsi.e., S; N .S; = Pif i # j, andus; = X. lyzing how best the learned rule approaches a BDR, the class of
. BDR that can be “efficiently” approximated by the rules gen-
A. Learning Vnets erated by Vnets are characterized, instead of characterizing the
Learning an input—output map using a Vnet involves findingpace of probability measures.
the Vcenters(cy, ¢s, ..., cx} from a set ofm training sam- SinceP is unknown,E[v] is unknown. Only source of infor-
ples,D,,, = {(z1, 11), (x2, ¥2), - - -, (Tm, Ym)}, such that the mation available is that of random samples drawn according to

misclassification error of the resultmg map over the training sé&. Let Dy, = {(x:, ¥:)}i~, be the set ofn training samples

is minimized. It may be noted that NNC is an instance of Vnetandomly drawn accordmg t®(x, y). Using this data set, the

whereK = m. expected risk can be approximated by émepirical risk 2.,
The empirical risk or the average misclassification error over Al m

D, of a Vnet withK Vcenters specified by anda is given by m[v] = Z dy (v(x:), ¥i)- (6)

il Z dy (v(c, a, z;), yi) (3) A common strategy is to est|mate the BDR as the mapping that
minimizes the empirical risk.

onY given by sumptions, the expected risk converges in probability to the em-
1 ifab pirical risk for each giverv, and not for allv simultaneously.
dy(a, b) = {0 fa b Va,beY. (4)  Therefore, it is not guaranteed that the minimum of the empir-

ical risk will converge to the minimum of the expected riskias
tends to infinity. Therefore, as pointed out and analyzed in the
undamental work of Vapnik and Chervonenkis [18], [19]the no-
ion of uniform convergence in probability has to be introduced
gnd it will be discussed later.

The learning problem is to find the pdi*, a*) that minimizes
E(e, a). It turns that for a fixed:, the vectora, that minimizes
E(e, -), is uniquely determined. So, the problem of fmdmé
(¢*, a*), in effect, boils down to finding* alone.

As mentioned in the previous section, there exist many The standard " it i I net
gorithms that try to findc*. As in case of any classification € standard practice in pattern recognition using neural net-

model, there exists a tradeoff between the average misclag\é(i)rkS is that the number of parameters of the network is fixed
fication over training set and the probability of misclassifica® andf,, [}’] IS m|n|m|zedt0\(/jelr)the [?[ararEetertﬁpacf:e ; de ovzr thef
tion which reflects the generalization capabilities of Vnets. FGPAce of maps generated by networks with a fixed number o

example, one can easily show using a simple example tha!c,naéame_ters. In the case of Vnets, th.e nqmber of parameters is
network with K = m has a higher probability of misclassiﬁ_proportlonal to the number of Voronoi regions or the number of

cation than an optimal net with' < m, whenk is properly hidden units. LeVc be the space of maps generated by Vnets
chosen [7]. Thus the problem of findingg in Vnets is related with X hidden units, i.e.,

to well-studied structural risk minimization in neural networks v AL B K v
[18]. The results presented in this paper throw some light on this K= ( Z aixs, (@), a; €
issue.
S; asin (2), foree X% % . (7)
Ill. PROBLEM FORMULATION

Let X C R4 be the feature space abd= {, lo, ..., [y} [Fromnow on, a Vnetis denoted hy-) omitting the variables
be the finite set of class labels. Dendfex Y asZ and(a: y) as canda.] Then,R,,[v] is minimized ovelVy i.e.,v* is approx-
2. LetSx be ao-field of subsets of{ andSy- be the power set imated by the functiony .., defined as
of Y.LetSz; = Sx x Sy be the smallest-algebra inX x Y A .~
which contains every set of the fora x B,gA € Sy, and UK,m = atg Al Lmlu]. (8)
B € Sy. Let P be a probability measure ¥, Sz). Let Py, Assuming that the problem of learning. ,,, from D,,,, viz.,
and Py be the probability measures induced®pn (X, Sx), minimization of R,,,[v] over V., is solved, we are interested in
and(Y, Sy), respectively. Let be aSx measurable map from finding out the “goodness” ofx ., apart from finding out the
X into Y. Then the average misclassification error, referred t9ass of problems that can be solved “efficiently” using Vnets.

asexpected riskincurred using is given by The problem of findingx ,,, is addressed by various learning
Rlo] — d Pld algorithms mentioned in Section |. The goodness gf,,, is
[l= | dy(v(z),u)P(dz). measured in terms of its expected ri8k ], which is equal

to the probability of misclassification. Sineé is the best pos-
25 has been defined to make the definition precise. If the underlying proba:

bility measure is absolutely continuous with respect to Lebesgue measure, tﬁbwe mapping that minimizes the probability of misclassifica-
theseS,;’s can be ignored. tion, R[v*] < R[vk, ). The above issues are analyzed below
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by bounding the differende?[vk, .| — R[v*]|, which is referred It may be noted that
to as the generalization error (GE).

Remark I11.2: One expectsy ,,, to become a better and R[] = Rloll < dv. p (v, vic). (11)
better estimate ak” andm go to infinity. In fact, whenm in-  Therefore, in this sectiondy. (v, vx) is bounded to bound
creases, the estimate of the expected Hslv] and hence the |R[v] — R[vx]| which depends om especially, theP’-coarse
estimatorvk ,, improves. But, whers increases, the numberindex functionof ». Before formally deriving the bound, the
of parameters to be estimated increases with the same amanmiition behind definingP-coarse index function of a mapping
of data, and hence the estimate of the expected risk deterioraiegescribed below.

In this situation, the estimate can be improved by seeking moreAny two neighboring Vcenters generate a hyper planar de-
data. Therefore’ andm have to grow as a function of eachcision boundary. Since these hyper planes can efficiently ap-
other for convergence to occur. The relation betwieandm  proximate any surface which is smooth enough, it is intuitive

for the convergence is derived as a corollary of the main thigrat BDR with smooth decision boundary surfaces can be effi-

orem of this paper. ciently approximated by Vnets. On the other hand, considering
the contribution by a Voronoi region to the average misclassifi-
IV. BOUND ON GENERALIZATION ERROR cation error, if a Voronoi region is a proper subsepf{see (5)]

N for somei, then the error made in this region is zero. Therefore,
the number of such Voronoi regions, if each region is equally
probable, should reflect how close is the mapping generated by
the Vnet to the BDR that is being approximated and hence the
approximation error. The relation between this number and the
smoothness of the decision boundary surfaces is brought out in

There are two factors involved in the approximationud
by vk, m, Viz., how accurately* can be approximated by the
maps withK Voronoi regions, and given a data of size how
accuratelyv ,,, approximates the closest function amang
tov* with respect to the metriéy, p [defined below in (10)] for
a givenP. To study these factors, let, be the mapping with

K Vcenters having the least expected risk, i.e., Sectio_n_\_/. .
Definition IV.1: Let v be a measurable function frofd —
v = arg min R[v]. Y. Then,BfU) denote the preimages ofcorresponding to the

vCEVE

class;, i.e., B 2 {21 v(z) = L;}. Let P be a probability
Then it follows from the definitions thak[v*] < R[vix] < measure ofX, Sx). Then a se € Sy is said to beP-pure
Rlvg,m], and with respect ta if P(AN B{") = P(A) for somei. A is said
. to be P-impureif A is not P-pure.
|Blore,m] = B . LetCx = {C1, ..., O} be a set of hypercubes formed by
= |Rlvx] — R[v"]| + |R[vk, m] — Rlvk]|- (9 (ny + ...+ ng) hyperplanes such that hyperplanes are per-

. ) . d - . )
The first term in the right-hand side (RHS) of (9) is referreﬁinrj'cma{. toith aXIihandHi:tlEmLerl) =K.l Pis abfod
to as the AE since, it is the error in approximatiog by the utely continuous with respect to Lebesgue meagi@enote

functions inVx . The second term is referred to as the EE sincg}/}_) <<C’fb)’ theﬁci are chhotsherj[ SUC:: tgﬁ(cif) < }1/?‘1[{ Oth'b .
v m USesm observationsD,,,, to estimate thé Voronoi cen- erwise.t; are chosen such that probability ot €ach hypercube Is

’ . . . - S less thanl/ K except those containing points of positive proba-
ters associated with;, by minimizing the empirical risk?,,, .

We bound the generalization error by bounding these two ter#\"’s'ty measure greater than K. Ifa hypergqbe contains a point
separately of probability ¢ (>1/K) then the probability of such a hyper-

cube is utmos#+(1/K). Then, the minimum number &f-im-
pure sets ik, minimum over all possibl€y, represented by
) o Ap,)(K), is called theP-coarse index functioof v. O
Notice that the approximation error does not depend ONTheorem IV.1: Let P be a probability measure ¥, Sx).

Dy, but, it depends on*. Therefore, to bound the approXi-then for all measurable X — Y, there existax € Vi such
mation error, the spade of BDRs for which approximation 4+

error asymptotically goes to zero witld is characterized. In
particular, our interest is in suchia for which the following dy. p(v, vi) < A, 'v)(K).
expression holds: ’ - K
Proof: This theorem is proved by constructing:g, for
a givenw, that satisfies the above bound. For somendvy €

where¢(K) goes to zero faster thay Kt, for somet > 0, as VK- vk (%) = 3i, aixs, ()
K goes to infinity.
This problem is analyzed using a metric defined on the space Y- p(v, v) = /X dy (v(x), vk (2)) P(dz)
U of maps fromX into Y. For a given probability measure K
on (X, Sx), the discrete metridy-, defined onY” (4), can be — / dy (v(z), a;)P(dx)
extended to a pseudometri¢, p onif as follows: o JXns;

A. Bound on Approximation Error

Vv el, vk € Vi 2: |R[v] — Rlvk]| < {(K)

sincevg = g; on.S;. Let
dy p(vs, va) = / dy (v1(2), va(x)) P(dz)

b'e _ )
Vv, ve € U. (10) K /Xﬂ& dy (v(x), ;) P(dz).
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then,n, = ZJN:I dy (1}, ai)P(B](!”) N S;). Therefore, ifi’ = estimate of expectation of a class of random variables to their

arg max; P(B](!”) N S;) then,a; = I minimizesn;. Itis to be true values below. Letl be the class 0_{0, 1}-valued functions

noted here that if; is a P-pure set with respect to, (P(S; 0 defined onX x '} by the metriady, viz.,

B,(!”) = 0 for all 7 except forj = ¢), thenn; = 0. Therefore
) 7 exception =) e A= X XY = {0, 1. ale 3) = dy(6(2), 1), v € Vi)

dy, p(v, vi) < Z 7i- (14)

4:.5; is P=impure set
) Then for anya € A, it may be noted that the empirical expec-
Now, S; are appropriately chosen to bound the error. Foraiion ofa based orD,,,, Em[a] _ Rm[v], and the true expec-

given K, consider & containingAp, ,)(K) P-impure sets tation of ¢ under the probability distributio®(z, v), E[a] =
with respect tas. Since these hypercubes can be obtained fromv]_ Bounding the error between empirical and true expecta-

K Vcenters, choos®; = C; € C;fori = 1,2,..., K. {ions of a class of random variables is a well-studied topic [19].
Now observe that if” < 1 then,n; can be bounded by N — | ¢

1)/N) Pr(5;) becauseB]('”) partition.S; and in the worst case,

Pr(B nS,) = ... = Pre(BY N 5;). If Pisnotabsolutely r(m,e)= sup Pr{z e Z™: |En[a]—Ela]| > ¢}. (15)
continuous with respect @andsS; is a P-impure set containing acA, PCP

a point with probability measure greater thaf¥, thens; <

1/K. From the above construction and observations, we getThen the following proposition directly follows from the defi-

nitions of»(m, €) andg(m, ¢) and from Proposition IV.2.

Aoy (K) Proposition IV.3: If »(m, /2) < § then,q(m, ) < 6.
dy, p(v, vi) < K Therefore, itis enough to boundm, =/2) in order to bound
. g(m, €). Let
thus proving the theorem. [ |

The above theorem, because of (11), implies that for a given C={CCZC={za(z) =1}, ac A} (16)
P andw, there exists ax in Vi such that - ’

(P (K) Then, the convergence d,,[a] to E[a] is same as the con-
7K (12) vergence of empirical probability to true probability of the
corresponding subset d. It may be noted that(m, ¢) can
Therefore, the rate at which this bound approaches zef§ asye bounded using the VC-dimension ®f19]. Ben-Davidet
tends to infinity, depends afp, (), which in turn depends 3|, [21] gave a relation between the VC-dimensionCofind
on the underlying” andv. We relateAp, .,y (K) to the general- the ¥-dimension ofA. Thereforer(m, ) can be bounded by
ized fractal dimension (defined later) of the set of points on thgyunding ¥-dimension of A. #(m, ) can also be bounded,
decision boundaries af and characterize the rate of decreasgonsidering4 as a family of real valued functions and using

IRle] - Rlv]| < =

of the bound in terms of this dimension in Section V. the pseudodimension ol as given in [13] We have derived
o the bounds using both the techniques [7] and found that the
B. Bound on Estimation Error results obtained using the latter approach are better than those

SinceR[vk, ] is a random variablgR[vy ] — Rluk]| is obtained using the former. The derivation of the bound using
bounded only in a probabilistic sense, i.e., with probabilitys  the pseudodimension of is given below which follows along
similar line to the one given in [16]. Some definitions and
|R[vi, m] = Rluk]| Sw(m, K, §),  Ywvk € Vk. (13) results that are useful in the derivation of bound-0m, &) are
given in Appendix A.

Let Consider the family of functiond defined in (14). Then The-
g(m, &) 2 sup Pr{(z, y) € (X x Y)™ orem A.4 implies
v €V, PEP A
|Rlvi. m] — Rlox]| > €} Pr(3a € A: Bl - Eld] > <)
(3] 52m

Then, EE can be bounded ¢fm, ¢) is bounded. We bound <4E [N(gv Ap,., dal)} eXp(‘ﬁ) an
g(m, €) and consequently bound(m, K, §) using results
from statistical learning theory [25]. where Ap ~ is the D,,-restriction of A given by

One expectsx, ., to converge tay as one gets more andAp, = {(a(z1), ..., a(zm)): a € A}, d,1 the average

more data. This happens i,,[-] converges toR[-] uniformly I, metric, and A (e, Ap, , d.1) the e-covering number of
in probability [18]. The following lemma gives a relationship4p, . as defined in Appendix A. The following lemma, whose

between the estimation error afie,.[-] — R[]|. proof has been relegated to Appendix B for continuity of
Proposition IV.2: [25] If |R,,[v] — R[v]| € w, Vv € Vi presentation, relates the metric capacitiesid (e, A, d.1)),
then,|Rlvx. m] — Rlvk]| < 2w. and Vi (C(e, Vi, dy)), and the expectation of the covering

Thus EE is bounded if the difference between the empiricabmber ofAp_, .
risk and true risk is bounded uniformly ov®Y,. This problem Lemma IV.4: E[N (e, Ap,., da1)] < Cle, A, dy1) <
is converted to that of analyzing the convergence of empiricd@{e, Vi, dy ).
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Using the above lemma and taking supremum on both sidesTheorem IV.7: With probability (1 — &), the following bound
of (17) over allP, ther(m, ¢) defined in (15) can be boundedholdss
as
5 |R[vk, m] — Rluk]|
r(m, €) < 4c(5 Vic, d ) _£n (18)
) = 8’ K, &y ) €Xp 39 .

1/2
K In(N) +dK? In(K) In(Km) + ln<%>

To find a bound orC(e, Vk, dy ), Vi is decomposed as the <0 m

composition of two classes of functions. L&t be the class

of functions from®* to e, generated byx-hidden neurons of (20)
Vnet wherege = {ey, ..., ex}, ande; is the K-dimensional

unit vector in theith dimension i.e.jth component ok; is 1

and the rest of the components are zeros. Then Proof. For n defined in Theorem IV.6, substituting the

bound forC(e, Vi, dy) in (18) we get

Hy={hi(2) = (xs,(®), ... xse (@)} (19) 8Ke | 8K\ -
r(m, €) < 4(2N)K< " In 6) P <_ﬂ> '

where{S;} are defined as in (2). L&, be the class of func- £ £ 32

tions, frome to Y, generated by the single output neuron of the
network. Note thatH,| < NX. Then, Vi = {hao hy: hy € From Proposition IV.3g(m, £) < § if
H1, ha € Ha}. The following lemma bound§(e, Vi, dy ) in

terms of the metric capacity 6{,. The proof of this lemma is /16K 16K e\ K7 2
given in Appendix B. 4(2N)HE < ‘I C) exp(—ﬂ> <6 (21)
. 128
Lemma IV.5:

oo {26 This implies thaPr(Vv € Vi |R[vk,m] — Rluk]| < €) 2
Cle, Vi, dy) <N C<Ev Ha, dal) . (1 — &) if, the above inequality (21) is satisfied. Therefore, the
following inequality should be satisfied:

SinceH; is a vector of index functions of some class of sub-
sets, some results from Appendix A can be used to derive a

2m >
bound onC(e, Hi, du1), thus bounding(e, Vi, dy). e'm 2 128 <K In(2N) + 2K7(In(16Ke)

Theorem IV.6: 4
— In(e)) + 1n<5>> . (22)
Kn
Cle, Vi, dy) < (2N)E <E In E)

€ € It is later shown that the above inequality is satisfied if

(23), shown at the bottom of the page, is true. et=

wheren = 2(d + 1)(K — 1) log(3(K — 1)). 128[K In(2N) + 2Kn(In(16Ke) + (1/2) In(m)) + In(4/6)].
Proof: LetS be the class of subsets of the fosindefined  Sincep > 1, the inequality (22) is satisfied for the above value

in Section II. LetG = {xs(z): S € S}, thenH; = G where, of e; thus proving the theorem. n

G = {(91(2), ..., gx(2)): i € G, 1 < i < K}. Then,
from Theorem A.5, we ge€(e, 1, do1) < (C(e, G, da1))™.  C. The Main Theorem
B?caus@ IS a space of the indicator function$imp(G) = ._Theorem IV.8: Let P be a probability measure di, Sz).
dimv¢(S). SinceS is a class of subsets where each subset is, .

) ; Let v* be a BDR corresponding t8 andAp,, .+)(K) be the
an intersection of at mogt’ — 1 half spaces, Lemmas A.1 andP —coarse index function of*. Let D _’“{(m Vi =
A.2 impliesdimp(G) < 7. Substituting this in (34) fog, we -~ ' mo o ¥i) b=
getC(e, G, d.1) < 2((2¢/e) In(2¢/e))7. Therefore, because of  3in general, these bounds are known to give very large numbers if different

. < oK Kn variables in the bounds are substituted with their values. However, they are qual-

Tgeorem A|5],°C(Ii€’ Hl% dal)L— 2 ((?\3/55) 1n(2eb/5?) . Thfe hitativelytightinthe sense that there exist some distributions for which the bound
above result follows trom Lemma IV.5 on substitution of t %5 attained. Therefore, in this paper, the bound is found only in the order nota-

bound forC(e, Hi, dq1). W tion.

128 K In(2N) + 2K7n(In(16K¢) + %ln(m)) N ln<_>:| 1/2

e = . (23)
m
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1, ..., m} be a set of independent training examples drawn aitre efficiency of learning by Vnets. This analysis also gives an
cording toP. Letwvy ., be as defined in (8). Then, with proba-insight into the approximation capabilities of Vnets.
bility (1 — 6) Definition V.1: Let P be a probability measure diX, Sx)
andv = Zf‘:l cix B, (x) be a measurable function. Then define
|R[v"] = Rlve, m]|
< Ay, o) () B, 2 {x: B.(x) is P-impure Ve > 0}
- K
1 1/2
KIn(N) +dK?In(K)In(Km) + ln<5> whereB_(z) is thee-ball aroundr in X. Let
+0
m
0 |f A(p7b)(K) :0,
A
dipoy(K) =< dIn(Ap o (K . 25
(24) (7,5 —n( (.0 (K)) otherwise. (23)
ln(K)
Proof. The theorem follows from (9), Theorem IV.1 and
Theorem IV.7. B Thenlimsupg_. ., dip,.)(K), if the limit exists, is called the
generalized fractal dimensiaiGGFD) of B,, with respect taP,
denoted byP-dim ¢ ¢ (B,). O

V. IMPLICATIONS OF THE THEOREM GFD is called so because, it is a generalization offtaetal

In this section, various implications of the main theorem gimensionwhich is same as thepper entropy indexefined
this paper are discussed. in _[26]. The fractal dimension is defined on the_ compact sets
using the Lebesgue measure. Here, GFD is defined with regard
to v and P. However, the above definition can be appropriately
modified for defining the dimension on any arbitrary sets with
Under the assumption that AE asymptotically converges tegard to a givetP. In this modified definition,P-dim ¢ r(A)
zero with &, which is justified in the next section, the discussiors equal to the fractal dimension af, when P has a compact
in the sequel implies that, K = m"” andr < 1/2 then, the support and is uniform.
bound on GE in (24) asymptotically goes to zero. Substituting Writing the bound on AE in terms af 5 (), we get
K = m" in the expression fa(m, K, 6) [refer (13)] in (20)
and lettingm tend to infinity, we get

A. Convergence of Vnet to Bayes Decision Rule

1
K ((d—dp, oy (]))/d)

|R[U] — R[UK” < (26)

lim w(m, K, §)

n—o0

I <m” In(N) + dm? r(r +1) In’(m) — 1n(5)> It may be observed that p ,\(K) always lies in the interval
= um

[0, d]. The above inequality (26) says that the nedger ., (K)
) o1 1.2 stays tod the slower is the rate of decrease of the bound on AE
= lim m In“(m) = 0. ;
m— oo with K.
To analyze further, assun¥® has a compact support and is

Therefore, Vnet asymptotically converges to a BDR with arbiniform. Then higher the filling property a8, more the value
trary high probability if the number of Voronoi regions growPf d(p, ») () and hence more the difficulty to approximatey
slower than the square root of the number of training sample¥nets. Foragivew,, if £’s distribution over the regions neigh-
boring the points of3, is less, then it makeg p, ,,(K) small
making the rate of decrease of bound large. In conclusion, as it
should be expected, the approximation of a mappibyg Vnets
Efficiency of learning a given pattern recognition task, depends on the space filling property®f and the probability
from a finite set of training samples can be measured by thtribution over the regions around it.
rate of convergence aR[vk, ] to R[v*]. The larger the rate
the more the efficiency. It follows from (24) that, for a fixed
number of Vcenterd(, as the number of training samples
increases, the bound on EE monotonically goes to zero wherdt is shown above that foR[vx ., to converge toR[v*] the
as the bound on AE remains constant since it is independennaimber of Voronoi regions should grow slower than the square
m. Therefore, the rate of convergenceRjb . ,,| to R[v*] also root of the number of training samples. Then the question arises;
depends on the rate of decrease of the bound on AE, and hethaes there exist an optimal growth ratef6fwith respect tan?
AE, to zero. The only parameter that depends on the probl®y the optimal growth, we mean the relatiéf* (/) between
under considerationiz., A(p,  .~)(-) (refer Definition IV.1), in K andm such that for a fixed number of training samptes
the bound on GE is due to the bound on AE and the bound the Vnet withK*(m) number of Vcenters minimizes the bound
EE is independent of*". So, A, ,-)(K) is analyzed to find on GE. The existence of such/&"(m) is quite intuitive from

m—oo m

B. How Efficiently can Vnets Solve a Problem?

C. Optimal Growth Rate oK’
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Remark IIl.2. This is reflected in the bound on GE (24). To géncrease in the optimal rate df cannot compensate AE be-
an explicit expression fok™(m), the minimum of the bound cause of thel /d term in the exponent oK in the bound AE.
on GE, which is assumed to be close to the minimum of GE, lis fact, for higher dimensions the optimal growth ratef6fis
found by solving the following equation: almost independent of the dimension6fbecause, the optimal
rate reaches very close to 1/6 even for moderate valués of

0 1
e lm E. Tradeoff Betwee& andm

) 1/2 Theorem 1V.8 suggests that there exist various choicds of
n <K1H(N) + dK* In(K) In(K'm) — 111(5)) ] _o andm foragiven specifications of confidence and accuracy pa-

m rameters. Thisis due to the tradeoff between AE and EE. When a

large number of centers and less number of training samples are

wheredyx = dip,, .- (K). Applying the derivative and ne- chosen, the resulting EE could be high, but this can be compen-

glecting the less significant terms we get sated by low AE and vice versa, in order to keep GE constant.
If the availability of the training samples is expensive then, one

d—dg 1 _ (Kd?(In(m) In(K))®)1/? could use more number of centers with the same bound on GE.

d  K2-(dx/d) Vm ' Or, if the network size is expensive one could use large number

of training samples. Thus the economics of this tradeoff would
After some algebra we get that the estimaté©{r), for large  yield a suitable values fdk andm to solve the pattern recogni-
m, is proportional to tion problem with the required accuracy and confidence. Geman
et al, termed this trade off as bias/variance dilemma [15].
< (d— d]()2m> (d/(8d—2dk))

d5 In®(m) @n

F. Sample Complexities

) ) ) Finally, we consider the bounds on sample complexity of

The above expression (27) suggests one more interestingPRets. As defined in Section IV-B, sample complexity reflects

havior of the optimal growth rate oK. Whendy is more, ihe number of samples sufficient to learn a mapping with a
i.e., the problem under consideration is more difficult (refer th@ven accuracy and confidence requirements. From the value of

previous sub-sections), the optimal growth ratgfs higher. ,, gefined in Theorem IV.6, the expression in (22) implies that
That is, the number of Vcenters in Vnets can grow faster as ;‘{wam ) < §if
|-

number of training samples increase, when solving more di
cult problems. This is indeed desirable, because |dgemake

1
the AE small. m(e, 6) = O<—

. (K In(N) + dK? In*(K) In(1/e)

D. Dependence on the Dimensionf + 1n(1/6)>> )

It is known from the theory of linear and nonlinear widths
[27] that if the target function hag variables and a degree of
smoothness, one should not expect to find that an approxima-
tion error goes to zero faster thax{k—(>/4)), when the number
of parameters that have to be estimated is proportioraltiere The classification model that shares a similar structure, but
the degree of smoothnesss a measure of how constrained theot the same, with Vnets is the DT classifier [22]. A DT is a
class of functions are; for example, the number of derivativeinary tree. Each nonleaf node in the tree is associated with
that are uniformly bounded or the number of derivatives that a@esplit rule that decides whether a given pattern will go to the
integrable or square integrable. Therefore, from the classical &gft or right subtree. A class label is assigned to each leaf node
proximation theory, one expects that unless certain constraimgplying that all the patterns landing in that leaf node are to be
are imposed on the class of functions to be approximated, ttiassified into that class. When the feature space is a subset of
rate of convergence will dramatically slow down as the dimeiR¢, then the class of split rules considered could be the class
siond increases, showing the phenomenon known as the “curdfehyper surfaces that are either parallel or oblique to the axes.
of dimensionality.” The DT’s using the former class of split rules are called Axes-

Letdx = d(py,.~)(K). The termdy reflects the frequency parallel DTs and those using the later are oblique DTs. There
of variation ofv* on its domain and the teral — dx ) in (26), are many learning algorithms for these DTs (for example, [28]).
in a way, characterizes its smoothness. In case of Vnets, BEtter and better learning algorithms are still being discovered.
goes to zero as fast @( K ~(¢—4x)/4) Therefore, the above The learnability of this class of classifiers has been ana-
conclusions from the classical approximation theory are valigzed and bounds on sample complexities have been found
in case of Vnets also witfd — dx ) as smoothness parameter.by bounding the VC-dimension of DTs which are used for

Itis interesting to note the following observation at this pointwo-class pattern classification problems [29], [30]. The
The expression in (27) suggests that wien~ d — 1, the op- analysis presented in Section IV can be easily reworked to
timal growth rate ofi{’ increases from 1/8 to 1/6 @3(64 + 2). the class of maps generated by DTs. A brief sketch of the
That is, K can be increased at a faster rate for higher dimeproof of the theorem for DTs is given below. As expected, the
sions maintaining the optimal performance. Nevertheless, tapproximating behavior of DTs is quite similar to that of Vnets

VI. BOUND ON GE OF DECISION TREES
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except that the number of Vcenters is replaced by the numlilee same procedure as in the previous section, we get that the
of leaf nodes. To find a bound on EE, DT is considered asnamberl*() of leaf nodes should be proportional to
combination ofl (number of leaf nodes) number of indicator

functions where the set associated with each indicator function (d — dp)?m (d/(6d—2dy))

is an intersection ofi (the depth of the tree) half spaces. Let <372>

V,.,1 be the class of mappings generated by DTs for a fixed d* In“(m)

and!. Then, thevy ,, andvg corresponding to DTs are )
’ whered; = d(p,. ,+)(1), for the bound on GE to be optimal.

This rate is faster than that & in Vnets [refer (27)]. The dif-

A . -
Un,t,m = arg minL R v] (28)  ference is obvious because each elemestt is assumed to be
an intersection o — 1 half spaces whereas each subset in case
where}?.m[-] is as defined in (6), and of DT is assumed to be an intersectionolfialf spaces and the

derived bounds are worst case bounds.

2 arg min R

Unt = arg WERL [v]; VII. DISCUSSION

In this section, we make some comments on the nature of
results obtained along with some possible extensions of the re-
sults.
. ; N The main result of this paper has been developed on a frame-
Px-coarse index function 0f*. Let D, = {(wi, i)' © = \york similar to Valiant's PAC framework for learning and along
L o m} be a set ofmdependgnt tfa'”'”g example; drawn 4fie lines of those given in [16]. However, the result is not en-
C(.)'rdmg toP. LetV,, ; be as defined in (28). Then, with prOba'tirely distribution free. The bound on AE is dependent on the
bility (1~ 6) underlying probability measur® in terms of the properties of
a corresponding BDRy* viz., Px-coarse index function af*.
Moreover, in this paper, we have started from an approximation

where R[] is the average misclassification error.
Theorem VI.1:Let P be a probability measure di&, Sz).
Let v* be a BDR corresponding t& andAp, ) (I) be the

|R[U*] - R[Un, l,m]|

< Apy oy (D) scheme and found the space of problems that can be efficiently
- l solved by the scheme as opposed to the other way round viz.,
IIn(N) + dinln(n) In(lm) — In(6) /2 from a class of problems to an optimal class of approximation
+0 [ m } . schemes.
(29) As previously mentioned, the bounds obtained using the PAC

framework are known to be very loose. Therefore, no attempt
) ) _ has been made in this paper to find the exact numerical bounds.
A Sketch of Proof:The first part of the above inequality Rather, these bounds have been used to analyze the behavior of
follows from the definition ofPx -coarse index function af*.  GE ith respect to various parameters in terms of bounds on the
To get the sgconq part, we need to b_oﬂh{ei, l_)nyl, dy) be- growth of K with respect ton, etc.
cause, following similar arguments as in Section IV-B: In this paper, we have assumed the existence of an algorithm
y that findsvy_,,,, which minimizesk,,, [v], foraK and a training
r(m, €) < 46(5, Vil dy) exp<_ﬂ> . (30) setD,,. We guess that the problem of finding,,,, is NP-hard
g 32 since its counterpart in unsupervised learning, viz., clustering,
] ] S ) ] _is NP-hard and the present problem is very similar to clustering.
SinceV, ; is a combinatior indicator functions each is associ-a formal verification of this conjecture needs to be done.) Re-
ated with an intersection ef half spaces, Theorem IV.6 |mpI|escem|y’ an algorithm based on evolutionary algorithms has been
that proposed and shown to asymptotically convergeo,, with
ale . 4le\™ probability one [7]. This algorithm may converge to a subop-
Cle, Vo1, dy) < (2N)l<? In —) timal if run for a finite time, which is the case in reality. Never-
theless, it is empirically shown to converge to a better optimum
wheren = 2(d + 1)(n — 1) log(3(n — 1)). Substituting this than that obtained by LVQ3 algorithm [3].
bound in (30) and after some algebra we get the second part oThe behavior of generalization error of the networks with sig-
the inequality in the statement of the theorem. O  moidal units [11] and of the RBF networks [16] have been an-
From the above theorem, one can say that the efficiencyalfzed considering them as function approximation schemes. It
solving a problem, the dependence of GE on the dimensionagpears that finding a bound on GE for these networks when
X, and the tradeoff betwedrandm in case of DTs are the sameused as pattern classifiers is difficult. First, the class of decision
asinVnets. One can analyze the optimal growth rate of the dep#igions that can be obtained using the functions generated by
n of atree and the numbéof leaf nodes in a tree. Itis observedhese networks as discriminating functions could be very diffi-
that the optimal rate of growth ef is a function ofin(n). This  cult to characterize. However, the conclusions arrived from the
is to be expected because the number of subsets one can gahalysis presented in Section IV-A should, in general, be ap-
a tree of depth is 2™. But, the optimal rate of growth dfis plicable to these networks too. It is interesting to investigate
almost similar to that of(; it differs only in the rate. Following whether the techniques similar to the one given in Section I1V-B

£
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can be used in bounding the EE of these networks. The probléme empirical process depends on the growth function associ-

may arise when calculating the metric entropy of the space ated with the concept class. The growth function in turn depends

mappings in the last stage of the network where the vectorsasf a number (dimension) that is specific to a concept class. In

real numbers are mapped to class labels. this section, we define these dimensions for the above men-
One has to address two interrelated issues in comparing ttianed two concept classes and give the relation between this di-

classification models. One issue is the average misclassificatmmension and the property of uniform convergence for the class

error and second, the time taken to arrive at a particular instardereal valued functions in a series of theorems and lemmas.

of the model. The first issue has been analyzed in case of VnB&aders are referred to [25] and [31] for more detalils.

and DTs in the present paper. The analysis could be extended to

MLPs in which each perceptron uses a hard-limiting function;, \vC Dimension of Subsets &f

because the fundamental structure in the associated decision rq_—h followi L din thi . b

gions is a hyperplane. Itis interesting if a similar analysis can be e following notation is used in this section. Let, 5) be

done on other types of MLPs and RBF networks that are po measurable space anddeC & be a collection of subsets of

ularly used in PC models. However, it appears to be difficult L . .
y PP aPeflmtlon A.l: A subsetK C X is said to beshatterecby

access the computation needed to arrive at a globally opti i . .
- . - : . : f for every partition of K into disjoint subsetd(; and K.
classifier with existing tools in computation complexity. If onrg : . ! >
9 P P y t gre exist®” € C such thatk; € C andKs N C = §. Then

i isely finding th tati i t
succeeds in precisely finding the computation requirements & Vapnik-Chervonenkis (VC) dimension@fdim v (C), is

learning these networks, then these classification models carjf . dinalitv of bset &f shattered b
compared purely on an analytical basis and the comparison tﬁ%ﬁ maximum cardinality ot any subseL.u shattere ¥, or
> If arbitrary large subsets can be shattered. O

holds for a wide class of PC problems irrespective of the sp&- . . . .
w P Irrespectv P The following two lemmas give the VC dimension of the class

cific learning algorithm. of half spaces ifR¢ and that of the class of subsets%fwhich

are intersections of elements belong to a concept class of a
given VC dimension. These results are useful in deriving the
bounds for Vnets.

We have considered the classification model that discretized.emma A.1:([17, Lemma 3.2.3]) LeC C 2¥ be a concept

the feature space into Voronoi regions and assigns sampitass of finite VC dimensionjiz,dimy¢(C) = d, 1 < d < o0.

in each region to a class label. We have called this modelfasr alln > 1,letC,, = {_,ciic € C,1 < i < n}
“Vnets.” The error between a rule and a BDR corresponding C,, = {J;_,cii¢; € C,1 < i < n}. ThenVn > 1,

VIIl. SUMMARY

to the problem under consideration has been considered asdi@yc(C,,) < 2dn log(3n). O
generalization error. GE has been split into AE and EE andLemma A.2:([32]) Let G be the class of half spaces ¥
these factors have been individually bounded, thus bounditigen,dimyc(G) = k£ + 1. O

GE. We have analyzed the approximating behavior of Vnets,

in turn their efficiency in solving a problem from the bound omB. |earning the Clas§ of Real Valued Functions

AE. We have shown that the efficiency of Vnet depends onthe _ . .. ) ) .

extent to which Bayes decision boundaries fill the feature space 2¢fINton A-2: Forz € R let, sign(z) = 1if = > 0 else
The bound on EE has been derived using two techniques %ﬁl(x) = 0.Forz = (a1, ..., ) € R* let, sign(z) =

the relative merits of these two techniques have been discus<&gn(#1); - - sign(zx)), and for” C R* let, sign(T) =
a ]éé,‘n(f): 7 € T}. Any set?” C R* is said to befull if there

istst € R¥ such thatign(7+7) = {0, 1}*, wherel’+z =
+zT7 Tl

Let H be a family of functions from a seX into . Any
quenc& = (z1, ..., x) is said to beshatteredby H, if

Putting together the bounds on AE and EE, we have sho
that Vnets converge to the Bayes classifier with arbitrarily higf
probability provided the number of Vcenters grow slower thak’
the square root of the number of training samples. All the.%g
results have been reworked for DTs. The optimal growth rate - } .

of the number of Voronoi centers for optimum GE has be ;T]a:-restrlctlon,mf = {(A(w1). ..., hzx)): h € H}, is full.
calculated for Vnets as well as DTs. The main result of this ' largesk such t_hat there exists aseque_ncé pb_lnts which
paper also quantitatively explains the bias/variance dilemf¥ shattered by! is said to be the@seudodimensioaf 7 de-

and the curse of dimensionality that is generally observed rilr(?te(;i bﬁ’dri:ll,lp(H)' If_arpi;ra_rily long finite sequences are that—
classification models. tered, thendimp (%) is infinity.

Definition A.3: Let A be a subset of a metric spaQewith
metricdys. Then a sel” ¢  is called ans-coverof A with
respect to the metrid,; if for every « € A, there exists
somet € I satisfyingdy(a, t) < e. The size of the smallest
e-cover is calledcovering numberof A and is denoted by

The analysis of the process of learning a concept can be doviés, A, ds). A setl’ C Q is called anc-separatedf for all
by analyzing the uniform convergence of the associated empit- 3 € T',dps (v, 8) > e. Thepacking numbeM (e, A, dr)
ical process as shown in Section IV-B for a class of conceptd.a setA is the size of the largestseparated subset df. [
The classes of concepts that are of interest in this paper are theet d,; be a metric on®* defined asva, 8 € R,
classA of subsets ofX, and the classF of real valued func- du1(«, 8) = 1/k ELI |ov; — ;] (a1 is used in the subscript
tions. In each of the above classes, the uniform convergencdfrepresent averagg metric as in [25]). Letd,; p be a

APPENDIX |
SOME DEFINITIONS AND RESULTS
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pseudometric on a spag¢of functions fromX to ®*, induced where § is the Dirac delta function and; is the ith ele-
by a probability distribution” on X, defined as ment of D,,. Let a;, a2 € A, thend,, p, (a1, a2) =
dar((a1(z1), ..., ar(z)), (a2(z1), ..., a2(z))). Therefore,
N(e, Ap,,., da1) = N(e, A, da1, p,,,, ) because of the isom-
da1, (h1; he) = / da1 (hi(2), ho(2)) P(x) dz. etry. Hence the first inequality follows from (33) and by taking
X expectation on both sides with respectito
Fix a distribution P on Z. Let Px, Py be the marginal
distribution with respect taX and Y, respectively. Leti
be ane-cover for Vi with respect to the metridy, p, such
that |[K| = N (e, Vi, dy, p,). Then, it is easy to show that
H(K) = {dv(f(z), y): f € K} is ane-cover for.A with re-
spect to the metrid,;, p. Then N (e, A, d,1 p) < |H(K)| =
N(e, Vi, dv, py) < Cl(e, Vi, dy). Taking supremum over
all P we get the second inequality in the lemma. O
- Proof of Lemma IV.5:Fix a distribution?” on ®*. Let K

Theorem A.4:([13], [25]) Let 7 be a family of functions o 2¢ / KK-cover for H, with respect to the metrid,;, » such
from a setX into [0, 1]. LetD,, be a sequence af training that|K| = N ((2¢/K), Hi, da1 p). Then,H(K) = {hs o h:
examples randomly drawn according to a distributiariThen, ;o p- ' H,} can be shown to be am-cover forVy with

forall e > 0, respect tady, p. Hence

Theorem A.3:([13]) Let H be a family of functions from a
setX into [0, M], wheredimp(H) = d for somel < d < co.
Let P be a probability distribution ofX'. Then for all0 < € <
M

In

(31)

2%eM . 2eM\*
M@Jt%LM<2<C ¢ ).

Pr(3h € H: |En[h] — E[h]] > €)

£ EQm N(Ep? Vl(a dY, P)
<A4FE = a - 2
< 4B[N (5 Ao, dos)| exp( 32) (32) < [HE) = 3 [Hel
feK
- icti is: . - 2
Whereiﬂpm is the restrlctlon. of{ to the data seD,,,, that is: < Z NK < NAN<E7 M, daLp) )
Hlp,, = {(h(z1), ..., h(zm)): h € H}. O fex

The original version of the above theorem is given in [13];
an improved version, with less conservative bounds, is given
in [25]. E[N ((¢/8), H|p,., d.1)] depends on the probability Since this holds for any”, taking supremum over alP, the
distribution P, sinceD,,, is a random set that dependsBnTo lemma s proved. O
get a bound that is independent Bf a quantity called metric
capacity is defined and the error is bounded in terms of this. REFERENCES
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