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Voronoi Networks and Their Probability of
Misclassification

K. Krishna, M. A. L. Thathachar, Fellow, IEEE, and K. R. Ramakrishnan

Abstract—Nearest neighbor classifiers that use all the training
samples for classification require large memory and demand large
online testing computation. To reduce the memory requirements
and the computation cost, many algorithms have been developed
that perform nearest neighbor classification using only a small
number of representative samples obtained from the training set.
We call the classification model underlying all these algorithms
as Voronoi networks(Vnets), because these algorithms discretize
the feature space into Voronoi regions and assign the samples in
each region to a class. In this paper we analyze the generalization
capabilities of these networks by bounding the generalization
error. The class of problems that can be “efficiently” solved by
Vnets is characterized by the extent to which the set of points on
the decision boundaries fill the feature space, thus quantifying
how efficiently a problem can be solved using Vnets. We show
that Vnets asymptotically converge to the Bayes classifier with
arbitrarily high probability provided the number of represen-
tative samples grow slower than the square root of the number
of training samples and also give the optimal growth rate of
the number of representative samples. We redo the analysis for
decision tree (DT) classifiers and compare them with Vnets.
The bias/variance dilemma and the curse of dimensionality with
respect to Vnets and DTs are also discussed.

Index Terms—Neural networks, pattern recognition, statistical
learning theory.

I. INTRODUCTION

ONE OF THE most popular and simple pattern classifiers
is the nearest neighbor classifier (NNC). NNC assigns to

an unclassified sample the class label of the nearest sample in
the set of training examples. Though there is no training phase,
NNC needs sufficient memory to store all the training samples
and needs to compute, for every test sample, its distance from
each training sample. There is a class of algorithms that over-
come this problem. These algorithms find a small number of
representative samples using the training set and use these sam-
ples to perform nearest neighbor classification. Some of the al-
gorithms in this class find a set of representative samples, which
is a proper subset of the training set, such that the classification
error over training samples is minimized [1]. The other algo-
rithms obtain the representative samples, which need not be a
subset of the training set, by applying an iterative algorithm on
the training set, [2]–[7]. The popular learning vector quantiza-
tion (LVQ) algorithm [3] belongs to this category of algorithms.
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All these algorithms, though need a training phase, are shown
to perform better than NNC in many cases, apart from reducing
the computational effort and memory requirements.

All the above-mentioned algorithms share the same classifi-
cation model, i.e., perform NN classification using some repre-
sentative samples instead of all the training samples. This classi-
fication model is called theVoronoi network(Vnet) in this paper
because it discretizes the feature space into Voronoi regions [8]
and assigns samples in each region to a class. Voronoi regions
are formed by a set of points in the feature space. Each Voronoi
region contains those points of the space that are closest to a
point among points in the set. From now on, the representative
samples are referred to as theVoronoi centers(Vcenters). In this
paper, we analyze the capabilities of Vnets to generalize from a
set of training samples to unseen test samples and address some
issues in their design pertaining to the solution of pattern clas-
sification (PC) problems.

A. A Note on the Name “Voronoi Network”

The considered classification model is referred to by various
names which have mostly originated from different learning
algorithms. For example, we have LVQ classifier [3], nearest
prototype or multiple prototype classifier [6], prototype-based
NNC [4], nearest-neighbor-based multilayer perceptron
(NN-MLP) [5], etc. One of the most popular among these
names is the LVQ classifier. However, LVQ is also used to refer
to the class of clustering algorithms (see, for example, [9])
though it was originally used to refer to a class of supervised
learning algorithms [3]. In view of the above facts, a need was
felt to denote the classification model underlying the above
algorithms by an appropriate name. Since the fundamental
building block for the classification model is a Voronoi region,
the classification model is referred to as Vnet in this paper.

B. Generalization Error of Vnets

Since Bayes decision rule (BDR) is the best map that can be
learned, it is proper to judge the generalization capability of a
rule by the error between the rule and the BDR, which is re-
ferred to as the generalization error (GE) in this paper. GE is
decided by two factors in case of Vnets, as in any other neural
network. One of the factors is the representational capacity of
the network. There could be some error between the BDR and
the map which is the best among those generated by Vnets
with a fixed number of Vcenters. To make this error small, the
space of maps generated by Vnets must have sufficient power to
represent or closely approximate the class of BDRs. This error is
called the approximation error (AE). Second, the Vnet learned
from a finite number of training samples might be far from the
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best Vnet . The reason for this error is the limited informa-
tion available on the underlying distribution of samples because
of finite number of training samples. This error is called the es-
timation error (EE). Previously, these two issues have been ad-
dressed in isolation [10]–[13] as well as together [14]–[16] for
some class of networks. In this paper, we address both these
issues for Vnets under a common framework as in [16], [14];
however, the analysis in [16], [14] deals with the problem of
learning real-valued functions.

The approximation capabilities and the behavior of approxi-
mation error of various function approximation schemes, neural
networks in specific, have been analyzed in the past (for ex-
ample, see [10] and [11]). In all the studies the functions are
assumed to be real valued and the problem of PC, where the
functions map to a finite set of class labels, is considered as a
special case [11]. In classical approximation theory, the rate of
convergence of AE with respect to the number of parameters of
the approximating function is obtained in terms of the degree
of smoothness of the function that is to be approximated. In the
case of PC problems any such characterization does not appear
to have been done in the past. In this paper, the rate of conver-
gence of AE of the maps, that take values from a finite set of
symbols,viz., the maps associated with PC problem, has been
characterized by the extent to which decision boundaries fill the
domain of the maps. One of the contributions of the present
work is that the above-mentioned property is captured by a func-
tion called the -coarse index functionwhose value at infinity
is thegeneralized fractal dimensionunder a given probability
measure . The approximation error made by Vnets is bounded
in terms of this function exploiting the nice geometric proper-
ties of Voronoi regions. This analysis, first of its kind to the best
of our knowledge, gives insights into the sources of errors made
by Vnets.

Blumer et al. [17] analyzed the estimation error in learning
subsets of using the results of uniform convergence of em-
pirical process from [18], [19] under the framework of Valiant’s
[20] probably approximately correct (PAC) learning. Haussler
[13] generalized the analysis to learning real valued functions
and Ben-Davidet al. [21] to -valued functions. In
this paper, a bound on the estimation error has been derived by
considering a class of -valued functions that is derived
from the class of maps generated by Vnets using the results from
[13]. Elsewhere [7], we have also derived a bound on estimation
error by bounding -dimension of the class of maps generated
by Vnets using the results from [21] and found that the former
approach gave better results.

The main theorem of this paper gives a bound on the general-
ization error of Vnets obtained by separately bounding the com-
ponents corresponding to AE and EE. As stated earlier, this re-
sult characterizes the approximating capabilities of maps taking
values from a finite set of class labels that is used to find the
rate of decrease of AE of Vnets. Furthermore, it gives a suffi-
cient condition on the relative growth of the number of Vcenters
in Vnet with respect to the number of training samples for the
asymptotic convergence of the probability of misclassification
to the Bayes error, thus proving the asymptotic convergence of
Vnets to a corresponding BDR under fairly large class of prob-
ability measures. As a corollary, the optimal rate of growth of

the number of Vcenters is derived so as to minimize GE. The
theorem also sheds light on the tradeoff between the number of
Vcenters and the number of training samples which has been re-
ferred to as the bias-variance dilemma in [15]. The phenomenon
of “curse of dimensionality” in Vnets is also analyzed.

Decision tree (DT) is another popular classification model
[22], [23] that shares a structure similar to that of Vnet. DT is
a binary tree where each nonleaf node contains a split rule that
decides whether a sample belonging to the left or right subtree,
and each leaf node is assigned to a class. The bound obtained
for the Vnets can be rederived for DTs too. A bound on GE is
obtained for DTs and is compared with that obtained for Vnets.
This kind of analysis suggests a basis for analytical comparison
of any two different classification models. Moreover, it appears
that, the observations made with respect to Vnets are applicable
to other classification models too.

This paper is organized as follows. The following section de-
velops Vnet classification model. The generalization error in
Vnets is formulated in Section III. Section IV contains the main
resultviz.,a bound on GE. Proofs of most of the results stated
in this section are relegated to Appendix for clarity in presen-
tation. Various implications of the main result are discussed in
Section V. The bound on GE for DTs is rederived and is com-
pared with that of Vnets in Section VI. Section VII makes some
comments on and discusses some possible extensions of the pre-
sented results. Finally, the paper ends with a summary in Sec-
tion VIII.

II. V ORONOI NETWORKS

The task of pattern recognition is to learn a mapping from the
feature space to the set of class labels. The learning takes place
with respect to a set of training samples.1 The mapping that is
learned should be able to map unknown samples (samples that
are not present in the training set) into their correct class labels.
The ultimate aim of learning is to find a map that minimizes the
average misclassification over the feature space. This is a well
studied topic in pattern recognition literature [24]. The map that
has the least average misclassification error is the BDR. Vnet
approximates Bayes decision regions by Vornoi regions.

Vnet discretizes the feature space into disjoint convex sets,
viz., Voronoi regions and assigns each region to a class label. Let

denote the feature space and the
set of class labels. Each Voronoi region is specified by a point
viz.,the Vcenter, in . Let be a set
of Vcenters. Then, Vnet is defined as

(1)

where , ,
is the indicator function of set and are as defined

below. Let

and

1The word “samples” is used to refer to a pair of a feature vector and its class
label as well as to a feature vector alone. The particular reference would be clear
from the context of usage.
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where is the Euclidean norm and is the boundary of the
set , i.e., if is at an equidistant from two or morethen is
assigned to the set with the least index. Then define

(2)

are convex sets. Observe that partition into disjoint
convex sets2 i.e., if , and .

A. Learning Vnets

Learning an input–output map using a Vnet involves finding
the Vcenters from a set of training sam-
ples, , such that the
misclassification error of the resulting map over the training set
is minimized. It may be noted that NNC is an instance of Vnet,
where .

The empirical risk or the average misclassification error over
of a Vnet with Vcenters specified byand is given by

(3)

where is as defined in (1) and is a discrete metric
on given by

if ,
if

(4)

The learning problem is to find the pair that minimizes
. It turns that for a fixed , the vector , that minimizes
, is uniquely determined. So, the problem of finding
, in effect, boils down to finding alone.

As mentioned in the previous section, there exist many al-
gorithms that try to find . As in case of any classification
model, there exists a tradeoff between the average misclassi-
fication over training set and the probability of misclassifica-
tion which reflects the generalization capabilities of Vnets. For
example, one can easily show using a simple example that, a
network with has a higher probability of misclassifi-
cation than an optimal net with , when is properly
chosen [7]. Thus the problem of finding in Vnets is related
to well-studied structural risk minimization in neural networks
[18]. The results presented in this paper throw some light on this
issue.

III. PROBLEM FORMULATION

Let be the feature space and
be the finite set of class labels. Denote as and as
. Let be a -field of subsets of and be the power set

of . Let be the smallest -algebra in
which contains every set of the form , , and

. Let be a probability measure on . Let ,
and be the probability measures induced byon ,
and , respectively. Let be a measurable map from

into . Then the average misclassification error, referred to
asexpected risk,incurred using is given by

2S has been defined to make the definition precise. If the underlying proba-
bility measure is absolutely continuous with respect to Lebesgue measure, then
theseS ’s can be ignored.

The aim of learning is to find a that minimizes . Let

(5)

be a BDR that minimizes i.e., , where
are appropriately defined. Since we are interested in ana-

lyzing how best the learned rule approaches a BDR, the class of
BDR that can be “efficiently” approximated by the rules gen-
erated by Vnets are characterized, instead of characterizing the
space of probability measures.

Since is unknown, is unknown. Only source of infor-
mation available is that of random samples drawn according to

. Let be the set of training samples
randomly drawn according to . Using this data set, the
expected risk can be approximated by theempirical risk

(6)

A common strategy is to estimate the BDR as the mapping that
minimizes the empirical risk.

Remark III.1: It is to be noted that, under fairly general as-
sumptions, the expected risk converges in probability to the em-
pirical risk for each given , and not for all simultaneously.
Therefore, it is not guaranteed that the minimum of the empir-
ical risk will converge to the minimum of the expected risk as
tends to infinity. Therefore, as pointed out and analyzed in the
fundamental work of Vapnik and Chervonenkis [18], [19]the no-
tion of uniform convergence in probability has to be introduced
and it will be discussed later.

The standard practice in pattern recognition using neural net-
works is that the number of parameters of the network is fixed
and is minimized over the parameter space, i.e., over the
space of maps generated by networks with a fixed number of
parameters. In the case of Vnets, the number of parameters is
proportional to the number of Voronoi regions or the number of
hidden units. Let be the space of maps generated by Vnets
with hidden units, i.e.,

as in (2), for (7)

[From now on, a Vnet is denoted by omitting the variables
and .] Then, is minimized over i.e., is approx-

imated by the function defined as

(8)

Assuming that the problem of learning from , viz.,
minimization of over , is solved, we are interested in
finding out the “goodness” of , apart from finding out the
class of problems that can be solved “efficiently” using Vnets.
The problem of finding is addressed by various learning
algorithms mentioned in Section I. The goodness of is
measured in terms of its expected risk , which is equal
to the probability of misclassification. Since is the best pos-
sible mapping that minimizes the probability of misclassifica-
tion, . The above issues are analyzed below
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by bounding the difference , which is referred
to as the generalization error (GE).

Remark III.2: One expects to become a better and
better estimate as and go to infinity. In fact, when in-
creases, the estimate of the expected risk and hence the
estimator improves. But, when increases, the number
of parameters to be estimated increases with the same amount
of data, and hence the estimate of the expected risk deteriorates.
In this situation, the estimate can be improved by seeking more
data. Therefore, and have to grow as a function of each
other for convergence to occur. The relation betweenand
for the convergence is derived as a corollary of the main the-
orem of this paper.

IV. BOUND ON GENERALIZATION ERROR

There are two factors involved in the approximation of
by , viz., how accurately can be approximated by the
maps with Voronoi regions, and given a data of size, how
accurately approximates the closest function among
to with respect to the metric [defined below in (10)] for
a given . To study these factors, let be the mapping with

Vcenters having the least expected risk, i.e.,

Then it follows from the definitions that
, and

(9)

The first term in the right-hand side (RHS) of (9) is referred
to as the AE since, it is the error in approximating by the
functions in . The second term is referred to as the EE since,

uses observations, , to estimate the Voronoi cen-
ters associated with by minimizing the empirical risk .
We bound the generalization error by bounding these two terms
separately.

A. Bound on Approximation Error

Notice that the approximation error does not depend on
but, it depends on . Therefore, to bound the approxi-

mation error, the space of BDRs for which approximation
error asymptotically goes to zero with is characterized. In
particular, our interest is in such a for which the following
expression holds:

where goes to zero faster than , for some , as
goes to infinity.
This problem is analyzed using a metric defined on the space
of maps from into . For a given probability measure

on , the discrete metric , defined on (4), can be
extended to a pseudometric on as follows:

(10)

It may be noted that

(11)

Therefore, in this section, is bounded to bound
which depends on especially, the -coarse

index functionof . Before formally deriving the bound, the
intuition behind defining -coarse index function of a mapping
is described below.

Any two neighboring Vcenters generate a hyper planar de-
cision boundary. Since these hyper planes can efficiently ap-
proximate any surface which is smooth enough, it is intuitive
that BDR with smooth decision boundary surfaces can be effi-
ciently approximated by Vnets. On the other hand, considering
the contribution by a Voronoi region to the average misclassifi-
cation error, if a Voronoi region is a proper subset of[see (5)]
for some , then the error made in this region is zero. Therefore,
the number of such Voronoi regions, if each region is equally
probable, should reflect how close is the mapping generated by
the Vnet to the BDR that is being approximated and hence the
approximation error. The relation between this number and the
smoothness of the decision boundary surfaces is brought out in
Section V.

Definition IV.1: Let be a measurable function from
. Then, denote the preimages ofcorresponding to the

class , i.e., : . Let be a probability
measure on . Then a set is said to be -pure
with respect to if for some . is said
to be -impureif is not -pure.

Let be a set of hypercubes formed by
hyperplanes such that hyperplanes are per-

pendicular to th axis and . If is abso-
lutely continuous with respect to Lebesgue measure(denoted
by ), then are chosen such that . Oth-
erwise, are chosen such that probability of each hypercube is
less than except those containing points of positive proba-
bility measure greater than . If a hypercube contains a point
of probability then the probability of such a hyper-
cube is utmost . Then, the minimum number of-im-
pure sets in , minimum over all possible , represented by

, is called the -coarse index functionof .
Theorem IV.1:Let be a probability measure on .

Then for all measurable , there exist a such
that

Proof: This theorem is proved by constructing a , for
a given , that satisfies the above bound. For someand

,

since on . Let
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then, . Therefore, if

then, minimizes . It is to be
noted here that if is a -pure set with respect to,

for all except for , then . Therefore

-

Now, are appropriately chosen to bound the error. For a
given , consider a containing -impure sets
with respect to . Since these hypercubes can be obtained from

Vcenters, choose ; for .
Now observe that if then, can be bounded by

because, partition and in the worst case,

. If is not absolutely
continuous with respect toand is a -impure set containing
a point with probability measure greater than , then

. From the above construction and observations, we get

thus proving the theorem.
The above theorem, because of (11), implies that for a given
and , there exists a in such that

(12)

Therefore, the rate at which this bound approaches zero as
tends to infinity, depends on , which in turn depends
on the underlying and . We relate to the general-
ized fractal dimension (defined later) of the set of points on the
decision boundaries of and characterize the rate of decrease
of the bound in terms of this dimension in Section V.

B. Bound on Estimation Error

Since is a random variable, is
bounded only in a probabilistic sense, i.e., with probability

(13)

Let

Then, EE can be bounded if is bounded. We bound
and consequently bound using results

from statistical learning theory [25].
One expects to converge to as one gets more and

more data. This happens if converges to uniformly
in probability [18]. The following lemma gives a relationship
between the estimation error and .

Proposition IV.2: [25] If ,
then, .

Thus EE is bounded if the difference between the empirical
risk and true risk is bounded uniformly over . This problem
is converted to that of analyzing the convergence of empirical

estimate of expectation of a class of random variables to their
true values below. Let be the class of -valued functions
defined on by the metric , viz.,

(14)

Then for any , it may be noted that the empirical expec-
tation of based on , , and the true expec-
tation of under the probability distribution ,

. Bounding the error between empirical and true expecta-
tions of a class of random variables is a well-studied topic [19].
Let

(15)

Then the following proposition directly follows from the defi-
nitions of and and from Proposition IV.2.

Proposition IV.3: If then, .
Therefore, it is enough to bound in order to bound

. Let

(16)

Then, the convergence of to is same as the con-
vergence of empirical probability to true probability of the
corresponding subset of. It may be noted that can
be bounded using the VC-dimension of[19]. Ben-Davidet
al. [21] gave a relation between the VC-dimension ofand
the -dimension of . Therefore can be bounded by
bounding -dimension of . can also be bounded,
considering as a family of real valued functions and using
the pseudodimension of as given in [13]. We have derived
the bounds using both the techniques [7] and found that the
results obtained using the latter approach are better than those
obtained using the former. The derivation of the bound using
the pseudodimension of is given below which follows along
similar line to the one given in [16]. Some definitions and
results that are useful in the derivation of bound on are
given in Appendix A.

Consider the family of functions defined in (14). Then The-
orem A.4 implies

(17)

where is the -restriction of given by
: , the average

metric, and the -covering number of
as defined in Appendix A. The following lemma, whose

proof has been relegated to Appendix B for continuity of
presentation, relates the metric capacities of ,
and , and the expectation of the covering
number of .

Lemma IV.4:
.
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Using the above lemma and taking supremum on both sides
of (17) over all , the defined in (15) can be bounded
as

(18)

To find a bound on , is decomposed as the
composition of two classes of functions. Let be the class
of functions from to , generated by -hidden neurons of
Vnet where, , and is the -dimensional
unit vector in the th dimension i.e., th component of is 1
and the rest of the components are zeros. Then

(19)

where are defined as in (2). Let be the class of func-
tions, from to , generated by the single output neuron of the
network. Note that . Then, :

, . The following lemma bounds in
terms of the metric capacity of . The proof of this lemma is
given in Appendix B.

Lemma IV.5:

Since is a vector of index functions of some class of sub-
sets, some results from Appendix A can be used to derive a
bound on , thus bounding .

Theorem IV.6:

where .
Proof: Let be the class of subsets of the formdefined

in Section II. Let : , then where,
: , . Then,

from Theorem A.5, we get, .
Because is a space of the indicator functions,

. Since is a class of subsets where each subset is
an intersection of at most half spaces, Lemmas A.1 and
A.2 implies . Substituting this in (34) for , we
get . Therefore, because of
Theorem A.5, . The
above result follows from Lemma IV.5 on substitution of the
bound for .

Theorem IV.7:With probability , the following bound
holds:3

(20)

Proof: For defined in Theorem IV.6, substituting the
bound for in (18) we get

From Proposition IV.3, if

(21)

This implies that :
if, the above inequality (21) is satisfied. Therefore, the

following inequality should be satisfied:

(22)

It is later shown that the above inequality is satisfied if
(23), shown at the bottom of the page, is true. Let

.
Since , the inequality (22) is satisfied for the above value
of ; thus proving the theorem.

C. The Main Theorem

Theorem IV.8:Let be a probability measure on .
Let be a BDR corresponding to and be the

-coarse index function of . Let :

3In general, these bounds are known to give very large numbers if different
variables in the bounds are substituted with their values. However, they are qual-
itatively tight in the sense that there exist some distributions for which the bound
is attained. Therefore, in this paper, the bound is found only in the order nota-
tion.

(23)
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be a set of independent training examples drawn ac-
cording to . Let be as defined in (8). Then, with proba-
bility

(24)

Proof: The theorem follows from (9), Theorem IV.1 and
Theorem IV.7.

V. IMPLICATIONS OF THETHEOREM

In this section, various implications of the main theorem of
this paper are discussed.

A. Convergence of Vnet to Bayes Decision Rule

Under the assumption that AE asymptotically converges to
zero with , which is justified in the next section, the discussion
in the sequel implies that, if and then, the
bound on GE in (24) asymptotically goes to zero. Substituting

in the expression for [refer (13)] in (20)
and letting tend to infinity, we get

Therefore, Vnet asymptotically converges to a BDR with arbi-
trary high probability if the number of Voronoi regions grow
slower than the square root of the number of training samples.

B. How Efficiently can Vnets Solve a Problem?

Efficiency of learning a given pattern recognition task,,
from a finite set of training samples can be measured by the
rate of convergence of to . The larger the rate
the more the efficiency. It follows from (24) that, for a fixed
number of Vcenters , as the number of training samples
increases, the bound on EE monotonically goes to zero where
as the bound on AE remains constant since it is independent of

. Therefore, the rate of convergence of to also
depends on the rate of decrease of the bound on AE, and hence
AE, to zero. The only parameter that depends on the problem
under considerationviz., (refer Definition IV.1), in
the bound on GE is due to the bound on AE and the bound on
EE is independent of . So, is analyzed to find

the efficiency of learning by Vnets. This analysis also gives an
insight into the approximation capabilities of Vnets.

Definition V.1: Let be a probability measure on
and be a measurable function. Then define

is -impure

where is the -ball around in . Let

if ,

otherwise.
(25)

Then, , if the limit exists, is called the
generalized fractal dimension(GFD) of with respect to ,
denoted by - .

GFD is called so because, it is a generalization of thefractal
dimension,which is same as theupper entropy indexdefined
in [26]. The fractal dimension is defined on the compact sets
using the Lebesgue measure. Here, GFD is defined with regard
to and . However, the above definition can be appropriately
modified for defining the dimension on any arbitrary sets with
regard to a given . In this modified definition, -
is equal to the fractal dimension of, when has a compact
support and is uniform.

Writing the bound on AE in terms of , we get

(26)

It may be observed that always lies in the interval
. The above inequality (26) says that the nearer

stays to the slower is the rate of decrease of the bound on AE
with .

To analyze further, assume has a compact support and is
uniform. Then higher the filling property of more the value
of and hence more the difficulty to approximateby
Vnets. For a given , if ’s distribution over the regions neigh-
boring the points of is less, then it makes small
making the rate of decrease of bound large. In conclusion, as it
should be expected, the approximation of a mappingby Vnets
depends on the space filling property of and the probability
distribution over the regions around it.

C. Optimal Growth Rate of

It is shown above that for to converge to the
number of Voronoi regions should grow slower than the square
root of the number of training samples. Then the question arises;
does there exist an optimal growth rate ofwith respect to ?
By the optimal growth, we mean the relation between

and such that for a fixed number of training samples,
the Vnet with number of Vcenters minimizes the bound
on GE. The existence of such a is quite intuitive from
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Remark III.2. This is reflected in the bound on GE (24). To get
an explicit expression for , the minimum of the bound
on GE, which is assumed to be close to the minimum of GE, is
found by solving the following equation:

where . Applying the derivative and ne-
glecting the less significant terms we get

After some algebra we get that the estimate of , for large
, is proportional to

(27)

The above expression (27) suggests one more interesting be-
havior of the optimal growth rate of . When is more,
i.e., the problem under consideration is more difficult (refer the
previous sub-sections), the optimal growth rate ofis higher.
That is, the number of Vcenters in Vnets can grow faster as the
number of training samples increase, when solving more diffi-
cult problems. This is indeed desirable, because largers make
the AE small.

D. Dependence on the Dimension of

It is known from the theory of linear and nonlinear widths
[27] that if the target function has variables and a degree of
smoothness, one should not expect to find that an approxima-
tion error goes to zero faster than , when the number
of parameters that have to be estimated is proportional to. Here
the degree of smoothnessis a measure of how constrained the
class of functions are; for example, the number of derivatives
that are uniformly bounded or the number of derivatives that are
integrable or square integrable. Therefore, from the classical ap-
proximation theory, one expects that unless certain constraints
are imposed on the class of functions to be approximated, the
rate of convergence will dramatically slow down as the dimen-
sion increases, showing the phenomenon known as the “curse
of dimensionality.”

Let . The term reflects the frequency
of variation of on its domain and the term in (26),
in a way, characterizes its smoothness. In case of Vnets, AE
goes to zero as fast as . Therefore, the above
conclusions from the classical approximation theory are valid
in case of Vnets also with as smoothness parameter.

It is interesting to note the following observation at this point.
The expression in (27) suggests that when , the op-
timal growth rate of increases from 1/8 to 1/6 as .
That is, can be increased at a faster rate for higher dimen-
sions maintaining the optimal performance. Nevertheless, the

increase in the optimal rate of cannot compensate AE be-
cause of the term in the exponent of in the bound AE.
In fact, for higher dimensions the optimal growth rate ofis
almost independent of the dimension ofbecause, the optimal
rate reaches very close to 1/6 even for moderate values of.

E. Tradeoff Between and

Theorem IV.8 suggests that there exist various choices of
and for a given specifications of confidence and accuracy pa-
rameters. This is due to the tradeoff between AE and EE. When a
large number of centers and less number of training samples are
chosen, the resulting EE could be high, but this can be compen-
sated by low AE and vice versa, in order to keep GE constant.
If the availability of the training samples is expensive then, one
could use more number of centers with the same bound on GE.
Or, if the network size is expensive one could use large number
of training samples. Thus the economics of this tradeoff would
yield a suitable values for and to solve the pattern recogni-
tion problem with the required accuracy and confidence. Geman
et al., termed this trade off as bias/variance dilemma [15].

F. Sample Complexities

Finally, we consider the bounds on sample complexity of
Vnets. As defined in Section IV-B, sample complexity reflects
the number of samples sufficient to learn a mapping with a
given accuracy and confidence requirements. From the value of

defined in Theorem IV.6, the expression in (22) implies that
if

VI. BOUND ON GE OF DECISION TREES

The classification model that shares a similar structure, but
not the same, with Vnets is the DT classifier [22]. A DT is a
binary tree. Each nonleaf node in the tree is associated with
a split rule that decides whether a given pattern will go to the
left or right subtree. A class label is assigned to each leaf node
implying that all the patterns landing in that leaf node are to be
classified into that class. When the feature space is a subset of

, then the class of split rules considered could be the class
of hyper surfaces that are either parallel or oblique to the axes.
The DT’s using the former class of split rules are called Axes-
parallel DTs and those using the later are oblique DTs. There
are many learning algorithms for these DTs (for example, [28]).
Better and better learning algorithms are still being discovered.

The learnability of this class of classifiers has been ana-
lyzed and bounds on sample complexities have been found
by bounding the VC-dimension of DTs which are used for
two-class pattern classification problems [29], [30]. The
analysis presented in Section IV can be easily reworked to
the class of maps generated by DTs. A brief sketch of the
proof of the theorem for DTs is given below. As expected, the
approximating behavior of DTs is quite similar to that of Vnets
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except that the number of Vcenters is replaced by the number
of leaf nodes. To find a bound on EE, DT is considered as a
combination of (number of leaf nodes) number of indicator
functions where the set associated with each indicator function
is an intersection of (the depth of the tree) half spaces. Let

be the class of mappings generated by DTs for a fixed
and . Then, the and corresponding to DTs are

(28)

where is as defined in (6), and

where is the average misclassification error.
Theorem VI.1:Let be a probability measure on .

Let be a BDR corresponding to and be the
-coarse index function of . Let :

be a set of independent training examples drawn ac-
cording to . Let be as defined in (28). Then, with proba-
bility

(29)

A Sketch of Proof:The first part of the above inequality
follows from the definition of -coarse index function of .
To get the second part, we need to bound be-
cause, following similar arguments as in Section IV-B:

(30)

Since is a combination indicator functions each is associ-
ated with an intersection ofhalf spaces, Theorem IV.6 implies
that

where . Substituting this
bound in (30) and after some algebra we get the second part of
the inequality in the statement of the theorem.

From the above theorem, one can say that the efficiency of
solving a problem, the dependence of GE on the dimension of

, and the tradeoff betweenand in case of DTs are the same
as in Vnets. One can analyze the optimal growth rate of the depth

of a tree and the numberof leaf nodes in a tree. It is observed
that the optimal rate of growth of is a function of . This
is to be expected because the number of subsets one can get in
a tree of depth is . But, the optimal rate of growth of is
almost similar to that of ; it differs only in the rate. Following

the same procedure as in the previous section, we get that the
number of leaf nodes should be proportional to

where , for the bound on GE to be optimal.
This rate is faster than that of in Vnets [refer (27)]. The dif-
ference is obvious because each element inis assumed to be
an intersection of half spaces whereas each subset in case
of DT is assumed to be an intersection ofhalf spaces and the
derived bounds are worst case bounds.

VII. D ISCUSSION

In this section, we make some comments on the nature of
results obtained along with some possible extensions of the re-
sults.

The main result of this paper has been developed on a frame-
work similar to Valiant’s PAC framework for learning and along
the lines of those given in [16]. However, the result is not en-
tirely distribution free. The bound on AE is dependent on the
underlying probability measure in terms of the properties of
a corresponding BDR, viz., -coarse index function of .
Moreover, in this paper, we have started from an approximation
scheme and found the space of problems that can be efficiently
solved by the scheme as opposed to the other way round viz.,
from a class of problems to an optimal class of approximation
schemes.

As previously mentioned, the bounds obtained using the PAC
framework are known to be very loose. Therefore, no attempt
has been made in this paper to find the exact numerical bounds.
Rather, these bounds have been used to analyze the behavior of
GE with respect to various parameters in terms of bounds on the
growth of with respect to , etc.

In this paper, we have assumed the existence of an algorithm
that finds , which minimizes , for a and a training
set . We guess that the problem of finding is NP-hard
since its counterpart in unsupervised learning, viz., clustering,
is NP-hard and the present problem is very similar to clustering.
(A formal verification of this conjecture needs to be done.) Re-
cently, an algorithm based on evolutionary algorithms has been
proposed and shown to asymptotically converge to with
probability one [7]. This algorithm may converge to a subop-
timal if run for a finite time, which is the case in reality. Never-
theless, it is empirically shown to converge to a better optimum
than that obtained by LVQ3 algorithm [3].

The behavior of generalization error of the networks with sig-
moidal units [11] and of the RBF networks [16] have been an-
alyzed considering them as function approximation schemes. It
appears that finding a bound on GE for these networks when
used as pattern classifiers is difficult. First, the class of decision
regions that can be obtained using the functions generated by
these networks as discriminating functions could be very diffi-
cult to characterize. However, the conclusions arrived from the
analysis presented in Section IV-A should, in general, be ap-
plicable to these networks too. It is interesting to investigate
whether the techniques similar to the one given in Section IV-B
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can be used in bounding the EE of these networks. The problem
may arise when calculating the metric entropy of the space of
mappings in the last stage of the network where the vectors of
real numbers are mapped to class labels.

One has to address two interrelated issues in comparing two
classification models. One issue is the average misclassification
error and second, the time taken to arrive at a particular instance
of the model. The first issue has been analyzed in case of Vnets
and DTs in the present paper. The analysis could be extended to
MLPs in which each perceptron uses a hard-limiting function;
because the fundamental structure in the associated decision re-
gions is a hyperplane. It is interesting if a similar analysis can be
done on other types of MLPs and RBF networks that are pop-
ularly used in PC models. However, it appears to be difficult to
access the computation needed to arrive at a globally optimal
classifier with existing tools in computation complexity. If one
succeeds in precisely finding the computation requirements of
learning these networks, then these classification models can be
compared purely on an analytical basis and the comparison then
holds for a wide class of PC problems irrespective of the spe-
cific learning algorithm.

VIII. SUMMARY

We have considered the classification model that discretizes
the feature space into Voronoi regions and assigns samples
in each region to a class label. We have called this model as
“Vnets.” The error between a rule and a BDR corresponding
to the problem under consideration has been considered as the
generalization error. GE has been split into AE and EE and
these factors have been individually bounded, thus bounding
GE. We have analyzed the approximating behavior of Vnets,
in turn their efficiency in solving a problem from the bound on
AE. We have shown that the efficiency of Vnet depends on the
extent to which Bayes decision boundaries fill the feature space.
The bound on EE has been derived using two techniques and
the relative merits of these two techniques have been discussed.
Putting together the bounds on AE and EE, we have shown
that Vnets converge to the Bayes classifier with arbitrarily high
probability provided the number of Vcenters grow slower than
the square root of the number of training samples. All these
results have been reworked for DTs. The optimal growth rate
of the number of Voronoi centers for optimum GE has been
calculated for Vnets as well as DTs. The main result of this
paper also quantitatively explains the bias/variance dilemma
and the curse of dimensionality that is generally observed in
classification models.

APPENDIX I
SOME DEFINITIONS AND RESULTS

The analysis of the process of learning a concept can be done
by analyzing the uniform convergence of the associated empir-
ical process as shown in Section IV-B for a class of concepts.
The classes of concepts that are of interest in this paper are the
class of subsets of , and the class of real valued func-
tions. In each of the above classes, the uniform convergence of

the empirical process depends on the growth function associ-
ated with the concept class. The growth function in turn depends
on a number (dimension) that is specific to a concept class. In
this section, we define these dimensions for the above men-
tioned two concept classes and give the relation between this di-
mension and the property of uniform convergence for the class
of real valued functions in a series of theorems and lemmas.
Readers are referred to [25] and [31] for more details.

A. VC Dimension of Subsets of

The following notation is used in this section. Let be
a measurable space and let be a collection of subsets of

.
Definition A.1: A subset is said to beshatteredby
if for every partition of into disjoint subsets and ,

there exists such that and . Then
the Vapnik–Chervonenkis (VC) dimension of, , is
the maximum cardinality of any subset of shattered by , or

if arbitrary large subsets can be shattered.
The following two lemmas give the VC dimension of the class

of half spaces in and that of the class of subsets ofwhich
are intersections of elements belong to a concept class of a
given VC dimension. These results are useful in deriving the
bounds for Vnets.

Lemma A.1: ([17, Lemma 3.2.3]) Let be a concept
class of finite VC dimension,viz, .
For all , let :
or : , . Then ,

.
Lemma A.2: ([32]) Let be the class of half spaces in

then, .

B. Learning the Class of Real Valued Functions

Definition A.2: For let, if else
. For let,

, and for let,
: . Any set is said to befull if there

exists such that , where
: .

Let be a family of functions from a set into . Any
sequence is said to beshatteredby , if
its -restriction, : , is full.
The largest such that there exists a sequence ofpoints which
are shattered by is said to be thepseudodimensionof de-
noted by . If arbitrarily long finite sequences are shat-
tered, then is infinity.

Definition A.3: Let be a subset of a metric spacewith
metric . Then a set is called an -coverof with
respect to the metric if for every , there exists
some satisfying . The size of the smallest
-cover is calledcovering numberof and is denoted by

. A set is called an -separatedif for all
, . Thepacking number

of a set is the size of the largest-separated subset of.
Let be a metric on defined as , ,

( is used in the subscript
to represent average metric as in [25]). Let be a
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pseudometric on a spaceof functions from to , induced
by a probability distribution on , defined as

Theorem A.3:([13]) Let be a family of functions from a
set into , where for some .
Let be a probability distribution on . Then for all

(31)

Theorem A.4:([13], [25]) Let be a family of functions
from a set into [0, 1]. Let be a sequence of training
examples randomly drawn according to a distribution. Then,
for all ,

(32)

Where is the restriction of to the data set , that is:

: .
The original version of the above theorem is given in [13];

an improved version, with less conservative bounds, is given
in [25]. depends on the probability
distribution , since is a random set that depends on. To
get a bound that is independent of, a quantity called metric
capacity is defined and the error is bounded in terms of this.

Definition A.4: Themetric capacityof is defined as

(33)

where the supremum is taken over all the probability distribu-
tions defined on .

Since the right-hand side of (31) is independent ofand
for all , we have, under

the same hypothesis of Theorem A.3

(34)

We use the following theorem in Theorem IV.6.
Theorem A.5:([13]) Let :

, where is a class of functions from to .
Then .

APPENDIX II
PROOFS OFLEMMA IV.4 AND LEMMA IV.5

Proofs of Lemma IV.4:Given a sequence in , sam-
pled according to the distribution, define as the empir-
ical distribution on , i.e., ,

where is the Dirac delta function and is the th ele-
ment of . Let , then

. Therefore,
because of the isom-

etry. Hence the first inequality follows from (33) and by taking
expectation on both sides with respect to.

Fix a distribution on . Let be the marginal
distribution with respect to and , respectively. Let
be an -cover for with respect to the metric such
that . Then, it is easy to show that

: is an -cover for with re-
spect to the metric . Then,

. Taking supremum over
all we get the second inequality in the lemma.

Proof of Lemma IV.5:Fix a distribution on . Let
be -cover for with respect to the metric such
that . Then, :

can be shown to be an -cover for with
respect to . Hence

Since this holds for any , taking supremum over all , the
lemma is proved.
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