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Voronoi, Regions of Lattices, Second 
Moments of Polytopes, 

and Quantization 

J. H. CONWAY AND N. J. A. SLOANE, FELLOW, IEEE 

Ah&act-If a point is picked at random inside a regular simplex, 

octahedron, 600-cell, or other polytope, what is its average squared distance 

from the centroid? In n-dimensional space, what is the average squared 

distance of a random point from the closest point of the lattice A, (or 

D,, , En, A: or D,*)? The answers are given here, together with a description 

of the Voronoi (or nearest neighbor) regions of these lattices. The results 

have applications to quantization and to the design of signals for the 

Gaussian channel. For example, a quantizer based on the eight-dimensional 

lattice Es has a mean-squared error per symbol of 0.0717 when applied 

to uniformly distributed data, compared with 0.0&333 . . for the best 

one:dimensional quantizer. 

I. QUANTIZATION;CODESFORGAUSSIANCHANNEL 

A. Introduction 

T HE MOTIVATION for this work comes from block 
quantization and from the design of signals for the 

Gaussian channel. Let us call a finite set of points y,, * . . ,yIM 
in n-dimensional Euclidean space R” a Euclidean code. An 
n-dimensional quantizer with outputs y,, . . . , y, is the func- 
tion Q: R” --) R” which sends each point x E R” into 
Q(x) = closest codepoint yi (in case of a tie, pick that yi 
with the smallest subscript). If x has probability density 
function p(x), the mean-squared error per symbol of this 
quantizer is 

where IIxII =(x.x) ‘I2 Around each codepoint y, is its . 
Voronoi region V( yi) (see [49]), consisting of all points of 
the underlying space which are closer to that codepoint 
than to any other. More precisely, we define V( yi) to be 
the closed set 

v( y,) = {x E R”: II x-y,)) I Ilx-yiIIforallj#i}. 

(Voronoi regions are also called Dirichlet regions, Brillouin 
zones, Wigner-Seitz cells, or nearest neighbor regions.) If x 
is an interior point of V( y,), the quantizer replaces x by 
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Q(x) = yj. Then we may write 

E(n, M, P, { Yi}) = i ,z / IIX -Yil12P(X) dX* (1) 
r=l Out) 

Given n, M, and p(x) one wishes to find the infimum 

E(n, M, P) = ,i:$E(n, M, P, {Yi}) 

over all choices of yl; . .,y,,,,. Zador ([53]; see also [6], [7], 
[24], [52]) showed under quite general assumptions about 
p(x) that 

(n+Wn 
$Fn M2/“E( n, M, p) = G,, Lnp( x)n’(n+2) dx , 

(2) 
where G,, depends only on n. Zador also showed that 

l I’(;+ 1)2’n 
(n + 2)77 

,G+(;+ 1)2’nr(l +f). 

(3) 

Asymptotically the upper and lower bounds in (3) agree, 
giving 

G,, -+ & = 0.0585498 . . . asn-too. (4) 

Since the probability density function p(x) only appears 
in the last term of (2), we may choose any convenient p( x) 
when attempting to find G,,. From now on we assume that 
the input x is uniformly distributed over a large region in 
n-dimensional space, and we can usually avoid edge effects 
by passing to a limiting situation with infinitely many yi. 
With this assumption the mean-squared error is minimized 
if each codepoint yi lies at the centroid of the correspond- 
ing Voronoi region V( y,) (see [24]). It is known that, for an 
optimal one-dimensional quantizer with a uniform input 
distribution, the points y, should be uniformly spaced along 
the real line; correspondingly 

G, = $ = 0.08333 ’ . . . (5) 

Similarly for the optimal two-dimensional quantizer it is 
known that the points yi should form the hexagonal lattice 
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A, (described in Section III-A); correspondingly 

G, = -& = 0.0801875 . . - > 
- 36\/3 

(see 1211, 1231, 1241, 1371). 
In three dimensions Gersho [24] 

optimal quantizer is based on the 
lattice At, and that 

conjectures that the 
body-centered cubic 

G,= l9 ___ = 0.0185433 * *. . 
1923@ 

Similarly in four dimensions he conjectures that the opti- 
mal quantizer is based on the lattice D4, and that 

G4 = 0.076602 (8) 

(obtained by Monte Carlo integration). Furthermore, he 
conjectures that, in all dimensions, any optimal quantizer is 
such that for large M the Voronoi regions V( y,) are all 
congruent, to some polytope P say. For such a quantizer 
we obtain, from (1) and (2), 

J 
G& ’ 

Ilx - 2112dx 

i/ i 

(n32)/n ’ 

dx 
P 

(9) 

where f is the centroid of P. The expression on the right 
makes sense for any polytope and will be denoted by 
G(P): we refer to it as the dimensionless second moment of 
P. It is also convenient to have symbols for the volume, 
unnormalized second moment, and normalized second mo- 
ment of P: these are 

vol(P) =Jfx, 

u(P) =Lllx-fl12dx, 

and 

w> I(P) = ___ 
vol(P) ’ 

respectively. Then 

G(P) = L w> = 1 I(P) 

n vol(P)‘+2’n n vol(P)2’n’ 

If Gersho’s conjecture is correct then G,, may be de- 
termined from 

G, = *G(P), (10) 

taken over all n-dimensional space-filling polytopes. 
Whether or not the conjecture is true, any value of G(P) 

for a space-filling polytope is an upper bound to G,,. 
Furthermore (I), (2) and (9) allow us to interpret G,, and 
G(P) as mean-squared quahtization errors per symbol, as- 
suming a uniform input distribution to the quantizer. 

In the second application, the same Euclidean code 

Yl?. . * ,y, is used as a code for the Gaussian channel. Now 

the Voronoi regions are the decoding regions: all points x 
in the interior of V( y,) are decoded as y,. If the codewords 
are equally likely and all the Voronoi regions V( yi) are 
congruent to a polytope P, the probability of correct 
decoding is proportional to 

I 
eKx’x dx. 

P 

The description of the Voronoi regions given in Section III 
thus makes it possible to calculate this probability exactly 
for many Euclidean codes. These results will be described 
elsewhere. 

B. Summary of Results 

In Sections II and III we compute G(P) for a number of 
important polytopes (not just space-filling ones), including 
all regular polytopes (see Theorem 4). The three- and 
four-dimensional polytopes are compared in Tables I and 
II. The chief tools are Dirichlet’s integral (Theorem l), an 
explicit formula for the second moment of an n-simplex 
(Theorem 2), and a recursion formula giving the second 
moment of a polytope in terms of its cells (Theorem 3). 

In Section III we study lattices, in particular the root 
lattices A,, D,, E6, E,, E,, and their duals (defined in 
Section III-A). We determine the Voronoi regions for these 
lattices, and their second moments. The second moment 
gives the average squared distance of a point from the 
lattice. The maximum distance of any point of the underly- 
ing space from the lattice is its covering radius. The covering 
radii of these lattices were mostly already known (see for 
example [2], [4], [31]), but for completeness we rederive 
them. The final section (Section IV) compares the quanti- 
zation errors of the different lattices-see Table V and Fig. 
20. E, is the clear winner. 

It is worth mentioning that for most of these lattices 
there are very fast algorithms for finding the closest lattice 
point to an arbitrary point; these are described in a compa- 
nion paper [12]. The sizes of the spherical codes obtained 
from these lattices have been tabulated in [47]. 

Although we have tried to keep this paper as self-con- 
tained as possible, some familiarity with Coxeter’s book 
[ 161 will be helpful to the reader. Z denotes the integers, Q 
the rationals and R the reals. 

II. SECOND MOMENTS OF POLYTOPES 

In this section we compute the second moments of a 
number of fairly simple polytopes; many others will be 
analyzed in Section III. The methods used are described in 
Theorems 1-3. A polytope in this paper means a convex 
region of R” enclosed by a finite number of hyperplanes 
(cf. [ 16, p. 1261). The part of the polytope that lies in one of 
hyperplanes is called a ceN. We usually denote the edge- 
length of our polytopes by 21. The main source for in- 
formation about polytopes is Coxeter [16], but there is an 
extensive literature, particularly for low-dimensional fig- 
ures (see for example [ 11, [ 13]-[20], [22], [23], [26], [28], [29], 
[33], [34], [36], [40], [48], and [50]). Although second mo- 
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ments about an axis are tabulated for many simple 
hedra in standard engineering handbooks (see also 
the results given here appear to be new. 

PolY- 
[431), 

D. n-Dimensional Simplexes 

The next result makes it possible to find the second 
moment of any figure provided it can be decomposed into 
simplexes. 

A. Dirichlet’s Integral 

A few special figures can be handled using Dirichlet’s 
integral. 

Theorem I ([51, $12.51): Let f be continuous and 

aI,’ * .,(Y” > 0. Then 

J( 

f x, + . . . +Xn)Xpll . . .x;“$L.. . $ 

n 

where the integral on the left is taken over the region 
bounded by x, I 0; * .,x,, 2 0 and x1 + . . * x, I 1. 

B. Generalized Octahedron or Crosspolytope 

Consider for example the n-dimensional generalized oc- 
tahedron or crosspolytope /I, [16, p. 1211 of edge-length 21. 
Taking!= 1, QI, = 1 (to get the volume) or (Y, = 3 (to get 
the second moment) and (Y~ = 1 for i L 2 in Theorem 
find 

2”i2 vol (P,) I(&) _ 
(21)” =n!’ (2~)~ (n+l;(n+2)’ 

(n !)*” 

GtPn) = 2(n + l)(n + 2) 

--$ = 0.0676676 . . . asn+co. 

1 we 

(11) 

C, The n-Sphere 

As a second application, for the n-dimensional (solid) 
sphere S, of radius p we find 

vol(s,)= #/* I(s,)- n 

Pn r(+n + 1) ’ p* n+2’ 

r(+n + 1)“” 
GtSn)= (n+2)7r 

+& = 0.0585498 . . * asn-co. 

(14 

It is clear from the definition that the sphere has the 
smallest value of G(P) of any figure [53]. Thus G, 2 G(S,) 
for all n, which is the sphere lower bound of (3) (see Fig. 
20). Unfortunately quantizers cannot be built with either 
generalized octahedra (for n 2 3) or spheres (for n L 2) as 
Voronoi regions, since these objects do not fill space. 

Theorem 2: Let P be an arbitrary simplex in R” with 
vertices vi = (oil; * *, uin) for 0 5 i _( n. Then 

a) the centroid of P is at the barycenter 

6 = --L(, + . * f +v,) 
n+l 

of the vertices, 

bj 

vol(P) = -$ det 
1 v,, *** 

. . . . . . 

1 on, **. 

and 

(13) 

VOTI 

Oh 
, (14 

V nn 

c) the normalized second moment about the origin 0 is 

n+l 
I, = - n + 2 Hall2 + (n + $, + 2) i~oll~ill”. (15) 

In other words I, is equal to the second moment of a 
system of n + 1 particles each of mass l/(n + l)(n + 2) 
placed at the vertices and one particle of mass (n + l)/(n 
+ 2) placed at the barycenter. 

Proof: a) is elementary, b) is well known (c.f. [25, p. 
3491) and c) follows from [25, eq. (24), the case n = 21. 

E. Regular Simplex 

For example if P is a regular n-simplex of edge-length 21 
then 

vol(P) _ in + 1 I(P) - 

@- 1 21 n n! ’ (@z)’ (n + 1;(n + 2) ’ 

G(P) = 
(n!)*‘” 

tn + 1) 
’ +wy n + 2) 

- em2 = 0.135335 . . . asn+co. 06) 

For n = 1,2, and 3 the values of G(P) are l/12, l/60 = 
0.0962250 . * . , and 3*13/20 = 0.104004 * * . , and G(P) 
increases monotonically with n. 

F. Volume and Second Moment of a Polytope in Terms of its 

Cells 

Instead of decomposing a figure into simplexes one may 
proceed by induction, expressing the volume and second 
moment of a’ polytope in terms of the volume and second 
moment of its cells, then in terms of its (n - 2)-dimensional 
faces, and so on. Theorem 3 is the basis for this procedure. 

Suppose P is an n-dimensional polytope with N, con- 
gruent cells F, , F;, F;‘, . . . , N2 congruent cells F2, F;, F;‘, . . . , 

and so on. Suppose also that P contains a point 0 such that 
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all of the generalized pyramids OF,;, OF;, . . . are congruent, 
all of OF,, OF;, . . . are congruent,. 1. . Let ui E I;; be the 
foot of the perpendicular from 0 to E;:, let hi = ((Oaill, and 
let V,-,(i) be of volume of I;, and U,-,(i) the unnormal- 
ized second moment of 4. about ai. 

Theorem 3: The volume and unnormalized second mo- 
ment about 0 of P are given by 

vol(P) = x %Vn-,(i), 
i 

u(p) = 2 

i 

f$[hfK-,(i) + U,-,(i)]. 

Proof: Follows from elementary calculus by dividing 
each generalized pyramid O& into slabs parallel to the cell 
4. 

G. Truncated Octahedron 

For example let P be the truncated octahedron with 
vertices consisting of all permutations of $ZZ(O, 2 1, ‘2). P 
has N, = 6 square cells and N2 = 8 cells which are regular 
hexagons, all with edge-length 21. The second moments of 
these cells can be calculated directly, or else found in 
Section II-I below. Then from the theorem we find that 

6 . 8 . 
vol(P) = --3-412 IJ;d + T6&12 I6 = 64@13, 

6 + 

U(P) = lfi 8E2 . 
-j-- 

412 + F 1 
+- ’ *ii” [6Z2. 6fi12 + 10fi14] 

hence 

= 304fi15, 

u(p) 19z4 1(p) = ___ x - 
vol(P) 4 ’ 

G(P) = -! I(P) 19 

3 vol( P)2’3 
= ____ = 0.0785433 . . . . 

1923fi 

(17) 

I(P) = u(p) = n r2 + 2 

vol(P) [ n+2 n n(n + 1) 

. rF+...+ 
i 

n(n - 1) r2p 
2 n 1 )I 

which simplifies to (20). 
The values of g, vol( P) and R, are tabulated for all 

regular polytopes in [16, table I, pp. 292-2951. We have 
already dealt with the simplex and generalized octahedron. 
For an n-dimensional cube G(P) = l/12 for all n (since 
the cube is a direct product of line segments). We now treat 
the remaining regular polytopes. 

H. Second Moment of Regular Polytopes I. Regular Polygons 

The next theorem gives an explicit formula for the 
second moment of any regular polytope. Suppose P is an 
n-dimensional regular polytope [ 161. For 0 Ij I n choose 
a j-dimensional face I;; of P so that Fb & F, . . . C F, = P, 
and let 0, be the center of q., Rj = llOnOJ-ll, and forj 2 1 let 
5 = I]Oj-,OjII. Thus y/ is the inradius of Fj measured from 

O,, and q2 = R,‘-, - Rf. Let Nj, j-, be the number of 
(( j - 1)-dimensional) cells of E;;. Then it is known that the 
symmetry group of P has order 

If P is a regular p-gon of edge-length 21 then from 
Theorem 4 we find 

vol(P) =p[Zcot;, 

I(P) =G( 1 + 3cot2 ; ) 
1 

G(P) = L cosecy + cot: . 
6~ ( 1 

(21) 

Forp = 3,4, and 6, G(P) = l/60, l/12, and 5/36fi. 

(see [16, p. 130]), and that the volume of P is 

vol(P) = N&, .++N2,,N,,0. ‘lr2;;*l” (18) 

(see [16, p. 1371). 

Theorem 4: The second moment of any n-dimensional 
regular polytope P about its center 0, is given by 

I(P) = 
2 

(n + l)(n + 2) 

4 R2, -i- 2R: + 3R; + . . . +nR2,-,) (19) 

or equivalently 

I(P) = 
2 

(n + l)(n + 2) 

. 
i 

rf + 3ri + 6rt + . . . + ‘(‘: l) r:). (20) 

Proofi The proof is by induction, the one-dimensional 
case being immediate. From Theorem 3 we have 

u(p) = N;* ;-;G [r,“K-,w + u,-ml, 
where (from (18) and the induction hypothesis) 

v,-,(P)=N “-,, n-2...N2,1N,,o. r’r2”‘r’-‘, 
(n - l)! 

u,-,(p) = v,-,(p) 

2 

n(n + 1) [ 
r: + . . . + n(n - 142- 

2 1 n 1. 

Then 
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J. Icosahedron and Dodecahedron 

For the icosahedron 

TABLE I 
COMPARISONOFDIMENSIONLESSSECONDMOMENTG(P)FOR 

VARIOUSTHREE-DIMENSIONALPOLYHEDRA P 

= 0.0778185 . . . , 

where 7 = (6 + 1)/2, and for the dodecahedron 

vol 
397 + 28 

= 461374, I = l2 . 25 ’ 

2’3 
= 0.0781285 . . . . 

K. The Exceptional Four-Dimensional Polytopes 

(22) 

(23) 

There are three “exceptional” regular polytopes in four 
dimensions, the 24-cell, the 120-cell, and the 600-cell (the 
prefix giving the number of cells-see [ 161). For the 24-cell 

vol = 3214, I = 2612/15, 

G = --& = 0.0766032 . . . ; 

for the 120-cell 

vol = 120J5Z47*, I = =(282 + 1276) 
156 

G = 437 + 13 

30065'14 
= 0.0751470 . . . ; 

and for the 600-cell 

v01 = 10014r3 > 1=g(l2 + 56) 

G zz (3r + 4)r1’2 = 0 0750839 
150 * 

. . . . 

(25) 

(26) 

L. Comparisons 

The three- and four-dimensional polytopes that have 
been considered are compared in Tables I and II. 

III. VORONOI REGIONS OF LATTICES AND THE 

MEAN-SQUARE ERROR OF LATTICE QUANTIZERS 

In this section we determine the Voronoi regions of 
various n-dimensional lattices, and their volumes and sec- 
ond moments. Since these lattices can be used to construct 
n-dimensional quantizers for uniformly distributed inputs, 
the dimensionless second moments give upper bounds to 
G, (see (10) and Section IV). The lattices considered are the 
root lattices’ and their duals, namely A,,, AZ, D,,, D,*, Es, 
E,, and E, (we shall not consider Et or ET here, while 
E; = E,). 

‘A root lattice is a lattice spanned by the root system of a Lie alge- 
bra-see [5], [30]. 

P G(P) 

tetrahedron .I040042 

cube’ .0833333 .( 

octahedron .0825482 

hexagonal prism’ .0812227 

rhombic dodecahedron’ .0787451 

truncated octahedron* .0785433 

dodecahedron .0781285.. 

icosahedron ‘0778185 . . 

sphere .0769670 . . . 

*A space-filling polyhedron. 

TABLE II 
COMPARISONOF DIMENSIONLESSSECONDMOMENTG( P) FOR 

VARIOUSFOUR-DIMENSIONALPOLYTOPES P 

P GO’) 

simplex .1092048 

cube’ .0833333 . . 

generalized octahedron .0816497 

24-cell’ .0766032 

120~cell .0751470 . . . 

600-cell .0750839 

sphere .0750264 

*A space-filling polytope. 

For general information about lattices see for example 

141, [51, PI, WI, [141-1171, WI, [32l, [381, [391, and [451-[471. 
In particular if A is a lattice in R” the dual (or reciprocal or 
polar) lattice A* consists of all points x in the span QR 
such that x * y E Z for ally E A. Since all the points in a 
lattice are equivalent, it is enough to find the Voronoi 
region around the origin, i.e., the closed set 

The volume of the Voronoi region can be written down 
immediately from the other standard parameters of the 
lattice: 

VP" p" _ 
vol v(0) = A L=,-,i;i, (27) 

where V, is the volume of a unit sphere in R”, 2p is the 
minimum distance between the points of A, and A, 6 and d 
are respectively the density, center density, and determi- 
nant of A. The covering radius will be denoted by R,. 
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A. Definition of the Root Lattices 

For n z 1, A,, is the n-dimensional2 lattice consisting of 
the points (x,,, x,; * .,xn) in Z*+’ with XX; = 0. The dual 
At consists of the union of n + 1 cosets of A,: 

A: = 6 ([i] + A,), 
i=O 

where 

[i]: d ..-Zl!L . . . 2 i . . . - 
( 

i 

n+l’n+l’ ‘n+l’n+l’ ‘n+l 1 

= ((y$&&)j) (28) 

and i + j = n + 1. For n = 1 and 2, AZ = A, (i.e., they 
differ only by a rotation and change of scale). 

For n 2 2, D,, consists of the points (x,, x2,*.*,x,,) in 
Z” with Xx, even. In other words, if we color the integer 
lattice points alternately red and blue in a checkerboard 
coloring, D,, consists of the red points. The dual D,* is the 
union of four cosets of D,,: 

D,* = 6 ([iI + Q), 
j=O 

where 

PI = (O”L PI = (t”), 

[2] = (on--l, l), [3] = (t”-‘,-4). 

Also D2 = A, @ A,, D3 = A,, and D$ = D4. Equivalently, 
D,, may be obtained by applying Construction A of [32] or 
[45] to the even weight code of length n. Similarly D,* is 
obtained by applying Construction A to the dual code 
{O”, l”}. 

There are many possible definitions of the lattices E6, 
E,, and E, (see the references given at the beginning of this 
section). We shall use the following: Es is the union of D, 
and the coset 

In other words E, consists of the points (x,, . . . ,xs) with 
xi E Z’ and Xx, even, together with the points (y,; . .,ys) 
with y, E Z + i and Zyi even. E, is a subspace of di- 
mension 7 in E,, consisting of the points (u,, * * a, us) E E, 
with u, = -us. E6 is a subspace of dimension 6 in Es, 
consisting of the points (u,; * *,us) E E, with ug = u7 = 
--us. 

B. Voronoi Region of a Root Lattice 

In this section we give a uniform method for finding the 
Voronoi region of any root lattice A (the dual lattices must 
be handled differently). The method is based on finding a 
fundamental simplex for the affine Weyl group of the 
lattice (cf. [3], [5], [16]). 

*The subscript gives the dimension of the lattice. 

A A A 
” 

xg = x, x, =x2 X*=X3 . . . Xn-, =x, 

Fig. I. Extended Coxeter-Dy&in diagram for W,(A,). The extending 
node is indicated by a solid circle. The n + I nodes are labeled with the 
equations to the hyperplanes which are the walls of the fundamental 
simplex. The labelings in Fig. l-3 are based on [5, pp. 250-2100] and 
[IO]. 

X,=X2 x”-, + x,=I 

w, (D”) 

Fig. 2. Extended Coxeter-Dynkin diagram for W,( 0,). There are n + 1 
nodes. 

The (ordinary) Weyl group W(A) of an n-dimensional 
root lattice A is a certain finite group of orthogonal 
transformations of R” which sends A to itself (for the 
precise definition see [5, p. 1431 or [30, p. 43]).3 Similarly 
the affine Weyl group W,(A) is a certain infinite group of 
isometries of R” which sends A to itself (see [5, p. 1731); 
and W(A) is the subgroup of W,(A) fixing the origin.4 The 
affine Weyl group is described by the extended Coxeter- 
Dynkin diagram shown in Figs. l-3. 

This diagram can be read in at least three different ways 
(see [3], [S], [16], [27]). First, it provides a presentation for 
W,(A), defining the group in terms of generators and 
relations; however we shall not make use of this interpreta- 
tion here. Second, it can be used to specify a fundamental 
simplex S for W,(A). This is an n-dimensional closed 
simplex whose images under the action of W,(A) are 
distinct and tile R”. In other words we can write 

R” = u g(s), (29) 
gE W,(A) 

where (except for the boundaries of g(S), a set of measure 
zero)’ each point x E R ” belongs to a unique g(S). In this 
interpretation the nodes of the diagram represent the hy- 
perplanes which are the walls of the fundamental simplex 
[ 16, p. 1911. The angle between two walls or hyperplanes is 
indicated by the branch of the diagram joining the corre- 
sponding nodes. If the hyperplanes are at an angle of m/3 
the nodes are joined by a single branch, if the angle is m/4 
they are joined by a double branch (see Fig. 4), if the angle 
is r/p with p > 4 they are joined by a branch labeled p, 
and finally if the hyperplanes are perpendicular the nodes 

3 W( A) is generated by the reflections in the hyperplanes through the 
origin perpendicular to the minimal vectors of the lattice. Alternatively, in 
the terminology of [ 1 I], W(A) is the group G,(A), while the full group of 
orthogonal transformations sending A to itself is a split extension of 

G,(A) by G,(A). 
4 We may think of A itself as being an Abehan group of translations of 

R”, which sends A to A. Then W,(A) is a split extension of A by W(A). 
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Fig. 4. Coxeter-Dynkin diagrams for the spherical simplexes of (a) 
W,(E81 W(A,) and (b) W(C,). (The labeling of the nodes is for convenience 

(4 
only and has no geometrical significance.) 

x, + X8’ x2 + + x, x2=x3 x3 = xq 

X,’ x2 x4= x5 

-I--- 

x, = -xp 

W,, (E6) 

+cx,+ ‘-+ x5-x6-x,txg)=l 

(4 

Fig. 3. Extended Coxeter-Dynkin diagrams for (a) W,( Es), (b) W,( I?,), 

and (4 Y,( J%). 

are not joined by a branch. The nodes in Figs. 1-3 have 
been labeled with the equations to the corresponding hy- 
perplanes. 

In the third interpretation the nodes in the extended 
Coxeter-Dynkin diagram are taken to represent the vertices 
of a fundamental simplex, rather than the bounding hyper- 
planes. Each node represents the vertex opposite to the 
corresponding hyperplane (some examples are shown in 
Figs. 6, 8, and 9)-see [16, p. 1961. 

One of the nodes in the diagram is indicated by a solid 
circle. This is the extending node; removing it leaves a 
Coxeter-Dynkin diagram for the Weyl group W(A). Of 
the n + 1 hyperplanes represented by the extended dia- 
gram, all except that corresponding to the extending node 
pass through the origin. It is helpful to think of the latter 
hyperplane as forming the roof of the fundamental simplex. 
The vertex of the fundamental simplex opposite the roof is 
the origin. 

For later use we remark that the finite Weyl group 
W(A) also has a fundamental domain, consisting of an 
infinite cone centered at the origin. A fundamental simplex 
for W,(A) is obtained by taking the finite part of the cone 
beneath the roof. The intersection of this cone with the 
roof, or more precisely with a unit sphere centered at the 
origin, is a spherical simplex. The Coxeter-Dynkin diagram 
for W(A)-i.e., with the extending node deleted-de- 
scribes this spherical simplex in the same way as the 
extended diagram describes the fundamental simplex for 
W,(A). These spherical simplexes and (unextended) 
Coxeter-Dynkin diagrams can be used to define the Weyl 

Fig. 5. 

groups of all the root systems (and not just the root lattices 
A,,, D,,, and E,,). In Sections F and G we shall require the 
spherical simplexes corresponding to W( A,) and W( C,), 
shown in Fig. 4. The Weyl group W(A,) is usually written 
as [3”-‘1 and is isomorphic to the symmetric group on 
n + 1 letters. W(C,) is written [3n-2, 41 and has order 2”n!. 

(See [31, [51, V61, [181, and [301.) 
Lemma: The origin is the closest lattice point to any 

interior point of the fundamental simplex. 

Proof: Let u be the closest lattice point to x E S. 
Suppose u # 0. Then u @ S, and u and x are on opposite 
sides of a reflecting hyperplane of W,(A). Let U’ E A be 
the image of u in this hyperplane, and let y be the foot of 
the perpendicular from x to the line uu’ (see Fig. 5). Then 
II xu’l12 = llxyll 2 + II yu’ll 2 < llxyll 2 + II yull 2 = IIXUII *, 
and x is closer to u’ than to u, a contradiction. Therefore 
u = 0. 

The connection between the fundamental simplex and 
the Voronoi region is given by the following basic theorem. 

Theorem 5: For any root lattice A, the Voronoi region 
around the origin is the union of the images of the funda- 
mental simplex under the Weyl group W(A). 

Proof: Let x be any point of the Voronoi region 
around the origin. From (29) x E g(S) for some g E 
W,(A). Suppose x is an interior point of g(S). By the 
lemma, the closest lattice point to x is g(0). Therefore 
g(0) = 0, g E W(A), and 

x E u g(s). 
gE W(A)- 

We omit the discussion of the case when x is a boundary 
point of g(S). The converse statement, that x E Ug(S) 
implies x is in the Voronoi region, follows by reversing the 
steps. 

It follows from Theorem 5 that the Voronoi region is the 
union of 1 W(A) 1 copies of the fundamental simplex S. 
Furthermore the cells of the Voronoi region are the images 
of the roof of the fundamental simplex under W(A). Thus 
the Voronoi region is bounded by hyperplanes which are 
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the perpendicular bisectors of the lines joining 0 to its 
nearest neighbors in the lattice. 

Corollary: The number of (n - 1)-dimensional cells of 
the Voronoi region of a root lattice is equal to the contact 
number of the lattice (the number of nearest neighbors of 
any lattice point). 

This is not true for all lattices, as we shall see in Section 
III-H. 

The second moment of the Voronoi region can now be 
obtained from that of the fundamental simplex. The results 
are given in the following sections. 

C. Voronoi Region for A,, 

We first find the vertices u,,, v,, . . . ,vn of the fundamen- 
tal simplex S. These are found by omitting each of the 
hyperplanes of Fig. 1 in turn and calculating the point of 
intersection of the remaining n hyperplanes. The results are 
shown in Fig. 6, where each node is labeled with the 
coordinates of the vertex opposite the corresponding hy- 
perplane. The i th vertex is 

where i + j = n + 1, for 0 5 i I n, and is the same as the 
coset representative [i] for A,, in A: (see (28)). Also 

(30) 

The barycenter of S (13) is 

,. 
f,)=- 

n-Ll.jo u, 

-n -n + 2 - * 
= 2n+2’ 2n+2 ’ ( 

and from (15) the normalized 
origin is 

n-2 n . . ~ ___ 
’ 2n + 2 ’ 2n + 2 1 

second moment about the 

I(S) = ~118112 + 
1 

i llvil12 
(n + *)(n + 2) ix0 

2) n+l n(n+2) 1 

=m’ 12(n + 1) ’ (n + l)(n + 2) ’ 
n(n + 

6 

=I---- 

12 6(n\ 1)’ 
n+ 

Now 1 W(A,)I= (n + l)! and the determinant d is n + 1 
[5, pp. 250-25 I]. By Theorem 5 the Voronoi region around 
the origin, V(O), is the union of ] W( A,) 1 copies of S, so 

u( v(o)) 
wco)) = vol(V(0)) 

I w4J I . W) 
= ( W( A,) 1 vol( S) 

(31) 

Also vol(V(0)) = dm from (27). Therefore the dimen- 

Fig. 6. Vertices of fundamental simplex for An. 

Fig. 7. A rhombic dodecahedron, the Voronoi region V(0) for the 
face-centered cubic lat’tice A,. The points u, (not shown, but at the 
center of the figure), v,, vlr and o3 form a fundamental simplex S, and 
the rhombic dodecahedron is the union of 24 copies of S. 

sionless second moment of the Voronoi region of A, is 

(-(A ) = 1 I(‘(‘)) 
n 

n vol( v(0))“‘” 

1 1 

(n + 1)“” 6(n + 1) 

1 
‘12 

asn+cc. (32) 

Once the Voronoi region has been found we can also 
determine the points in R” at maximum distance from the 
lattice, since these are necessarily vertices of the Voronoi 
regions. From (30) it follows that the covering radius of A, 
(the maximum distance of any point in IR” from A,) is 

where p is the packing radius (see (27)) and a = [(n + 1)/2], 
b = n + 1 - a. Typical points at this distance from A, are 
the vertex V~ of V(0) and its images under W(A,). 

The lattice A, consists of equally spaced points on the 
real line, and G(A,) = l/12. The lattice A, is the hexago- 
nal lattice, the fundamental simplex is an equilateral trian- 

gle, the Voronoi region is a hexagon, and 
G(A,) = 5/36fi (compare Section II-I). The lattice A, is 
the face-centered cubic lattice, the densest known sphere 
packing in R3, the Voronoi region is a rhombic dodeca- 
hedron (Fig. 7; see also [33, p. 1301 and [22, p. 294 and 
anaglyph XI]), and G(A,) = 2-“/3 = 0.0787451 . . . . 

For n = 1 and 2 it is known that A, is the optimal 
quantizer (see (5) and (6)) but for n = 3 the dual lattice A: 
is better. The values of G( A,) for n I 9 are plotted in Fig. 
20. G( A,) decreases to its minimum value of 0.0773907 . . . 
at n = 8 and then slowly increases to l/l2 as n + 00. 
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Fig. 8. Vertices of fundamental simplex for 0,. 

D. Voronoi Region for D,, (n ?I 4) 

D, (for n 2 4) EC, E,, and Es are handled in the same 
way as A, and our treatment will be brief. The vertices 

Vo,’ . . ,v, of a fundamental simplex for D,,, n I 4, are 

shown in Fig. 8. Their barycenter is 

L(n +~(WJ,- ‘,rI - 2, n - 1, n + l), 

1 W(D,J I= 2”-’ . n ! and the determinant d = 4. For the 
Voronoi region T/(O) we find 

I(V(0)) = -!I- + l 
12 2(H + 1) ’ 

and 

1 
‘12 

asn-c0. 

The covering radius of D,, (for n 2 4) is 

(33) 

Rc=fi=p& 

as illustrated by the vertex e. = (4”). For n = 4 and 5, D, 
is the densest known sphere packing in R” (cf. [32]). For 
n = 4 the Voronoi region is a 24-cell (see for example [16, 
p. 156]), and G(D,) = 13/12OD = 0.0766032 . . . , in 
agreement with (24). This number also agrees closely with 
the value (8) that Gersho obtained for this region by 
Monte Carlo integration. The values of G( 0,) for n 5 9 
are plotted in Fig. 20. G(D,,) takes its minimum value of 
0.0755905 ’ ’ ’ at n = 6 and then slowly increases to l/ 12 
asn-t 00. 

E. Voronoi Regions for E6, E,, E8 

The vertices of fundamental simplexes for E6, E,, and Es 

are shown in Fig. 9. For E, 

I Jc%) I= 2 I4 . 35 . 5’ ’ 7 = 696729600, d= 1, 

6= &,(5,35,55,79,109,149,209,751), G(E,) = $+ . 2-"7 = 0.0732306 ... . (35) 

w@)) = gp 

vol(V(0)) = 1, 

m3) = g& = 0.0716821 -1. . 

(4 

Fig. 9. Vertices of fundamental simplexes for (a) Es, (b) E,, and (c) E6. 

The Voronoi region v(O) is an eight-dimensional polytope 
which is the reciprocal5 to the Gosset polytope 4,, [16, p. 
2041. 

Let 4 denote the number of i-dimensional faces of T/(O). 
Then from [16, p. 2041 we have No = 19440, N, = 207360, 
N, = 483840, N3 = 483840, N4 = 241920, N, = 60480, N6 
= 6720, and N7 = 240. The 19440 vertices consist of 2160 
at distance one from 0 and 17280 at distance 2&?/3. The 
former are the images of the vertex (07, 1) of the fundamen- 
tal simplex under W( Es), and are at the maximum possible 
distance from E,, while the latter are the images of the 
vertex (( 1 /6)7, 5/6) under W(E,). Thus R, = 1 = pfi. 
The other seven vertices of the fundamental simplex are 
not vertices of the Voronoi region. 

For E,, 1 W( E7) I= 2 lo. 34 - 5. 7 = 2903040, d= 2, 

6= -~(1,5,8,12,18,30,-42,42), 

The covering radius of E, is R, = fl = pfi, as il- 
lustrated by the vertex (OS, - 1,3, - t). 

(34) 51t is not difficult to give a direct proof of this statement; it also follows 
from Theorem 8 below. 
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For Es, I W(E,) I= 27 . 34. 5 = 51840, d = 3, 

a= &0,3,5,8,14,-14,-14,14), 

G(E,) = 5 
56 . 3'16 

= 0.0743467 --. . (36) 

The Voronoi regions for E, and E, are the r&pro- 
cals of the Gosset polytopes 2,, and l,, described in 
[ 16, pp. 202-2031. The covering radius of E6 is R, = 2/ J”; 

= p,/8/3 , as illustrated by the vertices 
(OS,-2/3,-2/3,2/3) and(04,1,-l/3,-1/3,1/3). 

F. voronoi Region for D,* 

In order to determine the Voronoi regions for the dual 
lattices A*, and D,* we shall use Wythoff ‘s construction, as 
described in [ 131 and [ 16, 0 11.61. The idea is to construct 
new polytopes out of the spherical simplexes described in 
Section B, the vertices of the new polytope being indicated 
by drawing rings around certain nodes in the Coxeter- 
Dynkin diagram. More precisely, let u,, . . . , v* be the vertices 
of a spherical simplex for a Weyl group w(A). If a single 
node of the diagram is ringed, say that corresponding to u,, 
the vertices of the new polytope are the images of vi under 
the Weyl group. If two or more nodes are ringed, say those 
corresponding to ui,qoj, . . . , the symbol represents a poly- 
tope whose vertices are the images under l%‘(A) of some 
interior point of the spherical subsimplex with vertices 
vi, vj, . . * . We can adjust the metrical properties of the 
polytope (for example, equalize its edge lengths) by choos- 
ing this interior point suitably. Some one-, two-, and 
three-dimensional examples are shown in Fig. 10; others 
may be found in [13] and [16]. 

We now use this construction to find the Voronoi region 
for D,*, n 2 3. In Section III-A we saw (using the second 
definition) that D,* is the union of the sets (2Z)n and 
(1”) + (2Z)“. The closest points to the origin from the first 
set consist of 2n points of the form (t-2, On-‘), and the 
closest from the second set consist of 2” points of the form 
(2 1”). The Voronoi region P’(O) is the intersection of the 
Voronoi regions determined by these two sets. The first of 
these, P say, is a cube centered at zero with vertices (2 1”). 
The second, Q say, is a generalized octahedron with vertices 
(*n/2,0"-'). F ur th ermore Q can be obtained by recipro- 
cating P in a sphere of radius p = @ centered at the 
origin. 

Thus the Voronoi region v(O) is the intersection of P 
and a reciprocal polytope Q = P*. In other words v(O) is 
obtained by truncating P in the manner described in [ 16, p. 
1471, and is therefore specified by ringing one or two nodes 
of the Coxeter-Dynkin diagram (Fig. 4(b)) for the spheri- 
cal simplex of P ([13], [16, 0 8.1 aad 0 11.71). 

The radii Rj (defined in Section II-H) for the cube P are 
given by Rj = m ([16, p. 2951). If n is even the radius 

(e)W 6) - 

Fig. 10. Examples of polytopes obtained by Wythoff’s construction: (a) 
edge, (b) triangle, (c) hexagon, (d) square, (e) octagon, (f) cube, (g) 
truncated cube, (h) cuboctahedron, (i) truncated octahedron, (j) oc- 
tahedron, (k) tetrahedron, (1) truncated tetrahedron, (m) octahedron 
(again), and (n) truncated octahedron (again). 

D”e-- 
. . . 

Fig. Il. Voronoi regions for the lattices II,*. 

p of the sphere of reciprocation is equal to R,,,, and we 
must ring the node labeled n/2 in Fig. 4(b). If n is odd p 
lies between R,,- ,j,2 and Rl,+,j,2 and both nodes (n - 

1)/2 and (n + 1)/2 must be ringed. We have therefore 
established the following theorem. 

Theorem 6: The Voronoi region around the origin of the 
lattice D,* is the polytope defined by the diagrams in Fig. 
11. 

The coordinates for p( n, k) and 6( n, k) given below 
show that the edge-lengths of the Voronoi regions are all 
equal. In Coxeter’s notation [ 16, p. 1461 the Voronoi region 
for D,: is 

{ 

3 3 *'* 3 

3 3 -*- 3 4 I, 

with t - 1 threes in each row, and for D&+, it is 

( 3 3 3 3 3 ... .-* 3 3 4 1 

with t - 1 threes in the top and bottom rows. 
We shall determine the second moments of these Voronoi 

regions recursively, using Theorem 3. In order to do this it 
will be necessary to find the second moments of all the 
polytopes a( n, k), /3( n, k), y( n, k), and 6( n, k) defined in 
Fig. 12. In this notation the Voronoi region of D,* is (up to 
a scale factor) equal to P(n, n/2) if n is even and to 

&n,(n - 1)/2) f i n is odd. Let R,(n, k), V,(n, k), and 
U,( n, k) denote respectively the circumradius, volume, and 
unnormalized second moment about the center of a(n, k), 
with a similar notation for p( n, k), y( n, k), and S( n, k). 

For the vertices of the polytope a( n, k) it is convenient 
to take the points in tin+’ whose coordinates are all 
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U(62) o-c--=--v 

P(6.2) - 

~(6.2) - 

6 (6,2) -2-w 

Q(n,k) 

n+l 

/\ 

n+l 

ah-l,k-II atn-1.k) 

Fig. 13. The polytope CY( n, k) has n + 1 cells of type a( n - 1, k - 1) 
and n + I of type (~(n - 1, k). Fig, 12. Polytopes a(n, k), /3(n, k), y(n, k), and 6(n, k). In general 

(Y( n, k) has n nodes with the k th node from the right ringed, and 
y( n, k) has n nodes with the k th and (k + l)st ringed (except that 
y(n,O) = n(n, 1) and y(n, n) = a(n, n)). &n, k) and 6(n, k) are the 
same as (u( n, k) and y( n, k), respectively, except that the left branch is 
a double bond. By convention 01(0,0) and y(O,O) represent a point. 

permutations of (OnMk+‘, lk) [16, pp. 157-1581. The 
centroid of a(n, k) is the point 

& (l”)? 

and so the circumradius is 

R,(n, k) = { k(ni+kl’ ‘) . 

Similarly 

p( n , k) has vertices (0 n-k+‘,*lk), Rg(n, k) = fi, 

y(n, k) has vertices (Onek, 1,2k), 

R,(n,k) = {v 

8(n, k) has vertices (OnPk,fl, *2k), 

R,(n, k) = d4k + 1 . 

(These polytopes appear with different names in [17].) 
Each of these polytopes has two kinds of cells obtained by 
deleting either the left or the right node of its diagram [ 16, 
0 !j 7.6, 11.6, 11.71. For example deleting the left node of 
the a( n, k) diagram produces an a(n - 1, k - l), while 
deleting the right node produces an a(n - 1, k). Thus in 
general a( n, k) has cells of type a( n - 1, k - 1) and a( n 
- 1, k). (If k = 0 the first type is absent, while if k = n 
the second type is absent.) The number of cells of each 
type is given by the ratio of the orders of the underlying 
Weyl groups (obtained by ignoring the rings on the dia- 
gram). Thus the number of a(n - 1, k - 1)-type cells of.an 
a(n, k) is 

I 13”~‘I I = (n + W = n + 1 
1[3”-2]1 n! ’ 

This is also the number of a(n - 1, k)-type cells. We 
represent this process of finding the cells by the graph 
shown in Fig. 13. 

We can now apply Theorem 3 to a(n, k), obtaining 

V,(n, k) = (’ +nl)hL V,(n - 1, k - 1) 

+( n + l)h, 

n V,(n - 1, k), 

&(n, k) = (nn’+lFL(h$,Va(n - 1, k - 1) 

+U,(n - 1, k - 1)) 

-t( “,‘+‘rR (hi&(n - 1, k) + U,(n - 1, k)), 

where 

hi = R,(n, k)’ - R,(n - 1, k - 1)’ = ‘nn~nk+‘l~)2, 

h~=R,(n,k)2-R,(n-1,k)2= k2 
n(n + 1) ’ 

the subscripts on h standing for left and right. If we write 

{ZT 
V,(n, k) = o,(n, k),, (37) 

\in + 1 
K(n, k) = u,(n, k) (n + 2)r , (38) 

then va and U, are integers satisfying the recurrences 

o,(n, k) = (n - k + l)u,(n - 1, k - 1) + ku,(n - 1, k), 

(39) 

for n L 2 and 1 5 k I n, with u,(n,O) = u,(n, n + 1) = 0 
for n 1 1, and u,(l,l) = 1, and 

u,(n, k) = (n - k + 1)3v,(n - 1, k - 1) 

+k3va(n - 1, k) 

+ (n - k + l)u,(n - 1, k - 1) 

+ku,(n - 1, k), (40) 

for n 2 2 and 1 I k 5n, with u,(n,O) = u,(n, n + 1) = 0 
for n L 1, and u,( 1,1) = 1. The first few values of V, and 
U, are shown in Table III. With the help of [44] the u, may 
be identified as the Eulerian numbers [41, p. 2151, and are 
given by 

u,(n, k) = k (-l)‘( n s ‘)(k -j)“. (41) 
j=O 

There is a more complicated formula for u,( n, k) which we 
omit. 

Similarly for the polytope /3(n, k) we have the graph 
shown in Fig. 14, and writing 

-?I 

Up(n, k) = +(n, k) (n y2), , 
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TABLE III P(n,kl 
THE FIRST FEW VALLJESQF v,(n, k),u,(n,k),q(n,k), AND 

u,J", k ).THE DIAGONALS CORRESPOND TO k = 1.2,. 
,/’ I 

2n ' 12" 

,,I' j 

” @n-l.h-I) ah-l,k) 

6 1 57 302 302 57 1 Fig. 14. /3( n, k) has 2n cells of type fi(n - 1, k - I) and 2” of type 

5 1 26 66 26 1 a(n - 1, k). (We use broken lines here to make the structure of Figs. 

4 1 11 11 1 
15 and 16 more visible.) 

3 141 

2 11 For y(n, k) and S(n, k) we have a pair of graphs similar 
1 1 to Figs. 13 and 14 (simply replace cy by y and p by 6 in 

Figs. 13 and 14). As before we set 

P JZT 

6 6 1158 8916 8916 1158 6 
v,(n, k) = yin, k)l, 

5 5 400 1290 400 5 
4 4 116 116 0 J n+l 

3 3 24 3 
u,h k) = u&n, k) tn + 2>r > 

2 2 2 

1 1 

” 

6 1 58 360 662 719 720 

5 1 27 93 119 120 and obtain the recurrences 
4 1 12 23 24 

3 1 5 6 
u&n, k) = (2n - 2k + l)v,(n - 1, k - 1) 

2 1 2 + (2k + l)u,(n - 1, k), (48) 
1 1 

for n 2 1 and 0 _( k I n, with u&n,- 1) = v&n, n + 1) = 
OfornrO,andu,(O,O)= 1; 

” 

6 12 2568 28848 69624 80388 80640 
u&z, k) = (2n - 2k + 1)3~Y(n - 1, k - 1) 

5 10 950 5490 8250 8400 

4 

+ (2k + l)3oY(n - 1, k) 
a 312 880 960 

3 6 84 120 + (2n - 2k + l)u,(n - 1, k - 1) 

2 4 16 

1 2 
+ (2k + l)u,(n - 1, k), (4% 

for n 2 1 and 0 5 k 5 n, with uy(n,-- 1) = u&n, n + 1) = 

we obtain the recurrences 0 for n 10, and u,(O, 0) = 0; 

t+(n, k) = nop(n - 1, k - 1) + ku,(n - 1, k), I&, k) = 2nu,(n - 1, k - 1) + (2k + l)v,(n - 1, k), 

(44) (50) 

for n L 2 and 1 I k 5 n, with Qn,O) = 0 for n 2 1, and for n 2 1 and 0 I k I n, with u,(n,-1) = 0 for n IO, 

vP(l,l) = 1, and and ~(0, 0) = 1; 

u&z, k) = k3(n + l)u,(n - 1, k) + ku,(n - 1, k) ug(n, k) = (2k + 1)3(n + l)v,,(n - 1, k) 

+n*(n + 1)0&t - 1, k - 1) + nup(n - 1, k - l), + (2k + l)u,(n - 1, k) 

(45) +8n2(n + l)u,(n - 1, k - 1) 

for n22 and lIk_(n, with u,(n,O)=O for nrl, +2nu,(n - 1, k - l), (51) 
uP( 1,1) = 2 (see Table III). Furthermore one can show by for n 2 1 and 0 5 k 4 n, with uJn,- 1) = 0 for n 2 0, 
induction that and u,(O, 0) = 0 (see Table IV). Also 

qj(n, k) = i: q& i), (46) 
i=l 

I+, k) = i (-l)‘(’ ; ‘)(2k + 1 - 2j)“, 
j=O 

which implies I+( n, n) = n !. Since the v,( n, k) satisfy 
u,( n, k) = u,( n, n - k + 1) it follows that 

vp(2t, t) = ;(zt)! (47) 
& 

~(n, k) = $ v&n, i), 
i=O 

z)a(n, n) = 2”n!, u,(2t + 1, t) = 22’(2t + l)!. (52) 
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TABLE IV 
vr(n, k), u,(n, k), t&n, k), AND us(n, k). THE DIAGONALS 

CORRESPONDTO~=~,~,.... 

1 237 i682 1682 237 1 

1 76 230 76 1 

1 23 23 1 

1 6 1 

1 1 

5 10065 124330 124330 10065 5 

4 2416 10520 2416 4 

3 477 477 3 
2 60 2 

1 1 

0 

1 238 1920 3602 3839 3840 

1 77 307 383 384 
1 24 47 48 

1 7 8 

1 2 

” 

5 10 20840 369740 954120 1074490 1075200 

4 8 5224 41240 61048 61440 

3 6 1140 3654 3840 
2 4 188 256 u6 (n,k) 

1 2 16 
0 0 

The j-dimensional faces of (~(n, k); . .,6(n, k) for any j 
can be found from Figs. 15 and 16. 

The special cases we are most interested in are P(2t, t) 
and 6(2t + 1, t), the Voronoi regions for D2*t and D,*,+, 
respectively. For Dzt we have 

22’ 
vol (v(O)) = vp(2t, t)- = 2*l-‘, 

(2t)! 
from (47), 

wto)) = up@, t) 
2*’ 

(2t + 2)! ’ 

GtD,*,) = up@, t) 
22-‘/‘t(2t + 2)! ’ 

The values of G(D,*) are plotted in Fig. 20. The minimum 
value is 0.0746931 . . * at n = 9. 

P= 1, 

and covering radius 
(53) 

R, = Rp(2t, t) = fi = pfi. 

For this version of D&+, (which differs by a scale factor 

U(l,ll 

Fig. 15. Interconnections between the a(n, k) and /3( n, k). 

Fig. 16. Interconnections between the y(n, k) and a(n, k). 

from the definitions given in Section III-A) we have 

vol(V(0)) = v,(2t + 1, t) 
22&l 

(2t + l)! 
= 24’+‘, from (52), 

u(v(0)) = u,(2t + 1, t) 
22ftl 

(2t + 3)! ’ 

Gt%+,) = 
u,(2t + 1, t) 

(2t + 1)(2t + 3)!2-f(‘) ’ (54) 

where 

f(t) = 
2(2t2 + 5t + 1) 

2t+l ’ 

p= fi (ift= l), p=2 (ift> l), 

R, = R,(2t + 1, t) = r/4t + 1 

= p 

For example D? = A: is the body-centered cubic lattice, 
the Voronoi region is a truncated octahedron (see [22, page 
294 and anaglyph XI], [24, fig. 41, and [33, p. 129]), and 
G( Dz) = 19/1923fl (see (7) and Section II-G). Also 

G(D,*) = 13,‘120@ = G(D,), 

G(D$) = 
2641 

23040 . 23/5 
= 0.0756254 . . . , (55) 

G(D,*) = ““;o;;;3 = 0.0751203 . . . . (56) 

G. Voronoi Region for AZ 

Theorem 7: The Voronoi region for the lattice A: is the 
polytope P,, defined in Fig. 17. If we rescale AZ by multi- 
plying it by n + 1, the vertices of the Voronoi region may 
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be taken to be the images of the point 

( n-2 u= -II. -- n-4 n-2 n - - 2’ 2 Y--y-‘“” 2 ‘2 ) 
under the action of the Weyl group W(A,). 

Since u is sometimes referred to as the Weyl vector for 
A, (see [lo]), it is appropriate to call P,, the Weylpolytope 
of A,. The case n = 4 of this theorem may be found in [ 15, 
pp. 72-731. 

Sketch of Proof: It is easy to check that e is equidistant 
from the walls of the fundamental simplex S for A,; i.e. 
that u is the incenter of S. Let P be the convex hull of the 
images of u under W(A,). Since the walls of S are reflect- 
ing hyperplanes for W&4,), P and its images under W,(A,) 
tile R”. Thus P is the Voronoi region for some lattice 
A c A:. But A must contain all the points (28), since these 
are the images of 0 in the walls of P. Since these points 
span A:, A = A* 

The second moment of P,, may be found as follows. 
First, the covering radius of At, R,(n) say, is the cir- 
cumradius of P,,, which is 

R,(n)=fi= (;(n;2))“2 

(57) 

since now p = \in( n + 1)/4, and the volume of P,, is 

V, = (n + l)n-“2 from (27). (58) 

Let &, = I( P,,) be the normalized second moment. A typi- 
cal cell of P, is obtained by deleting say the r th node from 
the left in Fig. 17, and is a prism P, X P, with r + s = n - 1 
(see Fig. 18). The number of such faces is 

I w(4) I = n+l 

I W(4) I I WAS) I ( 1 r+l ’ (59) 

Furthermore I( P, X P,) = Z, + Z,. 

Let h,, be the height of the perpendicular from the 
center of P, to a typical face P, X P,. Then (see Fig. 

hFs = RC(r + s + l)* - R,(r)2 - RC(~)2 

19) 

= (r + l>(’ + l>(n + ‘> 
4 , 

using (57) 

We may now apply Theorem 3, to obtain 

z,v, = -A-- qn+ 1) 
n+2r=o r+l WV,(h~s + zr + Is> 

(with r + s = n - l), which, if we write J, = Z,-,/n, be- 
comes 

J,, = 

m P” 

Fig. 17. Voronoi region P, = V(O) for A:. There are n nodes, all ringed 

p3x PI PP x PP 

Fig. 18. The three types of cells of Ps 

Fig. 19. Calculation of height h, of perpendicular from center of P, to 
cell P, X P,. 

where r + s = n - 2. Using Abel’s identity [42, section 1.51 
to simplify the first term, this becomes 

’ +- *$( ;)( ;)r( y)npr-‘Jr (60) 
n+ 1 r=, 

for n L 2, with J, = 0. The first few values are as follows: 

n: 1 2 3 4 5 6 7 
19 1045 78077 

Jn:Oi& g-- 
2 648 33614 ’ 

Finally, the dimensionless second moment of the Voronoi 
region of A: is 

($4;) III ‘+I 
n(n + q-u/n). (61) 

The values for n I 9 are plotted in Fig. 20. The curve is 
extremely flat, the minimum value of 0.0754913 . . . occur- 
ring at n = 16. 

H. When is the Voronoi Region Determined by the First 
Layer of the Lattice? 

We have seen in the Corollary to Theorem 5 that for a 
root lattice the walls of the Voronoi region are determined 
solely by the minimum vectors of the lattice. To give a 
precise statement of this property for an arbitrary lattice 
A, let us write A = A0 U A, U A, U . . . , where Ai, the 
i th layer from the origin, is chosen so that u . u is a 
constant Xi (say) for all u E Ai, and 0 g X, < h, < h, < 
. . . . We say that the Voronoi region is determined by the 
first layer of the lattice if the walls of the Voronoi region 
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around the origin, V(O), are bounded by the hyperplanes 

x * u =&I,, for u E A,. (62) 

TABLEV 
DIMENSIONLESS SECOND MOMENT G(A). 

-. 

If this property holds then there is a simple description 
of the Voronoi region. 

n sphere 

bound 

.0833 

.0796 

.0770 

.0750 

.0735 

.0723 

.0713 

.0704 

.0697 

.0691 

I 

Theorem 8: If the Voronoi region V(0) is determined by 
the first layer of the lattice, then V(0) is the reciprocal of 
the vertex figure of A at the origin. Equivalently, V(0) is 
(on a suitable scale) the reciprocal of the polytope with 
vertices A,. 

r 

best lattice known 

A G(A) 

Al .0833 

Al .0802 

A: .0785 

04 .0766 

0: .0756 

Eb .0743 

E7 .0732 

ES .0717 

0; .0747 

D;O .0747 

Zador 

bound 

,500 

2 ,159 

,116 

4 .lOO 

Proof: This follows immediately from the definitions 
of vertex figure and reciprocal polytope-see [ 161. 

,091 

6 .086 

The final two theorems give sufficient conditions for this 
property to hold. ,082 

Theorem 9: Suppose that (i) A, c A, + A, + * . . + A, 
(r times) and (ii) r-X, 5 X,, for all r = 1,2, * . . . Then the 
Voronoi region is determined by the first layer. 

Condition (i) states that A, spans A, and moreover does 
it economically in the sense that any vector in A, is the 
sum of not more than r vectors of A,. In practice this 
condition is very easily checked by induction. An im- 
portant class of lattices satisfying (i) are those obtained by 
applying Construction A of [32] or [45] to a linear binary 
code with minimum distance 5 4, which is spanned by the 
codewords of minimum weight, and which if d < 4 has the 
additional property that no coordinate of the code is 
always 0. 

8 

9 

10 

- 

,080 

,078 

,076 

225 

Proof of Theorem 9: Suppose the contrary, so that 
there is a point u E A, with r > 1 and a point x E R” such 
that 

x*u>fh, 

but 

x97l+x,, for alla E A,. 

From (i), u = Znivi with ui E A,, n, > 0 and Zni I r. 
Then 

x 1 u = Zn,(x . q) I +X,Zln, 

5 +rX, 5 +A,, 

a contradiction. 

Theorem 9 can be used to give an alternative proof that 
any root lattice has the property. On the other hand the 
dual lattices A: for n > 3 and D,* for n 2 5 do not, as the 
previous section demonstrated, nor does the Leech lattice 
in 24 dimensions [9], [32]. In fact one can show that the 
Voronoi region of the Leech lattice is determined just by 
the first two layers: in other words the Voronoi region has 
196560 + 16773120 = 16969680 cells. 

The best lattice quantizer in DB “-that with the lowest 
G(A)-is the dual of the densest lattice packing. 

Certainly Es*, Eq, and the Leech lattice should be in- 
vestigated. 

It is worth drawing attention to the remarkably low 
value of the mean-squared error for Es (see Fig. 20). 
Furthermore there is a fast algorithm [12] available for 
performing the quantization with this lattice (and in fact 
for any of the lattices described here). A second test is the following. 

Theorem 10 (A. Gersho, private communication): Let Note added in proof: It has recently been shown that the 
V, be the intersection of the half-planes defined by (62). If body-centered cubic lattice AZ is the optimal three-dimen- 
x . x I $X, holds for all x E V,, then V, is the Voronoi sional lattice quantizer for uniformly distributed data: see 
region. E. S. Barnes and N. J. A. Sloane, “The optimal lattice 

Proof: Take any x E V,, v E A, U A, U . . . . Then 

x . 2) 5 llxll 112)ll 5 car& = $2, so x E V(O). 

IV. COMPARISONOFQUANTIZERS 

Comparing the different lattices analyzed in this section 
we see that the best quantizers found so far in dimensions 
I- 10 are the following: 

dimension lattice dimension lattice 
1 A,( = AT) 6 4 
2 A2(= A;) 7 E7 
3 A;( = 0;) 8 Ed= 43 
4 D4( = D$) 9 02 
5 D? 10 0;s . 

The values of the dimensionless second moment G(A), 
which is our measure of the mean-squared quantization 
error per symbol, are shown in Table V and Fig. 20, 
together with Zador’s bounds (3). It is known that A, and 
A, are optimal, and it is tempting to make the following 
conjecture. 

Conjecture 
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DIMENSION 

Fig. 20. Comparison of mean-squared quantization error per symbol, 
G(A), for different lattices A in dimensions 1-9. 

quantizer in three dimensions,” SIAM J. Discrete and 
Algebraic Methods, to appear. 
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