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Abstract: Experiments performed with different vortex pump beams

show for the first time the algebra of the vortex topological charge cascade,

that evolves in the process of nonlinear wave mixing of optical vortex

beams in Kerr media due to competition of four-wave mixing with self-

and cross-phase modulation. This leads to the coherent generation of

complex singular beams within a spectral bandwidth larger than 200nm.

Our experimental results are in good agreement with frequency-domain

numerical calculations that describe the newly generated spectral satellites.
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27. A. Vinçotte and L. Bergé, “Femtosecond optical vortices in air,” Physical Review Letters 95, 193901 (2005).

28. L. T. Vuong, T. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of Optical

Vortices,” Physical Review Letters 96, 2–5 (2006).

29. A. V. Gorbach and D. V. Skryabin, “Cascaded generation of multiply charged optical vortices and spatiotemporal

helical beams in a Raman medium,” Physical Review Letters 98, 243601 (2007).

30. J. Strohaber, M. Zhi, A. V. Sokolov, A. A. Kolomenskii, G. G. Paulus, and H. A. Schuessler, “Coherent transfer

of optical orbital angular momentum in multi-order Raman sideband generation,” Optics Letters 37, 3411–3413

(2012).

31. W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via

nondegenerate four-wave mixing,” Physical Review A 74, 1–4 (2006).

32. Y. Zhang, Z. Nie, Y. Zhao, C. Li, R. Wang, J. Si, and M. Xiao, “Modulated vortex solitons of four-wave mixing,”

Optics Express 18, 10963–72 (2010).

33. F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear

wave mixing,” Physical Review A 84, 61801 (2011).

34. D. N. Neshev, A. Dreischuh, G. Maleshkov, M. Samoc, and Y. S. Kivshar, “Supercontinuum generation with

optical vortices,” Optics Express 18, 18368–18373 (2010).

35. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb

generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).

36. V. Tikhonenko, J. Christou, and B. Luther-Daves, “Spiraling bright spatial solitons formed by the breakup of an

optical vortex in a saturable self-focusing medium,” Journal of the Optical Society of America B 12, 2046 (1995).

37. H. Saito and M. Ueda, “Split instability of a vortex in an attractive Bose-Einstein condensate,” Physical Review

Letters 89, 190402 (2002).
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1. Introduction

As an intriguing phenomenon in nature, vortices have become an important topic in many

fields of physics, spanning from fluid dynamics [1], optics [2] to Bose-Einstein condensates

[3]. Extensive research on both linear and nonlinear singular waves has been performed, il-

lustrating the universality of vortices in the physical domain: Topological charge conservation

using the concept of pseudo angular momentum was demonstrated in the harmonic generation

of acoustic vortices [4], leading to the formation of angular shock waves [5]. Transfer of angular

momentum from light to excitons in GaN was demonstrated by Ueno et al. [6]. Particularly in-

teresting is the analogy between optical vortices and their atomic counterparts, coherent vortex

wave functions in Bose-Einstein condensates [7], especially because angular momentum can be

transferred between both [8]. Due to the close analogy between the Gross-Pitaevskii equation

that governs BEC dynamics and the Nonlinear Schroedinger equation of nonlinear optics, the

results presented here are also applicable to BECs and superfluids: While four-wave mixing

of wave functions in BECs [9] and the generation of vortices by means of different methods

[3, 10, 11, 12] have been demonstrated, the combination of both has not yet been observed.

In this paper we present results of the analogous process in optics, and show, for the first time,

cascaded nonlinear angular momentum mixing and coherent transfer of phase singularities over

multiple orders.

In the optical domain, vortices are identified as helical phase profiles within a light beam,

with a characteristic dependence exp(imφ) on the transverse angular coordinate φ [13]. The

central singular point of this helix possesses no defined phase and therefore the intensity must

vanish, leading to a characteristic cusp-like vortex core [14]. Such beams carry photon an-

gular momentum, which can also be transferred to matter [15]. The angular momentum is

proportional to the topological charge (TC) m of the optical vortex, associated with the total

phase change m · 2π after one revolution around the core. Optical vortex beams have found

various useful applications, namely in optical tweezers [16], coronagraphs [17] or as poten-

tial information carriers in data processing [18]. Of particular interest are nonlinear processes

involving vortex beams, where conservation of the total orbital momentum determines particle-

like dynamics of the filaments resulting from the modulational instability (MI) induced vortex

break-up [19]. Conservation of the total orbital momentum also plays a profound role in second

harmonic generation [20], parametric down-conversion [21] and stimulated Raman scattering

[22] involving optical vortices.

Because of their high peak power, short laser pulses are highly beneficial for nonlinear optics.

However, most nonlinear vortex experiments to date use relatively long-pulses or cw-lasers.

This is because most methods for vortex generation suffer from chromatic aberrations. Nev-

ertheless, depending on the spectral extent of the incident pulses optical vortices can also be

imprinted on femtosecond laser beams using spectrally compensating techniques [23, 24, 25],

or spiral phase plates [26]. Such generation of dispersion-free high-intensity vortex beams en-

ables studies of nonlinear vortex propagation in a much wider range of (even weakly) nonlinear

materials. As such, nonlinear vortex beam filamentation in air [27] and water [28] has been

investigated.

An important benefit of using high intensity short pulses is the possibility to observe cascaded

nonlinear processes, such as cascaded Raman scattering [29, 30] and nondegenerate four-wave

mixing [31, 32, 33]. To date, no cascaded nonlinear four-wave mixing process with singular

optical beams as predicted in [29] has been experimentally demonstrated. While the genera-

tion of white-light supercontinuum from vortex beams has been attempted in glasses [34], the

breakup of the vortex ring into single filaments fully destroyed the spatial coherence of the

beam. An important practical issue to address here is a precision control of the nonlinearity

strength required to reduce the effect of filamentation and improve the coherent transfer of the



Fig. 1. Algebra of vortex beams with increased topological charge due to cascaded four-

wave mixing. The experimental double-peak input spectrum is shown in red, together with

simulated intensity (top) and phase (bottom) profiles after nonlinear propagation for the

mixing of a Gaussian beam with a vortex of unit TC. The magnitude of the TC changes

by 1 with the order of the cascading process, which can be seen in the steeper phase spi-

rals further away from the pump beams. The intensity profile in 3rd order already shows

distortion due to strong intensity dependence.

phase throughout the nonlinear cascade.

2. Vortex four-wave mixing

Here we demonstrate the generation of broad spectrum singular beams through cascaded four-

wave mixing (FWM). By careful intensity control and the use of dual frequency pump pulses

we are able to identify the process of cascaded FWM and reduce the (multi-)filamentation of

the vortex beam. Experiments performed with vortex beams of different TC show cascaded

nonlinear TC mixing up to 3rd order and are in excellent agreement with frequency-domain

numerical simulations. Starting with pump pulses of bandwidth of 43nm, vortices can be ob-

served within >200nm after nonlinear propagation. FWM is a third-order nonlinear process,

where four optical fields interact in a nonlinear Kerr medium: ωd = ωa +ωb −ωc. In our case,

initially only two distinct pump beams of frequencies ω0 >ω1 are present. Energy conservation

dictates the resulting photon energy when combining any three photons of those pump beams,

generating spectral satellites ωn = ω0 − n∆ω. This process becomes cascaded if the intensity

of the generated side-bands is sufficiently high, leading ultimately to a frequency comb, where

side-bands are spaced by the difference frequency ∆ω = ω0 −ω1, similarly to what has been

observed in ring microcavities, see, e.g. [35]. The TC conversion in the cascaded process has

to obey the transformation law analogous to the one for the frequency: mn = m0 − n∆m with

∆m = m0 −m1 [29, 31]. Labelling the pump beams ω0 =”blue” and ω1 =”red” (for obvious

reasons) with TCs m0,m1, the TC of the spectral satellites n =−1,±2,±3, . . . can thus be cal-



Fig. 2. Experimental setup. i) Vortex generation and FWM, ii) reference beam generation,

iii) output characterization. D: Iris, DBS: dichroic beamsplitter, VL: vortex lens, SP: short-

pass filter, LP: long-pass filter, BS: beamsplitter, FM1: focusing mirror f=2m, GC: gas cell,

FM2: collimating mirror f=3m, FM3: collimating mirror f=4m, ND: ND filter, CCD: CCD-

camera, SM: spectrometer, HCF: hollow-core fiber (filled with Ne gas), FM4: collimating

mirror f=1m, DLY: delay stage.

culated. Each spectral satellite carries a defined TC, which represents an arithmetic progression

of the topological charge in the spectral satellites, as shown in Fig. 1.

3. Experimental setup

In order to generate pump beams with sufficient spectral separation, an 11.5mJ, 38fs, 1kHz

Ti:Sapphire amplified pulse is split with a dichroic beam splitter (cut-on wavelength 800nm)

(see Fig. 2). The resulting spectral peaks are centered at 775nm (”blue”) and 805nm (”red”).

A helical phase with TC m = ±1 can be imprinted on either or both beams with 16-step, AR-

coated spiral phase plates (also called vortex lenses / VLs). After additional spectral filtering

and recombination with a low-dispersion broadband beamsplitter, the remaining average power

is 2.0W, with approximately equal intensity in both beams.

The vortex beams are then focused with a f=2m spherical mirror (FM1 in Fig. 2) into a gas

cell. The Fresnel reflection from the entrance window is used to ensure spatial overlap of the

pump beams in the focus. Temporal overlap is achieved by maximizing the white light emission

when the cell is filled with Argon. For the actual measurement, the gas cell is evacuated and

nonlinear wave mixing is observed in the 3mm thick fused silica entrance window only. In

this way, deteriorating effects especially due to plasma in the focus are avoided, and the peak

intensity within the window can be controlled by adjusting the distance between the focusing

mirror FM1 and the gas cell. Nonlinear effects in the exit window play a negligible role due

to large distance from the focus and smaller window thickness (1mm). The diffraction length

of the beam is LD=4cm, while the nonlinear length LNL (corresponds to a nonlinear phase



shift of 1) can be tuned from few hundreds of microns to several centimetres. By adjusting the

ratio LNL/LD we can control the amount of spectral broadening and delay development of the

modulational instability across the beam profile. With the setup adjusted for low fluctuation at

the output, the peak intensity inside the entrance window is estimated to be 1.1 · 1010W/cm2.

This results in a nonlinear phase shift B = k0

∫ L
0 n2Ipeak(z)dz ≈ 0.1 inside the entrance window

glass. After the gas cell, the beam is recollimated and interfered with a reference beam from a

gas-filled hollow-core fibre (see Fig. 2). This beam, usually used for few-cycle pulse generation,

possesses a near-Gaussian spatial profile and covers the full visible spectral range, thus making

it a suitable reference for interferometric spatial phase measurements.

The interference pattern and intensity profiles are observed on another CCD camera in

slightly focused geometry. As a signature of the vortex helical phase, the dislocation is visible

as a fork-like splitting of the interference stripes. The direction of the splitting (”fork up”/”fork

down”) corresponds to the direction of the angular phase slope (clockwise/counter-clockwise),

whereas the number of fork rakes indicates the topological charge m+1 (for integer values of

m).

The images are recorded after spectral edge-pass filters with cut-on wavelengths correspond-

ing to the gaps between the expected central wavelengths of the spectral satellites. This method

is justified because the generation efficiency is expected to decrease rapidly with the cascading

order of the process. This way, only the dominant part of the spectrum close to the filter edge is

contributing to the interference pattern. The signal vanishes when either of the two arms in the

first interferometer is blocked, as expected for a nonlinear generation mechanism. For the out-

ermost spectral regions, multiple shots (5-10) had to be integrated. This leads to blurring of the

interferograms, but the TC can still be determined from the different number of fringes on top

and bottom of the vortex ring. Apart from that, the data shown are all single-shot measurements.

4. Experimental results

Fig. 3 shows the obtained phase-dependent interference patterns and intensity profiles for three

different fundamental scenarios: The top row [Fig. 3(a)] shows pump beams with equal TC

m0 = m1 =+1, ∆m = m0−m1. This is an important case because all spectral satellites have the

same topological charge (mn = +1), which allows the generation of white-light vortex contin-

uum in the multiply cascaded process. Although a single vortex beam of sufficient bandwidth

could be used in this case, we keep the two peak spectrum for consistency. Indeed vortices of

charge mn =+1 are observed throughout the entire accessible spectral bandwidth of the beam,

which is only limited by increasing disintegration of the intensity profile for very remote wave-

lengths. The respective numbers of the spectral satellites together with their theoretical central

wavelengths are denoted in the top row.

The mixing of a vortex with a Gaussian beam is shown in the second row. In this case, the

topological charge increases/decreases by one with the order of the satellite peak. Fig. 3(b)

shows only the case for a ”red” Gaussian mixed with a ”blue” vortex, because the results are

qualitatively similar for the reversed case. Yet interesting to note is the fact that we observe

stronger generation of satellites on the spectral side adjacent to the vortex pump. The measured

beam profiles for this case are also given in Fig. 3(c). Within the outermost spectral satellites,

disintegration of the vortex ring by the modulational instability is observed [28], due to larger

sensitivity to shot-to-shot fluctuations. Finally, we examine the case of two counter-rotating

vortices of charge m0 = +1 and m1 = −1 [fourth row - Fig. 3(d)]. In this case, since ∆m =
2, we observe the expected increase (decrease) of the vortex charge by 2 with the order of

the cascaded process. We are able to record interference patterns up to 3rd order (charge +7)

on the blue side, and up to 2nd order (charge -5) on the red side of the spectrum. For this

largest TC difference between the two pump beams, we observe the cleanest beam profiles



Fig. 3. Experimental interferograms and beam profiles for different vortex pump beams

after nonlinear four-wave mixing. The pump beams are highlighted in grey. The respective

central frequencies and wavelengths of the spectral satellite/pump beam along with the

cascading order of the FWM process are denoted on top. a) Two vortices of equal TC m0 =
m1 = +1, b) Vortex and Gaussian TCs m0 = +1 and m1 = 0, c) corresponding intensity

profiles for case b), d) Two vortices of opposite TCs m0 = −m1 = +1. Contrast has been

enhanced slightly for the -3rd order interferograms. The number in each box indicates TCs

of the generated vortices.

with very low disintegration of the vortex intensity ring. This effect can partially be attributed

to the almost identical divergence of the two pump beams due to the same modulus of the TC.

It is known that vortices of TC |m| > 1 are unstable against perturbation even in the linear

regime. In all cases where we generate higher-order vortex charge states |m| > 1, we observe

decay into singly-charged vortices. This decay is a general feature of vortices generated from

nonlinear processes, where the nonlinearity acts as a perturbation of the background beam. In

self-focusing Kerr media as well as attractive BECs this leads to break-up of the vortex ring into

spiralling filaments, which finally can collapse [36, 37]. In most cases however, the fundamental

vortices remain closely together, so that a dark core can be observed. Since the relatively stable

vortices are observed in our experiment and the frequency spectrum is equidistant, we can

conjecture that the spatiotemporal spiralling predicted in [29] is a likely to be present, but not

yet characterized, feature of our observations.

5. Numerical Simulations

The theoretical model describing the interaction between the different vortex beams is a set of

10 coupled nonlinear Schroedinger-type equations in the spectral domain. The slowly-varying

amplitudes An with respective wavenumbers kn follow the equations

i
∂An

∂ z
+L0

DknAn +
k0

2kn

∆⊥An +γ(|An|
2
An +2 ∑

n 6=m

|Am|
2An +Hn) = 0. (1)



Fig. 4. tanh-vortices: Intensity (odd rows) and phase (even rows) of the pump waves at

770nm and 800nm and of 6 of the newly generated waves in the observation plane (one

diffraction length L0
D away from the exit of the nonlinear medium of length L0

D). The outer-

most spectral components are left out due to already too strong diffraction. Case a/ - pump

vortices with identical charges; Case b/ - pump vortex and Gaussian beams; Case c/ - pump

vortices of opposite charges. Separators - central wavelengths of the simulated waves and

estimated conversion efficiencies. Some 16% of the total computational window is shown

in each frame. See text for further details.

The model accounts for linear dispersion and diffraction, as well as nonlinear self- and cross-

phase modulation, four-wave mixing and saturation of the nonlinearity via γ = γ0/(1+ I/Isat).
For reasons of simplicity, we show here the terms Hn and corresponding phase mismatches ∆ki

for a 4 wave model only (2 pump beams n = 0,+1 and 2 signal beams n =−1,+2):

H+2 = 2A∗
−1A0A+1exp(i∆k1zL0

D)+A∗
0A2

+1exp(i∆k2zL0
D),

H+1 = 2A−1A∗
0A+2exp(i∆− k1zL0

D)+2A0A∗
+1A+2exp(−i∆k2zL0

D)

+A∗
−1A2

0exp(i∆k3zL0
D),

H0 = 2A−1A∗
+1A+2exp(i∆− k1zL0

D)+2A−1A∗
0A+1exp(−i∆k3zL0

D)

+A2
+1A∗

+2exp(i∆k2zL0
D),

H−1 = 2A0A+1A∗
+2exp(i∆k1zL0

D)+A2
0A∗

+1exp(i∆k3zL0
D),

(2)



Fig. 5. r-vortices: Intensity (odd rows) and phase (even rows) of the pump waves at 770nm

and 800nm and of the newly generated waves in the observation plane (one diffraction

length L0
D away from the exit of the nonlinear medium of length 0.5L0

D). Case a/ - pump

vortices with identical charges; Case b/ - pump vortex and Gaussian beams; Case c/ - pump

vortices of opposite charges. Separators - central wavelengths of the simulated waves and

estimated conversion efficiencies. Some 16% of the total computational window is shown

in each frame. See text for further details.

∆k1 = k0 − k−1 + k+1 − k+2,

∆k2 = 2k+1 − k0 − k+2,

∆k3 = 2k0 − k−1 − k+1.

(3)

The initial values for the simulation were chosen as follows: All spectral components except

for the central pump beams (n = 0,+1) are set to an effective zero (ten orders of magnitude

weaker than the pump components). The pump beams are modeled as either fundamental r-

vortices with a continuously varying azimuthal phase

A(r,φ) = A0(r/r0)
|m| exp(−r2/r2

0)exp(imφ), (4)

or as tanh-vortices with a 16-level stepped phase profile, as in the experiment

A(r,φ) = A0 exp(−r2/r2
BG) tanh(r/r0)exp{i×m× (2π/16)× int[16φ/(2π)]}. (5)

.

In the tanh case, the core width r0 is chosen to reflect the experimentally measured beam

profiles and r0 < 10rBG. The longitudinal coordinate is normalized to the diffraction length

L0
D = k0r2

0 of the OV beam at frequency ω0, and the intensity in the simulations is kept iden-

tical to the one needed to form a one-dimensional dark spatial soliton of the same width r0

(calculated from inverting the sign of γ). All relevant FWM nonlinear terms Hn in the model



equations 2 were generated by using a program for symbolic computations and were subse-

quently exported to a program code written in Objective-C, which realized a modification of

the split-step Fourier method. The computational grid for each wave spanned over 1024x1024

grid points. The numerical results obtained after 2L0
D free-space propagation from the vortex

lens (VL) to the entrance of the nonlinear medium of length 1L0
D, followed by one diffraction

length free-space propagation to the observation plane, are summarized in Fig. 4. Cases a/ and

c/ correspond to pump vortices of equal and opposite topological charges, respectively, whereas

case b/ presents the results for vortex and Gaussian pump beams. The pump beams are chosen

to have central wavelengths of 770nm and 800nm. All necessary refractive indices (and wave

numbers) are calculated according to the revised Sellmeier equations [38] at the indicated pump

and signal wavelengths, which are also used as separator in Fig. 4. The second row of numbers

in the same figure shows the estimated conversion efficiencies (100% initial signal in each

pump wave and 0.1% integration accuracy). For better visibility we present in Fig. 4 only six

newly generated spectral components, in which the vortices are clearly formed. Inspecting the

phase profiles of the generated spectral satellites one can see that their TCs follow the expected

relation mn = m0 − n∆m with ∆m = m0 −m1, where ω0 corresponds to 770nm, ω1 to 800nm,

and n is the (cascading) order of the process. In Fig. 5 we present results obtained after 1L0
D free

space propagation of the pump beams carrying r-vortices from the VL to the entrance of the

nonlinear medium (NLM) of length 0.5L0
D followed by 1L0

D free space propagation to the obser-

vation plane. Because for r-vortices the widths of the vortex core and the background beam are

coupled (see Eq. 4) the length of the NLM was chosen to be shorter in order to keep the slowly-

varying envelope approximation of the model equations 2 valid by keeping the pump-induced

satellite-beam’s focusing reasonably weak. Qualitatively, the results for the FWM TC transfer

with r-vortices confirm these for tanh-vortices. We also developed a 28 component model able

to more accurately account for the broadband pump. Since it confirms the main predictions of

the presented 10-component model, we would like to only mention that its results for the output

supercontinuum spectrum fairly well reproduce the measured one when starting the simulations

with the measured input pump spectra. These results confirm that the generation of ultra-broad

spectrum vortex beams takes place mainly through cascaded four-wave frequency mixing pro-

cess, whereas spectral broadening due to nonlinear self- and cross-phase modulation remains

relatively weak. While our model neglects the full spatiotemporal dynamics of the process and

accounts in a simplified way for the influence of the generated plasma in the gas cell, in view

of the presented experimental data it accurately captures the spectral reshaping and the spatial

structure of the newly generated spectral satellites in the output beam.

6. Discussion and Conclusions

The presented results agree well with the performed frequency-domain numerical simulations.

In contrast to the numerical simulations, the experiment is done with pump beams of finite

bandwidth, which gives rise to competing four-wave mixing between frequencies of the same

pump pulse. This effect increases the bandwidth of the pump pulses (and satellites of sufficient

intensity), yet it only generates TC already present in the respective spectral peak. The basic

interaction scenario between adjacent spectral peaks is therefore unaffected, as long as spectral

overlap (interference) remains small. To account for the finite bandwidth of the pump pulses,

the numerical simulation is extended to use more than one frequency per pump beam. This

quasi-pulse regime however qualitatively preserves all features predicted in the dual-frequency

pump model.

The presented method is applicable if the acquired nonlinear phase remains reasonably

low, so that self-focusing of beam inhomogenities remains limited. Since nonlinear interaction

is stronger in the most intense parts of the beam, a homogenous background beam (super-



Gaussian or flat-top) appears to be desirable here. Obviously a trade-off between achieved

bandwidth and vortex-ring integrity has to be made due to modulational instability [28]. An

approach to limiting deteriorating effects appears to be the use of saturable nonlinear media,

e.g. via competing higher-order nonlinearities, which would make the process more control-

lable [39].

In conclusion, we have demonstrated broadband cascaded mixing of vortex beams in a self-

focusing Kerr medium. The nonlinear generation process, although not phasematched, is effi-

cient enough to allow for observation of vortices over a bandwidth larger than 200nm. This con-

stitutes the first measurement of topological charge for a multiply cascaded four-wave mixing

process with vortex beams. Topological charge conservation for the nonlinear wave mixing

process is found to be fulfilled, and decay of higher-order vortices into fundamental vortices

has been observed due to instability arising from the nonlinear self-focusing. The presented

results constitute basic scenarios for the interaction between fundamental topological modes,

which can be seen as basic ”building blocks” to generate complex coherent broadband wave

fields with a defined phase structure, which could be used e.g. as elaborate pump/probe beams

in coherent control applications or excitation and manipulation of BECs. In the case of identical

pump beams (which can be seen as a special case of a single broadband vortex pump beam), the

four-wave mixing even preserves the TC, thus rendering the method suitable for the generation

of supercontinuum white light vortex beams. Unlike Raman scattering, FWM can be employed

in a collinear geometry, eliminating the need for additional angular dispersion compensation.
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