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Novel Vortex Approach for Downwash and Outwash of a 
Tandem rotor in Ground Effect 

Jian Feng Tan1 and Yi Ming Sun.2 
School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China 

George N. Barakos3 
CFD Laboratory, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK 

A vortex-based approach is employed to predict downwash and outwash of a tandem 

rotor in ground effect and provide an understanding of its wake. The aerodynamic loads of 

the blades are represented through a panel method, and the behavior of the wake is 

captured by a viscous vortex particle method. The viscous effects of the ground are 

accounted for by a viscous boundary model satisfying the no-slip and non-penetration 

boundary conditions. The method is first validated for an isolated full-scale Lynx tail rotor 

and a 172 mm-diameter scale rotor in ground effect. The results show that the predicted 

trajectories of the tip vortices and the radial velocity profiles compare favorably with 

experiments and published CFD results. Results for a model CH-47D are then compared 

with experiments for the downwash and outwash of the tandem rotor. As opposed to the 

isolated single rotor, a radial outward expansion in the overlapping area is observed, and the 

peak and the corresponding vertical distance of the velocity maximum of the radial outwash 

flow for the tandem rotor is larger. Moreover, the rotational direction of the tandem rotor 

leads to a wake with several vortical interactions resulting in different outwash on the port 

and starboard sides.  

Nomenclature 
b, f  = edge lengths of the rectangular panel, m 

hxi, hyi, hzi = edge lengths of the integration cuboid, m 
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K = smoothing function, non-dimensional 

Kε = Biot-Savart kernel, non-dimensional 

G = free-space Green’s function, non-dimensional 

n = outward unit normal vector of surface, non-dimensional 

p = local pressure, Pa 

forp  = local pressure of the forward rotor, Pa 

aftp  = local pressure of the aft rotor, Pa 

pref = far-field reference pressure, Pa 

r = position vector, m 

s = tangential direction of the surface panel, non-dimensional 

Smulti-r = multi-rotor blade surface, m2 

Smulti-rw = multi-rotor wake surface, m2 

t = time, s 

t  = tangential of the body boundary, non-dimensional 

u = fluid velocity, m/s 

u  = free-stream velocity, m/s 

uslip = induced velocity due to vorticity, m/s 

v = local fluid velocity near blades, m/s 

vmulti-r = velocity of a point on the multi-rotor surface, m/s 

forv  = local fluid velocity of the forward rotor, m/s 

for
refv  = referenced velocity of the forward rotor, m/s 

aftv  = local fluid velocity of the aft rotor, m/s 

aft
refv  = referenced velocity of the aft rotor, m/s 

for
wv  = convection velocity of the tip vortex of the forward rotor, m/s 

aft
wv  = convection velocity of the tip vortex of the aft rotor, m/s 

for
indv  = induced velocity of the forward rotor wake, m/s 



aft
indv  = induced velocity of the aft rotor wake, m/s 

xj = position of a particle, m 

forx  = blade position of the forward rotor, m 

forx  = tip vortex position of the forward rotor, m 

aftx  = blade position of the aft rotor, m 

aftx  = tip vortex position of the aft rotor, m 

αj = vector-valued vorticity of a particle, 1/s 

γ  = bound circulation of vortex sheet, 1/s 

ζε  = kernel function, non-dimensional 

μ = doublet of multi-rotor blades, m4/s 

ν = kinematic viscosity, m2/s 

ρ = air density, kg/m3 

σ = source of multi-rotor blades, m3/s 

  = velocity potential, m2/s 

for
b  = velocity potential induced by the forward rotor blades, m2/s 

for
w  = velocity potential induced by the forward rotor wake, m2/s 

aft
b  = velocity potential induced by the aft rotor blades, m2/s 

aft
w  = velocity potential induced by the aft rotor wake, m2/s 

  = stream function, m2/s 

ω  = vorticity of flow field, 1/s 

( )i t  = bodies, non-dimensional 

ΔFk = aerodynamic load on the panel, N 

ΔSk = panel area, m2 

DWOW = downwash and outwash 

IGE = in ground effect 

OGE = out of ground effect 



I.Introduction 
elicopters operating in ground effect (IGE) have so far been widely investigated. Nevertheless, there are still 

issues related to the downwash and outwash of rotors that need investigating [1-3]. Contrary to a rotor operating out 

of ground effect (OGE), the presence of the ground significantly alters the rotor aerodynamics and generates more 

complex and unsteady flow field. Also, since the ground effect alters the induced velocity in the plane of the rotor, 

the performance of the rotorcraft is enhanced. This effect has been documented and observed since the dawn of the 

helicopter age. Furthermore, the induced velocity near the ground may be large enough to produce a wall jet and lift 

up loose surface items, such as dirt and sand, resulting in a phenomenon known as “brownout” [4-8]. This is a result 

of the interaction between the rotor wake and the ground plane, which forces the rotor slipstream to expand radially 

away from the rotor as it approaches the ground surface. In Ref.7, Phillips et al stated that the brownout 

characteristics of rotorcraft are extremely sensitive to the vortices of the wake, so the geometry and dynamics of the 

individual vortical structures within the flow alter markedly the resultant structure of the dust cloud under brownout 

condition. Additionally, the fundamental understanding of the fluid dynamics of the rotor wake as it interacts with 

the ground is a prerequisite to understanding and mitigating brownout [1]. However, investigations are mainly focus 

on the evolution and formation of wake of an isolated single rotor system. Contrary to the isolated single rotors, the 

downwash and outwash (DWOW) of multi-rotor configurations, especially overlapping tandem rotor systems, in 

ground effect, are more complex. This is because, unlike a single rotor, the DWOW of multi-rotor configurations is 

not axisymmetric. The flow components away from the tandem rotor in the longitudinal and lateral directions are 

different. Moreover, the flow along the longitudinal axis is not simple [9-11]. Also, few experimental and numerical 

investigations have been produced on the topic in the last few years. Even applying high-fidelity CFD tools, such as 

Helios (HELIcopter Overset Simulations), to the DWOW problem is a challenge due to the computational cost, 

boundary conditions, turbulence modeling, flow unsteadiness, and the large number of rotor revolutions required to 

stabilize the flow field. In addition, high-fidelity simulations of the DWOW require further research [10]. Therefore, 

a critical step in understanding the flow field of the multi-rotor IGE is the development of methods able to 

accurately and efficiently analyze the evolution of the rotor wake and capture the tip vortices and the DWOW 

characteristics.  

The ground effect can be accounted for using several models. Simple mirror-image (MI) methods in which a 

rotor and its image were replaced by simple sinks [12] or sources [13] were first employed, whereas the structure of 

H



the wake was not taken into account in this approach. A similar approach with a vortex cylinder model to account 

for the effect of wake was also proposed [14, 15]. In this method, the number of blades and the slipstream 

contraction were neglected. A continuous, distorted helical vortex model was also proposed, and the ground-plane 

boundary condition was enforced using a mirror image of the wake [16]. While the evolution of the tip vortices near 

the ground plane and the interaction between the tip vortices and the ground plane were not accounted for in this 

approach. Then, a momentum-based mathematical model with experimental corrections, including a wall jet theory, 

and a ground effect correction factor, was described by Kiseilowski and Douglas [17]. The wake contraction was 

taken into account to quickly evaluate the performance of overlapping and non-overlapping rotor configurations [18, 

19]. Nevertheless, the drawback of this approach was the limited availability of experimental data for the corrections 

necessary in the model. Following that, simulations of the ground effect were attempted with varying degrees of 

success using free-wake methods. The free wake methods coupling with the MI technique to satisfy the non-

penetration wall condition were reported in Refs [6, 20-23]. Although the MI approach has good computational 

efficiency, it is less suited to non-planar or otherwise irregular surfaces. Therefore, a more flexible, vortex-

singularity-based model, was developed for the ground effect [24]. Nevertheless, viscous effect, that might be 

present when the tip vortices interact with the ground, was not modelled, as was the case with the method of images. 

Additionally, even though the free-wake methods could track the wake for very long distances behind the rotor, they 

involved a certain degree of empiricism in determining the vortex core radius and roll-up age.  

Based on the vorticity-velocity formulation of the Navier–Stokes equations, the vorticity transport model [25, 

26] coupled with a blade element rotor model and uniform meshes for the wake, provided a good representation of 

the formation and the evolution of the tip vortices and the brownout. However, computations [25, 26] had been run 

with an inviscid ground plane and the MI approach. Following this, a Viscous Vortex Particle Method (VPM) [27] 

with a blade element rotor model, an image ground method, and the Brinkmann penalty technique [28] was 

developed to model the outwash of small-scale rotors, including CH-53E and XV-15. Nevertheless, that approach 

based on the MI was less suited for non-planar, irregular surfaces, such as obstacles. 

More recently, Computational Fluid Dynamics (CFD) tools, such as the OVERFLOW 2 [4], HMB [29], 

OVERTURNS [30-32], and Helios [10], have been increasingly used to predict velocity profiles, wake trajectories, 

and flow visualizations, to understand phenomena like the brownout. Vortex-tracking grids (VTGs) and refined 

overset meshes were used to capture the evolution of the tip vortices near the ground with approximately 22 million 



grid points [31, 32]. The Helios tool, coupled with adaptive mesh refinement (AMR) and overset grids 

(approximately 0.5 billion grid points) was used to simulate the outwash of an isolated single rotor in ground effect 

[10]. However, the unsteadiness of the tip vortices and the outwash predicted by the CFD are affected by several 

factors, such as excessive numerical dissipation, and lack of high-density grids, needed to capture the rotor wake. 

Another challenge for grid-based CFD methods is that the tip vortex needs to be preserved for significantly long 

periods of time to capture its interaction with the ground. Therefore, efficient DWOW predictions of multi-rotors, 

such as the tandem rotor, IGE are of interest to the helicopter computational community, and vortex methods are 

attractive because of high efficiency. 

The purpose of this work is to develop a vortex-based method able to predict the DWOW of the tandem rotor 

system. In this method, the aerodynamics of multi-rotor is described through an unsteady panel method, and the 

unsteady behavior of the wake near the ground plane is modelled through the viscous vortex particle method [33]. 

The viscous effects of the ground plane are accounted for by a viscous boundary model satisfying both the no-slip 

and non-penetration boundary conditions. This is implemented by generating a vortex sheet on the ground surface 

and diffusing the vortex into the flow field. Following the method description, the trajectories of the tip vortices of 

the full-scale Lynx tail rotor, the velocity profiles of a 172 mm-diameter rotor, and the DWOW of an isolated single 

rotor, and the corresponding overlapping tandem rotor (scaled model of CH-47D) IGE are computed and compared 

with experimental data and published CFD results to demonstrate and prove the method. Additionally, the wake 

structure, flow visualization, downwash and radial outwash profiles of the overlapping tandem rotor IGE are 

compared with that of the single rotor. 

II.Computational Method 

A. Aerodynamic Model of Multi-rotor Aircraft 

A multi-rotor aircraft has a distinct trailed wake with its own IGE characteristics. This is because the flow field, 

especially in the transition region where the flow runs from vertical to horizontal, is dominated by the wake of the 

rotor blades [10, 11]. Successful aerodynamic analysis of the multi-rotor aircraft IGE requires capabilities for 

modelling unsteady airloads and vortices. Following this, the aerodynamics of the multi-rotor aircraft is first 

represented by the unsteady panel method [33]. Based on this method, the velocity potential of the multi-rotor is 



defined in a global reference frame (X, Y, Z) in Fig. 1, which shows the position of the forward and aft rotors with 

respect to the ground plane, as 

multi-r multi-r multi-rw

1 1 1 1 1 1( , , , )
4 4 4S S S

x y z t dS dS dS
r r r

   
  

              
       n n                        (1) 

where σ and μ are the source and doublet distributions placed on the multi-rotor blades (Smulti-r) and on the wake 

surface (Smulti-rw). n denotes the outward unit normal vector of the surfaces, and r is the position vector (x, y, z). 

 
Fig. 1 Schematic of DWOW for a tandem rotor 

The boundary conditions for the multi-rotor system require that the velocity component normal to the blades is 

zero. The boundary condition at infinity requires flow disturbances to decrease to zero. Both can then be expressed 

as: 

                                         multi-r 0 multi-rotor surface

lim 0 far-field boundaryr

n


 

   


  

v n
                                                                        

(2) 

where vmulti-r is the velocity of a point on the multi-rotor surface Smulti-r.  

The boundary condition at infinity is automatically fulfilled through Green’s function. According to the 

Neumann boundary condition, and the trailing-edge Kutta condition, the surface boundary conditions are 

transformed to algebraic equations, and more details could be found in Ref. 33. And then the source and double 

distributions on all blades of the multi-rotor system are solved at the same time. The flow field of the multi-rotor is 

then determined and the unsteady pressure on the multi-rotor blade surfaces can be calculated using the velocity 

potential and the flow velocity through the Bernoulli’s equation. Also, the interaction between the aft and forward 



rotors which produces a complex flow field and unsteady airloads should be taken into account in the unsteady 

pressure. 
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The aft rotor wake impinges on the forward rotor blade surface resulting in a variation of the unsteady term 

/ t   of Eq.(3). The effect of the multi-rotor aerodynamic interaction is modelled thought the unsteady pressure 

term induced by the wake and the blades of both rotors. Thus, the non-dimensionalised form of the blade unsteady 

pressure is: 
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where pref and ρ are the far-field reference pressure and air density. forv , forp , for
refv  are the local fluid velocity, the 

local pressure, and the reference velocity, respectively, at each section of the forward rotor, while aftv , aftp , aft
refv  are 

the local fluid velocity, the local pressure, and the reference velocity, respectively, at each section of the aft rotor. 

Also, for
b  and for

w  are the velocity potentials induced by the forward rotor blades and their wake, whereas aft
b  and 

aft
w  are the velocity potentials induced by the aft rotor blades and their wake.  

The unsteady pressure term induced by both rotor blades can be directly described by the derivative of the 

velocity potential, whilst that of the tandem rotor wake can be transformed into the product of the induced velocity 

from the wake and the velocity of the wake, which is similar to the effect of tip-vortex filaments [34]. Those 

derivatives of the velocity potential can be expressed as: 
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where forx , for
wv , forx  are blade position, velocity and position of the tip vortices of the forward rotor, and aftx , aft

wv

, aftx  are blade position, velocity and position of the tip vortices of the aft rotor, respectively. for
indv  and aft

indv  are the 



velocity on the forward rotor induced by the aft rotor tip vortices, and the velocity on the aft rotor induced by the 

forward rotor tip vortices, respectively. 

The aerodynamic forces on the panels of the multi-rotor system can then be computed as: 

                                          2
ref / 2k pk k kk

C S   F v n                                                                                              

(7) 

where ΔFk is the aerodynamic load on the panel, ΔSk is the panel area, and nk is its normal vector. 

B. Wake Model of the Multi-rotor Aircraft  

The interaction between the aft and forward rotors affects the geometry of the tip vortices and the vortex sheet 

which dominate the wake near the ground plane as shown in Fig. 1. The tip vortices emanating from the blade need 

to be preserved for significantly long periods of time to capture the interaction with the ground. So, the wake of the 

multi-rotor system is modelled here based on the viscous vortex particle method [33] which solves the Navier–

Stokes equations in velocity-vorticity (u, ω) in a Lagrangian frame of reference using vector-valued particles.  
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t



      


ω u ω u ω ω                                                                                               

(8) 

where ν is kinematic viscosity,   ω u  is the vorticity field associated with the velocity field. 

The second term on the left hand-side describes the vortex particle convection which is solved using the fourth-

order Runge-Kutta scheme, the Biot-Savart law, and symmetrical smoothing parameters. The right hand-side 

expresses the vortex stretching and viscous diffusion effects. The viscous diffusion effect 2 ω  is simulated 

through the Particle Strength Exchange (PSE) which suggests that the Laplacian operator 2 can be replaced by an 

integral operator [35, 36]. The Laplacian operator in the viscous term can then be written as: 

                                       2
2

2 ( ) ( ) ( )
V

d
   ω x y ω x ω y y                                                                                (9) 

where ζε is a kernel function with Gaussian distribution, and ε is the smoothing radius. 

The vortex stretching effect  u ω  is represented through a direct scheme which suggests that the velocity 

gradient can be expressed as a product of the kernel function gradient and the position gradient [37]. The particle 

velocity gradient in Eq. (8) can be written as follows: 
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       u x x x x x α                                                                          

(10) 

where Kε is the Biot-Savart kernel for the velocity evaluation. xj and αj are the rotor position and the vector-valued 

vorticity, respectively. 

The operation count of this method is reduced through the Fast Multipole Method (FMM) [38]. The vortices are 

shed from the blade surfaces via the applied Neumann boundary condition and by converting shed-wake doublet 

panel to vorticity [33], transported based on the Eq.(8).  

C. Viscous Model of the Ground Plane 

Dealing with boundaries on the ground or obstacles in methods like the free-wake method, the vorticity transport 

model, or the vortex particle method, may be difficult. This is because formulating the boundary condition on a solid 

wall is notoriously problematic. The difficulty arises by the absence of a vorticity boundary condition for the 

Navier–Stokes equations, equivalent to no-slip at the wall. A viscous boundary model, which is suitable for different 

geometries, such as the ground plane and obstacles, is proposed by considering the no-slip boundary condition and 

the non-penetration boundary condition based on a vorticity sheet concept [39-41].  

When a set of bodies, such as the ground and obstacles, indicated as ( )i t , i.e.  3 \ ( )i t ¡  is immersed in a 

flow, its effect can be summarized in two expressions of the boundary conditions: the flow cannot go through the 

solid wall, which is interpreted as the non-penetration boundary condition, and the tangential velocity of the flow on 

the wall is zero, which is referred as the no-slip boundary condition. They are expressed as, 

                                       
( ) 0 non-penetration boundary condition

( ) 0 no-slip boundary condition
i

i





  


 

x

x

u x n

u x t
                                                  

(11) 

where u, n  and t  represent velocity, and unit vectors normal and tangential to the body boundary. Also, there is a 

free-stream velocity at the far-field which is written as: 

                                        xu u                                                                                                                            

(12) 



A flow approaches the body with a free stream velocity and no vorticity, then, after passing around the body, the 

fluid will convect downstream with a non-zero vorticity distribution in the field since vorticities are generated from 

the body as shown in Fig. 2. Also, the tangential component of the velocity on the surface of the body is canceled by 

placing a vortex sheet on the surface of the boundary, and the no-slip boundary condition can be then satisfied. 

 

                     (a) Body boundary                                                                    (b) Viscous effect 

Fig. 2 Schematic of viscous body boundary 

If the assumption about the regularity of the velocity field is used, Poincaré’s formula [37] can be applied. Thus, 
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     3

( ') ( ') ( ') ( ') '

( )
( ') ( ') ( ') ( ') '

0 \

i i

i i

i

i

G dS G d

x
G dS G d

x






 


 

     

          
 

 

 

x x n u x x x ω x x

u x
x x n u x x x u x x

¡

 ,           

(13) 

and outside a body i : 
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where G is the free-space Green’s function. 

Because there is no through-flow, the normal velocity on both sides of the boundary is equivalent,    n u n u . 

Also, an expression for the velocity in the extended domain 3¡ can be written by adding the above two equations. 

                                        3 \( ) ( ) ( ) ( ') ( ')
i i i i

x K K K K dS   
          u ω ω x x γ x¡                      
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where 
iω , 

i
 , and 3 \ iω¡ are the vorticity inside the body present in the flow, the dilatation  u  inside the 

body, and the vorticity present in the flow, respectively. ( )   γ n u u  is the bound vortex sheet (see Fig. 2) 

which enforces the no-slip condition, and K is a smoothing function as,  

   , ,K G  x x x x                                                                                                           

(16) 

Since bodies, such as the ground or obstacles, are considered to be rigid and do not move in the present work, the 

first two terms in Eq.(15) can be simplified. The vorticity “inside” the body reduces to zero, and the dilatation is 

null. The limit of the tangential component of Eq. (15) for 
i
x x can be rewritten as  

                                        slip( ') ( ')
2 i

K dS
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(17) 

where uslip is the third term of the right-hand side of Eq.(15) which is the induced velocity due to the vorticity in the 

flow field.  

Eq.(17) is a Fredholm equation of the second kind which justifies the no-slip condition, and defines the vortex 

sheet on the surface of the body which is used to generate vorticity inside the flow field as discussed later. Since 

  u  and    ω u  with the definition that   is the stream function related to ω , the equation  

   2( ) ( )
i i i

dV dV dS    
  

           n                                      

(18) 

can be rewritten as 

 2
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dV dV dS 
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(19) 

For a nonrotating body, such as the ground or obstacles, ω =0 everywhere inside it. So, the left-hand side of Eq. 

(19) vanishes. If u × n, the tangential velocity, is also zero at the wall, then Eq. (19) becomes 

2 0
i

dV


 u                                                                                                                      

(20) 



This means that the velocity is zero everywhere inside the body and u n  vanishes at the wall. In other words, if 

the no-slip boundary condition is satisfied, then the non-penetration boundary condition is automatically satisfied.  

The vortex sheet, γ , is parallel to the body surface, hence only two of its components need to be determined. By 

dividing the body surface into vortex sheet panels, integration on the surfaces in Eq. (17) can be equivalently written 

as the superposition of integrations on the panels that constitute those surfaces. Quadrilateral, constant-strength 

panels are used in the current study. Therefore, the viscous boundary conditions are transformed to algebraic 

equations to solve for the vortex sheet distribution.  

In a viscous flow, the presence of a solid boundary affects the flow by forcing the fluid to decelerate to zero 

velocity at the wall. In other words, a solid body is a source of vorticity, and the vorticity generation can be 

modelled by a flux of vorticity at the body surface [39, 40, and 42]. Therefore, after the vortex sheet on the boundary 

is obtained to satisfy the no-slip boundary condition, transferring the vorticity of the vortex sheet to the nearby 

particles in the fluid domain is carried out. This is accomplished solving a diffusion equation with the correct 

boundary conditions: 
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The solution of Eq.(21) can be computed in its integral form [39]. 
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where Gh is the three-dimensional heat kernel, with t   
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This flux must be emitted during a time t . In effect, the vortex sheet γ  must be distributed to neighbor 

particles by discretizing the Green’s integral for the inhomogeneous Neumann problem corresponding to the 

diffusion equation. Then, a particle receives, from that panel, an amount of “vorticity × volume” given by 
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with 
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where (xi, yi, zi) and (hxi, hyi, hzi) are the position of the particle and the edge lengths of the integration cuboid, 

respectively.  

The rate of change of the vorticity, /d dtω , due to a rectangular panel of uniform strength γ  and size b × f , as 

shown in Fig. 3, is equal to 
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The time integral in Eq. (27) is evaluated numerically using a Gauss quadrature with four points.  

 
Fig. 3 Diffusion of vorticity of vortex sheet to particles 



If the spatial distribution of the particles is not well aligned with the vortex sheet panels, a corrected strength [43, 

44] is used to minimize 
2 2

, /i i conserv ii    α α α with the constrain that , 0i conservis   γ α  and enforce 

conservation via: 
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where j runs over all particles associated with the panel.  

Conservation of momentum in the Navier–Stokes equations is expressed as: 
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(29) 

Taking the dot product of the momentum equation with the tangential vector of the body surface [45, 46], the 

derivative of the pressure can be expressed as: 
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(30) 

where s and n denote the tangential and normal outward directions of the surface panel, respectively. 

Since the fluid acceleration on the wall must coincide with that of the body under the no-slip condition, and 

assuming a fixed, rigid body, the Eq. (30) reduces to 
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(31) 

where the right hand side term is the creation of the vorticity on the surface. 

An expression for the pressure gradient along the solid boundary can be obtained by combining Eq. (21) and Eq. 

(31) as 
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s t

 
 

 
γ                                                                                                                           

(32) 



The pressure on the body is then obtained by integrating Eq. (32) that only contains the vorticity flux on the 

surface.  

III.Numerical Results and Discussions 

The test cases employed here, ranging from an isolated single rotor IGE to a more complex case with an 

overlapping tandem rotor IGE, are based on a set of well-defined experimental data published in the literature. The 

tip vortices, and the axial and radial vortex locations of the isolated single rotor IGE are first predicted. The radial 

velocity profile of a single scale rotor operating in ground effect is then computed. The more complex case with the 

overlapping tandem rotorcraft IGE is implemented to discuss the DWOW and the wake structure. 

A. Trajectories of the Tip Vortices of the Lynx Tail Rotor in Ground Effect 

A quantitative verification of the present approach can be obtained by comparing predictions of the trajectories 

of the tip vortices with the experimental data of Light [47]. This test campaign considered a hovering rotor at 

different heights above the ground, and was conducted at the Outdoor Aerodynamic Research Facility of the NASA 

AMES Research Center. The test apparatus consisted of the four-bladed full-scale Lynx tail rotor mounted on the 

Tail Rotor Test Rig (TRTR). The four-bladed rotor had constant chord, and untwisted blades. Its radius was 1.105m. 

The airfoil, hover tip Mach number, chord Re at blade tip, chord, rotor solidity, and rotational speed were NPL9615, 

0.56, 2.3×106, 0.18m, 0.208, and 172.82rad/s, respectively. The collective pitch in the present simulations OGE, 

h/R=1.54, h/R=0.84, and h/R=0.52 were 17°, 15°, 13°, and 15°, respectively, and they were the same as the 

experiment. A wide-field shadowgraph method captured the tip vortices of the hovering rotor for all heights above a 

flat board representing the ground. The positions of the vortices were extracted from the shadowgraphs. The blade 

was modelled with 4800 panels composed of 60 panels in the chordwise direction, and 20 panels in the span-wise 

direction. The azimuthal angle step was 2.5°. The ground plane was modelled as 8m×8m with 1600 panels and was 

centred at the rotor axis shown in Fig. 4. The rotor hub was not modelled. 



 
Fig. 4 Schematic of the Lynx tail rotor in ground effect 

Table 1 Thrust and power comparison with experiment [47] at different rotor heights 

h/R 
CT/CT, OGE CP/CP, OGE 

Experiment Present Experiment Present 

4.00 1.000 1.000 1.000 1.000 

1.92 1.014 1.013 1.010 1.009 

1.54 1.031 1.035 1.000 0.991 

0.95 1.090 1.083 0.986 0.971 

Table 1 compares the predicted thrust and power coefficients with the experimental data at different rotor heights 

and for constant collective pitch. Note that the values are normalized with the respective OGE values. There is a 

good agreement between the computational and the experimental results. Also, as expected, the thrust increases with 

decreasing the rotor height above the ground, while the power slightly decreases, as observed during the 

experiments.  

The trajectories of the tip vortices and the sectional vorticity of the rotor OGE are shown in Fig. 5. The colour 

range used for the vorticity contours is the same for Figs. 5a and 5b. Also, the axial and radial locations of the tip 

vortices are shown and compared with the experiments, the vortex transport model (VTM) results [7], and the CFD 

results [48]. The VTM was a finite volume computational model of the Navier–Stokes equations in vorticity 

formulation [7]. A lifting-line method was used to simulate the aerodynamics of the rotor blades, and the ground 

plane was represented by an inviscid mirror-image method in the VTM [7]. The CFD results shown here, were 

obtained by the FLOWer code and published in the open literature [48]. The rotor is placed approximately 10 rotor 

radii above the ground to minimize interference from the ground in OGE simulations. The contraction of the tip 

vortices near the rotor plane, and the unsteady behavior of the far wake are captured by the present method, as 



shown in Fig. 5. The CFD over-predicted the radial contraction of the tip vortices and predicted a higher axial 

descent rate after the first blade passage, while the VTM analysis slightly under-predicted the axial descent rate. 

There is an excellent agreement between the present predictions and the experiments.  

        
(a) Trajectory of tip vortex                        (b) Sectional vorticity 
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Fig. 5 The tip vortex and the sectional vorticity of the Lynx tail rotor OGE 

Comparisons of the tip vortex axial and radial locations for different rotor/ground plane separation distances, 

h/R=1.54, 0.84, and 0.52, of the CFD, the VTM, and the present method are plotted in Fig. 6. It is shown that the 

CFD had a tendency to over-estimate the wake expansion and axial convection, while the VTM slightly under-

predicted the wake contraction and axial descent rate. Nevertheless, a qualitative comparison with the present 

approach can be made suggesting a satisfactory wake contraction, expansion, and axial convection.  
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(a) CT/σ=0.08, h/R=1.54                           (b) CT/σ=0.071, h/R=0.84                     (c) CT/σ=0.09, h/R=0.52 

Fig. 6 The tip vortex axial and radial locations of the Lynx tail rotor IGE 

The trajectories of the tip vortices (visualized by vorticity iso-surfaces) and the vorticity field around the rotor 

IGE, and for different rotor/ground plane separation distances, h/R=1.54, 0.84, and 0.52, are shown in Fig. 7. The tip 

vortices contract in the near wake, and expand in the far wake due to the effect of the ground plane. Additionally, 

unsteadiness in the far wake is observed. 

   
(a) Trajectory of the tip vortex (CT/σ=0.08, h/R=1.54)                 (b) Sectional vorticity (CT/σ=0.08, h/R=1.54) 

  
(c) Trajectory of the tip vortex (CT/σ=0.071, h/R=0.84)             (d) Sectional vorticity (CT/σ=0.071, h/R=0.84) 

   
(e) Trajectory of the tip vortex (CT/σ=0.09, h/R=0.52)              (f) Sectional vorticity (CT/σ=0.09, h/R=0.52) 

Fig. 7 The tip vortex and the sectional vorticity of the Lynx tail rotor IGE 



B. Radial Velocity Profile of an Isolated Single Rotor in Ground Effect 

The ability of the present approach to predict the flow field around a rotor in ground effect has been further 

investigated using the experiments of Lee et al. [5]. The rotor was modelled with two untwisted rectangular blades 

of circular arc, cambered airfoil sections. The radius of the blade, chord, aspect ratio, and solidity were 86 mm, 

19.6mm, 4.39, and 0.14, respectively. The blades were set at a collective pitch of 12°, and the results were obtained 

at a tip Mach number of 0.08. Also, the rotor tip-path-plane was adjusted so that it was perfectly parallel to the 

ground plane. The blade was modelled with 2400 panels composed of 60 panels in the chordwise direction and 20 

panels in the span-wise direction. The azimuthal angle step was 2.5°. The operating conditions in the present 

simulation were the same as the experiment, and the Omega, CT, CT/σ, and CT/CT,OGE were 317.2rad/s, 0.01385, 

0.0989, and 1.057, respectively. The ground plane was a square plate with 0.8m×0.8m dimensions and was 

modelled using 1600 panels.  It was centred at the rotor axis with h/R=1.5 as shown in Fig. 8(b). The area of the 

ground plane used in the present work was greater than that of the experiment, and the present model of the ground 

plane could include the model in the experiment which was a circular disk, three times the diameter of the rotor. 

Visualization of the predicted rotor wake is compared with the experiments in Fig. 8 to highlight the structure 

found within the wake below the rotor. Snapshots of the experimental and predicted flow field show the formation 

of the tip vortices and the flow structures below the rotor, as well as the wall jet. Furthermore, the tip vortices 

contract radially inward after shed from the blades, and expand and stretch radially outward as they approach the 

ground surface. Moreover, the numerical results (see Figs. 8(b) and 8(c)) reveal the onset of vortex pairing for the 

older vortices. The vortices spin around each other, while the vortex sheets convect axially faster than the blade tip 

vortices, and interact and merge with the older tip vortices as they age in the flow. Then, they produce a marginally 

thick wall jet with a variety of eddies of various scales as the ground plane is approached. 

 
(a) Experiment [5]                                                            (b) Rotor wake 



 

 
(c) Sectional vorticity 

Fig. 8 Flow visualization of the rotor IGE 

A more quantitative validation of the present method is carried out comparing the time-averaged radial velocity 

profiles at six radial distances from the center, r/R=0.8, 1.0, 1.25, 1.5, 1.75, and 2.0, with experimental data and 

published CFD results [32] in Fig. 9. The velocities are normalized by the ideal hover induced velocity for the 

corresponding thrust coefficient with 0.01385. Published CFD results of the OVERTURNS solver are used for 

comparisons. The OVERTRUNS is a widely used, validated and documented tool [32]. Fig. 9 shows that the time-

averaged velocities predicted using the present method have similar trends as the experiment and the CFD. The 

estimated time-averaged velocities match well with the CFD results at r/R=0.8, 1.0, and 1.25, while both the present 

method and the CFD under-predict the peak radial velocities. The peak radial velocities at r/R=1.5 and 1.75 were 

over-predicted by the CFD method, whereas they are under-predicted by the present method. Additionally, the peak 

radial velocity at r/R=2.0 was over-predicted by the CFD method, whereas the present prediction compares 

satisfactorily with the experiment. There are negative radial velocity excursions at and downstream of r/R=1.5 since 

the tip vortices are pushed outward as they approach the ground plane, while those tip vortices induce a negative 

radial velocity above the thickness of the wall jet. Also, both the CFD and the present method predict a maximum 

radial velocity at a similar wall distance which is slightly larger than that of the experiments. It should be noted that 

even though there are discrepancies due to the interaction of the tip vortex with the ground plane, the overall 

comparisons between the present results, the CFD results, and the experiments are still acceptable. Moreover, the 

CPU time of the CFD and the present method is shown in Tab.2. It should be noted that, contrary to the CFD, the 

present method is more efficient. 

Table 2 CPU time of the CFD and the present method 
Method Revolutions CPU Computer CPU time (hours) 

CFD 18 Intel Xeon 3.2GHz Cluster 
2000 per million grid 

points [32] 

Present 20 Intel i7-3770 3.4GHz Desktop 58 



Figure 9 shows what is usually interpreted as the formation of a radial wall jet as the wake impinges on the 

ground. The computations correctly predict the overall physics of the flow field. The rotor induced flow is forced to 

expand radially outward, creating the wall jet. The height of the wall jet is seen to decrease as one moves radially 

outward, which is similar to the experimental data. This is because the flow turns from vertical in the contraction 

region to horizontal in the outwash region with increasing distance from the center. As a consequence, there is an 

increase in the peak radial velocity as the radial distance increases, until it eventually begins to decrease at the 

outermost measured radial distance.  
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(a) r/R=0.8                                        (b) r/R=1.0                                               (c) r/R=1.25     
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(d) r/R=1.5                                       (e) r/R=1.75                                             (f) r/R=2.0 

Fig. 9 Time-averaged velocity profiles at different radial distances from the center (IGE) 

C. Downwash of the Single Aft Rotor Out of Ground Effect 

As opposed to the previous case with a single rotor, DWOW of an overlapping tandem rotor configuration is not 

axisymmetric since the flow along the longitudinal axis is different from the lateral axis. Also, the interactions of the 

forward outflow with the aft rotor, and of the vortices from the two rotors with each other and with the inboard 

vortex sheet, produce a highly complex flow field.  

Further verification of the present method can be obtained by examining the downwash and outwash 

characteristics of the overlapping tandem rotor (model-scale CH-47D) IGE. The experiments were conducted in the 

U.S. Army hover chamber (25- by 25- by 30-ft high) at the NASA Ames Research Center. The model aircraft CH-



47D was of approximately 1/56th-scale. The forward and aft rotors consisted of three blades with a low Reynolds 

number airfoil. The rotor blade planform and twist were similar to the equivalent full-scale CH-47D blade. The 

radius of the blade, solidity, rotor-rotor distance, and tip speed were 6.31in, 0.057, 8.33in, and 194.9ft/s, 

respectively. The three-bladed hubs rotated counter-clockwise for the forward rotor and clockwise for the aft rotor, 

as viewed from above. Both rotors were at the same height above the ground plane as the experiment as shown in 

Fig. 10(c), which were also similar to the full-scale CH-47D hover configuration of Ref. 9 as shown in Figs. 10(a) 

and 10(b). For the model aircraft, the shaft angles of the forward and aft rotors were 2.5° (forward tilt) and 0°, 

respectively. The target aircraft CT was achieved by ensuring equal thrust-sharing between the two rotors, and 

maintained at approximately CT=0.0061. The flow field of the model-scale tandem rotor IGE was investigated using 

PIV.  

The rotors were modelled as rigid hubs with collective control only, no cyclic pitch control, or differential 

collective pitch were used to establish the desired aircraft center of thrust in hover or to trim the pitching moment. 

Also, the fuselage and the hub of the aircraft, and the load cells were not included in the present simulation. Each 

computational rotor was modelled with 3600 panels composed of 60 panels in the chordwise direction, 20 panels in 

the span-wise direction, and the azimuthal angle step was 5.0°. The ground plane was modelled as 2.0m×2.0m with 

6400 panels and was centered at the centre of the aircraft shown in Fig. 10. 

  
(a) CH-47D in hover [9]                                                    (b) Attitude of CH-47D in hover [9] 

  



(c) Experimental model [10]                                                        (d) The present model 

Fig. 10 Model of the tandem rotor 

The downwash distribution for the baseline single rotor, which is the aft rotor in the tandem rotor, operating out 

of ground effect is first computed in this part. The single aft rotor configuration is achieved by removing the forward 

rotor, thereby removing any effect of blade overlap on the inflow distribution. The predicted flow field of the single 

aft rotor configuration is plotted in Fig. 11 and compared with the experiments. Note that the contours correspond to 

downwash velocity normalized using the theoretical hover induced velocity, h T / 2V C . It is seen that the overall 

flow velocity is predicted reasonably well for this configuration. In addition, the peak velocity at the mid-span of 

blade is consistent with the experiment.  

Comparisons of the downwash velocity profiles with the experiments are shown in Fig. 12. The predicted peaks 

of the downwash velocity and their corresponding locations are found to match very well with the experimental 

data. Additionally, the rapid changes of the downwash near the blade tip (see Fig. 12) show the effect of the tip 

vortices which are captured by the present method. However, the velocity at the root of the blade is not well-

predicted since the rotor hub is not modelled. Note that the overall comparison of the downwash velocity at different 

downstream and radial distances from the center is still very good. 

 
                                                  (a) Present                                                        (b) Experiment [10] 

Fig. 11 Flow field of the single aft rotor OGE 
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                       (a) z=0.04D                                       (b) z=0.1D                                             (c) z=0.2D     
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(d) z=0.4D                                               (e) z=0.5D                                       (f) z=1.0D 

Fig. 12 Downwash velocity of the single aft rotor OGE 

D. DWOW of the Single Aft Rotor in Ground Effect 

Figure 13 shows the downwash velocity distribution at three radial distances, r/R=0.6, 0.75, and 0.8, for the 

single aft rotor IGE (h/R=1.156). In general, there is good agreement between the computational and the 

experimental results. The downwash velocity at r/R=0.6 is slightly over-predicted due to the absence of the rotor 

hub, the fuselage, and the load cells. At r/R=0.75 and 0.8 the predictions are much better. Furthermore, as expected, 

the predicted maximum downwash velocity which corresponds to the location of maximum wake contraction occurs 

at the same, z/D≈0.4, for all three radial distances.  
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                          (a) r/R=0.6                                           (b) r/R=0.75                                       (c) r/R=0.8 

Fig. 13 Downwash velocity at various radial distances from the center for the single aft rotor IGE (h/R=1.156) 

The vertical and horizontal components of the velocities at the waist location, z/D≈0.4, across the rotor disc for 

this configuration are plotted in Fig. 14. Also, experimental data [10, 11] and the CFD results of the Helios solver 



[10] are compared with the present approach. The CFD predictions were made for the isolated single rotor 

configuration at full-scale Reynold number. For this single rotor configuration, a total of 10.6 million grid points 

were used to model the ground, while the rotor mesh included 10.5 million grid points. Adaptive Mesh Refinement 

(AMR) was also employed to capture the tip vortices and vortical interactions with the ground with up to 450 

million grid points. The predicted vertical velocity distribution, in Fig. 14, shows similar trends as the experiments 

and the CFD results. Outboard of the rotor blade, it is shown that the peak downwash velocity predicted by the CFD 

solver was lower by about 20%, suggesting that the wake was slightly less contracted and wider. The peak 

downwash velocity is predicted correctly by the present approach, indicating that the wake contracts as in the 

experiments. Moreover, in the inboard region, the upwash was slightly under-predicted by the CFD, while it is 

slightly over-predicted by the present method, since the hub of the rotor is absent. It should be noted that the upwash 

in the root region confirms the existence of a vertical flow stream.  

The horizontal component of the downwash velocity beneath the rotor disc for this configuration is shown in 

Fig. 14(b). There is an excellent correlation between the present prediction and the experiments at radial distances 

from r/R=0.5 to 1.6. However, the velocity at radial distances less than r/R=0.5 is over-predicted by the present 

method because the rotor hub, the fuselage, and the load cells are not modelled.  
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                                       (a) Vertical velocity                                                     (b) Horizontal velocity 

Fig. 14 Velocity at the waist location (z/D=0.4) for the single rotor IGE (h/R=1.156)  

The predicted horizontal velocity component, Vr, is plotted against normal distances from the ground, z/D, at 

several radial distances and compared with the experimental data as shown in Fig. 15. The peak radial velocity at 

r/R=0.8 is over-predicted, while at r/R=1.6 it is under-predicted. The distance above the ground plane corresponding 

to the peak radial velocity which indicates the edge of the wall jet is predicted reasonably well. The peak of the 



radial velocity increases as the radial distance increases from the rotor axis to 1.2R, while the thickness of the wall 

jet decreases. 
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(a) r/R=0.8                                       (b) r/R=1.2                                          (c) r/R=1.6 

Fig. 15 Radial velocity at various radial distances from the center for the single aft rotor IGE (h/R=1.156) 

Figure 16 shows a comparison of the rotor wake of the single aft rotor OGE and IGE (h/R=1.156). Clearly, 

contrary to the OGE case, the wake distortion becomes particularly pronounced, and the wake quickly expands 

radially outward after the first rotor revolution as it approaches the ground surface. As a result, the radius 

corresponding to the peak of vertical velocity at the waist location, z/D=0.4, is significantly pushed outward as 

shown in Fig. 17. The tip vortices, shown in Fig. 16, are axially closer together than for the OGE case and exhibit 

some evidence of pairing. Consequently, the rotor operating IGE produces less downwash velocity than the isolated 

rotor running OGE, which is also confirmed in Fig. 17.  

 

                               (a) OGE                                                                              (b) IGE 
Fig. 16 Flow visualization of the single aft rotor OGE and IGE (h/R=1.156) 
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Fig. 17 Velocity at the waist location (z/D=0.4) below the single aft rotor  

E.  DWOW of the Tandem Rotor in Ground Effect 

The DWOW of the overlapping tandem rotor system is more complex than that of the single rotor. The CFD 

results of Ref.10 were only for the isolated single rotor in ground effect, and there were no results for the tandem 

rotor. This could be due to the enormous grids and CPU time required. 

Figure 18 shows the downwash velocity distribution at the xz sectional plane at r/R=0.75 for the tandem rotor in 

ground effect (h/R=1.156). The results show similar trends as the experimental data. The downwash velocities of the 

forward and aft rotors are slightly over-predicted due to the absence of the rotor hub and fuselage. Also, the 

predicted maximum downwash velocity indicates the location of maximum wake contraction occurring at the same, 

z/D≈0.4, for both the forward and aft rotors. Additionally, the forward and aft rotors also show maximum wake 

contraction similar to that of the single aft rotor shown in Fig. 13. The satisfactory agreement with the measurements 

suggests that the wake contraction of the overlapping tandem rotor is well predicted by the present method. 

However, the velocity close to the ground shows deviations from the experiments. This is probably due to the 

fuselage which may affect the rotor downwash, but is not modelled in the present simulation. 
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Fig. 18 Downwash velocity at r/R=0.75 for the tandem rotor 



The vertical and horizontal components of the velocities extracted from the xz sectional plane at the waist 

location, z/D≈0.4, which corresponds to the maximum wake contraction, across the rotor disc for the overlapping 

tandem rotor is shown in Fig. 19. Experimental measurements are also plotted for validation. It is shown that the 

overall vertical velocity distribution is found to match well with the experiment data. Outboard of the rotor blade, 

the peak downwash velocity is accurately predicted, indicating that the wake contracts as in the experiments. In the 

inboard region, the upwash is under-predicted by the present method since the rotor hub and the fuselage are absent. 

Overall, the numerical predictions for the vertical and horizontal velocities are in fair agreement with the 

experiments. It should also be noted that the downwash velocity of the forward rotor is slightly lower compared to 

that of the aft rotor due to the slight inclination of the forward rotor shaft.  

The comparison of the horizontal component of the downwash velocity beneath the rotor disc for this 

configuration in Fig. 19(b) provides some insight into the trend of the outwash which plays a significant role in the 

brownout. This is because the outwash velocity of the rotor pulls items, such as sand or dust, towards or away from 

the rotorcraft. There is a good correlation between the present prediction and the experimental measurements for 

both the forward and aft rotors. And the variation of the outwash in the spanwise direction, which indicates the 

outwash or in-wash, is captured reasonably well. Additionally, the Vr changes to positive indicating the flow is 

outward at the tandem rotor with increasing the radial distances from r/R=0.5 to 1.0, while at radial distances from 

r/R=1.0 to 1.6, the Vr comes back to negative, suggesting the flow is towards the rotorcraft.  

For the tandem rotor, the distributions of the vertical and horizontal velocities at the xz sectional plane, shown in 

Fig. 19, indicate similar trends as the single aft rotor operating IGE (shown in Fig. 14). The radius corresponding to 

the peak of the vertical velocity at the waist location, 17%D below the rotor, across the rotor disc is also pushed 

outward as shown in Fig. 17 in comparison to the single aft rotor operating OGE. Furthermore, the tandem rotor 

operating IGE also produces less downwash than the single aft rotor operating OGE. Contrary to the single aft rotor, 

the peak of the horizontal velocity of the aft rotor under the effect of blade overlap is larger, which indicates 

comparable or greater outwash than that of the single aft rotor. The reason for this difference is explained by the 

strong wake interaction between the forward and aft rotors, which will be confirmed later. 
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(a) Vertical velocity                                                     (b) Horizontal velocity 

Fig. 19 Velocity at z/D=0.4 (xz sectional plane) for the tandem rotor IGE (h/R=1.156)  

The predicted horizontal velocity component, Vr, at the xz sectional plane is plotted against normal distance, z/D, 

from the ground and compared with the experimental data shown in Fig. 20. It can be seen that, in general, the 

predicted outwash velocity profiles have similar trends as the measurements. The distance above the ground plane 

corresponding to the peak radial velocity in the outboard region is predicted reasonably well, which indicates that 

the thickness of the wall jet can be captured by the present method. Also, the peak radial velocity at r/R=0.8 is over-

predicted, while it at r/R=1.2 and 1.6 is under-predicted. Even though there are discrepancies, the simulation 

validated against the overlapping tandem rotor for DWOW shows acceptable agreement. Moreover, the height 

corresponding to the peak outwash velocity of the aft rotor is greater compared to that of the forward rotor, 

suggesting that the wall jet of the aft rotor is thicker than that of the forward rotor. This is because the inclination of 

the forward rotor produces velocity vectors at an angle. Additionally, contrary to the single aft rotor IGE shown in 

Fig. 15, the peak of the radial outwash of the aft rotor under the effect of the forward blade overlap is greater. 

Moreover, the height corresponding to the peak outwash velocity of the tandem rotor is greater than that of the 

single rotor. Those changes are mainly caused by the strong wake interaction between the forward and aft rotors. 
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(a) r/R=0.8                                        (b) r/R=1.2                                         (c) r/R=1.6 

Fig. 20 Radial velocity at different radial distances (xz sectional plane) for the tandem rotor IGE (h/R=1.156) 



Figure 21 shows the comparison of the time averaged flow field at the xz sectional plane of the single rotor and 

the tandem rotor operating IGE. The color contours correspond to the downwash and outwash velocities normalized 

using the averaged hover-induced velocity, h T / 2V C . Similar to the single rotor, the radial outward expansion of 

the forward and aft rotors caused by the effect of the ground plane is observed in Fig. 21(b). And a fountain flow of 

the aft rotor indicated by the upwash at the blade root is also presented in Fig. 21(d). Contrary to the isolated single 

rotor, the fountain flow of the aft rotor is clearly strengthened in Fig. 21(d). There are two possible reasons. The first 

reason could be due to the inclination of the forward rotor. The forward rotor pushes its wake to the center of the aft 

rotor and forces the vortices of the aft rotor to convect upstream, strengthening the fountain effect. The second 

reason could be due to the tip-root vortex interaction in the overlapping area between the forward and aft rotors. The 

tip vortex of the forward rotor is close to the root vortex of the aft rotor and induces an upward velocity on it. As a 

result, the root vortex of the aft rotor is then pushed upwards. Moreover, on the both sides of the overlapping area, 

radial outward expansions are also obviously observed in Figs. 21(b) and 21(f). The reason for this phenomenon is 

again explained by the interaction of the tip vortices of the forward and aft rotors. In addition to the outward flow, 

two tip vortices with opposite directions indicated by the change of the direction of the velocity are observed in Fig. 

21(b) in the overlapping area of the tandem rotor. 

 
(a) Vx (Isolated rotor)                                                                 (b) Vx (Tandem rotor) 

  
(c) Vz (Isolated rotor)                                                          (d) Vz (Tandem rotor) 
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(e) Velocity of in-plane (Isolated rotor)                        (f) Velocity of in-plane (Tandem rotor) 

Fig. 21 Flow field of the single aft rotor and the tandem rotor IGE (h/R=1.156) at the xz sectional plane 

The horizontal velocity component, Vr, on the starboard and port sides of the tandem rotor at the yz sectional 

plane of the aircraft is shown against the normal distance, z/D, from the ground and compared with the experiments 

in Fig. 22. The predicted outwash shows similar trends as the measurements. The distance above the ground plane 

corresponding to the peak radial velocity is predicted well, indicating that the thickness of the wall jet in the lateral 

axis can be captured by the present method. Additionally, it is shown that the horizontal component on the both 

sides of the rotorcraft is quite different. Inside the rotor plane, Fig. 22 (a), the radial velocity, Vr, on the port side is 

negative over most of the region indicating that the flow moves towards the tandem rotor, whereas the starboard side 

shows the flow moving away from the rotorcraft below the rotor plane. Therefore, on the starboard side, the merged 

flow over the overlap region gradually changes direction as it approaches the ground plane. Conversely, the flow on 

the port side convects vertically until very close to the ground plane, which is confirmed by Fig. 23. This is because 

the forward and aft rotors are running in opposite directions resulting in a tangential outward velocity on the 

starboard side while the opposite happens on the port side. Furthermore, in the overlapping area, Fig. 22(a), the 

radial velocity on the starboard side is greater than that of the port side. Outside the rotor plane and slightly above 

the thickness of the wall jet, Fig. 22(b), the port side shows higher radial velocity. This is because the tip vortices of 

the forward rotor will merge with that of the aft rotor on the port side due to the anti-clockwise rotation of the 

forward rotor and the clock-wise rotation of the aft rotor, while the tip vortices of the forward rotor are far away 

from that of the aft rotor on the starboard side. As a result, the vorticity of the aged vortex near the ground plane is 

strengthened, and a greater radial velocity is induced on the port side. Contrary to the starboard side, the thickness of 

the wall jet on the port side is larger. This is confirmed in Figs. 23, 24(c), and 25(b). 
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(a) r/R=0.56                                                                   (b) r/R=1.2 

Fig. 22 Outwash velocity of the tandem rotor IGE (h/R=1.156) at the yz sectional plane of the aircraft 

   
(a) Stream vector                                                                 (b) Flow field 

Fig. 23 Time averaged flow field of the tandem rotor IGE (h/R=1.156) at the yz sectional plane of the aircraft 

The predicted wake structure of the tandem rotor wake in IGE visualized by iso-surfaces of vorticity is shown in 

Fig. 24 and Fig. 25 to highlight the wake structure below the rotorcraft. Similar to the single rotor in ground effect, 

the tip vortices of the forward and aft rotors contract radially inward after shed from the blades, and expand 

significantly outward as they approach the ground plane. The fountain effect is also observed near the root of the aft 

rotor. As opposed to the single rotor, the tip vortices of the tandem rotor on the port side impinge on each other with 

a tangential inward velocity (shown in Fig. 25) resulting in a different outwash velocity on the port and starboard 

sides. The observed difference in the vortex pattern can be explained by the rotational direction of the two rotors. 

Because the rotors are spinning in opposite direction, the swirl pushes the wake outward from the rotorcraft center 

on the starboard side and inward on the port side which strengthens the tip vortices interaction between the forward 

and aft rotors. Contrary to the aft rotor, the fountain effect of the forward rotor is weakened due to its inclination. 

Additionally, interaction of the aft rotor tip vortices and inboard sheet with the forward rotor results in a lager 

downwash and radial outwash in the overlapping area as shown in Fig. 21; a phenomenon not seen for the single 

rotor. 
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                                              (a) 3D view                                                                        (b) xy plane 

 
                                               (c) xz plane                                                                           (d) yz plane 

Fig. 24 Wake structure of the tandem rotor IGE (h/R=1.156) 

 
(a) Starboard                                                                            (b) Port 

Fig. 25 Flow complexities of the tandem rotor IGE 

Flow visualizations at different sectional planes are shown in Fig. 26. Similar to the single rotor in Fig. 16(b), 

snapshot of the predicted flow field in Fig. 26(a) shows the characteristic formation of the tip vortices and vortex 

sheet structures in the wake below the rotor, and the wall jet around the ground plane. Also, the figure reveals the 

onset of vortex pairing of the older vortices as they approach the ground plane. As expected, the interaction of the 

forward rotor tip vortices and the inboard sheet with that of the aft rotor results in stronger vorticity distribution and 

vortex-ground plane interaction in the overlapping area. The flow visualization shown in Fig. 26(b) suggests that the 



thickness of the approximated slipstream indicated by the tip vortices on the port side is greater than that of the 

starboard side as shown in Figs. 22 and 23(b). The reason for the differences can be attributed to the fact that the 

wake interaction between the forward and aft rotors on the port side is stronger than that of the starboard side. This 

is also confirmed by the flow visualization at the yz sectional plane of both rotors as shown in Figs. 24(c) and (d). In 

addition, it can be seen that the aft rotor produces a thicker wall jet on the port side compared to the forward rotor. 

This is a result of the inclination of the forward rotor, which forces the forward tip vortices to penetrate into the 

outwash of the aft rotor. 

 

 
(a) xz sectional plane 

 
(b) yz sectional plane of the aircraft 

 
(c) yz sectional plane of the forward rotor 

 
(d) yz sectional plane of the aft rotor 

Fig. 26 Flow visualization of the tandem rotor IGE (h/R=1.156) 



The flow visualizations of the wake at different distances above the ground in Fig. 27 provide some insight into 

the characteristics of the wake structure. In Figs. 27 (a-c), even after 30 rotor revolutions the starting vortex is still in 

the computational domain and close to the tandem rotor on the port side. Conversely, the starting vortex on the 

starboard side is out of the domain. The reason for the difference can be understood by comparing the variation of 

the tangential inward velocity on the port and starboard sides (see Fig. 25). The effect of the opposite rotational 

direction is confirmed in Figs. 27(d) and (e). It can be seen, as expected, that the tip vortices of the forward and aft 

rotors on the port side impinge on each other with a tangential inward velocity, while those vortices on the starboard 

side convecting in opposite direction are pushed outward of the tandem rotor. Additionally, it is interesting to note 

that in Fig. 27 (f), the vortices on the starboard side of the tandem rotor, compared to the port side, expand further 

outward as they come into proximity of the ground.  

 
(a) z/D=0.578                                              (b) z/D=0.468                                     (c) z/D=0.378   

 
(d) z/D=0.278                                               (e) z/D=0.178                                            (f) z/D=0.078 

 
Fig. 27 Flow visualization of the tandem rotor IGE (h/R=1.156) at different distances above the ground 



IV.Conclusion 

A novel vortex-based approach is established to predict downwash and outwash (DWOW) of an overlapping 

tandem rotor in ground effect. The aerodynamics of the multi-rotor are modelled using an unsteady panel method, 

and the unsteady behaviour of the multi-rotor tip vortices and wake are predicted through the viscous vortex particle 

method. Viscous effects on the ground plane are accounted for by a viscous boundary model through generating a 

vortex sheet on the ground surface and diffusing the vortex into the flow field.  

The present approach is applied to an isolated full-scale Lynx tail rotor and a 172 mm-diameter rotor in ground 

effect. The results show that the predicted trajectories of the tip vortices and the radial velocity profiles compare 

favourably with experimental data and published CFD results based on RANS equations. Compared with CFD of 

the RANS equations, the present approach is more efficient. Moreover, the present method is also employed to the 

DWOW of a model CH-47D in ground effect. The variations of the downwash and outwash at various heights below 

the rotor and radial distances from the center correlate well with the measurements for the single aft rotor OGE and 

IGE. The predicted DWOW of the overlapping tandem rotor IGE also agrees well with the measurements. Therefore, 

the present approach has the ability to predict the DWOW of the tandem rotor with favorable accuracy and 

efficiency. 

Like the single rotor IGE, the scaled tandem rotor showed similar maximum wake contraction and radial 

outward expansion, and produced similar distributions of horizontal velocity. Also, fountain flows in both the 

forward and aft rotors were observed. Contrary to the single rotor, the peak velocity and the corresponding vertical 

distance of the velocity maximum of the wall jet for the tandem rotor were greater due to the strong wake interaction 

between the forward and aft rotors. The interaction of the aft rotor tip vortex with the inboard sheet of the forward 

rotor resulted in a radial outward expansion in the overlapping area; not seen for the single rotor. Additionally, two 

tip vortices with opposed directions were observed in the overlapping area of the forward and aft rotors. Outside the 

rotor plane, slightly above the thickness of the wall jet, the radial outwash velocity of the port side was larger than 

that of the starboard due to the stronger vorticity of old, aged vortices near the ground plane caused by the anti-

clockwise rotation of the forward rotor and the clock-wise rotation of the aft rotor. Contrary to the starboard side, the 

thickness of the wall jet on the port side was larger. 

For the tandem rotor, the wall jet of the aft rotor at the xz and yz sectional planes was thicker than that of the 

forward rotor. The fountain flow of the aft rotor was strengthened. The tip vortices of the forward and aft rotors on 



the port side were pushed toward the center of the tandem rotor with a tangential inward velocity, while that of the 

starboard side were pushed outward, which resulted in differences of outwash velocity on the port and starboard 

sides. It also resulted in the port vortex staying closer to the tandem rotor, whereas the one on the starboard side 

expanded further outward as it approaches the ground surface. 
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