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In this article we address two questions: Why do freely evolving vortices weaken on average,
even when the viscosity is very small? Why, in the fluid’s interior, away from vertical boundaries
and under the influence of Earth’s rotation and stable density stratification, do anticyclonic
vortices become dominant over cyclonic ones when the Rossby number and deformation
radius are finite? The context for answering these questions is a rotating, conservative,
Shallow-water model with Asymmetric and Gradient-wind Balance approximations. The
controlling mechanisms are vortex weakening under straining deformation (with a weakening
that is substantially greater for strong cyclones than strong anticyclones) followed by a partially
compensating vortex strengthening during a relaxation phase dominated by Vortex
Rossby Waves (VRWs) and their eddy—mean interaction with the vortex. The outcome is a
net, strain-induced vortex weakening that is greater for cyclones than anticyclones when the
deformation radius is not large compared to the vortex radius and the Rossby number is
not small. Furthermore, when the exterior strain flow is sustained, the vortex changes also
are sustained: for small Rossby number (i.e., the quasigeostrophic limit, QG), vortices continue
to weaken at a relatively modest rate, but for larger Rossby number, cyclones weaken strongly
and anticyclones actually strengthen systematically when the deformation radius is comparable
to the vortex radius. The sustained vortex changes are associated with strain-induced VRWs on
the periphery of the mean vortex. It therefore seems likely that, in a complex flow with many
vortices, anticyclonic dominance develops over a sequence of transient mutual straining events
due to the greater robustness of anticyclones (and occasionally their net strengthening).
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1. Introduction

Observational and computational studies have shown that coherent vortices emerge
in large-scale geophysical fluid flows under many conditions, in particular — with
relevance to the present study — in the fluid’s interior away from solid boundaries
and under the influences of planetary rotation and stable density stratification.
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Terrestrial examples include atmospheric vortices near the tropopause and oceanic
vortices in the thermocline and abyss. Other examples can be found on the giant
planets, most spectacularly the Great Red Spot of Jupiter (figure 1). Coherent
vortices have also been found in computational turbulence studies of initially
randomly distributed vorticity in stratified, rotating environments (McWilliams
et al. 1994) where axisymmetrization, vertical alignment, and successive mergers of
like-sign vortices cause the aggregation of vorticity into a decreasing number of
larger vortices.

The emergent vortices tend to be relatively axisymmetric around a core vorticity
extremum. This is true in part because an axisymmetric azimuthal circulation is a
stationary solution to the conservative fluid equations in gradient-wind and hydrostatic
balance, and further because linearly stable vortices are often robust to even substantial
perturbations that deform them away from their axisymmetric stationary state. When
perturbed, vortices tend to relax back to an axisymmetric state on an advective time
scale, exhibiting a long-time weakening after many disturbance and relaxation cycles.
The final axisymmetrization is a result of both advection and diffusion, but diffusion
alone is insufficient to account for the degree of weakening. This relaxation process
is often referred to as vortex axisymmetrization, and many studies have tried to capture
its underlying dynamics. Melander et al. (1987) developed a descriptive framework
to explain the vortex axisymmetrization process. They showed that elliptical vortices
have nonzero potential vorticity located outside the saddle points in the co-rotating
streamfunction, causing the potential vorticity to be pulled away from the vortex and
filamented, leaving behind a smaller circular vortex. Montgomery and Kallenbach
(1997) showed that vorticity perturbations on smooth-shaped, monopolar vortices
propagate outward as Vortex Rossby Waves (VRWs) that are azimuthally sheared

Figure 1. Jupiter’s long-lived anticyclonic vortices visible as pale ovals. This photograph is from Voyager I
on 13 February 1979. The moons lo (left) and Europa are also visible, and the Great Red Spot vortex lies
behind To (NASA/JPL).
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by the differential angular velocity of the mean axisymmetric vortex. These fluctuations
eventually transfer their energy back to the mean vortex, thereby strengthening
it relative to the initial azimuthal mean flow. In a complementary study, Schecter
et al. (2000) demonstrated some circumstances where energy exchange occurs between
a fluctuation, sometimes referred to as a quasi-mode (Briggs et al. 1970), and the mean
vortex at a critical radius where the azimuthal wave speed of the fluctuation equals
the angular speed of the vortex.

To further understand the robustness of vortices, Bassom and Gilbert (1999;
hereafter BG99), examined how a barotropic vortex, with a smooth radial vorticity
profile responds to an external strain flow that is impulsive in time, has an extended
duration, or is somewhat random. They analyzed the weakening of the azimuthal-
mean vortex during the straining period and the subsequent relaxation of the vortex
back to an axisymmetric state. They found that the net effect of an external strain
flow is a weakening of the original vortex.

In this article we further explore this phenomenon using the Shallow-Water
Equations (SWEs) with small but finite Rossby and Froude numbers (i.c.,
Ro = V/fL, where V and L are vortex azimuthal velocity and radial length scales,
and f'is the Coriolis frequency; Fr = V/\/gH, where g is the gravitational acceleration,
and H is the resting depth of the fluid layer). A striking characteristic of coherent vor-
tices — not yet well understood — is the fact that, with finite Ro and deformation
radius (i.e., Ly = /gH/f), anticyclones tend to be more prevalent than cyclones in
flows that are not strongly influenced by horizontal or vertical boundaries. (This is in
contrast with the development of stronger cyclones in baroclinic flows dominated by
boundary potential temperature gradients, e.g., synoptic winter cyclones in the atmo-
sphere.) Many studies have noted the preferential existence of anticyclones both in
nature (e.g., atmospheric blocking anticylones and submesoscale coherent vortices in
the oceanic interior; McWilliams 1985) and in computational solutions of the SWE
or its balanced approximation (Cushman-Roisin and Tang 1990, Arai and Yamagata
1994, Polvani et al. 1994, Cho and Polvani 1996) or in a fully three-dimensional (3D)
flow (Yavneh et al. 1997). Whether there is a discrepancy in the number of
emerging vortices with anticyclonic vorticity versus cyclonic vorticity, whether cyclones
are more susceptible to an instability, or whether anticyclones are more robust to
externally induced disturbances are all issues of continuing investigation.

Cushman-Roisin and Tang (1990) showed a preferential emergence of anticyclones
from a random vorticity field when characteristic sizes were larger than L, They
suggested this was due to an inherent tendency of cyclones to self-destruct. They
proposed that the quadratic component of the planctary g-effect in their model is
responsible for balancing Rossby-wave dispersion in anticyclones, akin to a soliton
solution (cf Matsura and Yamagata 1982). Cyclones, on the other hand, would fail
to remain coherent since no such dynamical balance is possible. They also advanced
a heuristic stability argument favoring anticyclone survival. However, since anticyclonic
dominance has also been observed on an f-plane (e.g., Polvani er al. 1994), this
B-dispersion argument cannot be the generic explanation.

Arai and Yamagata (1994) also observed anticyclonic dominance in numerically
simulated flows when Ro is sufficiently large. To explain the phenomenon, they
examined the problem of elliptical vortices on an f-plane. Anticyclonic ellipses
were observed to undergo the familiar axisymmetrization process, regardless of the
magnitude of Ro or L,/L. In contrast, cyclonic ellipses elongated and eventually split
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into two vortices. This tendency to elongate and split decreases as the ratio L, /L
decreases (see their figure 8). They suggested that this is the mechanism for anticyclonic
dominance and remarked that vortex splitting is associated with the development
of additional saddle points in the co-rotating streamfunction near the vortex core
that implies an advective tendency to pull the vortex apart. We show that anticyclonic
dominance does not require vortex splitting. To identify flow regimes displaying
anticyclonic dominance, Polvani et al. (1994) performed numerical simulations of the
SWE for the unforced evolution of initially random vorticity fields with a wide range
of Ro and Fr values. They found that as Fr (= RoL/L,) increases at fixed Ro,
so does the negative value of vorticity skewness, implying increased anticyclonic
dominance. This is in apparent contradiction with the tendency favoring the occurrence
of vortex splitting (Arai and Yamagata 1994). In order to reconcile this discrepancy,
either initial condition differences are important (e.g., whether or not the vortices
have zero circulation) or the interpretation that cyclonic elongation and splitting are
the unique cause of anticyclonic dominance is incorrect.

Linear stability studies for vortices have, for the most part, failed to find a greater
instability for cyclones. There are two finite-Ro instabilities, centrifugal (Charney
1973, Hoskins 1974) and ageostrophic anticyclonic (Molemaker et al. 2004), that
imply greater anticyclonic instability. An exception is the study by Stegner and
Dritschel (2000) that considered the instability and finite amplitude-evolution of
zero-circulation vortices. Although they show a greater cyclonic growth rate of
instability compared to anticyclones, the instability is essentially a quasi-geostrophic,
inflection-point type, with only modest differences in evolution arising between
cyclones and anticyclones with increasing Ro and increasing sharpness of the radial
vorticity profiles. Therefore, we believe that linear stability behaviors are an insufficient
explanation for the preferential persistence of anticyclones observed in interior flow
regimes where many, if not most, vortices have nonzero circulation. Many different
radial profile shapes arise for vortices in complex flows, and by their survival they
are evidently stable.

Cho and Polvani (1996) showed that geostrophic adjustment by inertia-gravity wave
radiation in the SWE favors stronger end-state anticyclones at intermediate Ro values,
and Yavneh and McWilliams (1994) showed that, in the core of strongly deformed
cyclones when the fluid depth approaches zero in the SWE, the dynamical approxima-
tion of diagnostic force balance breaks down, which instigates an enhanced dissipation
rate. While both of these processes may contribute to anticyclonic dominance in
general, neither is relevant to the essential phenomenon that occurs in balanced
vortex dynamics.

In this article we present a new theory for the cause of anticyclonic dominance in
large-scale geophysical flows, based on the demonstration that anticyclones are
more robust than cyclones to perturbative disturbances at finite Ro. The theory’s
ingredients are the diagnostic force balances for the azimuthally averaged vortex
and its asymmetric fluctuations (balanced dynamics); a linearized approximation for
the fluctuation dynamics in the presence of the mean vortex; and a fully nonlinear
representation of the azimuthally averaged momentum and mass fluxes by the
fluctuations (quasi-linear, eddy-mean interaction; e.g., Lindzen and Holton 1968).
Thus, the theory does not consider extreme finite-amplitude events, such as vortex
splitting and filament expulsion (e.g., Nof 1990, 1991, Arai and Yamagata 1994,
Drijfhout 2003) that we find not to be essential for the generic evolutionary behavior.
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One way to describe the disturbance of any particular vortex in a complex, turbulent
flow is to view the external influences as a time-varying strain flow acting on
that vortext. As shown in BG99, a strained barotropic vortex undergoes an initial
weakening followed by an incomplete recovery to axisymmetry, resulting in a net
weakening. We show that the essential difference between cyclones and anticyclones
is in their response to such an external strain, whereby cyclones exhibit greater net
weakening].

Section 2 is the model derivation for the influence of an external strain flow on a
vortex initially in axisymmetric, gradient-wind, and hydrostatic balance. Section 3
poses our specific problems and describes the numerical methods employed.
Section 4 is a preview of the essential phenomena. Section 5 analyzes the weakening
of a vortex during the impulsive straining period. Section 6 describes the strengthening
of a vortex as it recovers from the external strain through VRW evolution. Section 7
presents the sensitivities to different parameters, such as strain duration, Ro and Fr,
and advective nonlinearity of the fluctuations. Section 8 examines solutions when the
external strain flow is sustained in time. Finally, section 9 provides a summary of
the study and a discussion of remaining issues.

2. Dynamical model

We investigate the effect of a specified external, large-scale, straining flow on an initially
axisymmetric, balanced vortex. The strain excites an asymmetric perturbation in the
vortex that subsequently relaxes towards axisymmetry after the strain abates. We use
the conservative, rotating SWE with a free upper surface and flat, solid bottom surface.
In cylindrical coordinates (r,A,f), the primary dependent variables are the radial
and azimuthal velocity (u, v) and geopotential ¢. In a companion article (McWilliams
et al. 2003; hereafter MGMO03), the model equations are fully developed in the
context of VRW solutions and their interaction with the mean vortex. Here, more
briefly we record the relevant equations extended to include an external strain flow.

We decompose the primary variables with an ordering parameter, ¢, that measures
the relative sizes of the vortex fluctuation and external strain rate compared to the
undisturbed vortex:

u=eu;+ ) + eu, + € (u,)
v="(r)+ eV, + ) + ev, + e (v,) (1)
¢ = B(r) + €]+ € () + €4, + €($,).

tEarlier work by Brickman and Ruddick (1990) examined the instability of anticyclonic vortices to a
barotropic straining flow. While the setup is similar to the problem solved here, they did not consider the
comparative cyclonic case as we do here, and their model was restricted to vortices with a discontinuous
potential-vorticity distribution (i.e., an anticyclonic ‘lens’) rather than the continuous profiles analyzed here.
iFully nonlinear simulations in 3D by Graves (2005) examining free-decay turbulence, vortex axisymmetriza-
tion, and vortex merger at finite Rossby number strongly support the paradigm of strain-weakening/
relaxation-strengthening/anticyclonic-dominance developed here by our semi-analytical analysis.
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The overbar denotes the initial vortex that is a stationary state in the absence of external
strain. The primes and brackets denote azimuthally asymmetric and symmetric parts of
the strain-induced flow. The subscripts e and i refer to the ‘external’ strain flow and
‘internal’ vortex perturbation, respectively. The (-;) and -/ quantities are referred to
as the vortex changes and fluctuations. Note that we have subtracted off any bulk
external velocity (e.g., evaluated at the vortex center, r=0), which only induces a
bulk displacement of the vortex, to focus on the vortex deformation induced by the
external velocity gradients across the vortex. The azimuthally averaged part of
the external strain flow is an order smaller than the asymmetric part.

Inserting (1) into the SWE and separating by powers in €, we obtain at O(e”) the
stationary gradient-wind balance for v and ¢,

— =fV+—, (2
and at O(¢) a linear SWE system for the fluctuations,
Du, — &V, = — 3,4 + 5(2\/6 — Bku;)
DV, + 7, = — % K, — T, — Qv 3)
D@, + ghS; + u,d,¢ = —ghs, — Q¢ — u,d,¢.

There are no terms related to the external flow by itself since it is assumed to satisfy its
own dynamical balance equations in the absence of the vortex. Relevant quantities are
defined by

N=f+¢, E=f+2Q, h=H+7I, 4)

where € is the angular velocity of the vortex; D is the substantial time derivative asso-
ciated with advection by the mean vortex; ¢ is its relative vorticity; 7 is its absolute
vorticity; & is twice its absolute rotation rate; / is its layer depth; g is its potential
vorticity; 7! is its local deformation radius (~ L,); and &8 is the asymmetric component
of horizontal divergence.

To exclude the fast inertia-gravity wave oscillations in (3), we make an approxi-
mation based on diagnostic force balance (McWilliams 2003), specifically the
Asymmetric Balance (AB) approximation of Shapiro and Montgomery (1993)
appropriate to nearly axisymmetric baroclinic flowst (assured here by € « 1). AB
involves an iterative substitution for the velocity in the momentum equations in (3),

+The accuracy of AB solutions relative to the hydrostatic Primitive Equations for vortex flows has been well
tested (e.g., by Moller and Montgomery (1999) and Schecter and Montgomery (2003) for vortices with
finite L,;). AB becomes inaccurate in the barotropic limit at finite Ro, and we avoid its use in this situation.
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starting from a generalized geostrophic balance in the first iterate (i.e., equating
the second left-side and first right-side terms in the first two equations). After the
next iteration, the result is

11 1 _ —
Uy =—= [— 0,.9; +=D(3,¢) + Lu, + Q9; V;}
nLr §
1 1 — —

Substituting (5) into the continuity equationt in (3) and multiplying everything by —372,
we get the fluctuation geopotential tendency equation (cf MGMO3):

) 1_ / —= 1 ro— / rayY / 5 / / /
D[qub] — ;Ga)\qﬁ, = —ﬂg[; 8,4 (% (;‘ue + QBAV€)> + E (28)»1}9 — 8/2\146) — 6ei|
%(p(fu’e — Qo) + QBA¢2:|, (6)

-
+y2|:

where

2
¢ =V V¢, G(r)=E3[Ing, V= ”’— dy (% a,,> + rlzai- ™
g“* is the fluctuation potential vorticity in the AB approximation. All fluctuation
(primes) and vortex change terms (brackets) are initially zero, as is the external strain
(section 3). The boundary conditions for ¢;, and thus for 9,¢!, are zero for both
itself and its radial derivative at r=0, and decay ~r~2 at the outer boundary due to
the choice for the external strain flow (section 3) or even more steeply ~ e~"/1« after
the strain abates.
Inserting (1) into the SWE and azimuthally averaging, we obtain at O(¢?) beyond
(2) the following system for the vortex changes:

(i) = = (¢) — (EN") + 22ve)
(1) = —(ZN") = Zue) ®

1 _ 1 _
B,(¢) + - 0:(rghtu)) = —(ZN?) — —d,(rghfu.),

d(u;) — &
o(vi) +7

tAs discussed in MGMO3, there is an alternative derivation for the AB asymmetric geopotential tendency
equation, where the velocity approximations (5) are substituted into the linearized asymmetric potential-
vorticity equation. The two alternatives for the AB approximation are referred to as the continuity path
and potential-vorticity path, respectively. The paths are of an equivalent formal order of accuracy in Ro, with
errors O((|D|/f)*), but they differ in several of their higher-order terms. We have examined solutions to the
strain/relaxation problem (sections 4 and 5) using both paths; they differ only modestly at larger values of
Ro, and their qualitative behaviors are the same. The potential-vorticity path has an additional complexity
in the strain-impulse limit (section 5), where its solution is divergent as f7,,,. — 0 (a limit that is formally
inappropriate for balanced dynamics anyway), although it is well behaved as long as Ro™' > Stmax > 1. In this
report, for simplicity we do not show results from the potential-vorticity path. It is a common experience
(McWilliams 2003) that alternative balance approximations give modestly, but not importantly, different
answers in the regime of intermediate Ro where they are most relevant.
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where the quadratic advection terms due to the fluctuations are defined by
1 1
w3, + . Vi, — . (vf.)2
1 1
ENY = { +udu, + " Vidpul, — " A )
/ / 1 / / 1 A
+ u,0,u; + P Vv, Oty — P V.V
/ / 1 / / 1 7.
u;0,v; + P V0.V, + Ui
: 1 1
EN" = +uldv, + = v, +—uv, (10)
r r

1 1
+ U0V =V V. + =V,
e 1 r e 1 r e’

l / 7 , , 1 o
;(piar(}’u,') + uiarqﬁi + ; 8)“(vi¢i)
! 1
! 1
+ ;¢;3r(l’u;) +u, 0,4, + . (V.9

The fluctuation nonlinear terms in (8) are calculated by solving (6) for ¢!, evaluating
(5) for u; and v/, substituting into (9)—(11), and azimuthally averaging.

For the vortex changes we make a Gradient-wind Balance Equation (BE) approxima-
tion (MGMO03) to exclude inertia-gravity oscillations. In (8) this is accomplished
simply by dropping the radial acceleration term, 0,(u;), in the first equation; hence,
rearrangement yields

1 _
(ui) = — 7 [0:(vi) + (EN") + T(ue) ]

(vi) = =[8,(#) + (ZN") = 2Q(v,) . (12)

| —

Substituting (12) into the third equation of (8) and multiplying by —7° gives
V. ) =2 7o [r y T
o ?arat«w —7°3,(¢) =V (ZN?) — 0 5<2N> — I[9,(EN")]

=2 re) . 272 _
+ V—ar[Zgamvg) —’:E<ue>} + L 0.ghu).  (13)
r Y q r

where the operator T is defined by

2
riol="a 50| (14)
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The initial conditions are zero for all bracketed quantities. The boundary conditions
for (¢;) are 9,(¢p;) =0 at r=0 and decay ~ % at the outer boundary for (¢;) due to
the external strain (section 3) or even more steeply ~ ¢~"/% after the strain abates.

Equations (6) and (13) and their supporting relations comprise a well-posed
initial- and boundary-value problem for the evolution of the fluctuations and vortex
changes under the influence of a specified external flow. They have well-defined
quasigeostrophic (QG) and barotropic (BT) dynamical limits obtained by Ro — 0
and L; — oo.

To assess whether the straining and relaxation processes weaken or strengthen the
vortex, we evaluate norms based on the area integrals, of the total energy and potential
enstrophy densities, viz.,

1 1 1
5SW€[Va u, ¢] = 5 (h(uz + V2) + §¢2>: sze[vy u, ¢] = thz’ (1 5)

where h=H+¢/g, g=(f+¢)/h, and ¢ =r""(3,[rv] — 3,[u]). Both of these norms
are preserved during a conservative evolution for the vortex, although they are not
conserved when the external strain flow is included. To assess the changes in the
vortex, we subtract the initial values of the norm associated with the initial vortex
(e.g., v, etc.), and we either include the fluctuation components (e.g., v;, etc.) or not
in evaluating (15) to distinguish between changes to the fluctuation part of the vortex
perturbation or to only its azimuthally averaged part. For example, excluding the
contributions from the external strain flow,

Azswe(l‘) = Eswe[vi =7v+ 62<Vi)(l)n CtC.] - gswe[vi =, etc.] (]6)

is a measure of the energy change density that has occurred in the azimuthally averaged
vortex structure, and

AE;WG([) = g.s‘we[v =Vi= v+ EV;‘(I) + ez(vi>(t)> etc.] - gswe[v =V = v+ ez(vi>(t)a etc.]
(17)

measures the energy density in the fluctuations. We denote the area integrals of (16) and
(17) by AE,. and AE,,, respectively, and the analogous potential enstrophy change

measures are AV, and AV .

3. Problem posing and computational method

The initial vortex is chosen to have a monotonic relative vorticity profile,

&) = coe I, (18)

and thus a finite circulation (i.e., area integral vorticity). The constants, ¢, and r,, are
chosen such that the associated swirl profile, ¥(r) from (4), has a maximum wind speed
V at a radius of L. For definiteness in our primary cases, we choose V’=4ms~' and
L=200km. Along with f=10"%s"!, these values imply Ro= V/fL =02,
although a related quantity, |¢|(r = 0)// has a rather larger value of 0.7. The associated
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geopotential ¢ is calculated from (2) with an outer boundary condition of ¢ =0 at
r = Ryuux. We choose R,y =2000km after confirming in trial solutions of (6) and
(13) that this is sufficiently distant for its specific value not to matter. The behavior
shown below is not qualitatively sensitive to the particular profile choice in (18)
(except perhaps in the limiting case of a step-function profile where critical-layer
interactions and quasi-mode behaviors may become more prominent).

We choose the following as a canonical external strain flow that acts only over a
limited time interval, 0 < ¢ < #,,,4x:

u, = —aF(Orcos[22], vV, = +aF(0)rsin[2x], (u,) = (ve) =0, (19)

where « is the strain rate and

F(1) = sin® |: ™

max

}’ Oftftmux

= 0, = lnax (20)

is its non-dimensional time history. The cumulative straining magnitude by
(19)—(20) after #,,x 1s

I'”(/.\'
/ dtaF(t):aZ;“x = m, @1
0

and we choose m « 1 consistent with € << 1 in (1). This flow is zero at the vortex center,
is non-divergent, and has zero vorticity. The associated external geopotential is

¢, = %fF(t)rz sin[24], (@) = — %(aFr)z, (22)

which is in (r, A) gradient-wind balance with (19). Again, the results we report are not
particularly sensitive to the choice for (u,, v,) as long as its spatial scale is much larger
than L.

As the centerpiece of this work, we focus on four primary cases: CYCLONE
(with ¢y > 0 in (18) and Ro =0.2); ANTICYCLONE (with ¢ <0 in (18) and
Ro = 0.2); QG (deleting all O(Ro) contributions in (6) and (13)), which has equivalent
solutions for either sign of ¢y though we do show results for a cyclonic case with ¢y > 0;
and BT (the same as QG except L; — oo, hence 7> — 0, e.g., by taking the
limit H— oo)f, which is directly comparable with the solutions in BG99. For the
non-barotropic cases the layer depth is chosen to be H=150m, which yields an L,
value of 220 km, close to the value of L and consistent with parameter regime surveyed
by Cushman-Roisin and Tang (1990) and Polvani et al. (1994). The duration of the
strain period is ., = 4500s (1.25h); thus, it is of brief duration (i.e., impulsive)

tBarotropic dynamics has the same velocity evolution for all values of Ro. However, its associated
geopotential field is in gradient-wind balance and thus depends on Ro. We choose Ro— 0 for the
BT case for direct comparability to the QG solution with finite L, and so that ¢/f is interpretable as the
streamfunction.
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Figure 2. History of the normalized vortex change norms for (left) energy, AE,,.(f), and (right)
potential enstrophy, AV, (f), for the primary cases with impulsive strain:. CYCLONE = solid line;
ANTICYCLONE = long-dash line; QG = dash-dot line; and BT = dotted line. Normalizations are
in table 1. All curves start at zero for 7=0, but the strain-weakening period is so brief
(i.e., t,ar V/L = 0.014) on the scale of the plot that they appear to start at their post-strain, minimum values.

compared to the vortex advective turn-around time, 27L/V = 3.6 days, the character-
istic time for VRW evolution (MGMO03). We also choose a rather weak external strain
rate, o = 1077 s7', hence m = 2 x 107* « 1. All of the primary cases are run for 5 eddy
turn-around times (defined at the radius of maximum swirl velocity), by which point the
VRW relaxation process has asymptotically approached its long-time limit in the sense
that the energy and enstrophy norms are no longer changing significantly. In addition,
other cases (defined in sections 6 and 7) are investigated to explore sensitivities in this
primary problem formulation.

The numerical model used to solve the tendency equations for the geopotential
is semi-spectral, with Fourier modes in the azimuthal coordinate and second-order,
centered finite differences in the radial coordinate. The nonlinear terms are computed
by explicitly summing a convolution sum in Fourier space. Inversion for the geopoten-
tial tendencies 0,¢; and 9,(¢;) is accomplished with an LU-decomposition of a
band-diagonal matrix derived from the elliptic operator in equations (6) and (16).
The tendencies in the nonlinear terms on the right-hand side are used from the previous
timestep. The numerical model is time-stepped with a fourth-order Runge-Kutta
scheme. A time step of 100s with a radial grid spacing of 5km falls within the CFL
computational stability threshold.

4. Strain-induced net weakening and anticyclonic dominance

The essential phenomenon is illustrated by the histories of the vortex change norms in
the four primary cases (figure 2). Note that these are area integrals of the densities given
in (15) and (16). In all cases, the azimuthally averaged energy and potential enstrophy
decrease during the straining period (0 < ¢ < f,,4¢), and then they partially recover
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Figure 3. (a) g(r) normalized by f/gH and (b) G(r) normalized by f/L in CYCLONE (solid line) and
ANTICYCLONE (dashed line).

during the relaxation period (#,,,x < t < 00). These two periods are analyzed separately
in sections 4 and 5. Note that the changes in the azimuthally averaged vortex are
much larger in CYCLONE than those in ANTICYCLONE, with QG in between
and BT outside their range.

In advance of the detailed analysis, we can give a simple heuristic rationalization
for anticyclonic dominance. The external strain field will induce a displacement g’ of
vortex parcels away from their equilibrium position. This is a conservative process,
in particular of potential vorticity. Within the vortex, the dominant potential vorticity
is that of the mean vortex itself, g(r). Hence we expect potential vorticity fluctuations
that can be estimated for small displacements as

/ /Adq
qw—ﬂra

Because of the combined nonlinearities in gradient-wind balance and potential vorticity
for finite Ro, d,g is very much larger for cyclones than anticyclones (figure 3a).
Hence, for equal parcel displacements within the vortex, the ¢’ fluctuations will be
larger in cyclones. Hence the vortex changes driven by the fluctuations will be larger.
Since the net change is weakening (figure 2), cyclones will be weakened more, and
this provides an evolutionary path towards relatively stronger anticyclones. Note that
this argument makes no specific reference to the governing equations or the vortex
and external flow shapes; so we can further expect that the behavior analyzed here
will occur under many different circumstances.

5. Vortex weakening by impulsive strain

To understand the mechanism of vortex weakening caused by an external strain flow,
we solve an approximate problem for the vortex evolution when the straining event
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has a short duration ¢,,,, compared to the free evolution of VRWs that occurs on the
advective time scale L/V. The size of the net effect from (19) is measured by

t
M(t) = [2m‘ /O F(/)dr. (23)

M is zero at t =0, increases monotonically for all 7 > 0, and is equal to m defined in (21)
for all 7> t,,.. Consistent with the approximation € <« 1 (section 2), we assume
that 0 <m « 1, which implies a small-amplitude vortex perturbation by the
external strain flow. The strain-impulse approximation is a finite-time version of the
delta-function limit of impulsive strain (i.e., f,x — 0, @ — oo, and m finite), and
its solution is the same for all times L/V > t > t,,.. More generally the external
strain flow can have its duration time f7,,, be either comparable to or longer than
the vortex Rossby-wave time (cf sections 6 and 7). The processes of strain-induced
weakening and wave-induced recovery (section 6) will then occur simultancously
and with mutual interaction. Nevertheless, the most useful paradigm for strain-
induced weakening is the response of a stationary vortex to an impulsive external
strain flow.

The impulsive-strain approximation allows us to neglect the VRW propagation terms
proportional to € and G on the left side of (6). With a plane-strain external flow (19),
the fluctuation equation is

, —F 27 . Q
[V~ 7]% = by cosin) [”fgr [’ﬂ + 72% (ﬁ - é(l + ?)) } (24)

with S = rd,[¥/r] the strain flow for the mean vortex and M the time derivative of M(1).
The solution of (24) has a separable form,

@ (r, 1, 1) = M(1)cos[2A] ¢/ (r), (25)

with q?(r) determined from (24) after substituting (25) and factoring out the (A,7)
dependences (i.e., the resulting right-side forcing is the term within the outer
brackets). In the more easily interpreted QG limit (Ro — 0), the ¢'(r) equation

simplifies to
1d /d 4 AN PV K« Qg ee
[;a(} a) — (r_2+Ld )}(p _}‘dr[r S] . (26)

The right-side forcing in (26) vanishes as r — 0,00, and it has a single extremum in
between. For finite Ro values the more general right-side forcing in (24) has a qualita-
tively similar shape. The strain-induced fluctuation (25) grows monotonically with an
azimuthal pattern in quadrature with the strain flow’s (22). The overall magnitude of
¢ is O(mfVL).

The radial structure function for the fluctuations qg/(r) is shown in figure 4 for the
standard cases in section 3. It has the shape of a single dominant extremum
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Figure 4. ¢/(r), defined in (25) and normalized by VfL, for the primary cases defined in section 3:
CYCLONE = solid line; ANTICYCLONE (with the sign reversed) = long-dash line; QG = dash-dot line;
BT = dot line. The radius is normalized by L.

just beyond the radius of maximum vortex velocity, consistent with the shape of
S in (26). Compared to the QG solution, the CYCLONE solution has a much
stronger fluctuation amplitude, and the ANTICYCLONE solution has a much
weaker one. These tendencies are a simple consequence of the larger magnitudes of
7n/f, &€/f. and L2%* in CYCLONE amplifying the right-side in (24) and their smaller
values diminishing the right-side in ANTICYCLONE. Furthermore, the two
groups of forcing terms on the right side of (24) are additive for cyclones with finite
Ro, and they have opposing signs for anticyclones; this further accentuates the
reduction in the net forcing magnitude. These forcing differences imply that external
straining disrupts cyclones more substantially than anticyclones as Ro increases,
through the advective interaction of the external strain flow and the mean vortex.
It is interesting that (;3’(;’) (hence also ¢“) changes sign in the outer region for
ANTICYCLONE; this will prove to be significant in the response to sustained
strain (section 8). Finally, ¢'(r) is modestly larger in the BT solution, compared
to QG; both solutions have the same right-side forcing in (26), but BT has a larger
fluctuation response (i.e., ¢/¢ ratio) than QG since it lacks the vortex-stretching term
«L;?in q.
The vortex change equation (13) has a composite separable solution form, viz.,

A y 2 A
@) D) = M) (@) + Mf—f’) (@),(0): @7

Its first term is O(m*fV'L), and it exhibits monotonic growth until # = t,,,, after which it
is steady. Its second term is Om2fVL/(ftmax)?). It is at least as large as the first one
in the impulsive-strain limit, but its temporal structure is a single-signed pulse in the
interval between vanishing at 1=0 and ¢ > #,,,. Thus, the second term represents a
fully reversible response during the straining event, and the persistent vortex change
caused by straining is entirely represented by the first term, (@) M-
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Consistent with the solution form (27), we decompose the fluctuation nonlinear terms
in (13) as follows:

1dM?
(EN) = 2= (ON0),

o Sd|[PY [~ 1d¢\ fQrdd |

N = 4rdr|: 7 <ZQ+§; dr) nE dr:|’

(SNY) 1\42(0/\/‘;4(;)Jr 7 (t)J\/M(r)

2 — AN 2
y 1 (Qrd¢ 1 4Q\ (d¢
M= d,[ (?aﬁ"’”‘E(“?)(dr)

< 144 29\ | 297 |
— % |:<}"S - §E> (1 + r]Erz) + n52r3:|9

oo ldm? ,
(ENY) =j7?(t)/\f (),
oo S 5 1dd A
N = ﬁ(n S+§l di)<4dr|:§dr:|+ﬁ§r)
MY s o\d [& ]|, [ [Qrdg
+%<r—2—9(77— ))a[%]-i- (S dr+¢) (28)

The resulting radial boundary value problems for the components of (¢) in (27) are

1d (rd ~ 1 Id [N N,
() =g = [

(29)
1d (rd —1 [{¢), __li Ny
rdr\32dr Phir = rdr| 9 |
The velocities for the vortex change (12) have an analogous decomposition into
w =19 )+ 14 2O 6
0= g ar VOOt g | [
(30)

Mz()

() = M*@OD) p(r) + —— 7

() x(r)-
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The resulting relations for their radial functions are
(), = —= (f(‘,;)j + 5/,MNV),

o (dd)
(V>j=—< é¢;>]+N,>

|| -

@31

for j = M, M and 8, ; the discrete delta function (i.e., §=1 for equal indices and §=0
otherwise). The vortex change velocity magnitudes are O@*V/(ftmar)) and
OV /(ftmax)’), respectively, for the two (u); components in (30), and they are
Om*V) and O(m*V/( ftmax)). respectively, for the two (v); components. They are all
small compared to v by the factor m?® and they are enhanced in magnitude
during the strain-impulse phase by various factors of 1/( ft,,.). After the strain impulse
has ended (i.e., for ¢ > t,,y), the only nonzero velocity component is (v),, with a
magnitude of O(m?*V).

In the QG case, N¥ = N/ "y = 0, and N}, although nonzero, does not contribute to
the leading-order relations for (¢),,, (u), and (v). The limiting form for (29) is

1d d |, 1d v
[;a (”E> —Ld2j|(¢>M=—;a["N ], (32)

with the eddy momentum flux forcing,

v ¢ 1d | df
N = T aa | | (33)
The associated QG velocity components are
L 1)y
@) =0, (=7=g (34)

A~

The radial structures that survive at the end of the strain-impulse period, (¢),, and
(V)p, are shown in figure 5 for the standard cases in section 3. Their profiles are
generally similar among the cases. (¢)/f is positive within the vortex core, opposite to
the sign of ¢/f. (v) is also opposite in sign to ¥ near its extremum at r = L. These
indicate a weakening of the vortex during the straining event. The magnitudes of the
vortex change profiles are larger for CYCLONE than ANTICYCLONE and smaller
for QG than for BT.

The dominant forcing term for (c/S) v in (29) is N, and its largest components
are those analogous to the QG ones in (33). The dominance of these terms also
occurs for (v) in (31). The principal source of cyclone—anticyclone differences is the
O(Ro) forcing terms involving the advective interaction of the external strain
flow, the mean vortex, and the strain-induced fluctuation, ¢’ (i.e., not those involving
quadratic products of the fluctuations nor those of O(Ro?)). For example, a member
of the important O(Ro) class of terms in A/ in (28) is —ng’ /mEr. In the case of cyclones
these extra terms generally reinforce the dominant QG forcing terms, whereas for
anticyclones they have opposing signs and reduce the net right-side forcing.
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Figure 5. (a) (é)M(r) normalized by VfL and (b) (9),,(r) normalized by V for the standard cases defined
in section 3: CYCLONE = solid line; ANTICYCLONE (with the sign reversed) = long-dash line; QG =
dash-dot line; BT = dot line. The radius is normalized by L.

The BT changes in figure 5 are larger than the QG changes (with finite L,) for the
same reason as the difference in ¢ amplitudes, viz., the elliptic operator
inversion in (29) gives a larger response for similar right-side forcing without the
second term associated with vortex stretching. The resulting difference is larger
for the vortex changes than the fluctuations since the ¢/q ratio is larger for the
vortex-change response because the left-side operator lacks the terms associated with
the azimuthal second derivatives in (24).

We use several norms to assess the vortex evolution under strain (section 2). The fluc-
tuation and bracket norms from (15) are positive quadratic functionals of ¢’ and (¢),
respectively. Consequently, these norms exhibit a combination of both transient spiking
and monotonic growth during the strain-impulse period, reflecting the pattern of
perturbation growth. To assess the overall vortex change, however, we use the
full SWE energy and potential enstrophy norms. The SWE energy change for
the azimuthal-averaged vortex (16) is evaluated for these solutions. We focus on the
irreversible change that occurs for ¢ > 1,,,,, and we make the approximation m < 1.
The result is

Ay, ~ 27 / ” drr(w LY 1v2><¢>) (35)
0 g 2

evaluated at ¢ = #,,,,. The magnitude of AE,,, is O(m>HL?V?). The third term in the
integrand is smaller than the first two terms by O(Ro). Thus, the essential cause for
vortex weakening by external strain, as measured by this energy norm, is contained
within the first radial boundary-value problem in (29) and its associated velocity
relations (31) that yield radially integrated negative correlations between the mean
vortex and its strain-induced change for both the mass field (¢(¢) < 0 on average)
and the azimuthal velocity (¥(v) < 0). The values of AE,,, for the standard cases in
section 3 are listed in table 1. In all the cases, strain weakens the mean vortex
energy, and it does so much more for a cyclone than an anticyclone.

The analogous measure for the energy change associated with the azimuthal
fluctuations is defined in (17). Again making the approximation m < 1 and noting
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Table 1. Strain-impulse norms.

CASE AESH'(’ AEV;H'(’ AV}‘H‘C A V;‘\I'(’
CYCLONE -3.50 1.83 —542 16.7

ANTICYCLONE —1.04 0.35 —1.74 0.48
QG -3.02 1.21 —8.84 2.32
BT —4.41 1.50 —5.03 2.10

The energy and potential enstrophy norms evaluated from (35)~(47) at 1 = f,,,, and normalized by m* HL*V* for energy and
m* V2 /g*H for enstrophy.

that all odd powers of the azimuthal fluctuations in Ej,,. have zero azimuthal average,
the appropriate norm is

2 00
AE,, ~ / “* / & "<1 <E(”'2 +172) +1¢’2> +1V¢’v/> (36)
0 0 2 g g

evaluated at ¢ = f,,,,y. The magnitude of AE,, , is O(m* HL?V?), i.e., the same as AEy,e.
The final term in the integrand is smaller than the first three terms by O(Ro). Since the
dominant first three terms are positive-definite in AE],, a strain-impulse acts primarily
to increase the energy associated with azimuthal fluctuations. The values of AE], for
the standard cases in section 3 (table 1) are all positive, indicating the generation of
fluctuations by straining. The fluctuation energy change is much greater for cyclones
than for anticyclones.

The SWE potential enstrophy change norms (15) at ¢ = t,,y,, with the same

approximations as for the energy norms, are the following:

— o0 rq o
AV e = 2 dr —Q2(¢) —
e [ ar ot — i)

—>2n—2 oodr;’(g—i)(@—@)
g*H J fogH)\f gH
27 00 ’
AV/ ~ d d’—f 72 -2 /2_2—/ / . 37
e fo /\/0 ’2g2h(§ +7°¢% - 2q0'd) 37

The magnitude for both these norms is O(m?>V?/g>H). The arrow in (37) indicates the
leading-order expression in the QG limit for the enstrophy vortex change norm; its
magnitude is formally smaller than the magnitude of the first expression by a factor
of Ro, since evaluating the first expression with g = f/H gives a trivial result with (¢)
and (¢) obtained from (32)—(34).

The vortex change and asymmetric fluctuation enstrophy norms in table 1 indicate
the same relative differences between cyclones and anticyclon_es.1 The enstrophy
differences are even larger than for energy, mainly because the i weights in (37)
greatly accentuate them. The BT energy changes are larger than the QG ones,
and the enstrophy changes are somewhat smaller. These outcomes are based on the
competing effects of larger barotropic amplitude (figures 4 and 5) — favoring larger
BT changes — and the absence of the effects of changes in depth (i.e., terms
involving ¢) in the barotropic form of (35)—(37), whose signs in QG act to reinforce
the remaining terms — favoring larger QG changes.

In summary, an external strain flow acts to weaken a vortex, and this is most
cleanly demonstrated with the strain-impulse approximation used in this section.
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External strain induces larger vortex changes for cyclones than anticyclones and larger
changes for barotropic vortices than quasigeostrophic ones. The mean energy and
enstrophy change norms in table 1 summarize the net vortex weakening.

6. Vortex recovery by VRWs

This section describes how a vortex recovers from a strain-induced perturbation,
and it quantifies the net effect of a straining event on the vortex. The straining
period specified in section 3 has a small duration t,,, compared to the characteristic
advective time scale L/} for the vortex relaxation process. The imposed strain flow
induces an azimuthal wavenumber-two fluctuation at ¢ = ¢,,,, whose pattern is separ-
able in r and X as in (25). It has the same sign for all r values except for the radial
sign change for ANTICYCLONE that occurs outside the vortex core (at r ~ 2.5 in
figure 4). Thus, we can say that the initial value of a ‘local’ radial wavenumber on
scales smaller than the vortex size is zero, i.e., k(0) = 0. This pattern can be seen in
the upper left panel of figure 6 for ¢* defined in (7). During the relaxation phase,
Imax < t < 00, the mean angular velocity profile Q(r) causes the familiar differential
rotation around the vortex whereby the spiral arms wrap up, propagate outward,
and ultimately filament (Montgomery and Kallenbach 1997, MGMUO03); this is shown
for CYCLONE in the subsequent panels of figure 6. This behavior is represented by
a k(r) that grows monotonically in time in association with an increasing number of
sign changes in ¢* along all radial lines, and it is also associated with systematically
decaying fluctuation geopotential and velocity amplitudes.

Figure 7 shows |¢®|(r,f) for CYCLONE and ANTICYCLONE. The patterns
indicate an outward radial propagation of the asymmetric fluctuations in both cases.
The stagnation radius (i.e., the limit of outward propagation) for the primary wave
in CYCLONE is at approximately 1.8L. This is noticeably larger than the stagnation
radius for the ANTICYCLONE, which is 1.3, and also larger than in QG and BT,
which both have a stagnation radius of 1.5L. The stagnation radius is controlled by
the radial group velocity of the VRWs. Within the context of waves in slowly varying
media (i.e., a WKB approximation), the radial group velocity (equation (62) of
MGMO03) is controlled by the mean-vortex potential vorticity gradient G(r) and
the radial wavenumber k. In CYCLONE, G is negative everywhere since g(r) is mono-
tonically decreasing (figure 3b), and k becomes positive. Since the radial group velocity
is negatively correlated with the product of G and k, this yields a positive value, and
thus an outwardly directed propagation. In ANTICYCLONE, G and k both have
opposite signs compared to CYCLONE, but their product is the same, so this case
also exhibits an outward group velocity.

From (4) and (7), G can be expanded into

G=% (arz _9 a,a). (38)
n g

When terms of O(Ro) are quantitatively important, (&, %) are larger for cyclones
because their component terms are additive, whereas they are smaller for anticyclones
because the terms have opposite signs and thus partially cancel. In contrast / is smaller
for cyclones for an analogous reason, and this change is dominant compared to 7 in
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Figure 6. Swirl plots for q“b(x, y) normalized by mfV/L in CYCLONE at several times ¢V//L during the
relaxation phase after impulsive strain.
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Figure 7. Hovmiiller plots of max;[|¢*|] (r, 1) normalized by mfV/L after impulsive strain in (a) CYCLONE
and (b) ANTICYCLONE. The contour interval is 0.5 in (a) and 0.1 in (b).

making ¢ larger: 9,¢ is larger for cyclones because of gradient-wind balance (2), and for
both vortex parities it combines additively with 9, with a further weighting by g in (38).
As a result of these differences, the magnitude of G is significantly larger for cyclones
than anticyclones, so are the group velocity and the stagnation radius (figure 3b).
The outward radial group velocity causes a rapid evacuation of fluctuation potential
vorticity in the core of the vortex that occurs in conjunction with the spiral wind-up
of the primary wave packet. The core evacuation is also due to the outwardly directed
group velocity, and it begins fairly early. The outward propagation of asymmetric
potential vorticity is evident in the spiral plots of ¢“’(r, 1) in the core of both cyclones
(figure 6) and anticyclones.

Because of the conservation of wave action and wave activity for VRWs (MGMO03),
amplitude decay of the primary wave packet is expected for an outwardly propagating
VRW. Comparing the net change in ¢“° during the relaxation phase, there is clearly
a greater amount of fluctuation decay in CYCLONE than in ANTICYCLONE.
The magnitude of the strain-induced fluctuation |¢}|(#u.) in CYCLONE is larger
than in ANTICYCLONE, with the QG and BT cases lying in between (figure 4).
The [¢®|(tax) differences among the cases are even larger, with a ratio of about
a factor of 5 between CYCLONE and ANTICYCLONE. In the absence of any
dissipation for the fluctuations, the combination of greater cyclonic ¢** after straining
and its greater relative decay during the relaxation phase suggests there must be a much
greater strengthening of the cyclonic vortex through eddy—mean interaction in (13).
Since the fluctuation is originally created by transfer from the mean vortex
(i.e., strain weakening), this VRW relaxation strengthening is an opposite effect. As
evident in figure 2, however, the strengthening is less than the weakening in all cases.

Figure 8 shows the temporal decay of the fluctuation geopotential amplitude for the
four principal cases at the radius of maximum mean potential-vorticity gradient after
the external strain is turned off. The evolution of the geopotential at the radius of
maximum mean potential-vorticity gradient serves to identify whether the relaxation
response is dominated by a single VRW quasi-mode (with exponential decay;
Schecter et al. 2002) or a collection of sheared (continuum) VRWs that decay algebrai-
cally with time (MGMO03). From figure 8 it is evident that the decay is only persistently
exponential in BT. Decay in QG is less persistently exponential, if at all.
CYCLONE and ANTICYCLONE exhibit highly non-exponential decay. These results
suggest that the sheared VRW paradigm is the most appropriate one for the finite-Ro
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vortex relaxation phase (starting at ¢ = 7,,,.), normalized by its value at 7,,,. CYCLONE = solid line;

ANTICYCLONE = long-dash line; QG = dash-dot line; BT = dotted line.
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Figure 9. Vortex changes during the VRW relaxation phase following impulsive straining (i.e., between
t=314and t = 1,,,): (a) (¢)(r) normalized by m?VfL and (b)(v)(r) normalized by m*V. CYCLONE = solid
line; ANTICYCLONE (with the sign reversed) = long-dash line; QG = dash-dot line; BT = dotted line.

cyclonic/anticyclonic vortex recovery phase. In general, we expect that the relaxation
response will involve a superposition of VRWs and/or quasi-modes, but we have not
made any attempt to decompose the fluctuation field into individual ‘pure tones’.

Figure 9 shows the net geopotential vortex change (¢) at t = 31.4L /) minus its value
at the end of the straining period, ¢ = f,,,.. A bimodal structure in (¢) is clearly evident
for all four cases, with a large negative value inside the radius of maximum wind for v(r)
and a smaller positive value outside. The negative (¢) corresponds to a greater mean
central depression in /i for a cyclone and, by gradient-wind balance, a stronger
vortex. Since the cyclonic (¢) exhibits a peak amplitude that is approximately twice
that of the anticyclonic case (plotted here with a sign reversal), this implies that the
cyclone undergoes a greater recovery from the strain weakening. Note that the peaks
in (¢) for the cyclone are slightly outside the others due to the larger radial propagation
of the corresponding VRWs. Again, the QG and BT results typically lie in between
CYCLONE and ANTICYCLONE.

From equation (33) of MGMO03, relating the time derivative of balanced fluctuations
to the wave-induced acceleration of the azimuthal velocity, the larger response in (v) in
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the cyclone seen in figure 9 is traceable to the larger radial propagation in the cyclone in
an approximate pseudo-momentum rule in the limit of small but finite Ro. For the BT
case with non-divergent flow, the physical interpretation of this wave-induced accelera-
tion is a familiar one. As the mean angular velocity causes the fluctuation to wrap
around the vortex, the phase lines tilt in the direction of the shear. This generates
an eddy angular momentum flux that is convergent on the inward side of the waves,
and divergent on the outward side. Since the mean tangential velocity is negatively
correlated with the divergence of the eddy momentum flux, this implies an increase
in (v) on the inward side of the waves and a decrease on the outward side. This feature
is seen in figure 9 for all the four cases, and implies a vortex strengthening in the core.
Note that the positive inner peak is larger than the negative one outside the core.
Since the total angular momentum of the fluid must be conserved during the relaxation
phase, the VRWs only redistribute angular momentum, r(v). Thus at the smaller inner
radius, the vortex change must be larger in magnitude to balance the opposite-sign
change at the larger outer radius. Since the majority of the wave-mean flow interaction
occurs near the stagnation radius, the zero value in (v) will occur near this location.
The profile of (v) for CYCLONE, with its larger VRW stagnation radius, is thus shifted
outwards compared to the other cases.

The energy and potential enstrophy vortex change norms (15)—(16) quantify the area-
integrated vortex change (figure 2). These measures are approximately controlled by (¢)
and (v) as indicated in (35) and (37). After the initial (and here brief) strain-weakening
in these norms, both energy and enstrophy plots increase rather sharply at early times as
the recovery begins, but asymptote after a time of about 1 = 8L/V, corresponding to a
little more than one eddy turn-around time. After this point, the fluctuations have
become significantly wrapped around the vortex so that their phase lines are almost
aligned with the mean swirl flow, so the eddy momentum fluxes become small. The
recovery phase for CYCLONE can be seen to be larger in magnitude for both energy
and enstrophy compared to ANTICYCLONE, as can be anticipated by the larger
peaks in (¢) and (v) during this time. Since the strain-induced weakening is so much
larger for CYCLONE despite this greater strengthening, its late-time asymptotic
values are still more negative than for ANTICYCLONE (with the QG case in between),
which indicates a greater net weakening for CYCLONE.

The net vortex changes in (¢) and (v) over both the straining period and relaxation
phase are in figure 10. Note that (¢) shows larger positive values for CYCLONE than
ANTICYCLONE, and in fact for CYCLONE it is almost exclusively positive which
demonstrates weakening of the vortex at almost all radii. In (v)(r), ANTICYCLONE
has larger-magnitude peaks than CYCLONE, which would suggest more anticyclonic
weakening. However, the mean energy and enstrophy changes depend more heavily
on the changes in (¢)(r) where the cyclone is more heavily weakened. The large peaks
in both (¢) and (v) for the BT case reflect the difference in the ¢/¢ strain—response
ratio due to the absence of vortex-stretching term when ¥ =0 (section 5). The
manifestation of the larger vortex change profiles in the energy and enstrophy change
norms (i.e., larger AE,,,, smaller AV,,; figure 2) reflects a subtle competition between
the velocity and geopotential components in (35) and (37).

In summary, during the relaxation phase, the perturbed vortex exhibits the following
behaviors. For a fluctuation in the absence of further external straining, there is radial
propagation; azimuthal wrap-up and (r, 1) phase-line tilting down the gradient of Q(r);
and rapid amplitude decay in fluctuation geopotential and velocity. The effect of the
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Figure 10. Net vortex change in (a) (¢)(r) normalized by m”> VfL and (b) (v)(r) normalized by m*V over the
full time integration, including both the impulsive straining and relaxation phases. CYCLONE = solid line;
ANTICYCLONE (with the sign reversed) = long-dash line; QG = dash-dot line; BT = dot line.

mean eddy fluxes on the vortex is to strengthen it in both energy and enstrophy
during this period of strong phase-line rotation. Based on an extensive survey of
vortex-relaxation solutions (not reported here), we have found no pervasive differences
between the relative efficiency of cyclonic and anticyclonic strengthening due to
this process. This is consistent with the similar proportional changes seen here in
CYCLONE and ANTICYCLONE. Thus, we conclude that the essential cause of
anticyclonic dominance is the smaller strain weakening for anticyclones (section 5).
All of these fluctuation and vortex-change behaviors are consistent with previous
studies of VRWSs and quasi-modes (e.g., MGMO3; Schecter et al. 2000).

7. Sensitivities

7.1. Deformation radius

For the primary cases presented in section 3, Ro=0.2, and L;/L = 1.11. Here we
examine cases with a Ro that is half as large, Ro = 0.1, to allow for smaller L,
values that would otherwise bottom-out; i.e., the cyclonic # would vanish in the
vortex core. Specifically, we compare cyclonic and anticyclonic solutions for three
L,/L values equal to 0.78, 1.11, and 1.57 (corresponding to mean depths of H = 25,
50, and 100m). When L,/L is large enough, the flow becomes essentially barotropic,
a regime which has dynamical symmetry between cyclones and
anticyclones. We would expect then that as we move further from the barotropic
regime (i.e., decreasing L, /L), we should begin to see a clear distinction between
cyclones and anticyclones.

Figure 11 shows (v)(r), for the three L,/L values. As L,/L decreases, not only do both
cyclones and anticyclones have a reduced peak value, but the cyclonic and
anticyclonic profiles diverge as expected. This result is reflected in the mean enstrophy
norm (i.e., (15)—(16) and (37)) and summarized in table 2 for the ratio of the late-time
(t =31.4L/V) enstrophy change norms, AV,., for cyclonic and anticyclonic mean
vortices. Since all cases demonstrate net vortex weakening, their mean norms are
negative (with larger negative values for larger weakening). Thus ratios greater than
one indicate anticyclonic dominance, which increases as the ratio grows. We have
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Figure 11. Changes in (v)(r) normalized by m*V at t=31.4L/V for CYCLONE (solid line) and
ANTICYCLONE (long-dash line, with the sign reversed) with impulsive strain forcing and different values
of L,/ / L.

Table 2. Cyclone/anticyclone norm ratios.

Ro L,/L AV, ratio
0.1 1.57 1.86
0.1 1.11 3.29
0.1 0.78 10.3
0.2 1.11 20.9

The ratio of late-time (i.e., 7=231.4V/L) cyclonic and anticyclonic vortex change
enstrophy norms with impulsive strain and different values of L /L.

also included the value for the primary cases given in sections 4 and 5 for comparison
(where Ro=0.2).

In the norms the term involving (v) has the most sensitivity to changes in L,
although the vortex change geopotential, (¢), also has an important contribution.
The energy norm is not so monotonic in its sensitivity to changes in L,/L,
so it is thus a less useful integral measure to compare cyclonic and anticyclonic
dependences on L,/L.

7.2. Rossby number

Our investigation is limited in Ro by the disappearance of cyclone—anticyclone
differences as Ro — 0 (i.e., QG) and the vanishing of A(r = 0) as Ro increases in
cyclones for a given value of L;/L. In the SWE with the mean vortex profile (18) and
Ld/L ~ 1, this upper bound on Ro comes into force before the centrifugal
instability boundary (i.e., Z(r =0) = —f) for anticyclones. Within this Ro range
we have found no surprises. Typically CYCLONE and ANTICYCLONE results
diverge from QG in opposite ways as Ro increases (e.g., figure 4 et seq.), and their
differences vanish smoothly as Ro decreases (e.g., table 2).

7.3. Strain duration

Sections 3-5 focus on cases with only a brief duration of the external strain flow,
tmax < LJV. As also done in BG99, we have examined various solutions with
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tmax ~ L/V and found no qualitative changes in the phenomena but an increased
complexity, because the strain-induced fluctuations are continuously generated while
the VRW wrap-up is in progress; furthermore, the vortex change norms become
more oscillatory in time. However, there are interesting differences when the external
strain is sustained in time, f,,, > L/V, and this regime is examined in section 8.

7.4. Wave nonlinearity

The model we are using is a quasi-linear one: the fluctuation dynamics are linear,
but the mean vortex changes are due to averages of nonlinear fluctuation products.
We wish to address the extent to which this linear wave approximation is appropriate
for the primary cases presented in this article, and also to establish the amplitude of
the external strain flow at which the nonlinear effects become important. To this end
we add in the nonlinear wave—wave interactions, in particular the interactions between
wavenumber-two fluctuations to produce wavenumber-four fluctuations, which in turn
interacts with itself to contribute to the vortex change and with the wavenumber-two
fluctuation back onto the wavenumber-two fluctuation.

We examine the QG case as the simplest and the most straightforward one. In the
primary QG case (section 3) but with added wave-wave terms, there are essentially
no important differences due to wave—wave nonlinearity. The amplitude of the induced
wavenumber-four fluctuation is about four orders of magnitude smaller than the
primary wavenumber-two fluctuation, so this result is not surprising. Consistent with
this result as a guideline, it is not until the external strain flow has an amplitude
a that is about 2000 times larger than that used in the primary case (section 3)
that the wavenumber-four and -two amplitudes become comparable, and thus
the wave-wave effects become more significant. Note that with this « =2 x 1074 571,
the external strain velocity (19) at r=L is 10 times larger than the mean vortex V.
(Alternatively, with a larger strain duration #,,, a smaller @ could achieve the same
effect.) This shows that the wave nonlinearity is significant only in extreme cases.

Since the wavenumber-four pattern has twice as many oscillations azimuthally
around the vortex, the combined fluctuation pattern strengthens in some places
and weakens in others compared to the wavenumber-two pattern alone. Also, the
wavenumber-four peak is located further out radially than the wavenumber-two
peak, so the combined pattern is a modulated wavenumber-two pattern. It does,
however, windup spirally as before, with the underlying behavior being similar.
Further, the mean norms display only small differences from the primary QG case,
with approximately a 6% change in end-state behavior for the mean energy, and
about 2% change for mean enstrophy, where both changes reflect less net weakening
of the vortex. Thus even at much larger external strain flow amplitudes, the wave-wave
effects, while noticeable, still do not significantly alter the qualitative behavior of the
vortex. Our choice to use linearized waves at the amplitudes chosen for the
primary cases is therefore a reasonable one.

For vortices that are linearly stable (as the one investigated here) and exhibit a
generally decaying fluctuation amplitude, we can expect another nonlinear effect even
when « is not very large. For a uniform plane-shear flow, the wrapped-up filaments
of fluctuation potential vorticity are susceptible at long times to secondary barotropic
instabilities associated with their ever-increasing local gradient (Haynes 1987,
Vanneste 1999). It is likely that this phenomenon occurs in vortices as well.
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Figure 12. History of the vortex change norms for (left) energy, AE,,.(1), and (right) potential enstrophy,
AVy,.(1), for the primary cases with sustained external strain: CYCLONE = solid line; ANTICYCLONE =
long-dash line; QG = dash-dot line; and BT = dotted line. Normalizations are in table 1.

However, its consequences should be limited to the late-stage evolution of the
fluctuations after the period in which their eddy—mean interaction is largely over,
so we do not investigate that process here.

8. Sustained strain

Section 4 described how vortices react to an impulsive strain. Here we impose the same
external strain, but after the ramp-up period (¢ > #,./2), the amplitude is fixed
throughout the runs (i.e., F(z) =1). Thus we will see a combination of both the
strain response (section 4) and the relaxation from that response (section 5). We
made runs for all four primary cases: CYCLONE, ANTICYCLONE, QG, and BT.

Figure 12 shows the mean vortex energy and enstrophy change for all the four cases.
Note the dramatic difference between CYCLONE and ANTICYCLONE: the cyclone
exhibits a continual strong vortex weakening, while the anticyclone, after an initial
weakening response (section 4), begins to strengthen and continues to do so. The QG
and BT vortices undergo net weakening, with relatively small amplitudes compared
to the cyclone. Their weakening, however, occurs in an oscillatory fashion that is not
clearly visible here due to their small amplitude. In particular, the QG vortex has an
initial weakening, followed by a partial recovery, and then a continued weakening.
The BT vortex initially weakens, but then oscillates until it asymptotes to a constant
negative value for both mean energy and enstrophy. This last case is qualitatively
very similar to the results reported in BG99 (their figure 4).

As the external strain turns on, all the four cases initially have a response as discussed
in section 4. The strain induces a wavenumber-two fluctuation by elongating the
mean vortex into an elliptical shape. These fluctuations then attempt to relax as
VRWs (section 5), yet must do so while still immersed in the external strain flow.
The VRWs begin to wind up spirally, but are impeded by the fixed strain flow.
This prevents axisymmetrization of the vortex, so the vortex remains elliptical, reaching
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Figure 13. Swirl plots for q”b(x,y) normalized by fV/L at t =31.4L/V in (a) CYCLONE (with contour
interval 0.117) and (b) ANTICYCLONE (with contour interval 0.025 and the sign reversed) under sustained
external strain. Negative contours are dashed, and the zero contours are labeled.

equilibrium with a standing-wave fluctuation pattern oriented 45° counter-clockwise
from the initial strain induced location. This can be seen in the late time swirl plots
of normalized ¢“ for both the cyclone and anticyclone in figure 13. Compare this
with figure 6 which demonstrates axisymmetrization. This 45° orientation of the
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Figure 14. Hovmiiller plots of max;[|¢*|](r, {) under sustained external strain. The fields are normalized
by their maximum value near r=L and t=3L/V: (a) CYCLONE (max value=0.736 fV/L) and
(b) ANTICYCLONE (max value = 0.095 fV/L). The contour interval is 0.1.

vortex under sustained strain was also demonstrated by BG99 for the BT case
(their figure 7a). This is in stark contrast to the behavior of an initially circular
vortex patch placed into a weak, steady straining flow, which oscillates continually
between circular and elliptical states (Kida 1981; BG99). The reason for this behavior
is explained by BG99: a vortex patch does not exhibit the spiral wrap-up of ¢ contours,
thus arresting the irreversible transfer of enstrophy to small scales, and making it
impossible for the vortex to relax to the stable, steady-state solution of an elliptical
vortex patch with its major axis tilted 45° relative to the strain axes (Moore and
Saffman 1971).

As the vortex fluctuations evolve into the configuration in figure 13, they interact
with the external strain resulting in mean vortex weakening for the cyclone and
strengthening for the anticyclone. This can be seen by identifying the dominant terms
in the vortex change azimuthal velocity equations (8) and (10) as

3 (vi) & —(EN") ~ —(u, ), (39)

where the fluctuation relative vorticity is
/ 1 / 1 /
Ci = — al‘(rvi) —_— B;Lui. (40)
r P

However, the fluctuations are not lost through this interaction because they are
continually reinforced by interaction between the mean vortex and the external strain
(even growing in the outer region of the anticyclone; figure 14). Thus individual parcels
rotate around the vortex, but the waves are relatively locked in a standing eddy pattern.
There is some exception to this, as seen by the increasing development of fine structure
in the inner core region, where there is competition between the fixed external strain and
the VRW tendencies for spiral wrap-up and radial propagation.

These swirl plots highlight other interesting and telltale features of the vortex
evolution under sustained strain. Both the cyclone and, to a larger degree, the
anticyclone develop a distinct outer region, which for the anticyclone both grows
and has the opposite sign to the inner core region. The vortex strengthening of the
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Figure 15. Changes in (a) (¢)(r) (normalized by m*VfL) and (b) (v)(r) (normalized by m’ V) at t = 31.4L/V
for CYCLONE (solid lines) and ANTICYCLONE (long-dash lines, with the sign reversed) under sustained
external strain.

anticyclone (as compared with the weakening for the cyclone) is essentially due to
this difference. Looking back at the impulsive strain-induced fluctuation geopotential
for the different cases in section 4 (figure 4), the anticyclonic vortex response in the
outer core has a fluctuation of opposite sign to the inner core, while the other cases
do not. Although the O(1) forcing term in (24) switches sign between cyclones
and anticyclones, the O(Ro) terms (i.e., the second right-side group within the square
brackets proportional to 7°) do not. Thus the forcing terms are additive in cyclones
and partially canceling in anticyclones, such that at large radius the sum of the
anticyclonic forcing terms is opposite in sign to the core. It is this outer anomaly
that grows and propagates outwards radially which acts to strengthen the vortex.
This can be seen in the Hovmiiller plots of normalized |¢*°|(r, ) in figure 14. These
demonstrate not only the radial propagation of the VRWs, but also their growth,
as well as the development of inner core fine structure. Note that the outer fluctuations
do not stagnate, and that the anticyclonic fluctuation continues to grow fairly rapidly as
long as the external strain is sustained.

These fluctuations interact primarily with the external strain to produce a mean
vortex change response in geopotential (¢) and azimuthal velocity (v). The end-time
values are plotted in figure 15. Note the correspondence between the outer-region
location of the fluctuations and the signal in (v) that in the norms contributes to
weakening for cyclones and strengthening for anticyclones. The plots of (¢) show the
controlling element responsible for vortex weakening in the cyclone and strengthening
for anticyclone in the core region.

The key difference between the cyclone and anticyclone in the finite-Ro regime is the
existence of an oppositely signed potential vorticity fluctuation in the outer core region
of the anticyclone. This allows for a continual strengthening of the mean vortex as
the strain-induced fluctuations interact with the fixed external strain. This continual
strengthening can be seen even with Ro as small as 0.0375 when L,;/L = 1, so this
sustained-strain growth is not just a large-Ro phenomenon. In the cyclone (and QG
and BT vortices), the outer and inner fluctuations are of the same sign. This results
in the familiar vortex weakening, demonstrated earlier in this article, that continues
as long as the external strain is maintained.

From a meteorological perspective, this anticyclonic strengthening mechanism is
partly distinct from previous explanations of persistent blocking anticyclones in the
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mid-latitude troposphere. In addition to viewing the blocking flow configuration as a
stable, nonlinear, stationary state (Charney and DeVore 1979, McWilliams 1980,
Butchart ez al. 1987), it has been argued that the anticyclonic vortex is further strength-
ened by up-scale eddy vorticity fluxes from remotely generated smaller eddies that
impinge on the parent vortex (Green 1977, Shutts 1983). The demonstration here
that fluctuations locally induced by sustained strain can strengthen an anticyclone
with finite Ro suggests an alternative explanation for how atmospheric blocking is
sustained.

9. Summary and prospects

Isolated coherent vortices in the interior regions of rotating, stratified flows undergo
cycles of disruption by other flows in their neighborhood and recovery by axisymmetri-
zation. In this study, we have idealized this cycle to the perturbation of an otherwise
stationary vortex in the Shallow-water equations by a transient external strain flow
followed by a relaxation phase in which linearized asymmetric fluctuations evolve as
Vortex Rossby Waves (VRWs) by propagating in radius, wrapping around the mean
vortex, decaying in energy, and forcing changes in the azimuthally averaged vortex.
The tendency of these vortex changes is weakening during the straining phase
and strengthening during the recovery phase, albeit typically only partially so that
the outcome of the cycle is net weakening. Furthermore, for intermediate values of
the vortex Rossby and Froude numbers, cyclones are more disruptable and have a
greater net weakening than anticyclones for reasons that are understandable in terms
of the response to an impulsive strain, independent of the subsequent VRW evolution.
In the case of a sustained external strain flow, the same kind of disparity between
cyclonic and anticyclonic responses occurs, except that a sufficiently strong anticyclone
can manifest net strengthening.

We believe this is the likely explanation for the many reported examples of anti-
cyclonic vortex dominance in the theoretical literature (section 1), as well as the appar-
ently greater robustness of strong anticyclones in nature away from boundaries. Thus,
we believe that strain-weakening, VRW-strengthening, and anticyclonic-dominance are
generic behaviors for coherent, interior, rotating, stratified vortices, although it will be
necessary to explore well beyond the idealizations in this study to adequately test this
hypothesis.
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