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Abstract

In this paper, we study the evolution of the localized induction approximation
(LIA), also known as vortex filament equation,

Xt = Xs ∧Xss,

for X(s, 0) a regular planar polygon. Using algebraic techniques, supported
by full numerical simulations, we give strong evidence that X(s, t) is also a
polygon at any rational time; moreover, it can be fully characterized, up to
a rigid movement, by a generalized quadratic Gauß sum.

We also study the fractal behavior of X(0, t), relating it with the so-
called Riemann’s non-differentiable function, that, as proved by S. Jaffard,
fits with the multifractal model of U. Frisch and G. Parisi, for fully developed
turbulence.
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1. Introduction

Given a curve X0 : R −→ R
3, we consider the geometric flow

Xt = cb, (1)
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where c is the curvature and b the binormal component of the Frenet-Serret
formulae
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The flow can be expressed as as

Xt = Xs ∧Xss, (3)

where ∧ is the usual cross-product, t is the time, and s is the arc-length
parameter. It appeared for the first time in 1906 [1] and was rederived in
1965 by Arms and Hama [2] as an approximation of the dynamics of a vortex
filament under the Euler equations. This model is usually known as the
localized induction approximation (LIA); we refer the reader to [3] and [4]
for an analysis and discussion of its limitations.

(1) and (3) are also known as the binormal equation and the vortex fil-
ament equation, respectively. Some of their explicit solutions are the line,
the circle, and the helix. Since the tangent vector T = Xs remains with
constant length, we can assume that T ∈ S

2, ∀t. Differentiating (3), we get
the so-called Schrödinger map equation on the sphere:

Tt = T ∧Tss, (4)

which is a particular case of the Landau-Lifshitz equation for ferromagnetism
[5]. (4) can be rewritten in a more geometric way as

Tt = JDsTs, (5)

where D is the covariant derivative, and J is the complex structure of the
sphere. Written in this way, (4) can be generalized to more general definition
domains and images, as the hyperbolic plane H

2.
(3) is time reversible, i.e., if X(s, t) is a solution, so is X(−s,−t). Bearing

in mind this fact, an important property of (3) (and, hence, of (4)) is that
it has a one-parameter family of regular self-similar solutions that develop
a corner-shaped singularity at finite time. This was proved in [6] for the
Euclidean case, and in [7], for the hyperbolic case. Furthermore, starting
from T. F. Buttke’s work [8], there have been a couple of papers devoted to
studying numerically the self-similar solutions of (3), as in [9], where a careful
numerical study of those solutions for both the Euclidean and the hyperbolic
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cases was done. In [9], on the one hand, the authors reproduced numerically
the formation of the corner-shaped singularity, and, on the other hand, they
started with a corner-shaped initial datum, recovering numerically the self-
similar solutions; in all cases, the correct choice of boundary conditions was
shown to be vital. Furthermore, they gave numerical evidence that fractal-
ity phenomena appeared in (4), if, for instance, fixed boundary conditions
were imposed on T. Remark that the relationship between fractals and the
Schrödinger map is not new; indeed, in [10], an aortic valve model was pro-
posed, in order to study the apparent fractal character of the valve’s fiber
architecture. Instead of X(s, t), the authors wrote X(u, v), where v, which
corresponds to our time, is such that the curves v = constant are the fibers.
After imposing fixed boundary conditions at u = ±u0, they showed that the
curves u = constant have a fractal character. Besides, the fractal dimension
of those curves was calculated numerically in [11].

Even if the solutions of (3) for an initial datum with a corner are well
understood, nothing had been done for more general initial data with several
corners, in particular, polygons. Nevertheless, in a recent submitted paper
[12] by R. Jerrard and D. Smets, they propose a global existence theorem
that allows to consider such types of initial data. Moreover, they simulate
numerically the evolution of the unit square at different times, suggesting
that the solution could become again polygonal; indeed, at a certain time,
the square seems to reappear, but rotated π/4 with respect to the initial
one. In the following pages, we will show not only that these observations
are correct, but that, given a regular planar polygon as initial datum, we
have a completely describable polygon at any rational time.

The structure of this paper is as follows. In Section 2, we apply the
Hasimoto transformation to (4), but considering a variation of the Frenet-
Serret formulae (2). This relates (3) and (4) with the nonlinear Schrödinger
(NLS) equation:

ψt = iψss + i

(

1

2
(|ψ|2 + A(t))

)

ψ, A(t) ∈ R, (6)

where A(t) ∈ R can be written in terms of c(0, t), τ(0, t) and their derivatives.
The fact that (3)-(4) and the NLS equation are related has far-reaching
consequences.

In Section 3, we gather all the theoretical arguments that support our
numerical experiments. We start recalling some elemental geometric sym-
metries that regular polygons have and that are preserved by LIA. On the
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one hand, these symmetries greatly simplify the numerical implementation
and, on the other hand, they play a fundamental role in computing some
important quantities that govern the dynamics of regular polygons. Then,
we pay special attention to a group of symmetries that, as far as we know,
can only be visualized through the use of the Hasimoto transformation and
the NLS equation (6). These are the so-called Galilean transformations (33),
that leave invariant the set of solutions of LIA.

We will proceed as in [13], where the solution of NLS that has the delta
function as an initial condition is characterized by the fact that it leaves
invariant all the Galilean transformations. This property determines the
solution, except for one function of time that is easily computed by solving a
simple ODE and choosing A(t) in (6) appropriately. This argument heavily
relies on assuming that uniqueness holds for such a singular initial datum.
This is in indeed a quite delicate question that in the case of just one delta
(i.e. a curve with just one corner) has needed some work to be eventually
answered in the positive [14, 15, 16]. However, in this paper, we are interested
in just proving the existence of a solution starting with a polygon. Therefore,
we can assume uniqueness to conclude that the expected solution has as many
symmetries as possible and simplify in this way the analysis.

In our case, we take a planar regular polygon ofM sides as initial datum.
In terms of NLS, this amounts to considering periodic boundary conditions
and an initial datum which is given by an infinite sum of delta functions with
appropriate weights. Therefore, just a subgroup of the group of the Galilean
transformations has to be considered. Then, as in [13], the solution of (6) is
determined except, again, for a function that will depend on time. But, in
this case, it is very delicate how to determine this function and does not seem
to be easy. Moreover, a very simple analysis makes clear that it cannot be
expected to make any sense to the NLS equation (6). In fact, the arguments
in [16] prove that, in the case of an initial condition given by a curve with
just one corner, (6) does not make sense in an interval of time that contains
t = 0. Our approach in this paper is to integrate the Frenet-Serret system
(18) with ψ(s, t) = α + iβ the distribution given by

ψ(s, t) = ψ̂(0, t)
∞
∑

k=−∞
e−i(Mk)2t+iMks. (7)

We do it just for times that are rational multiples of 2π/M2, that is to say, of
the form tpq = (2π/M2)(p/q), because in that case the corresponding curve
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is a skew polygon with Mq sides, for q odd, and with Mq/2 sides, for q even,
determined by a generalized quadratic Gauss sum:

G(a, b, c) =
c−1
∑

l=0

e2πi(al
2+bl)/c, a, b ∈ Z, c ∈ Z− {0}. (8)

The function of time ψ̂(0, t) is then obtained by imposing the condition that
the polygon has to be closed. As a consequence, the tangent vector is fixed,
except for a rotation that can depend on time. This rotation is determined
by using the extra symmetries that are available for regular polygons and
that we have already mentioned. The next step is to integrate T, in order
to obtain X at rational times. Using again the symmetries, we are able to
calculate all the necessary quantities, except for some possible translation in
the z direction that can be easily computed numerically. Nevertheless, we
do not see a simple way of obtaining this last value using just theoretical
arguments.

At this point it is important to recall the invariances of the so-called
Jacobi theta function, which is closely related to (7):

θ(s, t) =
∞
∑

k=−∞
e−πik

2t+2πiks. (9)

This function is precisely the solution of the linear Schrödinger equation

ψt =
i

4π
ψss, (10)

with a 1-periodic delta as the initial condition. Therefore the Galilean trans-
formations still hold in this case; moreover, they also imply the extra sym-
metry

θ(s, t) = eiπ/4
e

πis
2

t

√
t
θ

(

s

t
,
−1

t

)

, t > 0, (11)

which, together with the periodicity property,

θ(s, t+ 2) = θ(s, t), (12)

generates the so-called unimodular subgroup. In fact, in [17, 18], all these
symmetries are used to prove the existence of a continuum range of exponents
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(usually known as the spectrum of singularities) for the Hölder regularity of

φ(t) =
∞
∑

k=1

eπik
2t

iπk2
, t ∈ [0, 2], (13)

whose real part is precisely Riemann’s non-differentiable function:

f(t) =
∞
∑

k=1

sin(πk2t)

πk2
. (14)

More concretely, in [18] it is proved that Riemann’s non-differentiable func-
tion is a multifractal. In other words, it is proved that the set of times t
that have the same Hölder exponent is a fractal with a dimension depend-
ing on the Hölder exponent, in such a way that the conjecture stated by U.
Frisch and G. Parisi in [19] is fulfilled (see also [20], for more details at this
respect and the connection of this question with fully developed turbulence
and intermittency).

From all this, it is very natural to ask if something similar happens with
the evolution of a regular polygon by LIA. There are different ways of under-
standing the question. One is whether, for a fixed time, the corresponding
curve is a fractal or even a multifractal. From what we have said above, this
cannot happen for rational times, because, in this case, it is a skew polygon.
But precisely these examples do suggest that quite likely the situation for
irrational times is completely different; and in fact it is, as it is explained
in Section 5.2. At this respect, we have to call the attention of [21], where
upper bounds for the regularity of (9) measured in Besov spaces of negative
indices are obtained.

On the other hand, we could also ask if something similar to the properties
of Riemann’s non-differentiable function also holds in our case. It is very easy
to find the analogous to (13) in out setting. In fact, for a given M , if we
write X(0, t) = (X1(0, t), X2(0, t), X3(0, t)), bearing in mind the symmetries
of the problem, we conclude that X(0, t) is a planar curve, so we identify the
plane where it lives with C and define

z(t) = −‖(X1(0, t), X2(0, t))‖+ iX3(0, t). (15)

This curve, or, more precisely, z(t)− cM t, for a certain cM > 0 that depends
onM , can be seen as nonlinear versions of (13). Is z(t) a multifractal? If the
answer is positive, what is its spectrum of singularities? We consider that
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these two questions are rather challenging from the numerical and analytical
point of view. The results of Section 4 of this paper strongly suggest that
the answer to the first question is positive. In fact, we compute z(t) −
cM t for different M and measure the error of the difference between it and
an appropriately scaled and rotated version of φ(t) in the L∞ norm. The
convergence rate is rather strong.

We have also made some numerical experiments that prove that the
Hölder exponent of z(t) is 1/2 for rational times tpq = (2π/M2)(p/q). Nev-
ertheless, how the constants depend of the denominator q, something which
is a fundamental ingredient in the arguments in [17] and in [18], is unclear.
This question deserves a much more detailed analysis that we plan to make
in a forthcoming paper.

In Section 4, we propose a numerical method for (3) and (4). We explain
carefully how to take advantage of the symmetries of X and T for the types
of solutions considered, which leads to a dramatically improvement in the
computational cost of the algorithm.

In Section 5, we perform numerical experiments, simulating the evolution
of (3) and (4) for different numbers of sides M in the initial polygon. We
compare the numerical results with the algebraic values from Section 3, ob-
taining a complete agreement between both (totally different) approaches.
We also analyze carefully the evolution of X, for s = 0, giving numerical ev-
idence that φ and z(t) in (13) and (15) are intimately connected and, hence,
that z(t) is also a multifractal. Finally, we make some comments on the
structure of T(s, t) at a fixed time tpq with q ≫ 1.

In Section 6, we offer the main conclusions, as well as some open questions
that we postpone for the future.

In order to conclude this paper, we offer in Appendix A a detailed study
of those aspects of the generalized quadratic Gauß sums that are of relevance
for our work.

2. The Hasimoto transformation

A central point of this paper is the natural connection between (3)-(4) and
the nonlinear Schrödinger (NLS) equation. Indeed, applying the Hasimoto
transformation [22]:

ψ(s, t) = c(s, t) exp

(

i

∫ s

0

τ(s′, t)ds′
)

, (16)
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ψ satisfies the equation

ψt = iψss + i

(

1

2
(|ψ|2 + A(t))

)

ψ, (17)

where A(t) is a certain real constant that depends on time. Nevertheless,
for our purposes it is not convenient to work with the torsion. Instead, we
consider another version of the Frenet-Serret trihedron; it is easy to check
that all its possible generalizations have the form





T

e1
e2





s

=





0 α β
−α 0 γ
−β −γ 0



 ·





T

e1
e2



 , (18)

for some vectors e1 and e2 that form an orthonormal base with T. Moreover,
we can make, without loss of generality, one of the coefficients α, β, or γ equal
zero. If we make β = 0, denoting α ≡ c and γ ≡ τ , we recover the habitual
trihedron. On the other hand, in this paper, we choose γ ≡ 0, in order to
avoid working with the torsion. In that case, the Hasimoto transformation
takes the form

ψ ≡ α + iβ. (19)

It is quite straightforward to check that this new definition of ψ also satisfies
(17). Indeed, defining (see [22])

N ≡ e1 + ie2, (20)

the generalized trihedron becomes

Ts =
1

2
(ψ̄N+ ψN̄)

Ns = −ψT.
(21)

Bearing in mind that T ∧N = −iN, (4) gets transformed into

Tt = T ∧
[

1

2
(ψ̄N+ ψN̄)

]

s

=
1

2
T ∧ (ψ̄sN+ ψ̄Ns + ψsN̄+ ψN̄s)

=
i

2
(ψsN̄− ψ̄sN). (22)
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We want to express Nt as Nt = aT+ bN+ cN̄:

N ·T = 0 ⇒ Nt ·T = −N ·Tt = −iψs
N ·N = 0 ⇒ Nt ·N = 0

N · N̄ = 2 ⇒ Nt · N̄+N · N̄t = 0.

(23)

From the last equation, it follows that the real part of Nt ·N̄ is equal to zero,
so Nt · N̄ = iR, for some R ∈ R. Putting all together,

Nt = −iψsT+ iRN. (24)

Differentiating this last expression with respect to s,

Nts = (−iψsT+ iRN)s

= −iψssT− iψsTs + iRsN+ iRNs

= −(iψss + iRψ)T− i

2
ψ̄ψsN+ iRsN− i

2
ψψsN̄. (25)

On the other hand

Nst = −(ψT)t

= −ψtT− ψTt

= −ψtT+
i

2
ψψ̄sN− i

2
ψψsN̄. (26)

Equating the coefficients of T and N in (25) and (26):

ψt = iψss + iRψ

Rs =
1

2
ψψ̄s +

1

2
ψ̄ψs =⇒ R =

1

2
(|ψ|2 + A(t)), A(t) ∈ R.

(27)

This concludes the proof that ψ = α + iβ satisfies (17).

3. A solution of Xt = Xs ∧ Xss for a regular polygon

The aim of this paper is trying to understand the evolution of (3) for
polygonal initial data. In this paper, we limit ourselves to studying the
simplest case, i.e., that of a regular planar polygon ofM sides. Since (3) and
(4) are invariant by rotations, we can assume without loss of generality that
X(s, 0), and hence T(s, 0), live in the plane OXY , i.e., their third component
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is zero. Identifying the plane OXY with C, and assuming without loss of
generality a total length of 2π, X(s, 0) is the polygon parameterized by arc-
length whose M vertices s0, . . . , sM−1, located at sk = 2πk/M , are

X(sk, 0) =
−iπeiπ(2k−1)/M

M sin(π/M)
, (28)

and X(s, 0), for sk < s < sk+1, is in the segment that joints X(sk, 0) and
X(sk+1, 0). Observe that it is straightforward to extend X(s, 0) periodi-
cally to the whole real with period 2π. Then, since X(sk+1, 0) −X(sk, 0) =
(2π/M)e2πik/M , the corresponding tangent vector is the periodic function
with period 2π such that

T(s, 0) = e2πik/M , for sk < s < sk+1. (29)

Remark thatX(s, 0) is continuous, while T(s, 0) is only piecewise continuous.
In fact, X(s, 0) can be regarded as a curve whose curvature, periodic with
period 2π/M , is zero everywhere, except at the vertices, where it equals
infinity, i.e., it can be expressed as a sum of Dirac deltas:

κ(s) =
2π

M

∞
∑

k=−∞
δ(s− 2πk

M
); (30)

where the constant 2π/M has be chosen in order that the integral of the
curvature over an interval of length 2π is equal to 2π:

∫ 2π−

0−
κ(s)ds =

2π

M

∫ 2π−

0−

[

M−1
∑

k=0

δ(s− 2πk
M

)

]

ds = 2π. (31)

At this point, it is vital to understand the role played by symmetries in (3)
and (4) for this initial datum. Both equations are invariant by rotations,
i.e, given a rotation matrix R, if X = (X1, X2, X3)

T and T = (T1, T2, T3)
T

are, respectively, solutions of them, so are R · X and R · T. Therefore,
if R · X(s, 0) = X(s, 0) and R · T(s, 0) = T(s, 0), then, if the solution is
unique, R · X(s, t) = X(s, t) and R · T(s, t) = T(s, t), ∀t. In particular,
since X(s, 0) and T(s, 0) defined in (28) and (29) are invariant to rotations
of angle 2πk/M , around the z-axis, ∀k ∈ Z, we conclude that also X(s, t)
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and T(s, t) are invariant to that kind of rotations, ∀t. More precisely, writing
X = (X1, X2, X3), T = (T1, T2, T3), then, ∀k ∈ N,

X1(s+
2πk
M
, t) + iX2(s+

2πk
M
, t) = e2πik/M(X1(s, t) + iX2(s, t)),

X3(s+
2πk
M
, t) = X3(s, t),

T1(s+
2πk
M
, t) + iT2(s+

2πk
M
, t) = e2πik/M(T1(s, t) + iX2(T, t)),

T3(s+
2πk
M
, t) = T3(s, t);

(32)

consequently, for a given t, X(s + 2πk/M, t) lay in the same orthogonal
plane to the z-axis, ∀k ∈ N. This fact has very important implications for
implementing efficient numerical schemes, as we will see in Section 4.

Besides invariance by rotations, (3) is also mirror invariant. Indeed, it
is straightforward to check that, if, for instance, X is a solution of (3), so
is X̃(s, t) = (−X1(−s, t), X2(−s, t), X3(−s, t))T , etc. Therefore, if X̃(s, 0) =
X(s, 0), then that symmetry will be again preserved during the evolution,
i.e, X̃(s, t) = X(s, t), ∀t, or, in other words, X(s, t) and X(−s, t) will be
symmetric with respect to the plain containing the z-axis and the y-axis,
∀t. In our case, we can see immediately that a regular polygon of M sides
like (28) has 2M of those mirror symmetries. For instance, in Figure 1, we
have plotted a pentagon (blue), together with the projections over z = 0 of
its ten symmetry planes (red). Those symmetry planes are such that they
contain the z axis, and one of the points X(πk/5, 0), k = 0, . . . , 9, which are
precisely the vertices of the pentagon and the middle points of the sides of the
pentagon. Therefore, it follows that X(πk/5, t) will remain in the plane that
contains X(πk/5, 0) and the z-axis, ∀t. An extremely important corollary
that will be used later is that X(2π/M, t)−X(0, t) is a positive multiple of
the vector (1, 0, 0)T .

Another central point of this paper is the fact that the NLS equation (17)
is invariant by the so-called Galilean transformations, i.e., if ψ is a solution
of (17), so is

ψ̃k(s, t) ≡ eiks−ik
2tψ(s− 2kt, t), ∀k, t ∈ R. (33)

Therefore, if we chose an initial datum such that ψ̃k(s, 0) = ψ(s, 0), ∀k ∈ R,
i.e., such that ψ(s, 0) = eiksψ(s, 0), ∀k ∈ R, then, if the solution is unique,
ψ(s, t) = eiks−ik

2tψ(s− 2kt, t), for ∀k, t ∈ R.
In the case of a planar initial datum X(s, 0) of (3), the torsion is always

equal to zero and, ψ(s, 0) is by definition the curvature of X(s, 0). Hence,
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Figure 1: The ten mirror symmetries for a pentagonal initial datum

the ψ(s, 0) corresponding to a regular polygon of N sides is given by (30),
i.e.,

ψ(s, 0) =
2π

M

∞
∑

k=−∞
δ(s− 2πk

M
). (34)

Like (30), ψ(s, 0) is periodic of period 2π/M and, since (17) is invariant by
space translations, ψ(s, t) is also periodic of that period, ∀t. Moreover, it
satisfies ψ(s, 0) = eiMksψ(s, 0), ∀k ∈ Z. Therefore, the Galilean transforma-
tion hold, i.e., ψ(s, t) = eiMks−i(Mk)2tψ(s−2Mkt, t), ∀k ∈ Z, ∀t ∈ R. Bearing
in mind the previous arguments, let us calculate the Fourier coefficients of
ψ(s, t):

ψ̂(j, t) =
M

2π

∫ 2π/M

0

e−iMjsψ(s, t)ds

=
M

2π

∫ 2π/M

0

e−iMjs
[

eiMks−i(Mk)2tψ(s− 2Mkt, t)
]

ds

=
Me−i(Mk)2t

2π

∫ 2π/M

0

e−iM(j−k)sψ(s− 2Mkt, t)ds

=
Me−i(Mk)2t

2π

∫ 2π/M

0

e−iM(j−k)(s+2Mkt)ψ(s, t)ds

=
Me−i(Mk)2t−iM(j−k)(2Mkt)

2π

∫ 2π/M

0

e−iM(j−k)sψ(s, t)ds

= e−i(Mk)2t−iM(j−k)(2Mkt)ψ̂(j − k, t). (35)
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This identity holds for all j and k. In particular, evaluating both sides at
j = k:

ψ̂(k, t) = e−i(Mk)2tψ̂(0, t), (36)

so ψ can be expressed as

ψ(s, t) = ψ̂(0, t)
∞
∑

k=−∞
e−i(Mk)2t+iMks, (37)

where ψ̂(0, t) is a constant that depends on time and that has to be chosen
in such a way that the corresponding X and T are periodic of period 2π for
a fixed t; for instance, when t = 0, we have trivially ψ̂(0, 0) = 1. Moreover,
combining (34) and (37), we get the following well-known identity:

∞
∑

k=−∞
ei(Mk)s ≡ 2π

M

∞
∑

k=−∞
δ(s− 2πk

M
). (38)

Observe that, if we solve the linear Schrödinger equation

ut = iuxx (39)

for the initial data (34), we get

ψ(s, t) =
∞
∑

k=−∞
e−i(Mk)2t+i(Mk)s = θ(M

2π
, M

2

π
), (40)

where θ(s, t) is the well-known Jacobi theta function (9). (40) is the same
formula as in (37), but with ψ̂(0, t) ≡ 1, ∀t ∈ R. Indeed, obtaining a uni-
versal expression for ψ̂(0, t) in the nonlinear case is not an easy problem.
Nevertheless, after observing that e−i(Mk)2t+i(Mk)s is periodic in time with
period 2π/M2, we have been able to calculate ψ̂(0, t) by algebraic means
for rational multiples of 2π/M2, as is shown in (87). Moreover, that value
appears to be unique. Therefore, we give evidence that also ψ(s, t) is peri-
odic in time with period 2π/M2, strongly suggesting that (4) is also periodic
in time with the same period. These considerations are fully supported by
numerical simulation.
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3.1. ψ(s, t) for rational multiples of t = 2π/M2

Let us evaluate (37) at t = tpq = (2π/M2)(p/q), where p ∈ Z, q ∈ N, and
we can suppose without loss of generality that gcd(p, q) = 1:

ψ(s, tpq) = ψ̂(0, tpq)
∞
∑

k=−∞
e−i(Mk)22πp/(M2q)+iMks

= ψ̂(0, tpq)
∞
∑

k=−∞
e−2πi(p/q)k2+iMks

= ψ̂(0, tpq)

q−1
∑

l=0

∞
∑

k=−∞
e−2πi(p/q)(qk+l)2+iM(qk+l)s

= ψ̂(0, tpq)

q−1
∑

l=0

e−2πi(p/q)l2+iMls

∞
∑

k=−∞
eiMqks. (41)

Using the identity (38),

ψ(s, tpq) =
2π

Mq
ψ̂(0, tpq)

q−1
∑

l=0

e−2πi(p/q)l2+iMls

∞
∑

k=−∞
δ(s− 2πk

Mq
)

=
2π

Mq
ψ̂(0, tpq)

q−1
∑

l=0

∞
∑

k=−∞
e−2πi(p/q)l2+iMl(2πk/Mq)δ(s− 2πk

Mq
)

=
2π

Mq
ψ̂(0, tpq)

∞
∑

k=−∞

q−1
∑

l=0

e−2πi(p/q)l2+2πi(k/q)lδ(s− 2πk
Mq

)

=
2π

Mq
ψ̂(0, tpq)

∞
∑

k=−∞

q−1
∑

m=0

q−1
∑

l=0

e−2πi(p/q)l2+2πi(m/q)lδ(s− 2πk
M

− 2πm
Mq

)

=
2π

Mq
ψ̂(0, tpq)

∞
∑

k=−∞

q−1
∑

m=0

G(−p,m, q)δ(s− 2πk
M

− 2πm
Mq

), (42)

where

G(a, b, c) =
c−1
∑

l=0

e2πi(al
2+bl)/c, a, b ∈ Z, c ∈ Z− {0}, (43)

denotes a generalized quadratic Gauß sum. In Appendix A, we give all the
information about these sums relevant for this paper; in particular, we show
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that, if gcd(p, q) = 1, then

|G(−p,m, q)| =











√
q, if q is odd,√
2q, if q is even and q/2 ≡ m mod 2,

0, if q is even and q/2 6≡ m mod 2.

(44)

Therefore, ψ(s, t) has evolved from M Dirac deltas in [0, 2π) at t = 0, to Mq
deltas in [0, 2π) at tpq, for q odd; andMq/2 deltas in [0, 2π) at tpq, for q even.
Furthermore, from (44),

G(−p,m, q) =











√
qeiθm , if q is odd,√
2qeiθm , if q is even and q/2 ≡ m mod 2,

0, if q is even and q/2 6≡ m mod 2,

(45)

for a certain angle θm that depends on m (and, of course, on p and q, too).
Introducing (45) into (42), and restricting ourselves to k = 0, i.e., [0, 2π

M
), we

conclude that

ψ(s, tpq) =



















2π
M

√
q
ψ̂(0, tpq)

∑q−1
m=0 e

iθmδ(s− 2πm
Mq

), if q odd,
2π

M
√

q
2

ψ̂(0, tpq)
∑q/2−1

m=0 eiθ2m+1δ(s− 4πm+2π
Mq

), if q/2 odd,

2π

M
√

q
2

ψ̂(0, tpq)
∑q/2−1

m=0 eiθ2mδ(s− 4πm
Mq

), if q/2 even.

(46)

The coefficients multiplying the Dirac deltas are in general not real, except
for t = 0 and t1,2 = π/M2. Therefore, ψ(s, tpq) does not correspond to a
planar polygon, but to a skew polygon with Mq sides, for q odd; and to a
skew polygon with Mq/2 sides, for q even. Moreover, ψ̂(0, tpq) has to be
determined in such a way that the polygon is closed; this is done in the next
section, where we show that its rather involved choice is unique, concluding
that ψ(s, t) is periodic in time, with period 2π/M2.

Since the Dirac deltas are equally spaced at a time t = tpq, the length of
the sides is the same. Observe that, if q/2 is odd, i.e., if q ≡ 2 mod 4, then
there is no vertex at s = 0. For instance, if p = 1, q = 2, i.e., t = π/M2, then

ψ(s, t1,2) =
2π

M

∞
∑

k=−∞
δ(s− 2π(2k+1)

2M
). (47)

Furthermore, the coefficients multiplying the Dirac deltas are now real, so
ψ(s, t1,2) is simply the curvature, and ψ(0, t1,2) = 1 has been chosen in order
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that the integral of ψ(s, t1,2) over [0, 2π) is 2π. Bearing in mind the symme-
tries of the problem, we conclude that the corresponding polygon is a regular
planar polygon of M sides, which lives at a certain plane z = constant, and
which has been rotated π/M degrees around the z-axis with respect to the
initial data, as R. Jerrard and D. Smets predicted.

3.2. Recovering X and T from ψ at t = tpq

Given ψ(s, t) = α(s, t) + iβ(s, t), recovering T, e1 and e2 from ψ implies
integrating





T

e1
e2





s

=





0 α β
−α 0 0
−β 0 0



 ·





T

e1
e2



 . (48)

As we have seen in the previous section, at a time tpq = (2π/M2)(p/q),
ψ(s, tpq) is a sum of Mq (if q odd) or Mq/2 (if q even) equally spaced Dirac
deltas, that corresponds to a skew polygon X(s, tpq) of Mq or Mq/2 sides.
To integrate (48), we have to understand the transition from one side of the
polygon to the next one. In order to do that, we reduce ourselves, without
loss of generality, to a certain ψ formed by a single Dirac delta located at
s = 0, i.e, ψ(s) = (a+ ib)δ(s), so we have to integrate





T

e1
e2





s

=





0 aδ bδ
−aδ 0 0
−bδ 0 0



 ·





T

e1
e2



 . (49)

This system corresponds to some T(s), e1(s) and e2(s) constant, except
at s = 0, where there is a singularity. Let us suppose that, for s < 0,
T(s) ≡ T(0−), e1(s) ≡ e1(0

−), e2(s) ≡ e2(0
−), so we want to calculate

T(0+), e1(0
+), e2(0

+), such that, for s > 0, T(s) ≡ T(0+), e1(s) ≡ e1(0
+),

e2(s) ≡ e2(0
+). In this case, the problem is equivalent to that one of a

plane curve with curvature κ the delta function at one point, κ(s) = aδ(s);
therefore, it is equivalent to solving

(

T

n

)

s

=

(

0 aδ
−aδ 0

)

·
(

T

n

)

. (50)

The correct way to understand (50) is to write it as

(

ei
∫

s

0
κ(s′)ds′z′(s)

)′
=
(

eia
∫

s

0
δ(s′)ds′z′(s)

)′
= 0, (51)
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with z(s) = x(s) + iy(s) the parametrization of the curve with arc-length
parameter s.

In order to integrate (49), it is important to notice that, although T,
e1 and e2 are vectors, it can be uncoupled into three systems of ODE’s
for (T1, e1,1, e2,1), (T2, e1,2, e2,2) and (T3, e1,3, e2,3), respectively. Hence, let us
consider




u1
u2
u3





s

=





0 aδ bδ
−aδ 0 0
−bδ 0 0



 ·





u1
u2
u3



 = δ(s)





0 a b
−a 0 0
−b 0 0



 ·





u1
u2
u3



 . (52)

Then, motivated by (51), we proceed as in the case of a plane curve:





u1(0
+)

u2(0
+)

u3(0
+)



 = exp









0 a b
−a 0 0
−b 0 0





∫ 0+

0−
δ(s′)ds′



 ·





u1(0
−)

u2(0
−)

u3(0
−)





= exp









0 a b
−a 0 0
−b 0 0







 ·





u1(0
−)

u2(0
−)

u3(0
−)



 . (53)

We can compute explicitly the matrix exponential:

exp(A) =









cos(
√
a2 + b2)

a sin(
√
a2+b2)√

a2+b2
b sin(

√
a2+b2)√

a2+b2

−a sin(
√
a2+b2)√

a2+b2
a2 cos(

√
a2+b2)+b2

a2+b2
ab cos(

√
a2+b2)−ab

a2+b2

−b sin(
√
a2+b2)√

a2+b2
ab cos(

√
a2+b2)−ab

a2+b2
b2 cos(

√
a2+b2)+a2

a2+b2









. (54)

Furthermore, this matrix can be rewritten in a much more elegant way. In-
deed, expressing a+ ib in polar form, i.e., a+ ib ≡ ρeiθ, then

exp(A) =

(

cos(ρ) sin(ρ) cos(θ) sin(ρ) sin(θ)
− sin(ρ) cos(θ) cos(ρ) cos2(θ) + sin2(θ) [cos(ρ)− 1] cos(θ) sin(θ)
− sin(ρ) sin(θ) [cos(ρ)− 1] cos(θ) sin(θ) cos(ρ) sin2(θ) + cos2(θ)

)

(55)

= I+ sin(ρ)

(

0 cos(θ) sin(θ)
− cos(θ) 0 0
− sin(θ) 0 0

)

+ (1− cos(ρ))

(

−1 0 0
0 − cos2(θ) − cos(θ) sin(θ)
0 − cos(θ) sin(θ) − sin2(θ)

)

. (56)

Hence, exp(A) is a rotation matrix [23], because exp(A)T ·exp(A) = I. More
precisely, it is the rotation matrix corresponding to a rotation about an axis
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(0, sin(θ),− cos(θ)) by an angle ρ. exp(A) also relates {T(0−), e1(0
−), e2(0

−)}
and {T(0+), e1(0

+), e2(0
+)}:





T(0+)T

e1(0
+)T

e2(0
+)T



 = exp(A) ·





T(0−)T

e1(0
−)T

e2(0
−)T



 . (57)

Therefore, if {T(0−), e1(0
−), e2(0

−)} forms an orthonormal basis of R3, so
does {T(0+), e1(0

+), e2(0
+)}.

Coming back to the general form of ψ, we have to integrate (52) Mq or
Mq/2 times to obtain a closed skew, i.e., non-planar polygon with Mq or
Mq/2 sides. But, according to (46), in [0, 2π

M
),

ψ(s, tpq) =











∑q−1
m=0(αm + iβm)δ(s− 2πm

Mq
), if q odd,

∑q/2−1
m=0 (α2m+1 + iβ2m+1)δ(s− 4πm+2π

Mq
), if q/2 odd,

∑q/2−1
m=0 (α2m + iβ2m)δ(s− 4πm

Mq
), if q/2 even,

(58)

where

|αm+iβm| = ρ =















2π
M

√
q
ψ̂(0, tpq), if q is odd,

2π

M
√

q
2

ψ̂(0, tpq), if q is even and q/2 ≡ m mod 2,

0, if q is even and q/2 6≡ m mod 2,

(59)

so we conclude that, at any time tpq, the angle ρ between two adjacent
sides is constant. Furthermore, the structure of the polygon is completely
determined by the angles θm appearing in the generalized quadratic Gaussian
sum, where αm + iβm = ρeiθm .

Let be Mm the rotation matrix corresponding to (αm + iβm)δ. If αm +
iβm ≡ 0, Mm is simply an identity matrix and can be ignored. Otherwise,
from (55),

Mm =





cos(ρ) sin(ρ) cos(θm) sin(ρ) sin(θm)
− sin(ρ) cos(θm) cos(ρ) cos2(θm) + sin2(θm) [cos(ρ)− 1] cos(θm) sin(θm)
− sin(ρ) sin(θm) [cos(ρ)− 1] cos(θm) sin(θm) cos(ρ) sin2(θm) + cos2(θm)



 . (60)

If, for instance, q is odd, bearing in mind that T, e1 and e2 are piecewise
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constant, we have






T( 2π
Mq

−
)T

e1(
2π
Mq

−
)T

e2(
2π
Mq

−
)T






=





T(0+)T

e1(0
+)T

e2(0
+)T



 = M0 ·





T(0−)T

e1(0
−)T

e2(0
−)T











T( 4π
Mq

−
)T

e1(
4π
Mq

−
)T

e2(
4π
Mq

−
)T






=







T( 2π
Mq

+
)T

e1(
2π
Mq

+
)T

e2(
2π
Mq

+
)T






= M1 ·







T( 2π
Mq

−
)T

e1(
2π
Mq

−
)T

e2(
2π
Mq

−
)T













T( 6π
Mq

−
)T

e1(
6π
Mq

−
)T

e2(
6π
Mq

−
)T






=







T( 4π
Mq

+
)T

e1(
4π
Mq

+
)T

e2(
4π
Mq

+
)T






= M2 ·







T( 4π
Mq

−
)T

e1(
4π
Mq

−
)T

e2(
4π
Mq

−
)T






,

and so forth, i.e., there is a jump at s = 2πk
Mq

. This is equivalent to writing







T(2πk
Mq

+
)T

e1(
2πk
Mq

+
)T

e2(
2πk
Mq

+
)T






= Mk ·Mk−1 · . . .M1 ·M0 ·





T(0−)T

e1(0
−)T

e2(0
−)T



 , (61)

where k ∈ Z
+, and Mk is periodic modulo q, i.e., Mk+q ≡ Mk. This formula

is also valid for q even, provided that we bear in mind that half of the Mk

matrices are simply identity matrices. More precisely, for q ≡ 0 mod 4, then






T(4πk
Mq

+
)T

e1(
4πk
Mq

+
)T

e2(
4πk
Mq

+
)T






= M2k ·M2k−2 · . . .M2 ·M0 ·





T(0−)T

e1(0
−)T

e2(0
−)T



 , (62)

∀k ∈ Z
+. In this case, the matrices with odd subscript are identity matrices,

and






T(4πk+2π
Mq

+
)T

e1(
4πk+2π
Mq

+
)T

e2(
4πk+2π
Mq

+
)T






≡







T(4πk+2π
Mq

−
)T

e1(
4πk+2π
Mq

−
)T

e2(
4πk+2π
Mq

−
)T






≡







T(4πk
Mq

+
)T

e1(
4πk
Mq

+
)T

e2(
4πk
Mq

+
)T






. (63)

Equivalently, if q ≡ 2 mod 4, then






T(4πk−2π
Mq

+
)T

e1(
4πk−2π
Mq

+
)T

e2(
4πk−2π
Mq

+
)T






= M2k+1 ·M2k−1 · . . .M3 ·M1 ·







T( 2π
Mq

−
)T

e1(
2π
Mq

−
)T

e2(
2π
Mq

−
)T






, (64)

19



∀k ∈ Z
+. In this case, the matrices with even subscript are identity matrices,

and






T(4πk
Mq

+
)T

e1(
4πk
Mq

+
)T

e2(
4πk
Mq

+
)T






≡







T(4πk
Mq

−
)T

e1(
4πk
Mq

−
)T

e2(
4πk
Mq

−
)T






=







T(4πk−2π
Mq

+
)T

e1(
4πk−2π
Mq

+
)T

e2(
4πk−2π
Mq

+
)T






. (65)

When q is even, (63) and (65) explain why the polygon has q/2 sides. Equiv-
alently, it could be regarded as having q sides, but half of them being in-
distinguishable, because when the angle between two adjacent sides is zero,
they merge into a single side.

In order that the polygon is closed, we have to choose ρ in (59) in such a
way that T, e1 and e2 are periodic, i.e.,





T(2π−)T

e1(2π
−)T

e2(2π
−)T



 =





T(0−)T

e1(0
−)T

e2(0
−)T



 , (66)

which is equivalent to imposing that

MMq−1 ·MMq−2 · . . . ·M1 ·M0 ≡ I. (67)

Let us define
M = Mq−1 ·Mq−2 · . . . ·M1 ·M0. (68)

From (67), M is an M -th root of the identity matrix. Moreover, it is also a
rotation matrix that induces a rotation of 2π/M degrees around a certain ro-
tation axis. Therefore, we have to choose ρ in order that any of the following
properties is satisfied:

Tr(M) = 1 + 2 cos(2π
M
), (69)

λ(M) = {1, e2πi/M , e−2πi/M}, (70)

were Tr(M) and λ(M) denote the trace and the spectrum of M, respectively.
We work with the trace, because it is algebraically easier. In order to un-
derstand its structure, we analyze a few cases. Let us start with q odd. The
angles corresponding to the generalized quadratic Gauß sums for the simplest
case, q = 3, are

p = 1 : θ0 = −π
2
, θ1 =

π
6
, θ2 =

π
6
,

p = 2 : θ0 =
π
2
, θ1 = −π

6
, θ2 = −π

6
.

(71)
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Bearing in mind that M = M2 ·M1 ·M0, a symbolic manipulator yields for
both p = 1 and p = 2 the following expression:

Tr(M) =
(1 + cos(ρ))3

2
− 1 = 1 + 2 cos(2π

M
), (72)

so the only possible real value for cos(ρ) is

cos(ρ) = (4 + 4 cos(2π
M
))1/3 − 1 = 2 cos2/3( π

M
)− 1. (73)

Notice that we arrive at the same conclusion if we impose that ζ = e2πi/M is
an eigenvalue of M, i.e., if det(M− ζI) = 0:

0 = det(M− ζI)

=
ζ2 − ζ

2
(cos3(ρ) + 3 cos2(ρ) + 3 cos(ρ)− 2ζ − 3− 2ζ−1)

=
ζ2 − ζ

2
((1 + cos(ρ))3 − 2ζ − 4− 2ζ−1). (74)

Hence,

cos(ρ) = (2ζ + 2ζ−1 + 4)1/3 − 1

= (2e2πi/M + 2e−2πi/M + 4)1/3 − 1

= (4 + 4 cos(2π
M
))1/3 − 1

= 2 cos2/3( π
M
)− 1. (75)

Let us consider now the case q = 5. Its corresponding angles are:

p = 1 : θ0 = 0, θ1 = −2π
5
, θ2 =

2π
5

θ3 =
2π
5
, θ4 = −2π

5
,

p = 2 : θ0 = −π, θ1 = −π
5
, θ2 =

π
5

θ3 =
π
5
, θ4 = −π

5
,

p = 3 : θ0 = −π, θ1 =
π
5
, θ2 = −π

5
θ3 = −π

5
, θ4 =

π
5
,

p = 4 : θ0 = 0, θ1 =
2π
5
, θ2 = −2π

5
θ3 = −2π

5
, θ4 =

2π
5
.

(76)

Then, M = M4 ·M3 ·M2 ·M1 ·M0, and, for the four values of p,

Tr(M) =
(1 + cos(ρ))5

8
− 1 = 1 + 2 cos(2π

M
), (77)

so the only possible real value for cos(ρ) is

cos(ρ) = (16 + 16 cos(2π
M
))1/5 − 1 = 2 cos2/5( π

M
)− 1. (78)

21



When q is even, the previous ideas are completely valid. As we saw in the
previous section, the case p = 1, q = 2 is trivial, so let us consider q = 4.
Then, we have the following angles:

p = 1 : θ0 = −π
4
, θ2 =

π
4
,

p = 3 : θ0 =
π
4
, θ2 = −π

4
.

(79)

M1 and M3 are identity matrices, so M = M2 ·M0. Then, for both values
of p,

Tr(M) = (1 + cos(ρ))2 − 1 = 1 + 2 cos(2π
M
). (80)

In this case, cos(ρ) can take two real values, cos(ρ) = ±(2+2 cos(2π
M
))1/2−1,

but, since ρ is real, | cos(ρ)| ≤ 1, so the only valid value for cos(ρ) is

cos(ρ) = (2 + 2 cos(2π
M
))1/2 − 1 = 2 cos( π

M
)− 1. (81)

If we now choose q = 6, then

p = 1 : θ1 = −π
6
, θ3 =

π
2
, θ5 = −π

6
,

p = 5 : θ1 =
π
6
, θ3 = −π

2
, θ5 =

π
6
.

(82)

This angles are exactly the same as in (71), but in a different order. Now
M0, M2 and M4 are identity matrices; M = M5 · M3 · M1, and the only
possible real value for cos(ρ) is again (73).

Finally, if we choose q = 8, then

p = 1 : θ0 = −π
4
, θ2 = 0, θ4 =

3π
4

θ6 = 0,

p = 3 : θ0 =
3π
4
, θ2 = 0, θ4 = −π

4
θ6 = 0,

p = 5 : θ0 =
3π
4
, θ2 = 0, θ4 = −π

4
θ6 = 0,

p = 7 : θ0 = −π
4
, θ2 = 0, θ4 =

3π
4

θ6 = 0.

(83)

M1, M3, M5 and M7 are identity matrices, so M = M6 · M4 · M2 · M0.
Then, for all the possible values of p we have

Tr(M) =
(1 + cos(ρ))4

4
− 1 = 1 + 2 cos(2π

M
), (84)

and the only real value that satisfies | cos(ρ)| ≤ 1 is:

cos(ρ) = (8 + 8 cos(2π
M
))1/4 − 1 = 2 cos1/2( π

M
)− 1. (85)
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The previous results strongly suggest that, in general, for any q and for any
p coprime with it, the only possible real value for cos(ρ), | cos(ρ)| ≤ 1, is

cos(ρ) =

{

2 cos2/q( π
M
)− 1, if q is odd,

2 cos4/q( π
M
)− 1, if q is even;

(86)

remark that if q is odd, the angle ρ between two adjacent sides is the same
for q and for 2q. Although giving a universal proof that (86) holds for any
q goes beyond the scope of this paper, we have checked it for a few more q.
Moreover, it is absolutely in agreement with our numerical simulations, as
we will see in Section 5. Therefore, we assume it is valid ∀q.

Once we have found the correct choice of ρ, we get immediately the value
for ψ̂(0, tpq). Indeed, bearing in mind (59),

ψ̂(0, tpq) =







M
√
q

2π
arccos

(

2 cos2/q( π
M
)− 1

)

, if q is odd.

M
√

q
2

2π
arccos

(

2 cos4/q( π
M
)− 1

)

, if q is even.
(87)

It is straightforward to check that ψ(0, t1,2) = 1. It is also interesting to note
that

lim
q→∞

ψ̂(0, tpq) =
M

√
2

π
(− ln(cos( π

M
)))1/2,

lim
M→∞

ψ̂(0, tpq) = 1.
(88)

Moreover, T, e1 and e2 can be completely determined for any p and q, too,
up to a rigid movement. The same is valid for X, obtained from integrating
T once. In general, for an arbitrary polygon, it can be pretty complicated
to specify the correct rigid movement. However, since our initial data is a
regular planar polygon, the symmetries of the solution are very advantageous.

The easiest way to understand and to implement numerically the correct
rotation (although not necessarily the simplest option for symbolic manipu-
lation) is to work on X, which depends only on T. To that aim, given a time
tpq, we compute first the associated rotation matrices Mm. Then, by means
of (61), we obtain up to a rotation the piecewise constant vectors T, e1 and
e2, which we denote T̃, ẽ1 and ẽ2:







T̃(2πk
Mq

−
)T

ẽ1(
2πk
Mq

−
)T

ẽ2(
2πk
Mq

−
)T






=







T̃(2πk−2π
Mq

+
)T

ẽ1(
2πk−2π
Mq

+
)T

ẽ2(
2πk−2π
Mq

+
)T






, (89)
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and the case k = 0 can be assigned any value, for instance the identity matrix,
(T̃(0−)|ẽ1(0−)|ẽ2(0−))T = I. Let us underline that it is not necessary at all
to consider separately q odd and q even. Indeed, in the case of q even, (63)
and (65) safely allow us to regard the Mq/2-sided polygon as a degenerated
Mq-sided polygon. This is extremely useful for implementation purposes.

Once T̃ has been obtained, X̃, which is X up to a rotation, is computed
recursively:

X̃(2πk+2π
Mq

) = X̃(2πk
Mq

) + 2π
Mq

T̃(2πk
Mq

+
), (90)

where, again, X̃(0) can be given any value, for instance X̃(0) = (0, 0, 0)T .
To obtain the correct rotation for X, we use the symmetries of the polygon,
as explained in Section 3. In particular, we use the facts that, for any time
t, X(2πk/M), k = 0, . . . ,M − 1, have to be coplanar and lay on a plane
orthogonal to the z-axis; and that X(2π/M)−X(0) is a positive multiple of
(1, 0, 0)T . This can be done efficiently as follows:

1. Compute v+ = X̃(2π/M)−X̃(0)

‖X̃(2π/M)−X̃(0)‖ , v
− = X̃(0)−X̃(−2π/M)

‖X̃(0)−X̃(−2π/M)‖ .

2. Compute w = v− ∧ v+.

3. Compute the scalar product between w and (0, 0, 1)T , w · (0, 0, 1)T =
w3.

4. If w3 = 0, R1 is the identity matrix. If not, R1 is the rotation matrix
that induces a rotation of arccos(w3) degrees around the axis given by

the vector w∧(0,0,1)T
‖w∧(0,0,1)T ‖ .

5. Compute v+
new = R1 · v+.

6. Compute the rotation matrixR2 that induces a rotation of arccos(v+
new ·

(1, 0, 0)T ) degrees around the z-axis.

7. Compute the sought rotation matrix, R = R2 ·R1.

8. Update T = R · T̃ and X = R · X̃.

By means of the previous algorithm, we have computed the correctly rotated
values of X and T. Additionally, for X, we still have to specify a translation.
Again, bearing in mind the symmetries of the problem, we translateX in such
a way that its mass center, given by the mean ofX(2πk/M), k = 0, . . . ,M−1,
is in the z-axis. In this way, we have completely specified the position of X,
up to a vertical translation.
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4. Numerical method

In this section, we simulate numerically (3) and (4) taking respectively
(28) and (29) as initial data, i.e., X(s, 0) is a planar regular polygon of M
sides and length 2π.

There have been a couple of papers devoted to reproducing numeri-
cally the self-similar solutions of the Schrödinger map (4). In [8], a Crank-
Nicholson scheme was consider, together with a finite-difference discretization
of Tss. Later on, in [9], both finite-difference discretizations and pseudo-
spectral discretizations were considered to simulate (4) and its equivalent on
the hyperbolic plane. In particular, given the asymptotical structure of the
self-similar solutions of (4), a truncated domain s ∈ [−L,L], L ≫ 1, with a
grid based on the Chebyshev nodes was found to be very convenient to rep-
resent those solutions. Nevertheless, due to the clustering of the Chebyshev
nodes, an explicit scheme to advance in time implied the undesirable restric-
tion |∆t| = O(1/N4), where N is the number of nodes. In order to solve that,
it was chosen to work with the stereographic projection of T = (T1, T2, T3)
over C,

z = x+ iy ≡ (x, y) ≡
(

T1
1 + T3

,
T2

1 + T3

)

, (91)

which transforms (4) into a nonlinear Schrödinger equation:

zt = izss −
2iz̄

1 + |z|2 z
2
s . (92)

The advantage of this equation, as opposed to (4), is that the higher-order
term zss can be treated implicitly, therefore eliminating or at least reducing
significantly the restrictions on ∆t.

Working with (92) was a very adequate choice for the purposes of [9].
There, a second-order semi-implicit backward differentiation formula was
chosen. This scheme was very stable because it imposed a very strong decay
in the high frequency modes; moreover, its low order was easily and effec-
tively compensated by the use of an adaptive method, both in space and in
time.

However, in this paper, working with (92) does not seem to be such a
good option. Indeed, unlike in [9], where an extremely high accuracy was
required only for 0 < t ≪ 1, we are now interested in the behaviour of T
at all times, for which a second-order scheme seems a very poor option.
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After many unsuccessful attempts, which have greatly delayed the redaction
of this paper, we admit that we have been unable to find a good higher-order
scheme for (92). Furthermore, we are also interested in the evolution of X,
for which working with (92) is of limited help. Bearing in mind the previous
arguments, we have opted to work directly with (4) or, more precisely, with
a combination of (3) and (4):

{

Xt = T ∧Ts,

Tt = T ∧Tss.
(93)

In order to simulate numerically (93), we have chosen a fourth-order Runge-
Kutta scheme in time:

AX = T(n) ∧T(n)
s , AT = T(n) ∧T(n)

ss , T(A) = T(n) + ∆t
2
AT ,

BX = T(A) ∧T(A)
s , BT = T(A) ∧T(A)

ss , T(B) = T(n) + ∆t
2
BT ,

CX = T(B) ∧T(B)
s , CT = T(B) ∧T(B)

ss , T(C) = T(n) +∆tCT ,

DX = T(C) ∧T(C)
s , DT = T(C) ∧T(C)

ss ,

X(n+1) = X(n) + ∆t
6
(AX + 2BX + 2CX +DX),

T̃ = T(n) + ∆t
6
(AT + 2BT + 2CT +DT ), T(n+1) =

T̃

‖T̃‖
. (94)

The last line guarantees that T(n) ∈ S
2, ∀n. Additionally, we can also project

T(A), T(B), T(C) onto the unit sphere, but we have noticed no significant
improvement in our numerical results.

We have combined the previous Runge-Kutta scheme with a pseudo-
spectral discretization directly in space. More precisely, since we deal with
periodic solutions in s ∈ [0, 2π), we have simulated the evolution of X =
(X1, X2, X3) and T = (T1, T2, T3) at N equally spaced nodes sj = 2πj/N ,
j = 0, . . . , N − 1. In order to compute Ts, Tss, etc., we remember that,
given a periodical function f(s) evaluated at sj, its derivatives at sj can be
spectrally approximated as

fs(sj) =

N/2−1
∑

k=−N/2
ikf̂(k)e2πijk/N , fss(sj) = −

N/2−1
∑

k=−N/2
k2f̂(k)e2πijk/N , (95)

where

f̂(k) =
N−1
∑

j=0

f(sj)e
−2πijk/N . (96)
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Both (95) and (96), wich are respectively inverse and direct discrete Fourier
transforms (DFT), can be computed efficiently by means of the Fast Fourier
Transform (FFT) algorithm [24]. Moreover, since X and T are invariant by
rotations of 2π/M degrees around the z-axis, as shown in (32), we can reduce
the computational cost of (95) and (96) to a DFT of N/M elements, instead
of a DFT of N elements. In what follows, we explain how to apply this idea
to T. This is valid, with no change, for any vector satisfying (32), i.e., X,
Ts, Tss, etc. First, let us consider the first two components of T. Denoting
Z(sj) = T1(sj, t) + iT2(sj, t), we have

Ẑ(k) =
N−1
∑

j=0

Z(sj)e
−2πijk/N

=
M−1
∑

l=0

N/M−1
∑

j=0

Z(sj+l(N/M))e
−2πi(j+l(N/M))k/N

=

(

M−1
∑

l=0

e−2πil(k−1)/M

)

N/M−1
∑

j=0

Z(sj)e
−2πijk/N

=















M

N/M−1
∑

j=0

Z(sj)e
−2πijk/N , if k ≡ 1 mod M ,

0, if k 6≡ 1 mod M .

(97)

Therefore, the only non-zero Z(k) are those with k ≡ 1 mod M . Moreover,
they can be obtained by a DFT of N/M elements instead of a DFT of N
elements:

Ẑ(Mk + 1) =M

N/M−1
∑

j=0

Z(sj)e
−2πij(Mk+1)/N

=M

N/M−1
∑

j=0

[

e−2πij/NZ(sj)
]

e−2πijk/(N/M). (98)
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Identically for the third component of T,

T̂3(k) =
N−1
∑

j=0

T3(sj)e
−2πijk/N

=
M−1
∑

l=0

N/M−1
∑

j=0

T3(sj+l(N/M))e
−2πi(j+l(N/M))k/N

=

(

M−1
∑

l=0

e−2πilk/M

)

N/M−1
∑

j=0

T3(sj)e
−2πijk/N

=















M

N/M−1
∑

j=0

T3(sj)e
−2πijk/N , if k ≡ 0 mod M ,

0, if k 6≡ 0 mod M .

(99)

Therefore, the only non-zero T̂3(k) are those with k ≡ 0 mod M and, again,
they can be obtained by a DFT of N/M elements instead of a DFT of N
elements:

T̂3(Mk) =M

N/M−1
∑

j=0

T3(sj)e
−2πijk/(N/M). (100)

Furthermore, since T3(s) is real, this last expression can be further simplified
to a DFT of N/(2M) elements.

Combining (94) with a pseudo-spectral discretization in space, we obtain
a scheme with a time-step restriction on ∆t that appears to be of the form
∆t ≤ C/N2, with C ≈ 11.3. However, for a fixed M , we only want to
simulate X and T for t ∈ [0, 2π/M2]. Denoting ∆tmax the biggest ∆t that
makes (94) stable, the smallest number of time-steps Nt needed to reach
t = 2π/M2 is of at least

Nt ≥
⌈

2π/M2

∆tmax

⌉

=

⌈

2π/M2

C/N2

⌉

=

(

N

M

)2 ⌈
2π

C

⌉

. (101)

From this equation, together with (98) and (100), it follows that, for a given
r ∈ N, if we take N = 2rM , i.e., the computational cost for simulating (94)
is exactly the same for any number of initial sides M , no matter how big it
is. This important fact enables us to make consistent comparisons between
different M , because we are considering an equivalent spatial resolution, i.e,
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we are simulating the same number of points N/M . We take N/M a power of
two to take the greatest possible advantage of the FFT. Obviously, for N/M
constant, ∆t decreases as O(1/M2); therefore, the most accurate results will
be expected for the largest M , as we will see in our numerical experiments.

In the following section, we simulate X and T for initial data with dif-
ferent M . As we will see, despite its simplicity, (94) gives surprisingly good
results.

5. Numerical experiments

In Section 3, in order to construct algebraically the evolution of a regular
polygon at rational times, we have done some very strong assumptions, the
most important one being uniqueness. However, as we will see in this section,
the numerical experiments are in complete agreement with their theoretical
predictions. To illustrate this, we have simulated the evolution of X and T

by means of (94), taking regular polygons with different numbers of sides M
as initial data, and making X and T evolve until t = 2π/M2. The initial
data X(s, 0) and T(s, 0) are given respectively by (28) and (29); obviously,
in the case of X, the non-vertex points are immediately computed by linear
interpolation. We have taken N equally-spaced nodes sj = 2πj/N ∈ [0, 2π),
0, . . . , N − 1; nevertheless, bearing in mind the symmetries of X and T as
described in the previous section, we only have to describe the evolution of
X and T at the first N/M nodes sj ∈ [0, 2π/M), j = 0, . . . , N/M − 1. We
have divided the time-interval [0, 2π/M2] in Nt equally-spaced time steps of
length ∆t = 2π

M2Nt
. Therefore, during the simulation of (94), we obtain X(n)

and T(n), at t(n) = n∆t, n = 1, . . . , Nt. In our experiments, bearing in mind
(101), we have chosen Nt = 151200 · 4r, for N/M = 512 · 2r.

Remember that, in Section 3, we had constructed algebraically X up to
a vertical movement. Therefore, in order to completely specify X at a given
time, we would need to give the height of one point or, more conveniently,
the height h(t) of the mass center, which is precisely the mean of all the
values X3(sj, t):

h(t) =
1

N

N−1
∑

j=0

X3(sj, t) =
M

N

N/M−1
∑

j=0

X3(sj, t). (102)

29



Figure 2: Evolution of h′(t) = mean(X3,t) against t, for an initial triangle, M = 3,
N = 3× 4096 nodes.

On the one hand, h′(t), computed numerically by

h′(t) =
1

N

N−1
∑

j=0

X3,t(sj, t)

=
1

N

N−1
∑

j=0

(X1,s(sj, t)X2,ss(sj, t)−X2,s(sj, t)X1,ss(sj, t)), (103)

is far from constant and has a very singular shape, as shown in Figure 2,
where we have plotted the numerical evolution of h′(t), at all t(n) = n∆t, for
an initial triangle, M = 3, N = 3× 4096 nodes.

On the other hand, when integrating h′(t), the oscillations cancel and
completely disappear. Furthermore, h(t) can be approximated with great
accuracy by means of a constant multiplied by t; more precisely,

h(t) ≈ h(2π/M2)

2π/M2
t = cM t, (104)

where cM = h( 2π
M2 )/

2π
M2 is the mean speed. In Table 1, we give the maximum

discrepancy between h(t) and its linear approximation cM t, i.e., maxn |h(t(n))−
cM t

(n)|. We have considered different M and different numbers of nodes N ;
the errors are very small and they seem to decrease as O(1/N). This gives
very strong evidence that h(t) is linear or, at least, quasi-linear. Therefore,
in practice, we can safely assume that h(t) = cM t. Observe that cM , which
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M N/M = 512 N/M = 1024 N/M = 2048 N/M = 4096 cM
3 4.3096 · 10−5 2.1206 · 10−5 1.0886 · 10−5 5.7953 · 10−6 0.7645
4 1.2398 · 10−6 6.1344 · 10−6 3.2140 · 10−6 1.7316 · 10−6 0.8827
5 4.8504 · 10−6 2.4191 · 10−6 1.2807 · 10−6 6.9338 · 10−7 0.9286
6 2.2848 · 10−6 1.1441 · 10−6 6.0905 · 10−7 3.3044 · 10−7 0.9517
7 1.2167 · 10−6 6.1060 · 10−7 3.2607 · 10−7 1.7710 · 10−7 0.9651
8 7.0721 · 10−7 3.5594 · 10−7 1.9014 · 10−7 1.0333 · 10−7 0.9735
9 4.3905 · 10−7 2.2140 · 10−7 1.1828 · 10−7 6.4303 · 10−8 0.9792
10 2.8697 · 10−7 1.4489 · 10−7 7.7407 · 10−8 4.2093 · 10−8 0.9832

Table 1: maxn |h(t(n))− cM t(n)|, for different numbers of initial sides M , and of nodes N .
t(n) = n∆t; cM = h( 2π

M2 )/
2π
M2 . The values corresponding to cM have been calculated with

N/M = 4096.

is also offered in Table 1 for N/M = 4096, grows with M , tending to 1, as
M tends to infinity, i.e. as X(s, 0) tends to a circle.

In order to compare the values of X obtained numerically, which we la-
bel Xnum, with those obtained algebraically, which we label Xalg, we have
subtracted the vertical position of the center of mass from Xnum, i.e., we
have analyzed the agreement between Xnum − cM t(0, 0, 1)

T and Xalg. More
precisely, we have computed maxm(maxj ‖Xnum(sj, t

(m))− cM t
(m)(0, 0, 1)T −

Xalg(sj, t
(m))‖), where sj = 2πj/N , j = 0, · · · , N/M − 1; ‖ · ‖ denotes the

Euclidean distance; and t(m) = 2π
M2 · m

1260
, m = 0, . . . , 1260. Notice that, in

Section 3, we have constructed Xalg(s, t) only at the vertices, so the non-
vertex points Xalg(sj, t) are computed again by linear interpolation. Observe
also that comparing Xnum and Xalg at Nt+1 time-instants would have been
computationally unrealistic. Instead, we have chosen 1260+1 time-instants,
because 1260 is a number large enough for our purposes, and with a conve-
nient factorization, 1260 = 22 · 32 · 5 · 7.

The maximum value of ‖Xnum(sj, t
(m))− cM t(m)(0, 0, 1)T −Xalg(sj, t

(m))‖
is given in Table 2, for different N/M and M . Bearing in mind that we are
comparing Xnum and Xalg globally for a large number of nodes and time-
instants, and that max ‖Xalg‖ > 1, ∀M , the results are, in our opinion, very
remarkable, and strongly suggest that there is convergence, or at least an
extremely good agreement, between both approaches, as N → ∞; moreover,
since Xalg is periodical in time, with time-period 2π/M2, they also suggest
that X is periodical, or at least quasi-periodical, in time with that period,
up to a vertical movement. All this is also supported by the fact that the
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M N/M = 512 N/M = 1024 N/M = 2048 N/M = 4096
3 2.4847 · 10−3 1.3841 · 10−3 8.1211 · 10−4 4.9718 · 10−4

4 1.1221 · 10−3 6.9665 · 10−4 4.2717 · 10−4 2.5917 · 10−4

5 6.8414 · 10−4 4.2545 · 10−4 2.6125 · 10−4 1.5874 · 10−4

6 4.6057 · 10−4 2.8717 · 10−4 1.7670 · 10−4 1.0754 · 10−4

7 3.3170 · 10−4 2.0724 · 10−4 1.2772 · 10−4 7.7832 · 10−5

8 2.5059 · 10−4 1.5680 · 10−4 9.6744 · 10−5 5.9010 · 10−5

9 1.9616 · 10−4 1.2288 · 10−4 7.5878 · 10−5 4.6313 · 10−5

10 1.5782 · 10−4 9.8943 · 10−5 6.1137 · 10−5 3.7334 · 10−5

Table 2: maxm(maxj ‖Xnum(sj , t
(m)) − cM t(m)(0, 0, 1)T − Xalg(sj , t

(m))‖), where sj =
2πj
N , j = 0, · · · , N/M − 1; ‖ · ‖ denotes the Euclidean distance; and t(m) = 2π

M2 · m
1260 ,

m = 0, . . . , 1260.

errors decreases as M increases. Indeed, from (101), we are taking the same
number of time-steps Nt for each M , but ∆t = 2π

M2Nt
, i.e., ∆t = O(1/M2),

which explains those smaller values for the last rows of Table 2 and also of
Table 1.

On the other hand, comparing the algebraically constructed Talg with
the numerically obtained Tnum is more problematic. For example, in Figure
3, we have compared Tnum (left) with Talg (right), for an initial triangle,
M = 3, at t1,3 = 2π

27
, N/M = 4096. The exact value of T at that time is

given by Talg, which, by construction, is a piecewise constant function with
exactly qM = 9 pieces, that we denote Ti, i = 1, . . . , 9, and whose explicit
values, in this case, have an easy algebraic expression:

T1 =





3
√
2− 1

−
√

3
√
4− 1

1− 3
√
4



 , T2 =





1
0
0



 , T3 =





3
√
2− 1

√

3
√
4− 1

3
√
4− 1



 ; (105)

T4, T5 and T6 are respectively T1, T2 and T3 rotated 2π
3

degrees around
the z-axis; T7, T8 and T9 are respectively T1, T2 and T3 rotated

4π
3
degrees

around the z-axis. Observe that Tnum is almost identical to Talg, but clearly
exhibits a Gibbs-type phenomenon. However, in Tnum, if we take the central
values of each interval (altogether 27 circles, indicated in Figure 2 with a
black circle), and compare them componentwise with (105), we obtain a
maximum error equal to 6.3869 · 10−9.
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Figure 3: Tnum versus Talg, for M = 3, at t1,3 = 2π
27 . T1 appears in blue, T2 in green, T3

in red. In Tnum, the Gibbs phenomenon is clearly visible. The black circles denote the
points chosen for the comparisons.

5.1. X(0, t) and Riemann’s non-differentiable function

Bearing in mind the mirror symmetries of the initial data, as illustrated
for the pentagon in Figure 1, we conclude thatX(πk/M, t), k = 0, . . . , 2M−1,
lives in a plane that contains the z-axis. Indeed, s = πk/M are the only
points such that X(s, t) describe a planar curve. In what follows, we will
describe X(0, t), although all said here is immediately applicable to any s =
πk/M . Since X(0, t) = (X1(0, t), X2(0, t), X3(0, t)) is planar, bearing in mind
thatX1(0, t) < 0, X2(0, t) < 0, we rotateX(0, t) clockwise π/2−π/M degrees
around the z-axis, until it lays on the plane OY Z, which we identify with C.
Then X(0, t) becomes

z(t) = −‖(X1(0, t), X2(0, t))‖+ iX3(0, t). (106)

In Figure 4, we have plotted the numerically obtained z(t) for different M .
Besides the conspicuous fractal character of the curves, which immediately
reminds us of the works [10, 11], their most striking feature (see Figure 5)
is how much z(t)− icM t, i.e., z(t) without the vertical movement, resembles
the graph of

φ(t) =
∞
∑

k=1

eπik
2t

iπk2
, t ∈ [0, 2]. (107)

φ(t) was conveniently used in [17], in order to study Riemann’s non-differen-
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Figure 4: z(t), for M = 3, 4, 5, 6, 7, 8. N/M = 4096. We have plotted the z(t) correspond-
ing to all the Nt + 1 points X(n)(0) obtained during the execution of (94).

tiable function, which is precisely the real part of φ(t), i.e.,

f(t) =
∞
∑

k=1

sin(πk2t)

πk2
. (108)

f(t) is non-differentiable everywhere, except at those rational points t = p/q,
with p and q both odd. On the other hand, when constructing algebraically
X(0, t) for a given t, we have observed that the only times at which X(0, t)
has no corner are of the form tpq = 2πp

M2q
, with p odd and q ≡ 2 mod 4.

Therefore, in order to compare φ(t) and X(0, t), we have to redefine slightly
φ(t) in (107):

φ(t) =
π

6
−

∞
∑

k=1

e2πik
2t

πk2
, t ∈ [0, 1], (109)

i.e., we multiply φ in (107) by −i, in order to orientate it correctly; then
we translate it, so φ(0) = φ(1) = 0, and, finally, we change its period from
t ∈ [0, 2] to t ∈ [0, 1].

On the other hand, given M , we compare φ in (109) with

zM(t) ≡ z( 2πt
M2 )− z(0)− icM

2πt
M2 , t ∈ [0, 1]. (110)
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Figure 5: φ(t) (red), as defined in (109), against zM (t) (blue), for M = 3, 4, 5, 6, 7, 8. To

compute φ(t), we took
∑4096−1

k=0 . To compute, zM (t), we took N/M = 4096. We have
plotted the zM (t) corresponding to all the Nt + 1 points X

(n)(0) obtained during the
execution of (94).

In Figure 5, we have plotted φ(t) (red), as defined in (109), versus zM(t),
for different M . Although the figures are not identical, they are extremely
similar. Moreover, if we scale them accordingly, it seems that the bigger M
grows, the more similar to φ(t) is zM(t). In what follows, we will give some
evidence that this indeed happens.

Since we have obtained numerically zM(t) at Nt + 1 points t ∈ [0, 1],
we have to evaluate φ(t) precisely at those points. Then, we scale zM(t),
approximating the scale factor in this way:

λM =

max
t∈[0,1]

Re(φ(t))

max
t∈[0,1]

Re(zM(t))
.
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M ‖φ(t)− λMzM(t)‖L∞

3 9.2128 · 10−2

4 4.7210 · 10−2

5 2.9124 · 10−2

6 1.9899 · 10−2

7 1.4517 · 10−2

8 1.1091 · 10−2

9 8.7713 · 10−3

10 7.1269 · 10−3

Table 3: Maximum error between φ(t) and zM (t) (scaled). To compute φ(t), we took
∑4096−1

k=0 . To compute zM (t), we took N/M = 4096. We have considered the zM (t)
corresponding to all the Nt + 1 points X(n)(0) obtained during the execution of (94). We
have computed algebraically φ(t) at those times.

Finally, we compute ‖φ(t)−λMzM(t)‖L∞ . Table 3 shows the errors obtained
in this way for several M . Bearing in mind that maxt∈[0,1] |φ(t)| ≈ 0.9187,
that the scaling λM was not intended to be optimal, and that we are compar-
ing 9676800 + 1 different points one by one, the results give a pretty strong
evidence of that convergence. This gives strong support to the idea that zM
is also a multifractal, ∀M ≥ 3.

As we mentioned in the introduction, the proof that f(t) is a multifractal
was done in [18]. In this respect, it is fundamental the identity given for φ,
as defined in (107), which states that

φ(t) = φ(tpq) + eπim/4q−1/2(t− tpq)
1/2 + lower-order terms, (111)

with p, q ∈ Z, q > 0, gcd(p, q) = 1, m ≡ m(tpq) ∈ Z/8Z. This identity is
proved in Theorem 4.2 in [17]. Of particular relevance is the fact that the
Hölder exponent is 1/2, i.e., that |φ(t)−φ(tpq)| = q−1/2|t−tpq|1/2+ lower-order
terms.

In order to prove analytically that zM(t), is a multifractal, we would need
an equivalent of (111). We have made some numerical experiments (see for
example Figure 6, for M = 3, p = 1, q = 5), and all of them give strong
evidence that the Hölder exponent of z(t) is 1/2 for rational times, i.e., that
|zM(t)− zM(tpq)| = O(|t− tpq|1/2).

Nevertheless, how the constants depend of the denominator q, something
which is a fundamental ingredient in the arguments in [17] and in [18], is
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Figure 6: |z(t)− z(t1,5)| versus (t− t1,5)
1/2, for M = 3. The asymptotically linear relation

between both quantities as t → t1,5 is evident.

unclear. This question deserves a much more detailed analysis that we plan
to make in a forthcoming paper.

5.2. T(s, tpq), for q ≫ 1

In the previous subsection, we have given evidence of the multifractal
character of X(0, t). However, in [9], fractal-like phenomena were observed
also on T, when imposing periodic boundary conditions. In the following
lines, we will show that similar observations are valid for periodic boundary
conditions, too.

As we have seen in this paper, X can be recovered algebraically up to
a vertical movement, while T can be completely recovered algebraically at
rational times. Furthermore, Talg is really a piecewise constant function, with
no noise associated to the Gibbs phenomenon. This gives us a very powerful
tool to progress in the understanding ofT (and also ofX), avoiding numerical
simulations at all.

A very interesting question is, given a rational time tpq = 2πp
M2q

, with q

small, corresponding in X to a polygon of Mq or Mq/2 sides, and in T to a
piecewise continuous function with Mq or Mq/2 jumps, what happens at a
time t+ ε, |ε| ≪ 1?

Let us take ε = 2π
M2q′

, with q′ ≫ 1, in order that |ε| ≪ 1. Assuming that

gcd(q, q′) = 1, then, p
q
+ 1

q′
= pq′+1

qq′
, so t + ε would correspond to a polygon

of qq′ or qq′/2 sides.
In Figure 7, we have have plotted Xalg and Talg, forM = 3, at t = 2π

9
(1
4
+
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Figure 7: Xalg and Talg, at t =
2π
9 ( 14 + 1

49999 ).

1
49999

) = 2π
9
· 50003
199996

. While visually there is no difference whatsoever between
Xalg at t1,4 =

2π
9
· 1
4
and Xalg at t =

2π
9
· 50003
199996

, we do not have a skew polygon
with 6 sides, but a skew polygon with Mq/2 = 299994 sides that closely
resembles a polygon with 6 sides. On the other hand, the corresponding Talg

are very different. Indeed, in the plot of Talg, we can clearly appreciate six
spiral-like structures whose centers are precisely the six constant values of T
at t1,4. Nevertheless, it is important to underline that these structures are
not really spirals, but the plot of the 299994 different values taking by T, that
closely resembles a curve with six spirals. Furthermore, these spirals remind
us of the Cornu spirals that appeared in [6]. An open question that arises
naturally is up to what extent the multiple-corner problem can be explained
as a sum of several one-corner problems.

Another interesting question is what happens if we take a time tpq with

large q, such that there is no pair (p′, q′), with both q′ and |p
q
− p′

q′
| small. In

this case, the situation is very different. In Figure 8, we have plotted Xalg

and Talg for M = 3, at t = 2π
9
(1
4
+ 1

41
+ 1

401
) = 2π

9
· 18209
65764

. While the left-hand
side is not so different from the left-hand side of Figure 7, the right-hand side
is a set of Mq/2 = 98646 points in S

2 that creates a spectacular fractality
sensation with spiral-like structures at three or four different scales. This can
be better appreciated in Figure 9, where we have plotted the stereographic
projection of T onto C.

In general, a time tpq, with q ≫ 1, can be regarded as an approximation
of an irrational time. Trying to fully understand the phenomena exhibited
by T(s, t) at those times is a challenging question that we postpone for the
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Figure 8: Xalg and Talg, at t =
2π
9 ( 14 + 1

41 + 1
401 ) =

2π
9 · 18209

65764 .

Figure 9: Stereographic projection of the right-hand side of Figure 8.

future.
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6. Conclusions

In this paper, we have studied the evolution of (3) and (4), for a regular
planar polygonal of M sides as initial datum. The algebraic calculations,
backed by complete numerical simulations, suggest very strongly that X(s, t)
is a polygon at times which are rational multiples of 2π/M2, i.e., tpq =
(2π/M2)(p/q), with the number of sides depending on q, while T(s, t) is
piecewise constant at those times.

We have obtained a striking connection between X(0, t) and the so-called
Riemann’s non-differentiable function. In [18], S. Jaffard proved that this
function is an example of multifractal whose spectrum of singularities satisfies
the Frisch-Parisi conjecture. Although there is strong numerical evidence
thatX(0, t) is also a multifractal, an analytical proof seems to be challenging.
In fact, a first step in this direction is giving sense to our solutions from an
analytical point of view. Moreover, while our X(s, t), obtained algebraically
for rational times, can be extended by continuity to all t ∈ R, it is not clear
how to give sense to T(s, t) at irrational times.

In the future, we also plan to extend these ideas to arbitrary polygons,
and to do a more detailed study on fractality. For such purposes, a more
complete algebraically description of X and T is no doubt required. More
precisely, we would aim at a level of detail similar to that in (86).
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Appendix A. Generalized Quadratic Gauß Sums

The generalized quadratic Gauß sums are defined by

G(a, b, c) =

|c|−1
∑

l=0

e2πi(al
2+bl)/c, (A.1)

for given integers a, b, c, with c 6= 0. From now on, we assume c > 0, and
gcd(a, c) = 1, which are the cases dealt with in this paper.
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The value of these sums was calculated for the first time by Gauß for the
case b = 0 [25]. More precisely, given two integers a, c such that gcd(a, c) = 1,
then

G(a, 0, c) =
c−1
∑

l=0

e2πial
2/c =



















( c
a
)(1 + ia)

√
c, if c ≡ 0 mod 4,

(a
c
)
√
c, if c ≡ 1 mod 4,

0, if c ≡ 2 mod 4,

(a
c
)i
√
c, if c ≡ 3 mod 4,

(A.2)

where (a
c
) denotes the Jacobi symbol.

As we will see in the following lines, the generalized quadratic Gauß sums
can be reduced to normal quadratic Gauß sums by completing the square.
Since they are multiplicative, i.e.,

G(a, b, cd) = G(ac, b, d)G(ad, b, c), with gcd(c, d) = 1, (A.3)

we can assume without loss of generality that c is either odd or a power of
two. If c is odd, let us find a certain ψ(a) such that 4aψ(a) ≡ 1 mod c.
This ψ(a) is unique modulo c and is precisely the inverse of 4a in Z/cZ; since
gcd(4a, c) = 1, its existence is guaranteed by Bézout’s lemma, and it can
be efficiently computed, for instance, by the extended Euclidean algorithm.
Then, we have

G(a, b, c) =
c−1
∑

l=0

e2πi(al
2+4aψ(a)bl+ψ(a)b2−ψ(a)b2)/c

= e−2πiψ(a)b2/c

c−1
∑

l=0

e2πi(al
2+4aψ(a)bl+4aψ(a)ψ(a)b2)/c

= e−2πiψ(a)b2/c

c−1
∑

l=0

e2πia(l+2ψ(a)b)2/c

= e−2πiψ(a)b2/c

c−1
∑

l=0

e2πial
2/c

=

{

e−2πiψ(a)b2/c(a
c
)
√
c, if c ≡ 1 mod 4,

e−2πiψ(a)b2/c(a
c
)i
√
c, if c ≡ 3 mod 4.

(A.4)

41



If c is a power of two, we first observe that

G(a, b, c) =

c/2−1
∑

l=0

e2πi(al
2+bl)/c +

c/2−1
∑

l=0

e2πi(a(l+c/2)
2+b(l+c/2))/c

=
[

1 + (−1)a(c/2)+b
]

c/2−1
∑

l=0

e2πi(al
2+bl)/c

=

{

0, if a(c/2) 6≡ b mod 2,

2
∑c/2−1

l=0 e2πi(al
2+bl)/c, if a(c/2) ≡ b mod 2;

therefore, we have two cases: c = 2 and c > 2. If c = 2, then a is odd, so

G(a, b, 2) =

{

0, if b is even,

2, if b is odd.
(A.5)

On the other hand, if c > 2, G(a, b, c) = 0, if b is odd. Let us suppose b is
even. Then, since a is odd, we follow the previous reasoning to find a certain
ψ(a) such that aψ(a) ≡ 1 mod c, so

G(a, b, c) =
c−1
∑

l=0

e2πi(al
2+aψ(a)2(b/2)l+ψ(a)(b/2)2−ψ(a)(b/2)2)/c

= e−πiψ(a)b
2/(2c)

c−1
∑

l=0

e2πi(al
2+2aψ(a)(b/2)l+aψ(a)ψ(a)(b/2)2)/c

= e−πiψ(a)b
2/(2c)

c−1
∑

l=0

e2πia(l+ψ(a)(b/2))
2/c

= e−πiψ(a)b
2/(2c)

c−1
∑

l=0

e2πial
2/c

= e−πiψ(a)b
2/(2c)( c

a
)(1 + ia)

√
c. (A.6)

In general, given an arbitrary c ∈ N, we will factorize it as c = 2rc′ and use
the multiplicative character of the generalized quadratic Gaussian sums to
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calculate G(a, b, c). For instance, if c is even, but c/2 is odd, then

G(a, b, c) = G(a, b, 2(c/2))

= G(a(c/2), b, 2)G(2a, b, c/2)

=

{

0, if a(c/2) 6≡ b mod 2,

2G(2a, b, c/2), if a(c/2) ≡ b mod 2,
(A.7)

i.e, G(a, b, c) = 0, if b is even, etc.
To conclude this appendix, we will mention the explicit value of |G(a, b, c)|,

deduced from the previous calculations, which is of especial relevance in this
paper. If gcd(a, c) = 1, then

|G(a, b, c)| =











√
c, if c is odd,√
2c, if c is even and c/2 ≡ b mod 2,

0, if c is even and c/2 6≡ b mod 2.

(A.8)
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