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VORTEX FILAMENT EQUATION IN A RIEMANNIAN MANIFOLD

NORIHITO KOISO

(Received May 28, 2001, revised July 23, 2002)

Abstract. We define a riemannian version of the vortex filament equation. Using per-
turbation to a parabolic equation, we prove the short time unique existence of a solution for
any initial closed curve.

1. Introduction and preliminaries. The vortex filament equation is an equation of a
curveγ (x, t) in the three-dimensional euclidean space:

(V) γt = γx × γxx , |γx | ≡ 1 ,

where× is the exterior product. Hasimoto [H] showed that this equation can be transformed
to a standard nonlinear Schrödinger equation. However, his transformation was not mathe-
matically well-defined.

The existence of a solution of (V) was first proved by Nishiyama and Tani [NT] using a
perturbation to a fourth order parabolic equation. The present author gave another proof using
a perturbation to a second order parabolic equation, and justified mathematically Hasimoto’s
transformation [K].

For a solutionγ (x, t) of (V), ξ := γx satisfiesξt = ξ × ξxx . Moreover, the norm|ξ |
is preserved along time. Therefore, the equation ofξ becomes an equation in the standard
sphereS2 in the euclidean three-space.This is a key point of the proofs in both [NT] and [K].
We can perturb the equation ofξ to a parabolic equation inS2.

In this paper, we consider the vortex filament equation in a general oriented three-
dimensional Riemannian manifold(M, g ):

(VM) γt = γx × ∇xγx , |γx | ≡ 1 ,

where∇ is the covariant differentiation. When(M, g ) is homogeneous, we can generalize
the above technique, and obtain the existence of a short time solution [K].

Our main interest is the stability of Equation (V) under the most natural generalization
from a point of view of Riemannian geometry.

In the euclidean space, Hasimoto’s transformation reduces Equation (V) of three un-
known functions to an equation of two unknown functions. However, in a general Riemann-
ian manifold, such a transformation converts Equation (V) to an equation of five unknown
functions, because the equation contains position variables.
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Therefore, we have to take more directapproach. We perturb the equation ofγ itself to
a parabolic equation:

(P) γt = γx × ∇xγx + ε∇xγx .

Nishiyama [N] took this approach in a different setting. He proved the existence of a solution,
but did not show its uniqueness. The difficulty is caused by the variation of the norm|γx |
along time. We will overcome this difficulty by estimatingγ andw := |γx |2 simultaneously,
and prove

THEOREM 3.1. The equation (VM) has a unique short time solution for any C∞
closed initial curve γ0(x) with |∇xγ0| ≡ 1.

We here summarize our notation. We denote by|∗| the pointwise norm, by∇ the covari-
ant differentiation, byR the curvature tensor, and by× the exterior product on each tangent
spaceTpM, respectively. Partial derivation is denoted by subscript or∂x , ∂t :

ηu = ∂uη := ∂uη
i ∂

∂xi
= ∂ηi

∂u

∂

∂xi
.

The manifoldM, its structure and all functions onM are supposed to be of classC∞. We may
assume that the curvature and its derivatives are bounded onM, because we only consider the
short time existence.

For convenience, we recall relevant basicfacts from Riemannian geometry. For a map
η = η(u, v) : R2 → M, ηu is a vector field along the mapη. The covariant derivative∇uX of
a vector fieldX alongη for u-direction is given by

∇uX = (∇uX)i
∂

∂xi
= {∂uX

i + Γ (η)j
i
k · ∂uη

j · Xk} ∂

∂xi
,

whereΓj
i
k are Christoffel’s symbols. We see∇uηv = ∇vηu by definition, but higher co-

variant differentiations do not commute:∇v∇uX − ∇u∇vX = R(ηv, ηu)X. The curvature
tensorR has many symmetries, but we will not use them. The Riemannian metricg and the
exterior product× are parallel with respect to the covariant differentiation:∂u{g (X, Y )} =
g (∇uX, Y ) + g (X,∇uY ), ∇u(X × Y ) = (∇uX) × Y + X × (∇uY ).

We may assume, by rescaling, that the initial length of the curve is 1. Therefore, we may
considerγ as a map from(R/Z) × R≥0 to M.

We will take function norms only forx-direction. More precisely, we define theL2 inner
product〈∗, ∗〉 and theL2 norm‖∗‖ as follows.

〈α, β〉 :=
∫ 1

0
g (α, β) dx , ‖α‖2 := 〈α, α〉 , ‖α‖2

n =
n∑

i=0

‖∇i
x α‖2 .

Also, ‖α‖Cn measures onlyx-derivatives and is a function int . By integration by parts, we
have〈∇xX, Y 〉 = −〈X,∇xY 〉.

2. Existence. In this section we consider Problem (P) with a closed initial curveγ0(x)

such that|γ0x| ≡ 1. We assume that 0< ε ≤ 1. Then (P) becomes parabolic, and a short time
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solutionγ (x, t) exists for eachε (see, e.g., [E, Theorem 6.3]. We apply it to periodic functions
on R). In the following, we denote byC, Ci , K andT positive constants independent ofε.

LEMMA 2.1. wt = ε(wxx − 2|∇xγx |2).
PROOF. It follows from a simple calculation that

wt = 2g (γx,∇t γx) = 2g (γx,∇xγt ) = 2g (γx,∇xγx × ∇xγx + γx × ∇2
x γx + ε∇2

x γx)

= 2ε{∂x(g (γx,∇xγx)) − |∇xγx |2} = ε(wxx − 2|∇xγx |2) .

�

LEMMA 2.2. It holds that maxw ≤ 1 and ‖∇xγx‖, ‖wx‖ ≤ C.

PROOF. By the maximum principle, Lemma 2.1 implies that maxw ≤ 1, i.e.,

lim sup
h↓0

1

h
{maxw(∗, t) − maxw(∗, t − h)} ≤ lim sup

h↓0

1

h
{w(x, t) − w(x, t − h)}

= wt(x, t) ≤ εwxx(x, t) ≤ 0 ,

wherex is the maximum point ofw at t . For‖∇xγx‖, using integration by parts, we have

d

dt
‖∇xγx‖2 = 2〈∇xγx,∇t∇xγx〉 = 2〈∇xγx, R(γt , γx)γx + ∇2

x γt 〉
= 2〈∇xγx, R(γx × ∇xγx + ε∇xγx, γx)γx〉 − 2〈∇2

x γx, γx × ∇2
x γx + ε∇2

x γx〉
≤ C1‖∇xγx‖2 − 2ε‖∇2

x γx‖2 ,

which means that‖∇xγx‖ increases at most exponentially. Consequently, we see that‖wx‖ =
‖2g (γx,∇xγx)‖ ≤ 2‖∇xγx‖ ≤ C2. �

LEMMA 2.3. There exists a positive constant T such that w ≥ 1/2 holds for any
solution γ (x, t) defined on a subinterval [0, T ′) of [0, T ).

PROOF. By Lemma 2.2, we have‖∇xγx‖, ‖wx‖ ≤ C1. Hence, from

d

dt
‖w‖2 = 2〈w,wt 〉 = 2ε〈w,wxx − 2|∇xγx |2〉 = −2ε‖wx‖2 − 4ε〈w, |∇xγx |2〉

≥ −C2 − 4‖∇xγx‖2 ≥ −C3 ,

we see that‖w‖2 ≥ 1 − C3T holds on 0≤ t < T , and that

‖1 − w‖2 ≤ ‖1 − w‖2 + ‖w‖2 − 1 + C3T ≤ 2〈w,w − 1〉 + C3T ≤ C3T .

Therefore, by the Sobolev imbedding theorem,

max(1 − w)2 ≤ ‖1 − w‖(‖1 − w‖ + ‖wx‖) ≤ C4
√

T (
√

T + C5) ,

and the result holds for a smallT . �
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LEMMA 2.4. Let γ (x, t) be as above. There exists a positive constant C such that

ε−1 d

dt
‖wx‖2 ≤ −‖wxx‖2 + C(1 + ‖∇2

x γx‖) ,

ε−1 d

dt
‖wxx‖2 ≤ −‖wxxx‖2 + C(1 + ‖∇2

x γx‖3) .

PROOF.

d

dt
‖wx‖2 = 2〈wx,wtx〉 = −2ε〈wxx,wxx − 2|∇xγx |2〉

= −2ε‖wxx‖2 + 4ε〈wxx, |∇xγx |2〉 ≤ −ε‖wxx‖2 + C1ε‖∇xγx‖2‖∇xγx‖2
C0 ,

d

dt
‖wxx‖2 = 2〈wxx,wtxx〉 = −2ε〈wxxx,wxxx − 4g (∇xγx,∇2

x γx)〉
= −2ε‖wxxx‖2 + 8ε〈wxxx, g (∇xγx,∇2

x γx)〉
≤ −ε‖wxxx‖2 + C2ε‖∇xγx‖2

C0‖∇2
x γx‖2 .

�

PROPOSITION 2.5. There exist positive constants T and C such that ‖∇2
x γx‖ ≤ C and

‖wx‖C0 ≤ C
√

ε hold for any solution defined on a subinterval [0, T ′) of [0, T ).

PROOF. We consider in a small time interval such that 1/2 ≤ w ≤ 1 holds by Lemma
2.3. We calculate the time derivative of‖∇2

x γx‖2 to get

d

dt
‖∇2

x γx‖2 = 2〈∇2
x γx,∇t∇2

x γx〉
= 2〈∇2

x γx, R(γt , γx)∇xγx + ∇x (R(γt , γx)γx) + ∇3
x γt 〉 .

The curvature terms are bounded by

C3‖∇2
x γx‖‖|∇xγx |2 + |∇2

x γx |‖ ≤ C4(1 + ‖∇2
x γx‖2) .

For the remaining term 2〈∇2
x γx,∇3

x γt 〉, we have

2〈∇2
x γx,∇3

x γt 〉 = −2〈∇3
x γx,∇2

x γt 〉
= −2〈∇3

x γx,∇xγx × ∇2
x γx + γx × ∇3

x γx + ε∇3
x γx〉

= −2ε‖∇3
x γx‖2 − 2〈∇3

x γx,∇xγx × ∇2
x γx〉 .

We decompose each factor of〈∇3
x γx,∇xγx × ∇2

x γx〉 to theγx part and the component
perpendicular toγx to get

−2〈∇3
x γx,∇xγx × ∇2

x γx〉 = −2〈w−1g (∇3
x γx, γx)γx,∇xγx × ∇2

x γx〉
− 2〈∇3

x γx,w
−1g (∇xγx, γx)γx × ∇2

x γx〉
− 2〈∇3

x γx,w
−1g (∇2

x γx, γx)∇xγx × γx〉 .
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For the first term, we use the equality: 2g (∇3
x γx, γx) = wxxx − 3∂x(|∇xγx |2). Then

−2〈w−1g (∇3
x γx, γx)γx,∇xγx × ∇2

x γx〉
= −〈w−1{wxxx − 3∂x(|∇xγx |2)}γx,∇xγx × ∇2

x γx〉
≤ C5(‖wxxx‖ + ‖∇xγx‖C0‖∇2

x γx‖)‖∇xγx‖C0‖∇2
x γx‖

≤ ‖wxxx‖2 + C6(1 + ‖∇2
x γx‖3) .

For the second term, we use the equality: 2g (∇xγx, γx) = wx . Then

−2〈∇3
x γx,w−1g (∇xγx, γx)γx × ∇2

x γx〉 = −〈∇3
x γx,w−1wxγx × ∇2

x γx〉
≤ C7‖wx‖C0‖∇3

x γx‖‖∇2
x γx‖ ≤ C8(‖wx‖ + ‖wxx‖)‖∇3

x γx‖‖∇2
x γx‖

≤ ε‖∇3
x γx‖2 + C9ε

−1(‖wx‖2 + ‖wxx‖2)‖∇2
x γx‖2 .

For the last term, we use the equality: 2g (∇2
x γx, γx) = wxx − 2|∇xγx |2. Then

−2〈∇3
x γx,w

−1g (∇2
x γx, γx)∇xγx × γx〉 = 2〈∇2

x γx, ∂x{w−1g (∇2
x γx, γx)}∇xγx × γx〉 ,

which has bounds similar to the first term.
Summing up these, we have

d

dt
‖∇2

x γx‖2 ≤ −ε‖∇3
x γx‖2 + 2‖wxxx‖2

+ C10{1 + ‖∇2
x γx‖3 + ε−1(‖wx‖2 + ‖wxx‖2)‖∇2

x γx‖2} .

Combining it with Lemma 2.4, we see thatX(t) := ε−1‖wx‖2+ε−1‖wxx‖2+ (1/2)‖∇2
x γx‖2

satisfiesX′(t) ≤ C11(1 + X(t))2. Therefore,ε−1‖wx‖2, ε−1‖wxx‖2 and‖∇2
x γx‖ are uni-

formly bounded on a certain finite time interval. �

LEMMA 2.6. Let T be as in Proposition 2.5 and n a nonnegative integer. For any
positive number K, there exists a positive constant C such that if ‖γx‖n+2 ≤ K, then

ε−1 d

dt
‖∂n+3

x w‖2 ≤ −‖∂n+4
x w‖2 + C(1 + ‖∇n+3

x γx‖2) .

PROOF.

d

dt
‖∂n+3

x w‖2 = 2

〈
∂n+3
x w, ∂n+3

x wt = −2ε〈∂n+4
x w, ∂n+2

x (wxx − 2|∇xγx |2)〉
〉

≤ −2ε‖∂n+4
x w‖2 + 4ε‖∂n+4

x w‖‖∂n+2
x (|∇xγx |2)‖ .

Here, we also have

‖∂n+2
x (|∇xγx |2)‖ ≤ 2‖∇n+3

x γx‖‖∇xγx‖C0 + C1‖∇n+2
x γx‖‖∇xγx‖C1 + C2

≤ C3(1 + ‖∇n+3
x γx‖) .

�
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LEMMA 2.7. Let T be as in Proposition 2.5 and n a nonnegative integer. For any
positive number K, there exists a positive constant C such that if ‖γx‖n+2 ≤ K, then

d

dt
‖∇n+3

x γx‖2 ≤ −ε‖∇n+4
x γx‖2 + C(1 + ‖∇n+3

x γx‖2 + ‖∂n+4
x w‖2) .

PROOF.

d

dt
‖∇n+3

x γx‖2 = 2〈∇n+3
x γx,∇t∇n+3

x γx〉

= 2
〈
∇n+3

x γx,

n+2∑
i=0

∇i
x (R(γt , γx)∇n+2−i

x γx) + ∇n+4
x γt

〉

≤ C1‖γx‖2
n+3 + 2〈∇n+3

x γx,∇n+4
x (γx × ∇xγx + ε∇xγx)〉

= C1‖γx‖2
n+3 − 2ε‖∇n+4

x γx‖2 + 2
n+4∑
i=0

(
n + 4

i

)
〈∇n+3

x γx,∇i
x γx × ∇n+5−i

x γx〉 .

In the last summation term,‖∇i
x γx × ∇j

x γx‖ ≤ ‖∇i
x γx‖C0‖∇j

x γx‖ ≤ C2 if i < j ≤ n + 2,
and cancels ifi = 2 orn + 3. Therefore, we have to measure only terms withi = 0, 1, n + 4.
Moreover, the term withi = 0 equals to−〈∇n+3

x γx,∇xγx × ∇n+4
x γx〉, and is reduced to the

casei = 1.
As in the proof of Proposition 2.5, we decompose each factor of the term withi = 1 and

n + 4 to theγx part and the component perpendicular toγx .

〈∇n+3
x γx,∇xγx × ∇n+4

x γx〉 = 〈w−1g (∇n+3
x γx, γx)γx,∇xγx × ∇n+4

x γx〉
+ 〈∇n+3

x γx,w
−1g (∇xγx, γx)γx × ∇n+4

x γx〉
+ 〈∇n+3

x γx,w
−1g (∇n+4

x γx, γx)∇xγx × γx〉 .

We know thatg (∇n+3
x γx, γx) = (1/2)∂n+3

x w − C3g (∇n+2
x γx,∇xγx)+(lower derivatives).

The first term is estimated as

〈w−1g (∇n+3
x γx, γx)γx,∇xγx × ∇n+4

x γx〉
= −〈∂x{w−1g (∇n+3

x γx, γx)}γx,∇xγx × ∇n+3
x γx〉

− 〈w−1g (∇n+3
x γx, γx)γx,∇2

x γx × ∇n+3
x γx〉

≤ C4(‖∂n+4
x w‖ + ‖γx‖n+3 + ‖∂n+3

x w‖C0 + ‖γx‖Cn+2)‖∇n+3
x γx‖

≤ C5(1 + ‖∂n+4
x w‖ + ‖∇n+3

x γx‖)‖∇n+3
x γx‖

≤ C6(1 + ‖∂n+4
x w‖2 + ‖∇n+3

x γx‖2) .

The last term〈∇n+3
x γx,w

−1g (∇n+4
x γx, γx)∇xγx × γx〉 can be estimated similarly. Since

|g (∇xγx, γx)| = (1/2)|wx| ≤ C7
√

ε, the second term is estimated as
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〈∇n+3
x γx,w

−1g (∇xγx, γx)γx × ∇n+4
x γx〉 ≤ C8

√
ε‖∇n+3

x γx‖‖∇n+4
x γx‖

≤ aε‖∇n+4
x γx‖2 + C9a

−1‖∇n+3
x γx‖2 ,

wherea is an arbitrary positive number.
Summing up these with sufficiently smalla, we get the result. �

THEOREM 2.8. Let T be as in Proposition 2.5. There exists a C∞ solution γ of (VM)
on 0 ≤ t < T .

PROOF. By Lemmas 2.6 and 2.7,X(t) := ‖∇n+3
x γx‖2 + Cε−1‖∂n+3

x w‖2 satisfies
X′(t) ≤ C1(1 + X(t)), whereC is as in Lemma 2.7. Therefore, by induction, each solu-
tion is smoothly bounded. Since the bound is uniform with respect tot , we can continue
the solution up toT . Moreover, since the bounds are independent ofε, a subsequence ofγ ε

(ε ↓ 0) converges smoothly. The limit is a solution of (VM). �

3. Uniqueness. Once proving the existence of a solution, to show the uniqueness is
standard. We take a tubular neighbourhoodU of the initial dataγ0, and embed it inR3. In
other words, we consider the vortex filament equation inR3 with a curved Riemannian metric
g . With the coordinate ofR3, we express the covariant differentiation and the exterior product
by

∇xα = ∇x(αi∂i) = (αi
x + Γj

i
kγ

j
x αk)∂i , α × β = (αj ∂j ) × (βk∂k) = χj

i
kα

jβk∂i ,

where∂i are the coordinate vector fields,Γj
i
k are the Christoffel symbols, andχj

i
k are the

coordinate expression of the exterior product. Using this, (VM) is written as

γ i
t = χj

i
kγ

j
x (γ k

xx + Γl
k
mγ l

xγ
m
x ) .

Letη be another solution with the same initial data. By ignoringε in Section 2,η satisfies
the same estimation asγ . We useχ̃ andΓ̃ the corresponding coefficients alongη, and put
ζ i := ηi − γ i . Thenζ i satisfies

ζ i
t = χj

i
kγ

j
x (ζ k

xx + 2Γl
k
mγ l

xζ
m
x ) + χj

i
kζ

j
x (γ k

xx + Γl
k
mγ l

xγ m
x ) + χj

i
kζ

j
x ζ k

xx + P ,(3.1)

whereP is a sum of terms that containsχ̃j
i
k−χj

i
k, Γ̃j

i
k−Γj

i
k orζ i

xζ
j
x . Sinceγ andζ = η−γ

are smoothly bounded, we know that|P |, |Px | ≤ C1(|ζ | + |ζx |).
We identifyζ with a vector fieldζ i∂i alongγ . Then we obtain

∇t ζ = (ζ i
t + Γj

i
kγ

j
t ζ k)∂i,

∇xζ = (ζ i
x + Γj

i
kγ

j
x ζ k)∂i,

∇2
x ζ = (ζ i

xx + 2Γj
i
kγ

j
x ζ k

x + (Γj
i
kγ

j
x )xζ k + Γj

i
kγ

j
x Γl

k
mγ l

xζ
m)∂i .

Substituting these to (3.1), we get

∇t ζ = γx × ∇2
x ζ + ∇xζ × ∇xγx + ∇xζ × ∇2

x ζ + Q,

where Q is a sum ofP and terms that containζ i or ζ i
xζ

j
x . Note that |Q|, |∇xQ| ≤

C2(|ζ | + |∇xζ |).
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Therefore, we have

d

dt
‖ζ‖2 = 2〈ζ,∇t ζ 〉 = 2〈ζ, γx × ∇2

x ζ + ∇xζ × ∇xγx + ∇xζ × ∇2
x ζ + Q〉

= −2〈ζ,∇xγx × ∇xζ 〉 + 2〈ζ,∇xζ × ∇xγx〉 + 2〈ζ,∇xζ × ∇2
x ζ 〉 + 2〈ζ,Q〉

≤ C3‖ζ‖(‖ζ‖ + ‖∇xζ‖) ,

because∇2
x ζ is bounded. Also, we have

d

dt
‖∇xζ‖2 = 2〈∇xζ,∇t∇xζ 〉 = 2〈∇xζ, R(γt , γx)ζ + ∇x∇t ζ 〉

≤ C4‖ζ‖‖∇xζ‖ − 2〈∇2
x ζ,∇t ζ 〉

= C4‖ζ‖‖∇xζ‖ − 2〈∇2
x ζ,∇xζ × ∇xγx + Q〉

= C4‖ζ‖‖∇xζ‖ − 2〈∇2
x ζ,∇xζ × ∇xγx〉 + 2〈∇xζ,∇xQ〉

≤ C5‖ζ‖(‖ζ‖ + ‖∇xζ‖) − 2〈∇2
x ζ,∇xζ × ∇xγx〉 .

To estimate the remaining term, we use the equalityg (γx, γx) = 1. By the same way
as the case ofΓ andχ , it implies thatg (γx,∇xζ ) can be expressed as a sum of terms that
containg̃ ij − g ij , ζ i or ζ i

xζ
j
x , and we have|g (γx,∇xζ )|, |∂x(g (γx,∇xζ ))|, |g (γx,∇2

x ζ )| ≤
C6(|ζ | + |∇xζ |). Since∇xγx is perpendicular toγx ,

〈∇2
x ζ,∇xζ × ∇xγx〉 = 〈g (∇2

x ζ, γx)γx,∇xζ × ∇xγx〉 + 〈∇2
x ζ, g (∇xζ, γx)γx × ∇xγx〉

= 〈g (∇2
x ζ, γx)γx,∇xζ × ∇xγx〉 − 〈∇xζ,∇x {g (∇xζ, γx)γx × ∇xγx}〉

≤ C7‖∇xζ‖(‖ζ‖ + ‖∇xζ‖) .

Therefore,X(t) := ‖ζ‖2+‖∇xζ‖2 satisfiesX′(t) ≤ C8X(t), which implies thatζ identically
vanishes. We have proved

THEOREM 3.1. (VM) has a unique short time solution for any closed initial curve
γ0(x) with |γ0x | ≡ 1.

4. Appendix. In Section 2, we heavily used the fact that the time derivative ofw

is bounded byε. There is another method of estimation, which we did not use because it
is lengthier than the proof given in Section 2. The method uses a weighted norm that has
resemblance to [N]. Therefore, there may be some interest to the method. Here, we give its
key point.

Since theε-parts are easy to estimate by usual parabolic equation’s argument, we can
ignore such terms. Also, we can ignore curvature terms, because they contain only lower
derivatives.

Let ϕ be the part of∇2
x γx perpendicular toγx . Namely,

ϕ := ∇2
x γx − uγx ; u := w−1g (∇2

x γx, γx) = w−1{(wxx/2) − |∇xγx |2} .
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By Lemmas 2.2 and 2.3, we know that‖∇xγx‖ and‖wx‖ are bounded from above, and
thatw is bounded from below. Therefore,

∂x |∇xγx |2 = 2g (∇xγx,∇2
x γx) = 2g (∇xγx, ϕ + uγx) ,

‖∂x |∇xγx |‖ ≤ ‖ϕ‖ + ‖u‖ ≤ C1(‖ϕ‖ + ‖wxx‖ + ‖∇xγx‖C0)

≤ 1

2
‖∂x |∇xγx |‖ + C2(‖ϕ‖ + ‖wxx‖ + 1) ,

‖∇xγx‖C0 ≤ C3(‖ϕ‖ + ‖wxx‖ + 1) ,

‖∇2
x γx‖2 = ‖ϕ‖2 + ‖uγx‖2 ≤ C4(‖ϕ‖2 + ‖wxx‖2 + ‖∇xγx‖C0)

≤ C5(‖ϕ‖2 + ‖wxx‖2 + 1) ,

which imply that we can use‖ϕ‖ instead of‖∇2
x γx‖. Note also thatwxx contains third deriva-

tives ofγ , and is comparable toϕ. From

wt = [ε terms],

γt = γx × ∇xγx + ε∇xγx = γx × ∇xγx + [ε terms],

∇xγt = γx × ∇2
x γx + [ε terms]= γx × ϕ + [ε terms],

we have

∇t ϕ = ∇t∇2
x γx − utγx − u∇xγt

= ∇2
x (γx × ϕ) − utγx − uγx × ϕ + [ε, lower terms].

For a constanta, we putX(t) := ‖waϕ‖2 + ‖wxx‖2. Then we have

d

dt
‖waϕ‖2 = 2〈w2aϕ,∇t ϕ〉 + [ε terms]= 2〈w2aϕ,∇2

x (γx × ϕ)〉 + [ε, lower terms]

= −2〈∂x(w2a)ϕ + w2a∇xϕ,∇xγx × ϕ + γx × ∇xϕ〉 + [ε, lower terms]

= −4a〈w2a−1wxϕ, γx × ∇xϕ〉 − 2〈w2a∇xϕ,∇xγx × ϕ〉 + [ε, lower terms].

Here,

−2〈w2a∇xϕ,∇xγx × ϕ〉
= −2〈w2a−1g (∇xϕ, γx)γx,∇xγx × ϕ〉 − 2〈w2a−1∇xϕ, g (∇xγx, γx)γx × ϕ〉
= 2〈w2a−1g (ϕ,∇xγx)γx,∇xγx × ϕ〉 − 〈w2a−1wx∇xϕ, γx × ϕ〉 .

Therefore,
d

dt
‖waϕ‖2 = (4a − 1)〈w2a−1wx∇xϕ, γx × ϕ〉 + 2‖ϕ‖2‖∇xγx‖2

C0 + [ε, lower terms]

≤ (4a − 1)〈w2a−1wx∇xϕ, γx × ϕ〉 + C6(1 + X(t)2) + [ε terms].

For a = 1/4, we haveX′(t) ≤ C7(1 + X(t)2), andX(t) is bounded on a certain fi-
nite time interval[0, T ). For higher derivatives, we can check by a similar calculation that
Xn(t) := ‖w(n+1)/4∇n

x ϕ‖2 + ‖∂n+2
x w‖2 satisfiesX′

n(t) ≤ C8(1 + Xn(t)), whereC8 depends
onXn−1. Thus, by induction, we can estimate all derivatives on[0, T ).
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