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Flow visualization as well as three-dimensional cavitating flow simulations have been
employed for characterizing the formation of cavitation inside transparent replicas
of fuel injector valves used in low-speed two-stroke diesel engines. The designs tested
have incorporated five-hole nozzles with cylindrical as well as tapered holes operating
at different fixed needle lift positions. High-speed images have revealed the formation
of an unsteady vapour structure upstream of the injection holes inside the nozzle
volume, which is referred to as ‘string-cavitation’. Computation of the flow distribution
and combination with three-dimensional reconstruction of the location of the strings
inside the nozzle volume has revealed that strings are found at the core of recirculation
zones; they originate either from pre-existing cavitation sites forming at sharp corners
inside the nozzle where the pressure falls below the vapour pressure of the flowing
liquid, or even from suction of outside air downstream of the hole exit. Processing of
the acquired images has allowed estimation of the mean location and probability
of appearance of the cavitating strings in the three-dimensional space as a function
of needle lift, cavitation and Reynolds number. The frequency of appearance of the
strings has been correlated with the Strouhal number of the vortices developing inside
the sac volume; the latter has been found to be a function of needle lift and hole
shape. The presence of strings has significantly affected the flow conditions at the
nozzle exit, influencing the injected spray. The cavitation structures formed inside
the injection holes are significantly altered by the presence of cavitation strings and
are jointly responsible for up to 10 % variation in the instantaneous fuel injection
quantity. Extrapolation using model predictions for real-size injectors operating at
realistic injection pressures indicates that cavitation strings are expected to appear
within the time scales of typical injection events, implying significant hole-to-hole and
cycle-to-cycle variations during the corresponding spray development.

1. Introduction

The realization that diesel injector nozzles may cavitate under typical operating
conditions inevitably adds a degree of complexity to the system design since, until
recently, it was not clear how and when cavitation is formed and most importantly
whether it has a beneficial influence on the exiting spray and the subsequent auto-
ignition process. Relevant publications on the subject of cavitation in real-size diesel
injectors are those of Chaves et al. (1995), Chaves & Obermeier (1998), Badock
et al. (1999), Arcoumanis et al. (2000), while a number of studies have examined
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the development of cavitation in simplified transparent nozzle replicas, for example
He & Ruiz (1995), Soteriou, Andrews & Smith (1995), Kim, Nishida & Hiroyasu
(1997), Soteriou et al. (2001). Despite the significant amount of work, there is still
uncertainty surrounding the advantages offered by the random formation of cavitation
in enhancing the two-phase flow mixture at the exit of the nozzle and the effect this
may have on possible wear of the nozzle metal body, as discussed by Gavaises et al.
(2007). One approach gaining some support tries to eliminate cavitation completely
through appropriate design of the hole entry and non-cylindrical shape of the holes
(Blessing et al. 2003; Soteriou et al. 2006). Irrespective of the prevailing trend in
nozzle design, thorough understanding of the nozzle internal flow is a prerequisite for
designing the next generation of diesel engines for passenger cars, commercial and
marine applications. Cavitation in such nozzles has been identified in two distinct
forms according to Arcoumanis & Gavaises (1998) and Roth, Gavaises & Arcoumanis
(2002). The geometric-induced cavitation is a relatively well-known phenomenon
initiating at sharp corners where the pressure may fall below the vapour pressure
of the flowing liquid. A second form of cavitation has been observed, and referred
to as ‘string’ or ‘vortex’ cavitation by Afzal et al. (1999) and Roth et al. (2002).
These two-phase flow structures are usually found in the bulk of the liquid, in the
areas where large-scale, relative to the nozzle geometry, vortices exist. Although more
recent studies have shown similar behaviour in various types of multi-hole nozzles, for
example Nouri et al. (2007), their formation process has been found to be relatively
irregular while their interaction with the mean flow remains poorly understood. Other
studies on cavitation performed in venturi-type nozzles, for example see Gopalan,
Katz & Knio (1999) and Gopalan & Katz (2000), have employed laser diagnostics to
provide insight into the mechanism of bubble entrapment into vortical flow structures,
but the complexity of the geometry of diesel injectors makes it difficul to obtain
such measurements. Furthermore, because of the difficulty in obtaining real-time
measurements during the injection process, most of the reported experimental studies
refer to experimental devices simulating operating conditions relevant to those of
diesel engines. Nevertheless, simplifications to the design of the nozzle itself or to the
transient operation of the needle are unavoidable, which has implications on the very
short injection durations and the very high liquid velocities, of the order of 400 m s−1

in production injectors. Parallel to the continuing effort to obtain better experimental
information under as realistic conditions as possible, there is an increasing demand for
developing and validating computational fluid dynamics models to predict cavitation.
An increasing number of numerical models have appeared over the years in the
literature which allow the formation and development of cavitation inside the nozzle
to be simulated (Kubota, Kato & Yamaguchi 1992; Avva, Singhal & Gibson 1995;
Schmidt, Rutland & Corradini 1997; Alajbegovic, Grogger & Philipp 1999; Marcer
et al. 2000; Sauer, Winkler & Schnerr 2000; Singhal et al. 2001, 2002). Each model
is based on different assumptions while various numerical methodologies have been
used for implementation in commercial or in-house fluid-flow solvers. Most models
are based on the assumption that cavitation is a mechanically driven phenomenon
initiated by the presence of nuclei which grow to become bubbles and then form the
complex cavitation structures observed experimentally. Despite the effort devoted to
developing cavitation models applicable for fuel injectors, all of those applied so far
have focused on geometric-induced cavitation. It can be argued that there is no model
yet capable of predicting string cavitation in fuel-injection equipment. This is mainly
due to the lack of experimental data available for the relevant flow phenomena and,
thus, the incomplete physical understanding of the process. As it will be revealed later
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in this paper, the aforementioned models are, in principle, incapable of simulating
string cavitation inside injector nozzles. Some studies on vortex cavitation, for example
Chahine & Duraiswami (1992) and Chahine & Kalumuck (2002), which represent
a promising theoretical background to this problem, have not yet been applied to
nozzle flows.

The present paper represents an extension to Gavaises & Andriotis (2006) and aims
to provide new experimental data for the origin, formation, development, lifetime and
influence on the nozzle hole flow of vortex-type or string cavitation. The designs
investigated include multi-hole injectors used in low-speed two-stroke diesel engines.
The specific design of these nozzles allows for clear optical access to all holes
and the nozzle sac volume to be obtained. In addition, their relatively large size
compared to that of automotive injectors offers the possibility of obtaining images
of cavitation in a 1:1 scale. This has been achieved by manufacturing a number of
fully transparent acrylic nozzle replicas, which have allowed optical access into the
nozzle volume upstream of the injection holes, inside them as well as into the sprays
formed at the nozzle exit. The designs tested include a number of cylindrical as well
as tapered (converging) holes; the latter greatly modify the pressure distribution at
the hole entry and may prevent formation of geometric cavitation, thus, providing
evidence about the origin of string cavitation in the absence of hole cavitation. Use
of two synchronised high-speed cameras has allowed reconstruction of the location
of the cavitation strings inside the three-dimensional nozzle sac volume as well as
characterization of the frequency of their appearance and development, as a function
of the needle lift, cavitation and Reynolds number. Use of computational fluid
dynamics (CFD) models has provided information about the local flow field at the
location where cavitation strings start developing. Image collection over long enough
times has provided information about their lifetime and an estimate of the mean
volume they occupy inside the nozzle tip. At the same time, measurements of the
flow rate both in the absence and in the presence of cavitation strings has provided
information about their effect on the flow-rate variation between individual injection
holes. These measurements have been combined with flow imaging of the cavitation
structures inside the injection holes. As expected, the hole flow is influenced by the
co-existence and interaction of the geometric-induced cavitation, which is normally
always present, and the relatively unsteady string cavitation. In turn, simultaneous
imaging of the flow inside the nozzle holes and the near nozzle spray formation
has shown that the atomization process of the injected liquid is greatly affected by
the cavitation strings. This results not only in uneven liquid dispersion within the
significantly increased spray cone angle, but also in hole-to-hole variations.

The next section of the paper describes the experimental set-up used, followed
by a brief description of the CFD model employed for simulating the single-phase
internal nozzle flow as well as the cavitation formation and development inside the
injection holes. Then the various results obtained are presented, followed by the most
important findings which are summarized at the end.

2. Experimental set-up and test cases

Various transparent five-hole nozzles were manufactured from a transparent acrylic
material; the nozzle geometry is shown in figure 1. All holes are concentrated on
one 90 ◦ sector; this is because of the size of the engine they operate which has a
bore diameter of about 1.0 m. Three fuel valves are installed on the engine cylinder
head which inject the fuel circumferentially – rather than in the radial direction as



198 A. Andriotis, M. Gavaises and C. Arcoumanis

(a) (b) (c)
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Figure 1. Nozzle geometries investigated (a) 5-hole nozzle without expansion tubes, (b) 5-hole
nozzle with expansion tubes and (c) unstructured computational grid for the 5-hole nozzle
with local refinement upstream and at the entry to the injection holes.

in passenger car diesel engines. Another important characteristic of this nozzle is the
shape of the needle. As can be seen in figure 1, there is a hollow slide-type needle
which seals the injection holes directly, leaving almost zero sac volume when it closes.
When the needle opens, the slide uncovers the injection holes and fuel flows from the
fuel line in the inner part of the hollow needle, allowing fuel injection. The volume
below the needle and upstream of the injection holes will be referred to as ‘nozzle
volume’, and it is equivalent to the ‘sac volume’ of passenger car diesel injectors.
The transparent nozzle of figure 1(a) is manufactured on a 1:1 scale and it injects
liquid directly into ambient air under room temperature and atmospheric pressure;
the working fluid is water at 25 ◦C. This nozzle was used for visualization of the
liquid atomization process which also allowed at the same time visualization of the
cavitation strings. The nozzle of figure 1(b) was enlarged to a 2:1 scale and it was used
for investigating the internal nozzle flow in more detail; specially designed discharge
channels were manufactured for allowing injection into liquid without restricting the
nozzle hole flow upstream. In this way, splashing of the liquid on the outer surfaces
of the injector was prevented and thus, clear images of the internal nozzle flow have
been obtained. Two different versions of nozzles have been manufactured, one with
cylindrical and one with tapered holes. The nominal injection hole exit diameter for
both real-size nozzle designs is about 1.5 mm while the tapered holes incorporate a
4 ◦ full cone angle; the needle lift at its full (stop) position is about 3.7 mm.

The test rig used has been used in a number of studies and it is described in
detail by Roth et al. (2002). The flow rate was controlled by a valve in the pipe
downstream of the feed pump and measured by an ultrasonic flow meter. The flow
rate from each of the injection holes was also measured simultaneously with the
incoming flow rate. Both the injection pressure and the pressure downstream of the
injection holes were adjusted by restricting the inflow and outflow of the injector,
respectively. In order to reach sub-atmospheric back pressures corresponding to
higher cavitation numbers, a suction pump was installed in addition to the main
feed pump. The Reynolds number has been defined on the basis of the mean flow
rate and the average hole diameter while the cavitation number is defined here as
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Flow rate (l s−1) Feed pressure (bar) Back pressure (bar) Cavitation number Reynolds number

0.13 1 0.5 0.5 10 000
0.9 6 1.3 5 68 000

Table 1. Range of operating conditions investigated.

CN = (PINJ − PBACK)/(PBACK − PVAPOUR), wherePINJ, PBACK andPVAPOUR represent the
injection, ambient and vapour pressures, respectively. Since the fuel flow through the
injector nozzles, especially through the holes, is highly turbulent, all flow features are
expected to behave transiently and within short time scales. Since it is important to
gain knowledge about the dynamics of cavitation inception and formation processes
for various flow conditions, two high-speed digital video systems were set up and
synchronized in order to capture the cavitating structures from two perpendicular
views. Correlation of the obtained images with the numerical grid used for the CFD
analysis has allowed reconstruction of the instantaneous location and volume of the
strings inside the nozzle. Temporal averaging of sufficient number of strings has
provided the probability of finding a cavitation string at a specific location inside
the nozzle volume for different operating conditions. Alternatively, superposition of
images obtained from the bottom view only has allowed the temporal and spatial
averaging of the string location over the whole nozzle volume depth. This has
provided a relatively easy way for comparing different cases where the cavitation
strings form at different locations within the nozzle volume in relation to the different
injection holes. It has to be noted that although imaging from the bottom view
can capture the flow structure in all 5 holes and the nozzle volume simultaneously,
imaging from the side view is restricted to only hole 1 or hole 5, depending on
the positioning of the camera. The Photron FASTCAM-ultima APX cameras used
here are able to take up to 120 000 frames per second (f.p.s.) with an exposure
time as low as 4 ns and a maximum resolution of 1024 × 1024 at 3000 f.p.s. For
the particular cases investigated here, usually 6000 to 16 000 f.p.s. were sufficient
to capture the temporal development of cavitation using a shutter time of 30 µs.
In total, up to 4000 images were collected for a particular case. A strong halogen
floodlight together with some halogen spotlights were necessary to provide enough
light for the intensified CCD video chip in combination with the high frame rates. The
operating conditions tested are summarized in table 1; they refer to cavitation numbers
between 0.5 and 5, which are similar to those of production injectors operating under
engine operating conditions. However, the much lower injection pressures used here
restrict the experiment into flow rates (and Reynolds number) much lower than those
of the real operating conditions. Imaging was performed for various combinations
of the listed parameters and for different needle lifts. The values to be reported
here correspond to the ‘full’ or ‘nominal’ lift, which corresponds to the nominal stop
position of the needle in the real injector. The ‘low’ lift case corresponds to a needle
lift at about 80 % of the full one. In this case, the slide is just uncovering the injection
holes. Finally, the ‘high’ lift case corresponds to 120 % of the full lift position.

3. Numerical model

The in-house GFS RANS flow solver, as modified by Giannadakis (2005), has been
used to simulate the flow inside the nozzles tested. This model is able to simulate the
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geometric-induced hole cavitation, but not string cavitation; thus, model predictions
can be used only complementarily to the experimental results, in order to assist
in the interpretation of the obtained images. For the liquid phase, the volume and
ensemble averaged continuity and Navier–Stokes equations are solved. As a result
of the dynamic interaction of the cavitation bubbles with the surrounding pressure
field, the available volume for the liquid phase can change significantly. The effect
of the additional vapour is taken into account by including the liquid phase volume
fraction αl (referred to as liquid fraction) in the conservation equations. Moreover,
owing to the slip velocity between the cavitation bubbles and the flowing liquid,
there is additional interaction which is taken into account with the inclusion of the
appropriate source terms in the conservation equations:

∂

∂t
(αLρL) + ∇ · (αLρLuL) = 0, (1)

∂(αLρLuL)

∂t
+ ∇ · (αLρLuL ⊗ uL) = −∇p + αL∇ · ((μL + μt )(∇ ⊗ uL + (∇ ⊗ uL)T ))

+ smomentum, (2)

where μt is the eddy viscosity, calculated by

μt = CμρL

k2
L

εL

. (3)

In (2), with the term smomentum the effect of the cavitation bubbles’ relative motion
upon the liquid phase is taken into account. Although a model that can address the
combined effect of turbulence and cavitation on the flow has as yet not appeared,
nozzle flows are highly turbulent, the standard two-equation k–ε has been employed
for the consideration of turbulence effects. The additional effect of the bubbles’
relative movement on the liquid phase turbulent kinetic energy and dissipation are
also included according to the approach of Laı́n et al. (2002). Note that as part of
the numerous numerical tests that have been performed during the development of
the model, a number of other turbulence models have been tested, apart from the
standard k–ε, namely the RNG of Yakhot et al. (1992) and the non-equilibrium
version of Shyy et al. (1997) as applied in the simulation of cavitating flows by
Vaidyanathan et al. (2003). Overall, it can be claimed that although a variation of
up to 3 % in the predicted nozzle discharge coefficient can be attributed to the
turbulence model Giannadakis et al. (2007), the details of the underlining physical
processes are not affected significantly; furthermore, no model has been found to
persistently predict cavitation better than the rest for all test cases, within the context
of the Reynolds-averaged methodology. For this reason, it is believed that the model
adopted here represents a robust engineering tool for the current state of the model’s
sophistication. The SIMPLE algorithm of Patankar & Spalding (1972) is used to
solve for the continuous phase flow field. In single-phase calculations of nozzle
flows with injection and back pressures corresponding to cavitation numbers high
enough for cavitation to be present, the location of its inception is identified from
the numerical cells where the pressure falls below vapour pressure. The volume of
all the Eulerian grid cells where pressure is below vapour is referred to as ‘tension
volume’ and it provides a quantitative indication of how much liquid is stretched
owing to the flow. Cavitation initiates and then further develops by the existence
of small spherical bubble nuclei assumed to pre-exist within the liquid, following a
pre-assigned size and number distribution according to Meyer, Billet & Holl (1992).
The model is based on the Eulerian–Lagrangian approach, while the liquid phase is
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modelled as the continuous phase and the cavitation bubbles as the dispersed one.
Many of the fundamental physical processes assumed to take place in cavitating
flows are incorporated into the model. These include bubble formation through
nucleation, momentum exchange between the bubbly and the carrier liquid phase,
bubble growth and collapse due to nonlinear dynamics according to the early study
of Prosperetti & Plesset (1978), bubble turbulent dispersion as proposed by Farrell
(2003) and bubble turbulent/hydrodynamic breakup, based on the experimental
observations of Martı́nez-Bazán, Montañés & Lasheras (1999). The effect of bubble
coalescence and bubble-to-bubble interaction on the momentum exchange and
during bubble growth/collapse is also considered. More details and a thorough
validation of the model can be found in Giannadakis (2005) and Giannadakis et al.
(2007).

All simulations performed are transient even for fixed geometry and boundary
conditions; the second-order Crank–Nicolson discretization scheme has been
employed for modelling the time derivatives of the solved equations. The time step
used for the simulation of the nozzle volume flow has been varied between 10−4 to
10−5 s, which is short enough to capture the transient development of the vortices
formed inside the nozzle. However, a much shorter time step of 0.5 × 10−7s has been
used for simulating the cavitation structures formed inside the injection hole; note
that an adaptive time step with values down to 10−12 s is used in the integration of the
Rayleigh–Plesset equation proposed by Plesset & Prosperetti (1977), for simulating the
growth and collapse of the cavitation bubbles. Regarding spatial discretization,
the second-order scheme of Papadakis & Bergeles (1995) has been used in addition to
the first-order hybrid one. Fully unstructured numerical grids consisting of tetrahedral
and hexahedral elements have been used. The number of computational cells has been
varied between 65 000 and 600 000 for the nozzle volume while ∼50 000 cells have
been used inside each of the injection holes. That corresponds to an average cell size of
∼0.4 to 0.075 mm, which has been considered small enough to resolve the large-scale
vortices forming inside the nozzle volume. Finally, in addition to the low-pressure
transparent nozzles tested and simulated, predictions have also been obtained for
injection pressures up to 600 bar, which is the nominal pressure of the injectors under
investigation that allowed useful conclusions to be drawn for the operation of these
nozzles.

4. Results and discussion

A general description of the flow distribution inside the nozzles tested is given first,
including experimental images of the cavitation structures formed inside the nozzle
volume and the injection holes, as well as CFD predictions for the nozzle volume flow
pattern. Although flow images can be obtained only at low injection pressures relative
to those used in real injectors, it can be argued that the conclusions to be drawn are
valid also for the actual conditions. Evidence to support this is based not only on
past studies comparing cavitation in large-scale and real-size nozzles as reported by
Arcoumanis et al. (2000) and Roth et al. (2005), but also on model predictions to be
reported here.

A number of questions may be raised regarding the dynamics of cavitation strings,
and, in particular, the location where they develop, how do they form and what effect
do they have on the nozzle flow and the injected spray. These three questions will be
addressed in the following sections.
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Figure 2. Typical image of string cavitation formed inside the nozzle volume at two different
time instances with �τ ∼ 100 (a) bottom view and (b) side view (nominal needle lift, CN = 4.0,
Re = 68 000).

4.1. Flow structure

The presentation of the results starts from a general description of the flow
distribution inside the specific nozzles investigated. Figure 2 shows typical images
of the string cavitation formed inside the nozzle volume at a nominal needle lift,
CN = 4 and Re = 68 000, at two time instances with �τ ∼ 100; τ = t/t∗ is the non-
dimensional time introduced here, where the normalization time scale used is equal to
t∗ = DSAC/USAC; USAC is the mean axial velocity entering into the sac (nozzle) volume
and DSAC is the diameter of the nozzle (figure 1a); with this scaling approach, it will
be possible to compare the vortex development inside the sac volume for different
operating flow rates through the nozzle. Images are presented from both the bottom
and the side views. It can be seen that well inside the nozzle volume, a relatively thick
and long vapour structure is formed; this two-phase flow structure will be referred to
from now as ‘string cavitation’.

Figure 3(a, b) shows the predicted flow paths inside the nozzle volume upstream
as well as inside the injection holes obtained for the nominal needle lift case at
two different times with �τ ∼ 100; It can be seen that as the flow enters from
upstream into the nozzle volume, it turns around 90 ◦ in order to exit from the nozzle
holes. As a result, a strong recirculation zone is formed inside the nozzle volume; the
presence of this vortex is rather important for the subsequent analysis. Time-dependent
predictions have revealed that for specific operating conditions this vortex may be
rather unstable and move inside the nozzle volume. The streamlines plotted show that
this vortex is connected in the first instance to hole 5 and in the second to hole 1.
This instability in the location of the vortex will be further analysed later on in this
section. Irrespective of the vortex motion upstream of the injection holes, as the flow
enters through the sharp corner entry hole, the pressure may drop locally below the
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Figure 3. Prediction of flow structure inside the sac volume (a) path lines of vortex in front
of hole 1, (b) vortical structure at �τ ∼ 100 relative to previous flow, showing the vortical
structure located in front of hole 5 and (c) predicted cavitation vapour volume fraction
iso-surfaces inside the nozzle holes and core of the nozzle volume vortex coloured with the
axial velocity component of the incoming liquid, as seen from two different views (nominal
needle lift, CN = 4.0, Re = 68 000).
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Figure 4. Three-dimensional reconstruction of the visuallized string cavitation superimposed
on the calculated flow field (a) nominal lift, string connected to hole 1 and (b) nominal lift,
string connected to hole 5 with �τ ≈ 100 and (c) low needle lift case, string connected to hole
4 (CN = 4.0, Re = 68 000).

vapour pressure of the flowing liquid, which initiates cavitation. Since each hole has
a different orientation relative to the nozzle, cavitation initiates at a different location
relative to the corresponding hole entry and develops inside in a rather asymmetric
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three-dimensional shape. Figure 3(c) shows two views of an instantaneous cavitation
pattern as predicted by the model in all five holes, together with the predicted core
of the nozzle volume vortex. The core of the vortex can be identified from the iso-
surfaces of the swirl intensity, which is a parameter frequently used to locate and
track vortical flow structures according to Jeong & Hussain (1995); here the selected
iso-surface is coloured with the axial velocity component of the incoming liquid in
order to highlight the change in the direction of the flow. It can be argued that
hole cavitation itself is a rather transient phenomenon, but the time scales of the
relevant processes are a few orders of magnitude smaller than the development of
the vortical structure observed inside the nozzle volume. The macroscopic structure
of the two-phase flow formed inside the injection holes is mainly a function of the
cavitation number. Measurements of the nozzle discharge coefficient reported by
Gavaises & Andriotis (2006) as a function of the cavitation number for different
Reynolds numbers have revealed that the overall volumetric flow rate of the nozzle
is a function of only the cavitation number for a fixed needle lift, and not of the
Reynolds number. In agreement with previously reported data of Arcoumanis et al.
(1999), when cavitation initiates, the nozzle discharge coefficient drops and reaches
asymptotically a minimum value for a fully developed cavitating flow.

4.2. String cavitation location

Following the general description of the flow distribution inside the nozzle, it is
appropriate to proceed towards the presentation of the observed cavitation strings.
As shown in figure 2, in this area, model predictions indicate that the pressure of the
flowing liquid is almost equal to the feed pressure and much greater than the vapour
pressure of the liquid. Despite that, string cavitation has been identified as developing
in a transient mode. The location of the string seems to change considerably, since
it may be connected to either hole 1 or hole 5, as the images taken at different time
instances reveal, and to correlate well with the vortical structures formed inside the
nozzle volume. Proof of that is provided in figure 4(a, b) where the CCD images, which
have been obtained simultaneously from two perpendicular views (bottom and side),
have been used to reconstruct the string in the three-dimensional space inside the
nozzle volume. The long string was then discretized into a sufficient number of vapour
pockets along the string centreline and with radius equal to that of the actual string.
Those experimental or ‘virtual’ vapour pockets, which have the same total volume
as the actual string, could be numerically handled as numerical bubbles and inserted
into the numerical grid only for visualization purposes, but not for actual multi-phase
flow calculations in this area. As the results indicate, the observed cavitation strings
are formed at the core of the large-scale recirculation zones developing transiently
inside the nozzle volume.

Figure 4(c) shows a similar set of predictions and cavitation string reconstruction,
but this time for the low needle lift case where the string is connected to hole 4 only
and not to holes 1 or 5, as for the nominal needle lift case; it can thus be expected
that the position of the needle affects the formation of the recirculation zones formed
inside the nozzle.

Having identified the location of the cavitation strings inside the nozzle volume,
we can proceed to the presentation of various cases aiming to identify the effect of
geometric and operating parameters on the string cavitation structure. Since cavitation
strings develop in a highly transient mode and are not always present at the same
operating condition (e.g. during the image collection process a significant number
of them are string-cavitation-free), it was considered useful to derive mean images.
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From the reconstruction, not only can the string location be correlated with the local
flow field, but also their volume can be estimated. The simpler approach is to derive
a mean image only from the bottom view images. Temporal and spatial averaging
includes not only the time steps where string cavitation is present, but also those
where it is absent. Since the raw images provide only a projection of the string on
the camera plane, the averaged image effectively corresponds to a mean projected
view rather than to a full three-dimensional representation; this approach has proved
useful in comparing different cases. Figure 5, also reported in Gavaises & Andriotis
(2006), presents three sets of results corresponding to the initial development of both
hole and string cavitation for the low needle lift case. At low cavitation numbers,
around 0.5, no string is evident and only hole 3 starts to cavitate. With a slight
increase of the cavitation number to about 0.6, all holes start to cavitate, but not
continuously, while a string appears to develop inside the nozzle volume and exits
mainly from hole 4. Since the maximum level of the mean image corresponds to
about 20 % according to the attached scale, and since the observed string is only
present more or less in the same location and exits always from hole 4, it can be
deduced that string cavitation is actually formed during only 20 % of the time of
the whole flow process. A further increase in the cavitation and Reynolds numbers
results in a higher probability of string formation. At the same time, hole cavitation
seems to become well established in all holes, reaching the exit of holes 3 and 4, but
within holes 1, 2 and 5 it disappears before reaching the exit. For cavitation numbers
above 0.9, all holes cavitate continuously. The six images of figure 6, obtained at
Re =53 000, show that the two-string pattern is always present while the probability
value slightly increases with increasing cavitation number. Cavitation structures also
seem to be present in front of all holes; these are smaller cavitation structures
appearing at the space between the sharp edge of the needle and the hole inlet, as
indicated on the CCD image of figure 2. Since cavitation strings have been linked
with the vortical structures attached to pre-existing cavitation sites, in an effort to
induce string cavitation patterns at different locations inside the sac volume, some
holes have been blocked. Corresponding results are shown in figure 7 for the nominal
needle lift case. Blocking of the flow through hole 2 results in the co-existence of two
cavitation strings (figure 7a). In addition to the large cavitation structure in front
of hole 4, a smaller string connecting holes 1 and 3 is formed; such a pattern has
been previously observed with automotive diesel injectors, as reported for example by
Afzal et al. (1999) and Roth et al. (2002). Since in figure 7(a) the string is attached to
hole 4, this hole was then additionally blocked. The image of figure 7(b) reveals now
that the string is attached to hole 3 while the shorter vortex connecting this hole with
hole 1 has disappeared. Proceeding in a similar manner, blocking of hole 3 results
in the formation of string cavitation in front of hole 5 only. It is thus evident that
by modifying the flow distribution within the sac volume the formation of cavitation
strings also follows the resulting vortical flow pattern. Although not included here,
simulation of the location of the vortex inside the nozzle under these conditions,
matches well with the observed cavitation patterns.

In addition to the two-dimensional (bottom view) mean projected image, the
following three-dimensional temporal and spatial averaging has been performed.
From the three-dimensional reconstruction of the instantaneous string location the
volume occupied by its outer surface has been estimated. Spatial and temporal
averaging of a sufficient number of strings has allowed estimation of the probability
of finding a string present in the three-dimensional space. A typical result from
this process is shown in figures 8(a) and 8(b) for the low lift and the full needle
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0

1

Hole 5

Figure 5. Effect of increasing flow rate on two-dimensional temporally and spatially averaged
images of string cavitation probability, showing the initial stages of the development of hole
and string cavitation (a) CN = 0.5; Re = 31 000, (b) 0.6; 35 000, (c) 0.7; 39 000 (from Gavaises
& Andriotis 2006).

(a) (b) (c)

(d) (e) (f )

0

1

Figure 6. Effect of cavitation number on two-dimensional temporally and spatially averaged
images of cavitation string probability (nominal needle lift, Re = 53 000 (a) CN = 0.9; (b) 1.0,
(c) 1.2, (d) 2.6, (e) 3.0, (f ) 4.25.

(a) (b) (c)

Hole 1

Hole 5

0

1

Figure 7. Two-dimensional spatially averaged images of cavitation string probability or
different scenarios of hole combination blocking: (a) hole 2 blocked, (b) hole 2 and 4 blocked
and (c) holes 2, 3 and 4 blocked (nominal needle lift, CN= 2.6, Re = 45 000)
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Figure 8. Three-dimensional iso-surfaces of cavitation string cavitation probability for
(a) low lift and (b) nominal lift (CN=2.0, Re =39 000).
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Figure 9. Comparison between (a) measured temporal evolution of string cavitation presence
next to holes 1 and 5 and (b) predicted vortex core presence attached to these holes (nominal
needle lift, CN=5.0, Re = 68 000).

lift cases, respectively. On these plots, three iso-probability surfaces are plotted. The
first one depicts the most remote location that strings may reach as they transiently
move inside the nozzle volume. The second iso-surface value plotted for the low
needle lift case (figure 8a), where strings have been found to be continuously present,
corresponds to the boundary where strings are present 50 % of their lifetime. Finally,
the last one on the same figure shows the iso-surface of 80 % vapour, which can
be interpreted as the volume always occupied by cavitation strings. For the nominal
needle lift case, strings are observed for less than 50 % of the running time and they
are attached either to hole 1 or hole 5 and never overlap with each other. This implies
that the maximum calculated probability value should be less than 25 %; the 10 and
15 % iso-surfaces plotted in figure 8(b) reveal the string structure for this particular
operating condition.

For the nominal needle lift case where the two-string structure has been identified, it
was considered useful to register the time sequence of appearance of cavitation strings.
Figure 9(a) presents the time history of the string presence for the nominal needle
lift case. On these plots, three bar values are plotted on the y-axis, corresponding to
string attached to hole 1, to hole 5 and no cavitation string. The x-axis corresponds
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Figure 10. Input pressure boundary condition used for the simulation of the internal nozzle
flow for the real-size injector operating under engine conditions with superimposed the
predicted temporal evolution of the vortex presence in holes 1 and 5; the similarity with
the large-scale nozzle presented in figure 9 is evident.

to the dimensionless time τ introduced previously. With this scaling, it is possible
to identify the frequency of vortex formation inside the sac volume and, thus, the
Strouhal number of the recorded periodic flow pattern. From the experimental results,
it can be observed that there is no string overlapping period while the time interval
between successive string appearances is almost the same as their lifetime; the latter
is of the order of τ ≈ 15–20 for this particular operating condition. Cavitation strings
reappear in front of the same injection hole about every τ ≈ 70–80. A similar set of
predictions, this time for the presence of the vortex core in front of the corresponding
injection hole are shown in figure 9(b). The core of the vortex can be identified from
the iso-surfaces of the swirl intensity shown previously in figure 2(d); the iso-surface
used has been selected in such a way as to have the same diameter as that of the
observed strings near the inlet to the injection holes. Note the close similarity between
the observations and model predictions. Model predictions reveal that the vortical
structure formed inside the nozzle volume is moving with a low-speed circumferential
velocity component relative to the nozzle axis. Cavitation strings appear when the
core of the vortex is attached to an injection hole. The combined experimental
finding for the string lifetime and the predicted flow pattern lead to the conclusion
that cavitation strings appear when the nozzle volume vortex is attached to an
injection hole. This is an important conclusion and will be further supported in the
following section of the paper which investigates the origins of cavitation strings.
Similar predictions for realistic operating conditions may provide evidence for the
appearance of strings during engine operation (figure 10). On the same plot, the
injection pressure profile used is shown; this pressure profile has been measured
under engine operating conditions just upstream of the nozzle inlet. In figure 10, the
predicted vortical structure presence in front of holes 1 and 5 is also plotted similarly
to the previous figure. It is clear that model predictions suggest at least 3 events
of string cavitation formation even for the much shorter injection event. The vortex
develops during the same normalized time τ with almost the same frequency, thus
the same Strouhal number; thus this scaling can be used to extrapolate results from
the transparent but low flow rate nozzles to the actual injectors operating at much
higher pressures. It ought to be mentioned here that similar computational results
have been obtained for a wide range of parametric studies, not reported here, which
have addressed the effect of spatial and temporal discretization methods, including
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Pmin Pmax Pmin PmaxUaxial

Figure 11. (a) Predicted pressure distribution inside the tapered large-scale 5-hole nozzle and
(b) instantaneous image of the vortical structure formed inside the sac volume (high needle
lift, CN= 3.0, Re = 53 000).

first- and second-order ones, the effect of the time step which has been reduced down
to two orders of magnitude, the effect of the number of computational cells which
has been increased four times as well as the effect of different turbulence models,
including different realizations of the k-ε model, the k-omega and the Reynolds stress
one. Out of these studies, it has been safely concluded that model predictions are not
sensitive to these parameters with respect to the formation and development of the
nozzle vortical flow structures.

4.3. Origin of cavitation strings

The next set of results to be reported here refers to the origin of the cavitation
strings. As already mentioned, the location of the string has been correlated with the
core of the vortex formed inside the nozzle volume. Furthermore, it has been argued
that one mechanism for the appearance of cavitation strings is associated not only
with the existence of the vortex, but with its direct link with a cavitating site formed
at the hole inlet. Formation of vortex cavitation as a result of the pressure drop within
the core of the vortex has been abandoned as a mechanism on the basis of model
predictions which indicate pressure levels much higher than the vapour pressure of the
flowing liquid. In other words, combination of experimental observations and model
predictions has indicated that cavitation strings form from pre-existing cavitation
sites; if these come into contact with a vortex, then vapour may be trapped inside the
vortex core and form the observed string cavitation structures with the high-speed
camera. To further support this hypothesis, two transparent nozzles with tapered
(converging) holes have been manufactured; the first nozzle incorporates expansion
tubes and the second does not, while the rest of the geometry was identical to the
nozzle with the cylindrical holes. Model predictions indicate that hole cavitation
should not be expected for this nozzle since the pressure distribution at the hole inlet
is greatly modified by the hole shape; conical holes create a much smoother pressure
gradient (figure 11a ) and do not cavitate even for much higher pressures relative to
the cylindrical ones. This is a well-known characteristic for such nozzles which also
exhibit a higher discharge coefficient, as reported by Soteriou et al. (2006). For this
nozzle design, the flow distribution inside the nozzle volume is expected to be similar
to that with cylindrical holes. Evidence of that was provided by the simulated flow
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air inlet
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Figure 12. Representative image for the geometric hole cavitation-free tapered 5-hole nozzle
with (a) absence of string cavitation at high needle lift, (b) presence of string cavitation next
to hole 4 at low needle lift and (c) air bubbles introduced into the sac volume in the area of
the vortex development at high needle lift, resulting to an induced string-like two-phase flow
structure (CN= 3.0, Re = 53 000).

field shown in figure 11(b). As can be seen, the vortical structure inside the nozzle
is still present and follows a similar pattern of motion as in the previous nozzle for
the same needle lift; however, some differences do exist and will be reported in the
following section. Visualization of the flow inside the nozzle with the expansion tubes,
which is the case for injection of liquid into liquid, has revealed that this design was
string-cavitation free; a typical bottom-view CCD of this nozzle operating at the
maximum Reynolds and cavitation numbers with the needle placed at its nominal
lift can be seen in figure 12(a). This image also reveals the absence of hole cavitation
except in hole 4, where there is some evidence of cavitation initiation and subsequent
collapse within the injection hole before cavitation bubbles could reach the hole exit.
As expected, for this particular needle lift, the nozzle vortex was not in contact with
hole 4 and no string was observed. On the contrary, when the needle was placed at
low lift which has been associated with a continuous presence of the vortex in front
of this hole, a cavitation string has been observed to form in exactly the same manner
as in the case of cylindrical holes; a typical image can be seen in figure 12(b). Further
evidence of the realization that cavitation strings are simply carriers of liquid vapour
or air trapped within recirculation zones is provided in figure 12(c). This image has
been obtained at the same operating conditions as figure 12(a). This time, however,
pressurized air bubbles have been artificially introduced into the flow from a pressure
taping used to record the pressure inside the nozzle. When such bubbles are trapped
in the vortex forming within the nozzle volume, their initially spherical shape could
develop into the string-like structure observed in this image. It can thus be argued
that the observed cavitation strings do not contain vapour produced at the core of the
vortices, but rather vapour originating from pre-existing cavitation sites and trapped
within the core of the vortices formed upstream of the injection holes.

It could be of interest to report results obtained from the tapered nozzle without
the expansion tubes which represents the case of injection directly into ambient air.
For the particular test case reported here, the nozzle has been operating at sufficiently
high needle lift and low enough flow rate to prevent the formation of hole cavitation.
Despite that, the side-view high-speed images shown in figure 13 reveal the formation
of a string originating from the hole exit and developing upstream towards the hole
inlet and then into the nozzle volume. This was an unexpected result never observed
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Figure 13. Sequence of high-speed images showing the formation of string cavitation
originating at the nozzle exit and moving upstream inside the nozzle volume (nominal needle
lift, CN= 1.0, Re = 39 000).

(a)

(b)

Figure 14. Effect of string cavitation on the flow distribution inside the injection hole, as seen
from the side view (a) with string cavitation and (b) without string cavitation (nominal needle
lift, CN= 4.0, Re = 53 000).

in previous studies. Flow simulations indicate the presence of swirling flow inside
the injection hole which could explain the formation of the observed string. The
implications of this observation are that two-phase flow realized in a form similar to
cavitation strings may be present with tapered holes even in the absence of nozzle
hole cavitation sites.

4.4. Effect of string cavitation on hole flow

Having identified the mechanism leading to the formation of cavitation strings and
their dependence on geometric parameters and operating conditions, it was considered
important to investigate their effect on the hole flow structure. As already described,
the geometric-induced cavitation is taking place in the injection holes, as both flow
images and model predictions have indicated. It should be also recalled that hole
cavitation was highly asymmetric and different from hole to hole, owing to the highly
swirling motion of the flow entering through individual injection holes, as shown in
figure 2(d).

Figure 14 shows a side view CCD image of the cavitating structures developing
inside injection hole 1 in the absence and in the presence of a cavitation string. These
images give a clear indication that once a cavitation string enters the injection hole,
the two separate cavitation structures become indistinguishable and a much larger
cavitation cloud dominates the flow; this extended cavitation cloud seems to occupy
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Figure 15. Predicted temporal variation of hole-to-hole flow rate for (a) cylindrical 5-hole
nozzle and (b) tapered large-scale 5-hole nozzle (nominal needle lift CN= 4.0, Re = 53 000).

the full cross-sectional area of the injection hole in the presence of string cavitation.
As reported by Gavaises & Andriotis (2006), around 10 % reduction of the hole flow
rate is associated with the presence of a cavitation string attached to an individual
injection hole. However, in that study, it was not possible to distinguish from the
experimental data whether this effect is related to the flow distribution upstream of
the injection hole or is simply the effect of the increased vapour volume inside the
injection hole in the presence of a cavitation string. Evidence of this can be provided
by the CFD model. Figures 15(a) and 15(b) show the calculated instantaneous flow
rate from each of the five injection holes for the cylindrical and the tapered nozzle
holes, respectively. These predictions have been obtained with the needle at its nominal
lift and within a time window during which the vortical structure changes its location
from hole 1 to hole 5 for both cases simulated here. It is clear that hole 1 exhibits the
highest flow-rate variation with flow rate peaking when the nozzle vortex is facing
the opposite hole 5 and dropping when the vortex enters it. The maximum calculated
reduction is ∼10 % in the case of the cylindrical holes and ∼8 % in the case of tapered
holes; the average flow-rate reduction for the time window during which the nozzle
flow vortex is attached to this particular hole is ∼5–7%. It can be thus concluded that
the measured flow-rate reduction in the presence of a string can be attributed to the
reduced liquid quantity entering the hole when the flow vortex is attached to it. The
rest of the observed flow rate reduction can be attributed to the modified cavitating
flow structure inside the injection hole in the presence of the increased cavitation
vapour. Comparing the predicted temporal flow-rate variation between the cylindrical
and the tapered holes, it can be concluded that the nozzle vortex switches from hole
1 to hole 5 faster for the case of the cylindrical holes, confirming that the nozzle
flow development is sensitive not only to the needle lift, but also to the geometric
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characteristics of the nozzle. Finally, it should be mentioned that the presence of
strings has a significant effect on the formation of the injected sprays as reported by
Andriotis, Spathopoulou & Gavaises (2007) and Andriotis & Gavaises (2009).

5. Conclusions

Cavitation formed in the nozzle of fuel injection equipment for passenger car and
marine diesel engines has been identified as one of the main parameters affecting
the nozzle discharge coefficient, the momentum of the injected liquid and the spray
dispersion angle. The understanding of the flow mechanisms taking place in such
nozzles is a prerequisite for the design of advanced systems which require accurate
control to minimize spray-to-spray and shot-to-shot variations. Previous studies have
categorized the observed cavitation structures forming inside injector nozzles as
geometric-induced and dynamic-induced or string cavitation. Although adequate
data exist for geometric-induced cavitation, limited information is available for the
dynamic one. The present study has provided experimental data confirming the
presence of string cavitation and addressing unresolved questions about its origin,
area of formation, lifetime and influence on the nozzle hole flow. The visualization
method employed has made simultaneous use of two high-speed cameras observing
the two-phase flow structures forming inside transparent replicas of nozzles used in
low-speed two-stroke diesel engines. Interpretation of the obtained images has been
assisted by computational fluid dynamics predictions of the nozzle and hole flow. The
specific designs tested included five-hole nozzles with cylindrical as well as tapered
holes operating at different fixed needle lift positions; nevertheless, the conclusions
drawn for the observed flow mechanisms can be extrapolated to other nozzle designs
where string cavitation is also present. Images have revealed formation of an unsteady
vapour structure upstream of the injection holes inside the nozzle volume, referred to
as ‘string cavitation’. From the images, it has been possible to reconstruct the location
of the observed structures inside the nozzle volume. Combination of images with the
simulated flow field has revealed that cavitation structures are found at the areas of
flow circulation and they originate either from pre-existing cavitation sites forming
at sharp corners inside the nozzle where the pressure falls below the vapour pressure
of the flowing liquid, or even from suction of outside air downstream of the hole
exit. This has been made possible by the manufacturing of nozzles with tapered holes
which suppress the formation of geometric cavitation and thus have enabled data of
string cavitation in controlled combination or in the absence of geometric cavitation
to be obtained. Processing of the acquired images has allowed estimation of the mean
location and probability of appearance of the cavitating strings inside the nozzle
volume space, as a function of needle lift, cavitation and Reynolds numbers. The
frequency of appearance of strings has been correlated with the Strouhal number of
the large-scale vortices developing inside the nozzle volume; the latter has been found
to be sensitive to the geometric characteristics of the nozzle, including the needle
lift and the shape of the injection holes. Large variations in the instantaneous fuel
injection quantity of individual injection holes have been recorded when a cavitation
string is observed inside them. Combination with model predictions has revealed that
the observed reduction in the individual hole flow rate is partially attributed to the
increased vapour fraction inside the hole when a string is present; the vortex flow
developing upstream of the hole entry is the main reason for the observed trend.
Extrapolation based on model predictions for real-size injectors operating at realistic
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injection pressure indicates that cavitation strings are expected to appear within the
time scales of typical injection events.
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