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We conduct a theoretical study of the creation and dynamics of vortices in a two-dimensional bi-
nary Bose-Einstein condensate with a mass imbalance between the species. To initiate the dynamics,
we use one or two rotating paddle potentials in one species, while the other species is influenced
only via the interspecies interaction. In both species, the number as well as the dominant sign of
the vortices are determined by the rotation frequency of the paddle potential. Clusters of positive
and negative vortices form at a low rotation frequency comparable to that of the trap when using
the single paddle potential. In contrast, vortices of the same sign tend to dominate as the rota-
tion frequency of the paddle increases, and the angular momentum reaches a maximum value at a
paddle frequency, where the paddle velocity becomes equal to the sound velocity of the condensate.
When the rotation frequency is sufficiently high, the rapid annihilation of vortex-antivortex pairs
significantly reduces the number of vortices and antivortices in the system. For two paddle poten-
tials rotating in the same direction, the vortex dynamics phenomenon is similar to that of a single
paddle. However, when the paddle potentials are rotated in the opposite direction, both positive
and negative signed vortices occur at all rotational frequencies. At the low rotation frequencies, the
cluster of like-signed vortices produces the k−5/3 and k−3 power laws in the incompressible kinetic
energy spectrum at low and high wavenumbers, respectively, a hallmark property of the quantum
turbulent flows.

I. INTRODUCTION

Vortices [1] render Bose-Einstein condensate (BEC) an
excellent platform for examining various scaling aspects
of quantum turbulence [2–4] which are quantum coun-
terparts of classical turbulence [5–7]. The renowned Kol-
mogorov’s ‘5/3’ law is one of the most well-known of these
scaling laws among them [8, 9]. Several strategies are
available to the current state BEC experiments [10] to
generate non-linear defects such as vortices and solitons
[11–16]. These include laser stirring [17–19], rotating the
confining potential [20–22], interaction with the optical
vortex [23–26], quenching through the phase transition
[27], and counter-flow dynamics [28–31], just to name a
few [32–34]. Theoretically, numerous intriguing aspects
of three-dimensional [8, 35–38] and two-dimensional (2D)
quantum turbulence (QT) [39–50] have been examined.
Moreover, very recently developed machine learning tech-
niques can be utilized to detect and classify quantum
vortices [51, 52]. The incredible tunability of atom-atom
interaction via Feshbach resonance [53, 54], as well as the
outstanding maneuverability of dimension [55], have also
resulted in the significant development of the QT exper-
iment in BEC. In that regard, Ref. [39] shows a turbu-
lent tangle of vortices formed by oscillating perturbation.
Spontaneous clustering of the same circulation vortices
has also been demonstrated experimentally [56, 57]. It
is worth noting that clustering of vortices [58, 59] im-
plies the transfer of energy from small to large length
scales, illustrating the so-called inverse energy cascade
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[36, 60], a well-known phenomenon that occurs in clas-
sical 2D turbulence [61, 62]. The experiment in [57], for
instance, employs a paddle that swifts through the bulk
of the BEC, causing randomly distributed vortices that
fast assemble into Onsager point vortex clusters, a notion
that has also been theoretically studied by White et al.
[63].

Given that optical paddle potential is a dependable
way to create 2D QT, we attempted to conduct a de-
tailed theoretical examination of the production of vortex
complexes, the behaviour of angular momentum and the
onset of quantum turbulence in a two-component system
by utilizing rotating paddle potentials. Furthermore, we
use a more complicated system with 2D binary BECs
[64–66], where only one species is exposed to the rotat-
ing paddle. We specifically identify the frequency regimes
of the rotating paddle where the maximum angular mo-
mentum can be imparted to the condensates, as well as
systemically investigate the distinct behavior emerging
from single and double paddle potential. The system of
2D binary BECs, which exhibits a variety of instability
phenomena [67–71] and non-linear structures [72–75] is
intriguing on its own right. Using the so-called tune-out
technique [76], the previously mentioned species selec-
tive interaction resulting in the formation of optical pad-
dle potential can be experimentally performed. In this
tune-out method, when one species interacts with the
laser light, the other remains unaffected. Furthermore,
we investigate a wide range of rotating frequencies of the
paddle potential, allowing us to pinpoint the domain in
which clustering of the same circulation vortices arises,
exhibiting the well-known scaling rule of 2D QT i.e. Kol-
mogorov’s −5/3 scaling law [43, 48, 77]. Although differ-
ent stirring configurations are available in the literature
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[56, 63, 78–80], the main objective of employing a ro-
tating paddle potential in this manuscript is to impart a
finite net angular momentum to one of the binary species
within a specific frequency regime and transfer this mo-
mentum to the other species. We also look at a region
dominated solely by identical signed multiple vortices.
Furthermore, when the paddle rotates more vigorously,
the vortical content of the system drops due to the gen-
eration of a high amount of sound waves [40, 79, 81, 82].
When there is finite interspecies contact interaction, vor-
tex formation can occur even in the second component
of the condensate. Most importantly, the vortex in one
component is connected by a complementary structure,
referred to as a vortex-bright soliton [48, 83], in the other.
Besides, we demonstrate the effect of double paddle po-
tentials, in which paddles can rotate either in the same
or opposite directions.

This article is arranged as follows. Sec. II de-
scribes our setup and delves over the Gross-Pitaevskii
(GP) equations. In Sec. III, we investigate the non-
equilibrium dynamics of a binary system consisting of a
mass-imbalanced system using both single (Sec. III A)
and double paddle potential (Sec. III B). Section IV ex-
amines the incompressible and compressible kinetic en-
ergy spectra. Finally, we summarise our findings and
discuss potential future extensions in Sec. V. Appendix
A briefly describes the creation of vortices and their dy-
namics in a binary BEC with equal mass. In Appendix B,
we demonstrate vortex creation using the negative paddle
potential.

II. GROSS-PITAEVSKII EQUATION

We consider binary BECs, referred to as species A and
B, that are confined in 2D harmonic trapping potentials
[84]. The species consists of Ni number of atoms of mass
mi (i = A,B). The form of the trapping potentials read
Vtrap = 1

2m(ω2
xx

2+ω2
yy

2+ω2
zz

2), where ωx, ωy and ωz are
trapping frequencies along x, y and z directions, respec-
tively. To implement a quasi-2D BEC in the x-y plane,
we consider the following criterion for the trap frequen-
cies, namely, ωx = ωy = ω � ωz. We apply single or dou-
ble stirring potential VP generated by a far-off-resonance
blue-detuned laser beam shaped into an elliptic paddle in
species A to induce vortices in the condensate [56]. The
potential VPα , with α ∈ {1, 2} can be expressed as [63]

VPα(x, y, t) =V0 exp
[
− η2(x̃α cos(ωpt)− ỹα sin(ωpt))

2

d2

− (ỹα cos(ωpt) + x̃α sin(ωpt))
2

d2

]
, (1)

where x̃α = x − xp,α and ỹα = y − yp,α, considering the
center of the paddle potential at (xp,α, yp,α) for the α
paddle. Here V0 is the peak strength of the potential,
ωp is the rotation frequency of the paddle, and η and d
determine the paddle elongation and width, respectively.

In the quasi-2D regime, the motions of atoms along
z-direction become insensitive and the wavefunctions
ΨA(B) can be expressed as ψA(B)(x, y)ζ(z), where ζ(z) =

(λ/π)
1
4 exp

(
−λz2/2

)
is the ground state along z direction

and λ = ωz/ω is the trap aspect ratio. After integrating
out the z variable, the 2D dimensionless time-dependent
GP equation that governs the dynamics of a BEC is given
by [85, 86]

i
∂ψi
∂t

=

[
− 1

2

mB

mi

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2

mi

mB

(
x2 + y2

)

+
∑

j=A,B

gijNj |ψj |2 + δAi(VP1
+ VP2

)

]
ψi, (2)

where i = A,B. Here, the effective 2D non-linear in-
teraction coefficient is determined by the term gij =√
λ/(2π)2πaijmB/mij with aij being the scattering

length, l =
√

~/(mBω) is the oscillator length, mij =
mimj/(mi +mj) denotes the reduced mass. The dimen-
sionless Eq. (2) is written in terms of length scale l, time
scale 1/ω and energy scale ~ω. The i-th species wave-

function is normalized to
∫
|ψi|2d2r = 1.

In this paper, we explore the turbulent phenomena
that arise from the potentials formed by the rotating sin-
gle paddle, VP1

and the double paddles, VP1
+ VP2

. The
paddle potentials are maintained in the condensate for
the time 0 ≤ t ≤ τ . Afterward, the paddle is linearly
ramped off to zero over a time t = ∆τ , during which the
relation,

VP1(2)
→ VP1(2)

(
1− t− τ

∆τ

)
,

holds in the Eq. (1). Here we consider a binary BEC
of 133Cs (species A) and 87Rb (species B) elements hav-
ing different masses [66]. The number of atoms in both
species A and B are equal, and we take NA = NB =
60000. The harmonic trap potential is designed to have
a frequency of ω = 2π × 30.832 rad/s and the aspect
ratio λ = 100. The intra-species scattering lengths are
aAA = 280a0 and aBB = 100.4a0, where a0 is the Bohr
radius [66]. The interspecies scattering length aAB is
chosen to reside in the miscible regime, as the follow-
ing relation of the miscibility i.e. a2AB ≤ aAAaBB [87],
is hold obeyed by the scattering lengths. We numeri-
cally solve the GP equation using the Split-step Crank-
Nicolson method [88]. The ground state of the system is
generated by propagating the wavefunctions of the BEC
in imaginary time. In order to inspect the dynamical
evolution of the condensate, we utilize the ground state
generated in imaginary time as the initial state and solve
the Eq. (2) in real-time. Moreover, the system’s initial
state is prepared by placing a paddle-shaped stationary
obstacle, as expressed in Eq. (1), in the component A.
Our simulation runs on the spatial extent of −20.48l to
20.46l along both x and y direction with 2D 2048× 2048
grid points.
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III. CREATION OF VORTICES USING PADDLE
POTENTIAL

As discussed in Ref. [63], using an optical paddle po-
tential vortex in BEC can be generated in a variety of
ways which include (i) rotating the paddle about a fixed
center, (ii) moving the paddle about a fixed center, and
(iii) both rotating and moving paddle simultaneously in
the BEC. Though we have considered only the rotation
of paddle potential to generate vortices in this work, we
have employed both a single paddle and a double paddle
potential to generate a vortex. In particular, while the
single paddle potential rotates in species A with the pad-
dle center being located at (xp, yp) = (0, 0), the double
paddle potentials can rotate either in the same or oppo-
site directions about their center at (xp, yp) = (±rA/4, 0),
respectively, where rA = 6.1l is the root-mean-squared
radius of species A (for aAB = 0). The parameters for
single paddle are η = 0.05 and d = 0.1l; and for dou-
ble paddle η = 0.1 and d = 0.1l, are identical for both.
These values determine the elliptical shape of the pad-
dle according to Eq. (1). Moreover, we choose the peak
strength of the paddles to be V0 = 10µA, where µA is the
chemical potential of species A. As previously stated, af-
ter establishing the initial state with a stationary paddle,
at t = 0, the paddle is rotated at a frequency of ωp with
full amplitude until the time τ = 40ω−1 = 206ms and
then ramped off to zero within ∆τ = 10ω−1. With these
parameters ωp, η, d, and V0, the paddle potentials may be
externally regulated, allowing for control of the creation

of vortex or antivortex in BEC. In BEC, the presence of a
vortex or an antivortex yields a finite amount of angular
momentum which can be expressed, for i-th species, as

Liz = −i

∫
ψ∗i

(
x
∂

∂y
− y ∂

∂x

)
ψidxdy. (3)

To study the dynamical formation of the vortices, we
measure the density-weighted vorticity of condensates
as [31, 89]

Ωi =∇× Ji, (4)

for a better spatially resolved measurement with
Ji = i~

2m (ψi∇ψ∗i −ψ∗i∇ψi) being the probability current
density. We remark that by using the Madelung trans-
formation [90], ψi =

√
nie

iφi , Eq. (4) can be cast into
the form Ωi = ∇× niui. Notably, the multiplication of
the condensate velocity ui with the density ni ensures
that we compute the vorticity of i-th species only in the
region where the condensate is located.

A. Single paddle

This section examines the implications of a single pad-
dle potential rotating with frequency ωp about the cen-
ter of the species A. Although rotation orientation can be
clockwise (CW) or counter-clockwise (CCW), we focus on
a paddle rotating in the CW direction. We note that the
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FIG. 1. Snapshot of (a1)-(e1) density (nA) and (a2)-(e2) vorticity (ΩA) profiles of the species A at different instants of time
(see legends). The binary BECs are made of 133Cs-87Rb atoms. An elliptical paddle potential characterized by the parameters
η = 0.05 and d = 0.1l is rotated with the angular frequency ωp = ω within the species A (133Cs) in order to trigger the
dynamics. The colorbars of top and bottom rows represent the number density (n) in µm−2 and the vorticity (Ω), respectively.
The binary BECs are initialized in a two dimensional harmonic potential with frequency ω/(2π) = 30.832 Hz, λ = 100 and
having following intra- and interspecies scattering lengths aAA = 280a0, aBB = 100.4a0, and aAB = 0. The number of atoms
for both the species are NA = NB = 60000.
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results obtained for the CCW will be essentially identical
to those obtained for the CW. At first, we demonstrate
the behavior of the BEC without interspecies interaction
by setting aAB = 0. Due to the absence of interspecies in-
teractions, the paddle potential does not influence species
B, and therefore the latter remains unaltered during the
dynamics. When the paddle rotates in species A, vortices
and antivortices form around it. The number of vortices
and antivortices, in particular, is strongly dependent on
the rotation frequency. Figures 1(a1)-(a2) and (b1)-(b2)
shows time evolution of density and vorticity of species
A at the paddle frequency ωp = ω, the trap frequency.

The initial state of species A, with the paddle poten-
tial being elongated along the x-axis, is shown in the
Fig. 1(a1). At t = 0.08s, after the rotation of the paddle
has been established [Fig. 1(b2)], both vortices (red color)
and antivortices (blue color) are generated in species A.
In fact, a close inspection of the Fig. 1(b2) reveals that the
vortex-antivortex structures are located symmetrically
with respect to the paddle. Additionally, the number
of vortices exceeds that of the antivortices [Fig. 1(b2)].

0 1 2 3 4 5 6 7 8 9 10

ωp/ω
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40

60
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100

N
A +
,
N

A − NA
+

NA
−

FIG. 2. Variation of the number of vortices NA
+ and antivor-

tices NA
− of species A at steady state as a function of the

paddle frequency ωp. The other parameters are the same as
the ones in Fig. 1.

The generation of vortices and antivortices continues
until 0.258s, at which point the paddle potential van-
ishes. It is worth noting that the numbers of vortices and
antivortices are nearly equal around this time. Follow-
ing that, a considerable number of the vortex-antivortex
pairs decay due to self-annihilation or drifting out of the
condensate, see Fig. 1(d2). However, some of the vortices
and antivortices form vortex dipoles (vortex antivortex
pair) or vortex pairs (pairs of identical charges) or vortex
clusters, as depicted in Fig. 1(c2)− (e2). Without being
annihilated, alongside the lone vortices and antivortices,
these vortex dipoles, vortex pairs, and vortex or antivor-
tex structures remain in the BEC for an extended period.

When the paddle frequency ωp increases, the vortex
complexes exhibit a distinct behavior. At steady state,
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FIG. 3. Snapshots of the vorticity profiles of species A (ΩA)
taken at t = 3.5s for two different paddle frequencies (a)
ωp = 3ω and (b) ωp = 10ω of rotation of the paddle poten-
tial. Shown also (c) the time-evolution (log-scale) of angular
momentum (LA

z ) for different values of ωp (see the legends).
The vertical lines in (c) represent the times when amplitude
of the paddle started to ramp off and become zero, respec-
tively. The colorbar of top row represents the vorticity (Ω).
The other parameters are the same as the ones in Fig. 1.

the number of antivortices vastly exceeds that of vortices
for a CW rotation of the paddle potential with frequen-
cies ω < ωp < 7ω. After removing the paddle poten-
tial, vortex-antivortex annihilation begins, finally elim-
inating all vortices from the condensate. In Fig. 2, we
demonstrate the number of vortices (NA

+ ) and antivor-

tices (NA
− ) as a function of the rotation frequency ωp.

The imbalance
∣∣NA

+ −NA
−
∣∣ is almost zero till ωp = ω, in-

dicating that an equal number of vortex-antivortex pairs
are generated. Afterward, such imbalance gradually in-
creases and becomes maximum at ωp ≈ 3ω when only
the antivortices (having negative circulation) exist in the
system. For ωp > 3ω, as it is evident from the Fig. 2,
both total number of vortices, NA

+ + NA
− as well as the

imbalance decrease with ωp.

Figures 3(a) and 3(b) show vorticity profiles, ΩA, of
species A for ωp = 3ω and ωp = 10ω, respectively, at
t = 3.5s. Notably, the largest number of antivortices sur-
vives for ωp = 3ω [Fig. 3(a)] and this number falls as ωp
increases. As ωp increases beyond ωp > 7ω, only a few of
both vortices and antivortices survive due to a higher an-
nihilation rate (per unit number of vortices-antivortices)
of vortex-antivortex pairs [Fig. 3(b)]. As a result, the
system has almost no vortex or antivortex structure in
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the long-time dynamics (density profiles not shown here
for brevity), imparting very less angular momentum to
the condensate as shown in Figs. 3(c) and 5.

The above scenario of non-linear structure formations
in species A can further be elucidated by invoking the
angular momentum of species A, LA

z . The time evolu-
tions of LA

z (t) for various ωp are displayed in Fig. 3(c).
The LA

z (t) remains negative throughout the time evolu-
tion, indicating the surplus of antivortices. For ωp = ω,
LA
z (t) remains nearly constant within the ballpark. The∣∣LA
z (t)

∣∣ monotonically increases at the early stage of the
dynamics and reaches a maximum at a time within the
time interval τ , and then decreases to reach a station-
ary value in the long time dynamics. The maximum
value of

∣∣LA
z (t)

∣∣ is the largest for ωp = 3ω, a result
which emanates from the maximum number of antivor-
tices displayed in Fig. 3(a). For larger ωp, the net angu-
lar momentum imparted to the condensate by the gener-
ated vortex-antivortex drastically diminishes, indicating
a smaller imbalance between vortex and antivortex num-
bers [ 3(b)].

−25 0 25
x (µm)

−25

0

25

y
(µ

m
)

nA

(a)

−25 0 25
x (µm)

nB

(b)

0

50

100
n(µm−2)

0 1 2 3 4
t (s)

0

2

4

6

8

10

ω
p
/
ω

(c)LA
z

0 1 2 3 4
t (s)

(d)LB
z

0

−10

−20

−30

−40

Lz(h̄)

FIG. 4. Snapshots of density profiles ((a), (b)) of species A
(nA) and species B (nB), with interspecies scattering length
aAB = 80a0 and ωp = 3ω at t = 3.5s. Also shown are the
variation of angular momentum (c) LA

z and (d) LB
z varying

with paddle frequency ωp and time t. The colorbars of top
and bottom rows represent the number density (n) in µm−2

and the angular momentum in units of ~ respectively.

The existence of paddle potential in species A affects
species B for non-zero interspecies interactions aAB. For
a strong enough interaction, the repulsive paddle poten-
tial on species A effectively acts as an attractive potential
on species B. Due to rotation of this attractive potential
vortex and antivortex are generated in species B [91] (see
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ωp/ω

0
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∣ ∣ L̄
i z

∣ ∣ (
in

u
n
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s
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f
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∣∣ at aAB=0
∣∣L̄A

z

∣∣ at aAB=80a0∣∣L̄B
z

∣∣ at aAB=80a0

FIG. 5. Variation of the absolute value of time-averaged an-
gular momentum

∣∣L̄A
z

∣∣ of species A at aAB = 0 and 80a0, and∣∣L̄B
z

∣∣ of species B at aAB = 80a0 as a function of paddle fre-
quency (see the legends). The markers and solid curves show
the values of angular momentum from the simulations and the
fittings with skewed normal distribution, respectively. Here
the paddle configuration is same as described in Fig. 1.

Appendix B). In particular, vortices and antivortices are
created in species B, and their number can be controlled
by aAB. Additionally, the null density region at the vor-
tex or antivortex site in one species is filled by the other
species’ localized density hump. Figure 4(a)-(b) show the
density pattern at t = 3.5s for the interspecies interac-
tion aAB = 80a0 and ωp = 3ω. Other parameters such
as η = 0.05, d = 0.1l and V0 = 10µA are similar to the
aAB = 0 case. Notably, the scattering lengths explored
here ensure that the condensates are miscible, allowing us
to directly analyze the role of mean-field coupling. More-
over, the paddle potential in species A performs CW rota-
tion. Both species accommodate only antivortices solely
in the long-time dynamics, which are similar to those of
the non-interacting scenario. This behavior implies that
within a particular frequency range, a cluster of identical
vortices forms being entirely determined by the direction
of paddle rotation, regardless of the species interaction.
Furthermore, it is worth mentioning that species A pos-
sesses a smaller healing length due to the larger mass and
the intraspecies interaction. This makes the vortices of
species A smaller in size compared to those in species B.

The creation and stability of vortex complexes in the
presence of non-zero interspecies interaction can be fur-
ther comprehended by evaluating the angular momentum
Liz of both species. The time evolution of LA

z and LB
z as

a function of ωp are shown in Fig. 4(c) and Fig. 4(d),
respectively. A close inspection indicates that the angu-
lar momenta of both species are maximum at ωp ≈ 3.5ω,
similar to that in the aAB = 0 case [Figs. 4(c)-(d), 5]. For
ωp > 7ω, Liz becomes very small due to the higher an-
nihilation rate of the vortex-antivortex pairs. The LA

z is
more pronounced than LB

z , indicating that the antivortex
number is always high in species A. Most significantly, we
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find that the frequency response to the angular momen-
tum follows skewed normal distribution [92], as depicted
in the Fig. 5, with the maximum of the distribution oc-
curring at ωp ≈ 3.2ω for the aAB = 0 and ωp ≈ 3.45ω
for aAB = 80a0. Given that, at higher paddle frequencies
(ωp & 7ω), the annihilation process does not completely
remove the vortices and antivortices from the conden-
sates, leaving a small but finite angular momentum that
leads to the long tail on the side of ωp > 3ω, this distribu-
tion is quite expected. Finally, let us comment that both
species can end up with near-equal angular momenta the
strong interaction limit aAB ' 150a0. However, a de-
tailed study of this regime is beyond the scope of the
present manuscript.

The angular momentum achieves its maximum value
for ωp ≈ 3ω–4ω which can be explained by examining
the sound velocity of the condensates. There are two
distinct sound velocities for a binary BEC, namely, c+
and c−, representing the density and spin sound velocity,
respectively [93, 94]. These two sound velocities can be
expressed as

c2± =
1

2

[
c2A + c2B ±

√
(c2A − c2B)

2
+ 4c4AB

]
, (5)

where ci =
√
giini/mi and c4AB = g2ABnAnB/(mAmB).

ni represents peak density of the i-th condensate. For
the non-interacting case with the peak density of 2.88×
1014/cm

3
, we have determined the sound velocity of

species A (Cs) to be cA = 2.36 mm/s based on the
averaged peak density nA/2, see also Refs. [94, 95].
The velocity of rotating paddle reads as v = aωp where
a = d/η is the semi-major axis of the paddle. With
the values of parameters d, η and ωp = 3ω considered
herein, we find that the paddle velocity amounts to
2.26 mm/s which is very close to cA. This close proxim-
ity of paddle and sound velocities results in the maximum
amount of angular momentum near the paddle frequency
ωp = 3ω. For the interacting case with aAB = 80a0 we
found the density sound velocity to be c+ = 2.56mm/s

with the peak densities nA = 2.21 × 1014/cm
3

and

nB = 2.27× 1014/cm
3
. The value of c+ is very close the

paddle velocity amounts to 2.63 mm/s corresponding to
the ωp = 3.5ω, where the absolute angular momenta of
species A and B takes maximum values [Fig. 5]. Note
that vortex generation starts when the paddle rotation
velocity v surpasses a critical velocity which, in our case,
is around 0.25c, c is the sound velocity. As already dis-
cussed, with the increase of paddle frequency, and hence
v, a vortex-antivortex imbalance is created, increasing
the angular momentum. When v exceeds the sound ve-
locity c the drag-force becomes very pronounced result-
ing in stronger dissipation in the condensates [91, 96–98].
This dissipation causes the total vortex number and the
vortex-antivortex imbalance to decrease, thus creating a

peak of
∣∣∣LA(B)
z

∣∣∣ at v ≈ c.
B. Double Paddle

After discussing the impact of a single paddle poten-
tial, we will look at a more complex scenario involving

two paddle potentials. In this situation one can have two
distinct scenarios depending upon the relative orienta-
tion of the paddle potentials. Here, we attempt to an-
swer the question of how the addition of a second paddle
potential and its relative rotational orientation relative
to the first one alters the vortex structures and angular
momentum of the system when compared to the case of
a single paddle. To that intent, we consider two paddles
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FIG. 6. (a) Time evolution (log-scale) of angular momentum
Liz for the species i = A,B at interspecies interaction aAB =
80a0 for different paddle frequencies ωp = ω, 2ω, 3ω, 4ω and
10ω. Here two identical paddle rotates in species A in CW
direction. The inset figures (b) and (c) depict the snapshot
of vorticity profiles of species A (ΩA) and species B (ΩB),
respectively, at t = 3.5s with ωp = 4ω.

rotating in species A and having a center at (±rA/4, 0).
Moreover, we choose η = 0.1 and keep d same as the
single paddle case. Depending on the relative rotational
orientation of the two potentials, different dynamical be-
havior can emerge. When both paddles rotate in the
same direction, the effects are similar to those mentioned
previously for a single paddle. To substantiate the above
statement, we demonstrate the variation of angular mo-
mentum with time (log-scale) in Fig. 6 for CW rotation of
the paddle potential with interspecies scattering length
aAB = 80a0. For paddle frequency close to ωp = 4ω,
LA
z and LB

z are most prominent, and the corresponding
antivortex structures generated in species A and species
B are shown in Fig. 6(b)-(c), respectively. However, we
should note that as we halved the paddle length with
respect to the single paddle case and increased the pad-
dle number to two, the maximum angular momentum
generated in the system is reduced for the double co-
rotating paddle than for the single paddle case. For
example, LA

z ≈ −40~ω at ωp = 3ω [Fig. 3], whereas
LA
z ≈ −9~ω at the same ωp [Fig. 6] for the double paddle
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at different instants of time. Two elliptic paddles characterized by the parameters η = 0.1 and d = 0.1l and rotating opposite
to each other with frequency ωp = 5ω within species A (133Cs) are used to trigger the dynamics. The colorbars represent the
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FIG. 8. Variation of (a) time-averaged angular momen-
tum L̄iz, its (b) standard deviation σi , (c) vortex imbalance∣∣N i

+ −N i
−
∣∣ at steady state, and (d)

√
|Γi| (Γi is the circula-

tion at steady state), as a function of ωp for the i-th species
(i = A,B). The scattering lengths are given by aAA = 280a0,
aBB = 100a0 and aAB = 80a0. The dynamics has been trig-
gered by employing two paddle potentials rotating counter-
clockwise and the paddle configuration is described in Fig. 7.

potentials. Surprisingly, a more interesting case occurs
when one paddle rotates in the CW and the other in

the CCW way [Fig. 7(a1)- 7(b1)]. Because the rotational
directions of the paddles are opposite, each paddle con-
tributes an equal number of vortices of the opposite
sign, see Figs. 7(a3) and 7(b3). In the long-term dy-
namics of both species, this equal distribution of vor-
tex and antivortex leads to a high rate of annihilation,
meaning that just a few vortex, antivortex survive in
the long-time dynamics [Figs. 7(a3)-(a5) and 7(b3)-(b5)].
To further appreciate the previous argument, we calcu-
late the time average of the angular momentum defined
as, L̄iz =

∫
Liz dt /

∫
dt, for different rotation frequencies

ωp of the double paddle potentials, see Fig. 8(a). For
ωp < ω, the L̄iz remains zero. Within 2ω . ωp . 5ω, both
LA and LB shows extremely fluctuating behaviour with
respect to the ωp. Recall that this is also the frequency
region where a maximum number of vortex-antivortex
creations occur. The vortex-antivortex either annihi-
lates each other or either of them drifts away from the
condensate, leading to a finite imbalance of the vortex-
antivortex number. The finite imbalance between vortex
antivortex numbers in the dynamics can result in the
finite angular momentum of either positive or negative
signs, a behavior which is highly fluctuating with respect
to ωp. The fluctuation is somewhat reduced in the fre-
quency range ωp > 5ω. Here, for increasing ωp, the an-
nihilation mechanism becomes the dominant mechanism
responsible for reducing both vortices and antivortices,
and they exist in nearly equal numbers. Consequently,
the imbalance between the vortex and antivortex number
decreases, leading to a relatively small fluctuation in the

L̄
A(B)
z .
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Additionally, we have calculated the standard devia-

tion of time-averaged angular momentum L̄
A(B)
z using

data from five different runs with added noise for each
run, see Fig. 8(b). The corresponding standard devia-
tion σA(B) for species A (species B) is defined as,

σ2
A(B) =

∑
j

(
L̄
A(B),j
z − L̄A(B)

z,mean

)2

Ns
(6)

where L̄
A(B)
z,mean =

∑
j L̄

A(B),j
z /Ns and Ns is number

of data sets, each with different initial random noise.
Fig. 8(b) depicts that the fluctuations are high in the fre-
quency range 2ω < ωp < 5ω. Furthermore, the fact that

the fluctuations in L̄
A(B)
z is indeed due to the fluctuations

in the vortex-antivortex imbalance
∣∣∣NA(B)

+ −NA(B)
−

∣∣∣ can

be evinced from the Fig. 8(c). Finally, before closing this
section let us also remark on another interesting obser-

vation from our study that the
∣∣∣NA(B)

+ −NA(B)
−

∣∣∣ scales

as
√∣∣ΓA(B)

∣∣, where the quantity ΓA(B) =
∫

ΩA(B)dxdy

represents the net circulation of the vortex clusters, see

Fig. 8(d) where we demonstrate
√∣∣ΓA(B)

∣∣ as a function

of ωp.

IV. ENERGY SPECTRA

To better understand the system when it is subjected
to a paddle potential, we compute its kinetic energy spec-
trum, whose scaling laws provide insights regarding the
development of quantum turbulence in the system. Note
that these scaling laws have already been well reported
in the literature [3, 9, 77]. However, the primary ob-
jective here is to determine how the onset of turbulence
depends on paddle frequencies or under what parame-
ter regime the binary condensate system should develop
turbulent features.

In order to do so we decompose the kinetic energy
into compressible and incompressible parts associated
with sound waves and vortices, respectively [8, 99]. The
energy decomposition is performed by defining a den-
sity weighted velocity field, which reads

√
niui with

ui = ~
m∇θi, where ni and θi are the position depen-

dent condensate density and phase of the i-the species.
The velocity field is separated into a solenoidal (incom-
pressible) part uic

i and a irrotational (compressible) part
uic
i such that ui = uic

i + uc
i and obeying ∇ · uic

i = 0 and
∇ × uc

i = 0. Once these velocity fields are calculated
following the Refs. [8, 31, 40, 89], we can calculate in-
compressible energy (E ici ) and compressible energy (Eci ),

E ic[c]i =
1

2

∫
ni

∣∣∣uic[c]
i

∣∣∣
2

dx dy . (7)

Afterwards the compressible and incompressible en-
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FIG. 9. Incompressible kinetic energy spectra of species A,
Eic

A(k), at different time instants (see legends) for different
paddle frequencies ωp = (a) ω, (b) 3ω and (c) 8ω. The ‘solid’

and ‘dashed’ lines represent the slopes of k−5/3 and k−3,
respectively. The interspecies scattering length aAB = 0.
The dashed vertical lines define the positions at k = 2π/RA

(RA = 10l being the Thomas-Fermi radius), kp (2π/a, a be-
ing the semi-major axis of the paddle), ξ−1

A and 2π/ξA, re-
spectively. Here the healing length ξA of species A is 0.062l.
Except the ωp, all other parameters are the same as Fig. 1.

ergy spectra for the i-th species can be calculated as

E
ic[c]
i (k) =

k

2

∑

q=x,y

∫ 2π

0

∣∣∣Fq(
√
niu

ic[c]
q,i )

∣∣∣
2

dφ, (8)

where Fq(
√
niu

ic[c]
i ) denotes the Fourier transformation

of
√
niu

ic[c]
q,i , corresponding to the q-th component of

ui = (ux,i, uy,i).
We present incompressible energy spectra Eic

A(k) of
species A in Fig. 9 at various time instants and fre-
quencies ωp corresponding to the single paddle case at
aAB = 0. Due to no interspecies interaction, species B
is not impacted by the paddle potential, which allows us
to focus on species A. For ωp = ω, Eic

A(k) attains a sta-
tionary state at early time (t = 0.1s) and maintains it
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till t = 3.5s, as evidenced from the Fig. 9(a). Moreover,
Eic

A(k) exhibits k−3 power-law in the region 30 . k . 100

and k−5/3 power law in the region 2 . k . 30. The
k−5/3 and k−3 power laws are associated with the in-
ertial range of energy cascade and internal structure of
vortex core, respectively [43, 48]. Note that for ωp = ω
vortex pairs and vortex dipole are noticed in Fig. 1(c2)-
(e2) [44, 56, 82, 100]. Surprisingly for the frequency
ωp = 3ω, where only the same sign vortices dominate,
we notice that k−3 spectrum develops for a very nar-
row k-range in our system, see Fig. 9(b) , and after that
(ωp > 3ω) the spectra deviate from −3 scaling law, see

Fig. 9(c) . However, while k−5/3 spectrum develops in
long time dynamics for a wide k-range, it does not emerge
in early time dynamics [Fig. 9(b)]. Finally, we notice that
the k-ranges where the spectra follow −5/3 scaling be-
come narrower with increase of ωp, see Fig. 9(c). This
behaviour is expected since the system at ωp & 7ω is
primarily governed by the generation of a huge number
of sound waves caused by the rapid annihilation of the
vortices and antivortices. Another interesting observa-
tion from our study is that the most extended inertial
range of the energy cascade occurs at the paddle fre-
quency ωp ≈ 3ω where both species hold the maximum
amount of angular momentum. The positions of the in-
ertial ranges vary depending on ωp. For low ωp(' ω)
and high ωp(> 5ω) the inertial ranges occur respectively
at lower and higher wavenumbers than the inverse of the
healing length (ξ−1A ). For the intermediate frequencies it

occurs at both sides of k = ξ−1A , see Fig. 9.

Next, we turn to the scenario of finite interspecies in-
teraction characterized by aAB = 80a0 and investigate
whether species B produces the power-law spectra in the
incompressible sector of its energy, see Figs. 10(a)-(c).
We note that k−5/3 and k−3 power laws are manifested
in a similar manner within the range 1 . k . 10 and
20 . k . 100, respectively, for ωp = ω. Like in species
A, the ranges of the −5/3 scaling law in species B be-
come narrower with the increase of paddle frequency
after ωp ≈ 3ω and the positions of the inertial ranges
changes with ωp. Moreover, species B contains vortices
with larger cores than that of species A. At large ωp
the high-momentum acoustic waves are less in species
B compared to that in species A because of the reduced
strength of paddle potential at lower interspecies inter-
action. This makes incompressible kinetic energy at high
momentum more discernible in species B than species
A. Consequently, k−3 scaling law, which is related to the
vortex core structure, appears in Eic

B (k) for the frequency
range ω . ωp . 10ω. We note that in this condition
(aAB = 80a0) the Eic

A(k) does not demonstrate different
behaviour with regard to ωp when compared to that of
aAB = 0 case (hence not shown here for brevity).

We now explain the compressible kinetic energy spec-
tra [48, 89, 101] Ec

A(k) of species A and Ec
B(k) of species

B for a few representative cases subjected to the sin-
gle paddle potential, shown in Fig. 11. To begin, in the
case of ωp = ω, we notice that a power-law region with
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FIG. 10. Incompressible kinetic energy spectra of species B,
Eic

B (k), at different time instants (see legends) for different
paddle frequencies ωp = (a) ω, (b) 3ω and (c) 8ω. The ‘solid’

and ‘dashed’ lines represent the slopes of k−5/3 and k−3, re-
spectively. The interspecies scattering length aAB = 80a0.
The dashed vertical lines define the positions at k = 2π/RB

(RB ≈ 10l being the Thomas-Fermi radius), kp (2π/a, a being
the semi-major axis of the paddle), ξ−1

B and 2π/ξB. Here the
healing length ξA of species B is 0.099l. Except the ωp, all
other parameters are same as Fig. 4.

Ec
A(k) ∝ k develops in the low-k region of the spectrum,

a relation that expresses the frequencies of Bogoliubov’s
elementary excitations at low-wave number [Fig. 10(a)].
The spectrum reaches a maximum near k ranges from 20
to 40 ( the peak positions differ for different time instants
until the system reaches an equilibrium) before rapidly
dropping. As the paddle frequency increases (ωp & 7ω),
the spectra Ec

A(k) follows a power-law exponent of −7/2
at large k, as shown in Fig. 11(b) for a specific ωp = 8ω.
Notably, this scaling is associated with superfluid turbu-
lence of equilibrium sound waves, which has also been
reported in Refs. [48, 77, 102]. Interestingly enough, for
aAB = 80a0, we observe the scaling law k−3/2 in the in-
termediate k range for the frequency ωp & 5ω as shown
in Fig. 11(c) for ωp = 6ω. This power law which ap-
pears at k higher than the driving wavenumber kp reveals
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FIG. 11. Compressible kinetic energy spectra of species A,
Ec

A(k) at (a) ωp = ω, (b) ωp = 8ω without interspecies
interaction and of species B, Ec

B(k) at (c) ωp = 6ω with
aAB = 80a0 at different time instants (see legends). Black

‘solid’ and ‘dashed’ lines represent the slopes of k−7/2 and k,
respectively and blue ‘solid’ line in (c) represents the slope

of k−3/2. The dashed vertical lines of (a) − (b) and (c) are
described in Fig. 9 and 10 respectively. All the parameters
are the same as discussed in Sec. III A.

the signatures of weak wave turbulence [77, 103]. Let us
note that the acoustic disturbance must not be strong
for the manifestation of this scaling [103]; hence, it is
more apparent in species B under weaker interspecies in-
teraction regimes, while huge acoustic disturbances pre-
vent the development of the same scaling in species A.
We observed for strong enough interspecies interactions
(e.g. aAB = 140a0) the −3/2 scaling law disappears from
species B (not shown). However, a detailed discussion of
this is beyond the scope of the present manuscript.

V. CONCLUSIONS

We have explored the phenomenon of non-linear struc-
ture formations and their dynamics using optical pad-
dle potential in a binary BEC composed of two distinct

atomic elements. One of the species (species A) experi-
ences rotating single or double paddle potentials, while
the other species (species B) is only influenced via the
interspecies contact interaction. The paddles are rotated
for a finite amount of time, resulting in the creation of
vortices. In long-time dynamics, the sign and number of
the vortex are dependent on the frequency and orienta-
tion of paddle rotation. Additionally, we discussed the
effect of paddle rotation on other species. We observed
many diagnostics to obtain insight into the dynamics,
including density, vorticity, the z-component of the an-
gular momentum, and the species’ compressible and in-
compressible energy spectra.

Clusters of positive and negative vortices emerge
within the system when a single paddle potential is ro-
tated with a low rotational frequency. Interestingly,
when the frequency is gradually increased, we observe a
transition to a regime dominated by same-sign vortices,
with species A gaining the maximum angular momentum.
At larger paddle frequencies, the annihilation of vortex-
antivortex pairs becomes considerable, reducing the sys-
tem’s total vortical content. The behavior mentioned
above holds for species A both in the absence or pres-
ence of interspecies interaction. Interestingly enough,
when interspecies contact is enabled, species B exhibits
similar dynamical behavior. However, species B has a
substantially lower vortex and angular momentum than
species A in the miscible regime. When two paddle po-
tentials are employed, their relative orientation becomes
crucial in determining the vortical content of species A.
For the paddles rotating with the same orientation, the
behavior is almost identical to the single paddle applied
to species A. However, when the two paddles rotate op-
posite to each other, due to the almost equal number of
vortex-antivortex structures formed regardless of the ro-
tation frequency of the paddles, the net angular momen-
tum imparted to the system during long-time dynamics
fluctuates about zero.

Following that, we explored the system’s dynamics by
invoking the compressible and incompressible kinetic en-
ergy spectra. However, a key highlight of this work is
its examination of various power-law scalings of the ki-
netic energy spectra. We observed −5/3 and −3 power-
law scaling in the low and high wavenumber regimes of
the incompressible energy spectrum, respectively, in the
low rotation frequency regime, where we saw clusters of
identical sign vortices. These scalings provide evidence
for the development of quantum turbulence in our sys-
tem at low frequencies. However, analogous scaling is
not apparent in the incompressible energy spectrum as
the rotation frequency increases.

There are many research directions to be pursued as
a future research endeavor. One straight would be to
extend present work in the presence of finite temper-
ature [104]. Extending the present work to the three-
dimensional setup and exploring the corresponding non-
linear defect formations would be equally interesting
[38, 105–107]. Another vital prospect would be to em-
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ploy dipolar BEC to inspect the impact of the long-range
interaction [108]. Finally, the investigations discussed
previously would be equally fascinating at the beyond
mean-field level, where significant correlations between
particles exist [109].
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Appendix A: Mass-Balanced binary Bose-Einstein
condensate

In the main text, we have focused our discussion on the
mass-imbalanced binary BECs, since such a system is the
most suitable for creating species selective potential by
the tune-out approach. To examine to what extent phe-
nomenology differs from a system of mass-balanced sys-
tem, here we consider a binary BEC composed of 87Rb
atoms with two different hyperfine levels [72, 110]. We
take an equal number of atoms in both species, namely,
NA = NB = 60000. The intra-species scattering lengths
are aAA = 95.4a0 and aBB = 100.4a0 [111]. All other
parameters, like trapping configuration and paddle con-
figuration, are the same as the single paddle case of Sec.
III. We examine the creation of vortices using a single
rotating paddle with aAB = 0 and 80a0. For paddle fre-
quency ωp = ω we observe clustering of opposite sign
vortices at aAB = 0, see Fig. A.1(a). However, at higher
interspecies scattering length aAB = 80a0, the clustering
is not visible [Fig. A.1(b)], instead we observe a sparse
cluster composed of same-signed vortices. The number
of vortices organized into lattice structure increases as we
increase the paddle frequency (2ω . ωp . 5ω) in species
A due to the direct impact of paddle rotation. And as
an effect of interspecies interaction vortex lattice is also
formed in species B [Fig. A.1(c)-(d)].

FIG. A.1. (a)-(b) Vorticity and (c)-(d) density profiles of
species A [(a), (c)] and species B [(b), (d)] at different pad-
dle frequency, ωp, and different scattering lengths, aAB, (see
the legends) at t = 3.5s. The binary BEC is realized at two
hyperfine levels of 87Rb atoms. To trigger the dynamics, an
optical paddle potential is rotated in species A. The colorbars
of top and bottom rows represent the vorticity (Ω) and the
number density (n) in µm−2.

Since the interaction between two species in 87Rb-87Rb
are very similar, we find that the lattice-like structure
that appeared here is more organised [72] than that of
133Cs-87Rb binary BECs, compare Fig. A.1(c)-(d) with
Fig. 4(a)-(b). Finally, we comment that we could not find
any significant difference in incompressible and compress-
ible kinetic energy spectra as a function of ωp between the
mass-balanced and mass-imbalanced systems [Fig. 9(c)].

Appendix B: Vortex Creation using negative paddle
potential

In the main text of the article, we have focused our
discussion on the paddle potential with V0 = 10µA. This
results in the density depleted region in the condensate
and creates vortex-antivortex structures when set into ro-
tation. We remark that a rotating negative paddle poten-
tial would result in similar dynamics generating vortex-
antivortex structures during the dynamics. In order to
demonstrate that we have considered a 133Cs-87Rb con-
densate of NA = NB = 60000 particles confined in the
harmonic trap with the frequency ω/(2π) = 30.832Hz
and the anisotropy parameter λ = 100, aAA = 280a0 and
aBB = 100.4a0 and aAB = 0 [Fig. B.2]. The species A is
subjected to the paddle potential with V0 = −10µA, cre-
ating the density hump at its center, whereas the species
B is unaffected [Fig. B.2(a1)]. To trigger the dynam-
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ics, the paddle is rotated at the frequency ωp = 4ω.
A huge number of vortices and antivortices can be no-
ticed at t = 0.1s [Fig. B.2(b1)-(b2)]. Then the num-
ber of vortices significantly decreases as time progresses
[Fig. B.2(c1)-(c2), (d1)-(d2)]. Finally, in the long time dy-

namics antivortices dominate in the system [Fig. B.2(e1)-
(e2)]. Kindly note that similar behavior has been ob-
served for the positive paddle potential at ωp = 3ω, as
discussed in the main text. This suggests that the phe-
nomenon takes place irrespective of the attractive or re-
pulsive paddle potential.
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Kevrekidis, D. J. Frantzeskakis, M. W. Ray, E. Al-
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