
Vortex identification from local properties of the vorticity field

J. H. Elsas and L. Moriconi

Citation: Physics of Fluids 29, 015101 (2017); doi: 10.1063/1.4973243

View online: http://dx.doi.org/10.1063/1.4973243

View Table of Contents: http://aip.scitation.org/toc/phf/29/1

Published by the American Institute of Physics

Articles you may be interested in

A few thoughts on proper orthogonal decomposition in turbulence
Physics of Fluids 29, 020709020709 (2017); 10.1063/1.4974330

 Modulating flow and aerodynamic characteristics of a square cylinder in crossflow using a rear jet injection
Physics of Fluids 29, 015103015103 (2017); 10.1063/1.4972982

 Effects of grid geometry on non-equilibrium dissipation in grid turbulence
Physics of Fluids 29, 015102015102 (2017); 10.1063/1.4973416

Effect of trailing edge shape on the separated flow characteristics around an airfoil at low Reynolds number:
A numerical study
Physics of Fluids 29, 014101014101 (2017); 10.1063/1.4973811

 Referee Acknowledgment for 2016
Physics of Fluids 29, 010201010201 (2017); 10.1063/1.4974753

 Buoyancy effects in an unstably stratified turbulent boundary layer flow
Physics of Fluids 29, 015104015104 (2017); 10.1063/1.4973667

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1582731116/x01/AIP-PT/PoF_ArticleDL_0117/FYI_HouseBanner_1640x440_v3.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Elsas%2C+J+H
http://aip.scitation.org/author/Moriconi%2C+L
/loi/phf
http://dx.doi.org/10.1063/1.4973243
http://aip.scitation.org/toc/phf/29/1
http://aip.scitation.org/publisher/
/doi/abs/10.1063/1.4974330
/doi/abs/10.1063/1.4972982
/doi/abs/10.1063/1.4973416
/doi/abs/10.1063/1.4973811
/doi/abs/10.1063/1.4973811
/doi/abs/10.1063/1.4974753
/doi/abs/10.1063/1.4973667


PHYSICS OF FLUIDS 29, 015101 (2017)

Vortex identification from local properties of the vorticity field

J. H. Elsas1,2 and L. Moriconi2
1Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
2Instituto de Fı́sica, Universidade Federal do Rio de Janeiro, C.P. 68528, 21945-970 Rio de Janeiro, RJ, Brazil

(Received 14 July 2016; accepted 13 December 2016; published online 3 January 2017)

A number of systematic procedures for the identification of vortices/coherent structures have been

developed as a way to address their possible kinematical and dynamical roles in structural formu-

lations of turbulence. It has been broadly acknowledged, however, that vortex detection algorithms,

usually based on linear-algebraic properties of the velocity gradient tensor, can be plagued with severe

shortcomings and may become, in practical terms, dependent on the choice of subjective threshold

parameters in their implementations. In two-dimensions, a large class of standard vortex identifica-

tion prescriptions turn out to be equivalent to the “swirling strength criterion” (λci-criterion), which

is critically revisited in this work. We classify the instances where the accuracy of the λci-criterion

is affected by nonlinear superposition effects and propose an alternative vortex detection scheme

based on the local curvature properties of the vorticity graph (x, y,ω)—the “vorticity curvature cri-

terion” (λω-criterion)—which improves over the results obtained with the λci-criterion in controlled

Monte Carlo tests. A particularly problematic issue, given its importance in wall-bounded flows,

is the eventual inadequacy of the λci-criterion for many-vortex configurations in the presence of

strong background shear. We show that the λω-criterion is able to cope with these cases as well,

if a subtraction of the mean velocity field background is performed, in the spirit of the Reynolds

decomposition procedure. A realistic comparative study for vortex identification is then carried out

for a direct numerical simulation of a turbulent channel flow, including a three-dimensional extension

of the λω-criterion. In contrast to the λci-criterion, the λω-criterion indicates in a consistent way the

existence of small scale isotropic turbulent fluctuations in the logarithmic layer, in consonance with

long-standing assumptions commonly taken in turbulent boundary layer phenomenology. Published

by AIP Publishing. [http://dx.doi.org/10.1063/1.4973243]

I. INTRODUCTION

The twofold question on whether long-lived vorticity-

carrying structures—coherent structures for short—can sur-

vive up to higher Reynolds numbers and play an important

dynamical role in turbulence, with particular attention to the

problems of isotropic and wall-bounded flows, has been for

a long time a matter of great interest in the fluid dynamics

community.1–7

From a modeling perspective, the vorticity field ~ω of

incompressible flows (our focus in this work) can be consid-

ered to be a more fundamental observable than the velocity

field ~3, once the latter can be derived from the former through

3i = −ǫ ijk∂
−2∂jωk , (1.1)

where, above, ∂−2 stands for the inverse Laplacian operator.

Of course, Eq. (1.1) is nothing more than the Biot-Savart law

in the fluid dynamical context.

One aims, in the so-called “structural formulation of tur-

bulence,” to achieve an expressive reduction in the number of

degrees of freedom from the introduction of kinematical or

dynamical models of coherent structures, the spatial support

of strongly correlated vorticity lines. These special vorticity

domains are then taken to be the sources of the turbulent veloc-

ity field, straightforwardly recovered with the help of Eq. (1.1).

It is interesting to point out that while structural modeling is

still a very open problem, one finds, within the framework of

wavelet compression techniques, strong support for pursuing

this direction of research.8–10

Among the several types of turbulent flows, the turbu-

lent boundary layer (TBL) is a particularly rich stage for the

production and interaction of coherent structures,6 like stream-

wise and hairpin vortices (often bunched in packets), the latter

remarkably anticipated several decades ago by Theodorsen11

and Townsend.12 Due to the variable sizes of these structures,

which are directly related to their distances from the wall,

as depicted in the attached eddy hypothesis,12,13 the TBL

turns out to be a dynamical system characterized by strong

multiscale couplings.

The pioneering structural approach of Perry and Chong14

has underlined in many alternative ways, subsequent investi-

gations of the TBL along the years,15–20 devoted to the study

of boundary layer phenomena like viscous drag, the existence

of enhanced intermittent velocity fluctuations near the wall

region, and the crossover between turbulent kinetic energy pro-

duction and dissipation, all of these being points of potential

applied relevance. In spite of its appealing physical picture, the

structural approach has been unable, so far, to address in a pre-

dictive way a relevant phenomenological framework like the

law of the wall. An even more ambitious aim for the structural

program would be to provide a foundation for the broadly

used Reynolds-averaged phenomenological models (like the

k-epsilon model).21,22 In these approaches, one has to resort to

ad hoc closure assumptions which relate the Reynolds stress
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tensor to the mean properties of the flow. This mathematical

object could, as a matter of principle, be derived from the sta-

tistical modeling of the energetically most important vortical

structures.

While at the present state of knowledge, the aforemen-

tioned ideas are still essentially speculative, we show in

this work that the structural approach, as based on an accu-

rately validated vortex identification procedure, can offer

an interesting insight into the physics of wall bounded

flows, if one restricts attention on issues of turbulent

isotropization.

A major problem in the structural formulation of

turbulence—paradoxically as it may sound—is the ambigu-

ous meaning of the coherent structure concept itself, as long

ago emphasized in the seminal papers by Hussain.23,24 An

operational answer to this question is to define a coherent

structure as the compact flow configuration that is obtained,

from numerical or experimental data, through the application

of some postulated identification algorithm.

Galilean invariant vortex identification methods usu-

ally rely on the information encoded in velocity gradients,

which tag regions of the flow characterized by “swirling

motions” in locally co-moving reference frames. An inter-

esting physical picture underlying the usefulness of veloc-

ity gradients in the identification of coherent structures has

to do with the empirical fact that they are correlated with

the zones of quasi-uniform momentum.25 Therefore, veloc-

ity gradients are enhanced around the boundaries of such

zones, and provide, in this way, “shear envelopes,” which

are ultimately the reason for the phenomenon of coherent

structure persistence, as observed in the dynamics of hairpin

vortices.26

Most of the discussions on the structural aspects of tur-

bulence adopt Eulerian vortex detection methods like the Q-

criterion,27–29 the∆-criterion,30 and its closely related swirling

strength criterion (λci-criterion)31,32 or the λ2-criterion.33 In

all of these criteria, a scalar field, derived from the velocity

gradient tensor, is used as a “marker” to indicate if a given

point in the flow belongs or not to a vortex. Vortices are, there-

fore, identified as the connected regions mapped by such scalar

fields.

Other classes of vortex identification methods shift from

the definition of “scalar markers,” to representative flow con-

figurations, either by selecting the most energetic ones instan-

taneously or by retrieving flow patterns by means of statistical

averaging procedures. For the sake of completeness, we list

below a brief description of five of these approaches.

(i) In the proper orthogonal decomposition, one tries to

extract the relevant flow modes that are, on the aver-

age, more energetic, by solving associated eigenvalue

problems.34

(ii) A computer-science inspired approach uses artmap

neural networks as a classification tool, in which a

self-refining algorithm is used to identify relevant

structures.35

(iii) Wavelet denoising theory can provide a decomposition

of the velocity field on a complete set of orthogonal

spatially localized modes, in which the more energetic

ones turn out to be associated with coherent structures.8

(iv) “Lagrangian coherent structures” can be defined from

the investigation, along the pathlines, of the local

dynamical system of fluid element motions.36,37

(v) Conditionally averaged flow configurations, represent-

ing coherent structures, can be obtained from a subset

of flow realizations that satisfy certain prescribed sta-

tistical signatures, a procedure which is closely related

to the method of linear stochastic estimation.38,39

Even though there are studies which have pointed out

the pros and cons of the available vortex identification meth-

ods,32,40–44 systematic investigations of their limitations are

still in order. Commonly noted problems are related to shape

distortions of retrieved vortices and the subjective definition of

threshold parameters, sometimes necessary to increase the effi-

ciency of the identification algorithms. As we will emphasize

in the following, a less obvious (but not less important) diffi-

culty is associated with the effects produced on vortex identi-

fication by a shearing environment, as in free shear turbulence,

turbulent boundary layers or channel flows.

The velocity gradient-based vortex identification strate-

gies so far addressed in the literature are essentially equivalent,

in two-dimensions, to the λci-criterion. This is a key point in

our discussion, which relies on a careful study of how the

λci-criterion performs for a variety of controlled “synthetic”

two-dimensional flow configurations. It turns out that there

are serious challenges with the use of the λci-criterion, which

have motivated us to introduce an alternative vortex identifica-

tion prescription, referred to as the vorticity curvature criterion

(λω-criterion), a vortex identification method entirely based on

local properties of the vorticity field.

Our results are centered on the analysis of two-

dimensional coherent structures, which are important actors,

for instance, in the quasigeostrophic approximation for the

dynamics of the atmosphere and the ocean (low Rossby

number regime, planetary length scales),45 in purely two-

dimensional turbulent systems,46 and also in the properties of

streamwise/wall normal plane sections of turbulent boundary

layer flows,2,47–50 which reveal the existence of spanwise vor-

tex tubes. We introduce and study the problem of vortex iden-

tification for large ensembles of synthetic two-dimensional

vortex systems and subsequently investigate, by means of a

turbulent channel flow direct numerical simulation (DNS), the

statistical features of boundary layer vortices from the point

of view of both the λci and the λω criteria.

This work is organized as follows. To make the paper as

self-contained as possible, we provide, in Sec. II, a detailed

definition of the λci-criterion, and classify, from the analy-

sis of simple two-dimensional vortex configurations, its main

issues. In order to overcome the observed difficulties with the

λci-criterion, an essentially threshold-free vortex identification

method, the λω-criterion, is proposed and discussed in Sec. III,

which is found to considerably improve vortex detection for

most of the problematic cases.

Monte Carlo simulations of synthetic vortex systems are

introduced in Sec. IV, as a way to evaluate how the λci-criterion

and the λω-criterion automated algorithms perform for a large

number of samples. We find, at this point, poor results for both

vortex identification methods for the case of vortices in the

presence of a strong background shear. To cope with that, we
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devise a background shear subtraction procedure, meaningful

for statistically stationary flows, which points out the better,

and reasonably good, performance of the λω-criterion when

compared to the one of the λci-criterion.

We, then, move to the analysis of a more realistic scenario

in Sec. V, provided by the numerical simulation of a turbulent

channel flow. Having in mind all the issues discussed in the

previous sections, it turns out that while the λci-criterion fails

to indicate isotropization of small scale turbulent fluctuations

in the TBL logarithmic layer, the λω-criterion can do so, very

successfully, which is a remarkable phenomenological result

within the context of the structural formulation. We also dis-

cuss, in Sec. VI, the extension of the λω-criterion to the case

of fully three-dimensional flows, including some preliminary

visualizations for the turbulent channel structures obtained in

this way. Finally, in Sec. VII, we summarize our findings and

point out the directions of further research.

II. SWIRLING-STRENGTH ISSUES

The λci-criterion for vortex identification relies on the

analysis of the instantaneous topology of the velocity vector

field.31 In two dimensions (our main interest in this paper),

one wants to single out points of the flow that can be classified

either as sources or sinks of streamlines. In more concrete

terms, set as (x1, x2) = (0, 0) the position of an arbitrary point

in the flow, which has an instantaneous vanishing velocity in

the co-moving reference frame. Taking the velocity field to be

“frozen,” we can write down the linearized equation of motion

for a particle that follows the frozen streamlines of the flow in

a neighborhood of the origin as

ẋi = Aijxj , (2.1)

where Aij = ∂j3i |x=0 is the i, j matrix element of the velocity

gradient tensor A. It is not difficult to show that the spiraling

orbits around the origin (the focus of motion) are necessarily

associated with the complex eigenvalues of A. The eigenvalue

equation reads

det(∂j3i − λδij) = λ
2 − λ∂i3i + det(∂j3i) = 0 . (2.2)

The “swirling strength” field is the scalar quantity defined as

the imaginary part, taken as positive, of the complex eigenvalue

λ ≡ λcr + iλci. The λci-criterion, thus, postulates that vortex

domains are regions of the flow which have non-zero swirling

strength. For incompressible two-dimensional flows, things

are a bit simpler, once Eq. (2.2) tells us that these regions are

the loci of the points where the velocity gradient determinant

is positive.

To exemplify the analysis, we illustrate how the

λci-criterion works for the prototypical Lamb-Oseen vortex,51

which is in fact an important building block in structural stud-

ies.18,52–54 Let ǫ ij be the two-dimensional Levi-Civita symbol.

The Lamb-Oseen vortex is defined by the divergence free

velocity field, with components

3i = ǫ ijxjF(r) , (2.3)

where

F(r) =
Γ

2πr2

(

1 − e
− r2

r2
c

)

. (2.4)

Above, rc and Γ denote the vortex core radius and its

asymptotic circulation, respectively. The velocity gradient

determinant can be easily derived as

det(∂j3i) = F[F + rF ′]

=

(

Γ

2πr2

)2
[

1 − 2e
− r2

r2
c + e

− 2r2

r2
c

(

3 − 2r2

r2
c

)]

(2.5)

and it is shown in Fig. 1 as a function of r/rc. The interesting

point here is that the velocity gradient determinant is positive

only within a finite distance r ≤ r̄ from the origin, so that the

Lamb-Oseen vortex is identified as the disk on the density

plot given in the inset of Fig. 1. From Eq. (2.5), we find that

r̄ and the vorticity flux across the disk, Γ̄ are related to the

corresponding vortex parameters as

rc = αr̄ and Γ = βΓ̄ , (2.6)

where in terms of the Lambert W function55

α ≡
1

√

−1

2
−W

(

− 1

2
√

e

)

≃ 0.89 (2.7)

and

β =
1

1 − e−α
2
≃ 1.4 . (2.8)

It is common to assume, as a first approximation, that the con-

nected regions highlighted by the λci-criterion have, even in

many-vortex two-dimensional systems, circular shapes, so that

the relations given in (2.6) can be used to recover, in an auto-

mated fashion, the radius and the circulation parameters of the

identified vortices. These same parameters can be obtained,

alternatively, but with greater computational cost and com-

parable accuracy, from fittings, in the spotted regions, of the

recorded velocity fields to the Lamb-Oseen pattern, Eqs. (2.3)

and (2.4).53,54

Serious difficulties can arise in the implementation of the

λci-criterion when two or more vortices get close enough to

each other, or if they are in the presence of a shearing back-

ground. However, there are no comprehensive works in the

literature which attempt to define the conditions for the accu-

rate use of this vortex identification method. Therefore, we

put forward below, as a necessary stage for an improvement

FIG. 1. The dimensionless velocity gradient determinant for the Lamb-Oseen

vortex as a function of r/rc. Inset: density plot of the swirling strength field

and the vortex streamlines (coordinates are given in units of rc).
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over the λci-criterion, an informal (and not exhaustive) clas-

sification of its important problematic issues for the case of

two-vortex systems. To render our discussion free of ambi-

guities, whenever we refer to strict two dimensional vor-

tices throughout the paper, we mean precisely Lamb-Oseen

vortices.

A. Vortex shape distortion and coalescence

As it is shown in Fig. 2(a), the shapes of two vor-

tices get distorted as they approach each other, up to the

point where they coalesce into a single vortex structure,

as in Fig. 2(b), due to the fact that the streamlines with

opposite flow directions can mutually cancel in the region

between them. Despite the fact that there are two local swir-

ling strength peaks in the merged region, it is not an obvi-

ous task how to disentangle them in practical automated

analyses.

In order to solve the vortex merging problem, we could

define a threshold parameter T and select the regions of the

flow which have λci > T . This can actually break the coa-

lesced structures back to two vortices again, but as a side effect

other vortices in the system would be erased from detection.

It is also likely that many other coalesced vortices in the flow

would not be split in this way. Once there is not a clear pre-

scription on how to define T, its choice is essentially subjective,

and the threshold solution is far from being a well-established

procedure. It should be clear, however, that there should be

some room, in principle, for the implementation of itera-

tive thresholding algorithms like the ones used in denoising

theory.8

FIG. 2. In all of the four depicted cases, vortex pairs have the same core

radius. Coordinates are given in units of rc. Let ΓL and ΓR be the circulations

of the left and right vortices, respectively. (a) Shape distortions of two near

vortices with ΓL = ΓR; (b) vortex coalescence for a configuration with vortex

centers separated by 2rc and ΓL = ΓR; (c) configuration with vortex centers

separated by 4rc and ΓL = 5ΓR; (d) the same separation as in (c), but with

ΓL = 10ΓR. The right vortex escapes detection by the λci-criterion.

B. Ghost vortices

Considering two vortices with the same radius, for

instance, if one of them has larger circulation, shape distortion

is, as expected, more pronounced for the vortex with smaller

circulation. Instead of coalescence, however, the weaker vor-

tex can disappear completely from the flow, if it happens to be

close enough to the strong one. These situations are depicted

in Figs. 2(c) and 2(d).

C. Background shear effects

The most dramatic issues on the identification of vortices

by means of the λci-criterion are probably the ones associated

to background shear effects, which for evident phenomeno-

logical reasons, are especially important in wall-bounded

flows.

Take, as an illustrative example, the constant background

shear with vorticity ω̄, described by the velocity field with com-

ponents (3x, 3y) = (−ω̄y, 0), which can be superimposed to the

velocity field produced by a vortex or a couple of vortices. Of

course, the presence of background shear modifies the velocity

gradient determinant. Analogously to Fig. 1, the velocity gra-

dient determinant is plotted in Fig. 3 for y = 0, as a function of

x/rc. Differently from the free vortex case, the velocity gradi-

ent determinant becomes positive again at some distance from

the origin, a fact that is related to the existence of two discon-

nected and spurious unbounded regions—henceforth referred

to as “flaps”—which surround the real vortex, as shown in the

inset of Fig. 3. Depending on the intensity and relative sign of

the background vorticity, the vortex can disappear and only the

flaps remain, or the flaps can coalesce with the vortex, forming

a large, unbounded, structure.

In the test situation where we have two Lamb-Oseen vor-

tices with identical circulations in the presence of a constant

background shear, the flaps still show up, as can be seen in

Figs. 4(a) and 4(b). Furthermore, it turns out that if the back-

ground vorticity is opposite to the ones of the two vortices,

then, besides the flaps, two spurious vortices appear. More

complex patterns arise if additional vortices are superimposed

to the background shear flow, once flaps and spurious vortices

can also mutually interact.

FIG. 3. The dimensionless velocity gradient determinant along the y = 0 axis,

for a vortex of positive circulation Γ and radius rc in the presence of a horizon-

tal background shear of negative vorticity ω̄ = −0.05Γ/r2
c . The x coordinate

is given in units of rc. Inset: density plot of the swirling strength field for this

flow configuration.
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FIG. 4. The background shear is horizontal and both vortices have positive

circulation Γ and radius rc. Coordinates are given in units of rc. The back-

ground vorticity is |ω̄ | = 0.05Γ/r2
c . (a) Two vortices in a background shear of

positive vorticity; (b) two vortices in a background shear of negative vorticity.

D. Spurious vortices

Spurious vortices can be misleadingly identified by the

λci-criterion in many-vortex configurations. These regions

have, in general, relatively small area and circulation, mak-

ing them, even if sometimes numerous, mostly non-influential

to the overall properties of flow, with the exception of count-

ing statistics. Disregarding other aspects of Fig. 4(b), the two

vertically aligned and disconnected spots shown, there are

examples of spurious vortices generated from the approxima-

tion of two real vortices, further enlarged by the presence of

background shear, identified in the picture as the two darker

disconnected compact regions.

The four general instances discussed above clearly indi-

cate that the analysis of the coherent structures through the use

of the λci-criterion, even though meaningful in cases where

the vortex density and the vorticity of the background shear

are small enough, can lead to inaccurate results, mainly in

the investigation of turbulent flows, characterized by strong

multiscale intermittent fluctuations of vorticity and strain.

In Sec. III, we put forward an alternative vortex iden-

tification method, which has the local vorticity field as its

main ingredient and is devised to mitigate the aforementioned

deficiencies of the λci-criterion.

III. VORTICITY CURVATURE CRITERION

As a key point in understanding the behavior of the

λci-criterion in two-dimensional many-vortex systems, it is

useful to point out the connection between this criterion and

the differential-geometric properties of the stream function

ψ = ψ(~r). Note that in a dimensionless system of fluid dynam-

ical units, the Gaussian curvature K56 of the stream function

graph (x, y,ψ) can be written as

K =
∂2

1
ψ ∂2

2
ψ − (∂1∂2ψ)2

1 + (∂1ψ)2
+ (∂2ψ)2

(3.1)

=

∂131 ∂232 − ∂132 ∂231

(1 + ~32)
2

=

det(∂j3i)

(1 + ~32)
2

. (3.2)

It is clear, thus, from the comparison between (2.2) and (3.2),

that in incompressible two-dimensional flows a point belongs

to a vortex, according to the λci-criterion, if and only if its

stream function graph has positive Gaussian curvature, like a

dome.

For a typical vortex, which has two-dimensional vortic-

ity ω(~r) (a pseudoscalar field) that decays faster than 1/r, the

streamfunction is asymptotically logarithmic, since

ψ(~r) = −∂−2ω(~r) =
1

2π

∫
d2
~r ′ log

(

|~r −~r ′ |
a

)

ω(~r ′) , (3.3)

where a is some (unimportant) arbitrary length scale in the

flow. The Lamb-Oseen vortex, in particular, is associated to

the stream function

ψ =
Γ

4π

[

log(r2/r2
c ) − Ei(−r2/r2

c )
]

, (3.4)

where Ei(·) refers to the Exponential-Integral function,55

which is dominated, far from the origin, by the slowly varying

logarithmic contribution in Eq. (3.4).

The asymptotic logarithmic profile of the vortex stream

function implies that there is strong non-linear superposi-

tion effects that affect the curvature of the stream function

graph associated to the individual vortices in many-vortex sys-

tems. This is the main reason for all of the issues with the

implementation of λci-criterion, as discussed in Sec. II. To

understand this point in a more detailed way, consider a set of

N two-dimensional vortices, placed at positions ~ri, which are

associated to the respective streamfunctions ψi(~r −~ri), where

i = 1, 2, . . . , N . The streamfunction at a general position ~r of

the flow, is given, therefore, as

ψ(~r) =

N
∑

i=1

ψi(~r −~ri) . (3.5)

Since the individual streamfunction fields ψi have spatial slow

logarithmic variations, the above superimposed streamfunc-

tion, ψ(~r), can be considerably perturbed by the presence of

other vortices in the system.

The ideal setup to deal with vortex identification, thus,

would be to base the analysis on the properties of spatially

bounded fluid dynamical observables like the vorticity field

carried by coherent structures. In two dimensions, the most

immediate attempt along these lines would be to work with

vorticity level curves, but this is a limited approach, since spu-

rious vortices would proliferate and the subjective choice of

thresholds would be unavoidable.

If we insist on vorticity as a fundamental element in a local

vortex identification scheme, an interesting heuristic proposal

is simply to replace the stream function as it is used in the λci-

criterion by the vorticity field. Now, to find vortices, we would

look for positive curvature regions of the vorticity graph. This

prescription is promising, but the inspection of simple cases

suggests that some refinement is still in order.

Consider, for example, four identical vortices which are

placed at the vertices of a square. It is not difficult to show

that the Gaussian curvature of the vorticity graph is positive

at the center of the square, even though there is no vortex

there. Without loss of generality, if we take the real vortices

to be “bumps” of the vorticity graph (i.e., if they have positive

vorticity) then the spurious vortex at the center is a bowl, with

idiosyncratic positive vorticity.

In more mathematical terms, we just mean that while

ω∂2ω is negative at the square vertices, it changes its sign

at the center. This fact is the hint to establish a meaning-

ful vortex identification prescription, the λω-criterion, which
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relies on the local Gaussian curvature properties of the vor-

ticity graph. To introduce it in detail, we first introduce some

notation. Having in mind our two-dimensional context, define,

from the vorticity field ω(~r), the pseudo-velocity field, with

Cartesian components

3̃i(~r) ≡ ǫ ij∂jω(~r) (3.6)

and the pseudo-vorticity field

ω̃(~r) ≡ −∂2ω(~r) . (3.7)

The streamlines associated to the pseudo-velocity field for the

case of a single Lamb-Oseen vortex are qualitatively the same

as the ones derived for the physical velocity field, so that they

still represent a swirling motion. The main advantage in the use

of above definitions is that while they do not spoil the physical

meaning of what we consider to be a standard vortex, they are

mathematical functions with more interesting local properties,

like a fast Gaussian decay as the radial distance from the vortex

center increases.

We can also write down the determinant of the pseudo-

velocity gradient tensor as

det(∂j 3̃i) ≡ −λ̃2 . (3.8)

Taking the imaginary part of λ̃ as positive, consider the scalar

field

λω ≡ Θ(−ω∂2ω)Im λ̃ = Θ(ωω̃)Im λ̃ , (3.9)

where Θ(ωω̃) is the Heaviside filtering function that is

expected to vanish for spurious vortices, like the one discussed

in the preceding four-vortex example. Vortices are then iden-

tified by the λω-criterion as the connected regions of the flow

where λω , 0.

Comparing the λω-criterion to the λci-criterion, we note

that the essential advantage of the former is that it depends

locally on the vorticity field, which has sharp peaks and rapidly

decaying tails for general vortices. The λci-criterion, on its

turn, is related to the curvature properties of the stream function

graph, which has much broader peaks and tails, and may lead

to poor vortex identification resolution.

The λω-criterion can be classified as a higher order deriva-

tive vortex identification scheme, since it depends on the

evaluation of third order derivatives of the velocity field (in

contrast to the λci-criterion, which is defined in terms of first

order derivatives). Two decades ago this fact would be proba-

bly a main objection to its practical use. However, taking into

account the present status of optical measurement techniques

such as particle image velocimetry and the fast increasing com-

putational power of direct numerical simulations, there is an

open avenue for the investigation of high-order derivative vor-

tex identification methods. A point of great relevance here is

that the λω-criterion works efficiently even without the impo-

sition of subjective threshold parameters. This brings con-

siderable simplification in the implementation of automated

analyses of many-vortex configurations.

We re-examine, now under the light of the λω-criterion,

the relevant vortex identification issues presented in Sec. II.

The results are schematically depicted in Fig. 5.

Without background shear, the λω-criterion has, clearly,

higher resolution than the standard λci-criterion, since it is able

to split coalesced vortices (Fig. 5(a)) that would otherwise

FIG. 5. In (a)–(d), the respective vortex configurations previously studied by

means of theλci-criterion in Figs. 2(b), 2(d), 4(a), and 4(b) are now reanalysed,

taking the λω -criterion as the vortex detection tool.

be counted as one, and to recover ghost vortices (Fig. 5(b)).

With constant background shear, we also find improvements:

the vortex shape distortion is considerably reduced and the

large, unbounded flaps are completely eliminated (Figs. 5(c)

and 5(d)). However, as it can be seen in Fig. 5(d), there is

a couple of relatively small λω spurious regions in the form

of vertical stripes, produced for the case where the two vor-

tices have vorticity opposite to the one of the background.

This undesirable effect is due to the specific form of the filter-

ing function Θ(ωω̃). If a background with constant vorticity

ω̄ is added to the vorticity field ω, the filtering function can

be written as Θ((ω + ω̄)ω̃). Therefore, if ω̄ and ω have oppo-

site signs and |ω̄ | > |ω |, the filtering function may, as a side

effect, introduce errors or even hamper the identification of

a true vortex. We will have more to say about this issue in

Sec. IV.

In order to illustrate the crucial importance of the filter-

ing function and the general improvement gained with the

λω-criterion over the λci-criterion, we show in Fig. 6 the anal-

ysis of a sample of 20 Lamb-Oseen vortices with varying radii

and circulations, which are randomly distributed in a square

domain. While the use of the λci-criterion is unable to avoid

the merging of two of the vortices and the disappearance of

another one, all of the vortices are recovered with the use of

λω-criterion, which approximately preserves their original

circular shapes.

If the filtering function were not used, many spurious

regions would remain, as evidently pointed out in Fig. 6(c).

One notices that a few spurious vortices have survived the

screening of the λω criterion. We have to keep in mind, for

proper applications of the λω-criterion, that although lead-

ing to improvements, it is not free of errors, in the sense

that probably any meaningful vortex identification method

will eventually break in the analysis of extreme (hopefully

unrealistic) flow conditions.
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FIG. 6. Small open circles indicate the positions of 20 randomly distributed

vortices. (a) Vortex detection via the λci-criterion. The phenomena of vortex

coalescence and vortex erasing take place, respectively, in the first and fourth

quadrants of the domain; (b) vortex detection via the filtered λω -criterion,

where all of the original vortices have been identified; (c) inaccurate vortex

detection via the unfiltered λω -criterion. The color bars represent the λci and

λω fields in arbitrary units.

At this point, it is interesting to briefly discuss the rel-

evance of the Lamb-Oseen vortex as a standard of analysis.

The Burgers vortex51 could be an alternative, having in mind

that it is perhaps a more relevant structure for general turbu-

lence modeling, as it has been suggested from turbulent wind

tunnel experiments,57 and from the fact that it can play an

important role in the theoretical understanding of intermit-

tency in homogeneous and isotropic turbulence.58 However,

it turns out that if we are actually interested to focus on the

performance of vortex identification methods, more than on

modeling issues, the Lamb-Oseen vortex is by far the simpler

and more convenient choice, leading to equivalent conclu-

sions. More specifically, while the Burgers vortex is defined

from four independent parameters (two strain rate eigen-

values, the asymptotic circulation, and its core radius), the

Lamb-Oseen vortex is completely determined by its asymp-

totic circulation and core radius parameters. It is not difficult

to show that while the variations of the two extra-parameters

for the Burgers vortex are rigorously harmless in the context

of the λω-criterion, they may affect the performance of the

λci-criterion in unwanted ways, due to the presence of addi-

tional shearing.

So far, all of our arguments have been based on the

inspection of a few representative analytical vortex con-

figurations. Of course, more is needed to validate the

λω-criterion as a reliable tool. This is our next step, to be car-

ried out with the help of extensive Monte Carlo simulations,

where we consider, instead, discretized velocity derivatives

for the analysis of large ensembles of synthetic many-vortex

systems.

IV. MONTE CARLO STUDY

To address a comparative study of accuracy for the λω
and the λci criteria, we run Monte Carlo tests for large ensem-

bles, where in each sample vortices are randomly distributed

over the area of a square domain. The velocity field over a

discretized grid is recorded and the two vortex identification

criteria are applied to investigate how they perform in detect-

ing and also in recovering the properties (circulation, radius,

and position) of the original vortices.

In all of the synthetic samples, evaluations of the velocity

gradient, pseudo-velocity, and pseudo-velocity gradient have

been done with five-point weighted finite differences, which

in the worst situations (the ones involving three derivatives of

the velocity field) have precision of O(δ2) in the grid spacing

δ. Integrations rely on bilinear interpolations, which are also

precise to O(δ2). The connected regions where vortices are

detected are individualized in the grid with the use of a con-

nected component labeling algorithm.59 For each connected

region Rk (k = 1, 2, . . .) we compute

Ak ≡ πr̄2
=

∫
Rk

d2
~r , (4.1)

Γ̄k =

∫
Rk

ω(~r)d2
~r , (4.2)

(xk , yk) ≡

∫
Rk

(x, y) ω2(~r)d2~r

∫
Rk

ω2(~r)d2~r

. (4.3)

Eqs. (4.1) and (4.2) allow us to infer, respectively, with the

help of Eq. (2.6), the real radius rk and circulation Γk vortex

parameters. While for the λci-criterion, α and β are already

known from Eqs. (2.7) and (2.8), a similar and straightfor-

ward analysis for the λω-criterion yields the analogous pair of

parameters (α, β) = (
√

2, 1/(1 − 1/
√

e)) ≃ (1.41, 2.54). Addi-

tionally, Eq. (4.3) gives the “center of enstrophy” coordinates

for the position of the identified vortex. The α parameter for

vortex core radius conversion is, in the λω-criterion, about 1.6

times greater than the one for the λci-criterion. This is a casual

but nevertheless very helpful fact, since it improves the reso-

lution of the detected structures, as it could have already been

noticed from the former’s section results.

We have worked, for a set of flow configurations of inter-

est, with N = 105 Monte Carlo samples, each one containing

N 3 = 20 randomly distributed vortices, on a [☞9, 9]2 square

(arbitrary length scale). The velocity field is exactly defined at

the sites of a Nx × Ny = 2002 grid, which models the square

box [☞10, 10]2. When sampled, vortex centers are always sep-

arated by distances greater than 1.2 times the sum of their

radii.60 Circulations and vortex radii are sampled with uni-

form random distribution in the domains given, respectively,

by 1 ≤ |Γ | ≤ 20 (or −20 ≤ Γ ≤ −1) and 0.5 ≤ rc ≤ 1.5.

As a way to get rid of spurious vortices, we furthermore

prescribe that Rk is accepted as vortex only if |Γk | ≥ Γ0, for

some small circulation scale Γ0. Note that this cutoff prescrip-

tion is conceptually distinct from the imposition of a threshold,

where the main worry is not exactly on the existence of spu-

rious vortices as individual objects, but on specific—noise
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TABLE I. General definitions for the Monte Carlo simulations of the

synthetic many-vortex two-dimensional systems.

Number of samples N = 105

Number of vortices/sample N 3 = 20

System’s dimensions (Lx , Ly) = (20, 20)

Vortex positions −9 ≤ x, y ≤ 9

Grid size 200 × 200

Vortex circulations Γ ∈ ±[1, 20]

Vortex core radii rc ∈ [0.5, 1.5]

Acceptance cutoff Γ0 = 0.5

Vortex pair separation dij > 1.2 × (rci + rcj)

contaminated—regions of the flow. The circulation cutoff for

vortex acceptance is defined as Γ0 = 0.5. The Monte Carlo

simulation definitions are summarized in Table I.

Motivated by the distribution of spanwise vortices

observed in streamwise/wall normal planes of turbulent bound-

ary layers,2,47–49,52–54 we have considered, in our Monte Carlo

simulations, five distinct flow patterns, denoted by Latin

capital letters from A to E, described in Table II.

To define the weak and strong shear regimes referred

to in Table II, observe, as it can be derived from (2.2), that

a vortex with peak vorticity ωp disappears from swirling

strength detection if the vorticity of the background shear is

|ω̄ | > |ωp |/2, with−ω̄ωp < 0. Recalling that for a Lamb-Oseen

vortex, ωp = Γ/πr2
c , and that in our Monte Carlo samples,

|Γ | ≤ 20 and |rc − 1| ≤ 0.5, we take, as representative param-

eters, Γ= 10 and rc = 1, which lead to ωp/2≃ 1.6. Weak

and strong regimes are then defined as the ones which have

background velocity field components given, respectively, by

(3x, 3y) = (0.35y, 0) and (3x, 3y) = (1.6y, 0). Note that for

flow patterns with either weak or strong background shear, the

background vorticity is negative.

In the following, we organize the large lists of input and

output vortex parameters (circulation, radius, and position) in

the form of histograms that indicate how the λci and λω vor-

tex identification criteria perform in the automated analysis of

Monte Carlo ensembles.

Results for the flow pattern A are given in Fig. 7. The λω-

criterion has an excellent performance, while the λci-criterion

is mainly affected by vortex coalescence, which explains why

the counting is reduced for the larger vortices and why so

many non-existent structures with circulation |Γ | > 20 have

been artificially produced. One can note, from Figs. 7(c)

and 7(d) that there are boundary effects in the distribution of

vortices. This is actually due to the fact that by definition they

“avoid each other” in the bounded domain. The same feature

is observed in all of the other flow patterns.

TABLE II. The five flow patterns considered in our Monte Carlo simulations.

Flow pattern Vortex circulations Background shear

A 1 ≤ |Γ | ≤ 20 No background

B 1 ≤ |Γ | ≤ 20 Weak

C 1 ≤ |Γ | ≤ 20 Strong

D −20 ≤ Γ ≤ −1 No background

E −20 ≤ Γ ≤ −1 Strong

FIG. 7. Flow pattern A. Histograms for performance comparison between the

λω -criterion (triangles) and theλci-criterion (circles), in the evaluation of vor-

tex parameters. (a) Circulations; (b) radii; (c) x coordinates; (d) y coordinates.

The dashed lines are the histograms for the input data.

For the flow patterns B and C, which have weak and

strong background shear, respectively, the related histograms

are given in Figs. 8 and 9. In the flow pattern B, as shown

in Fig. 8, the λci-criterion yields a small and uniform sup-

pression of vortices in the samples, but the circulation and

radius countings are actually close to the ones found for the

flow pattern A. The λω-criterion is still the better choice,

despite the fact that vortex counting is strongly affected by

the addition of spurious vortices of small circulation and

artificial structures like the stripes previously observed in

Fig. 5(d). Actually, as we will see in a moment, the λω-criterion

is able to capture the input vortices in this case, which are

more precisely counted when background shearing effects are

removed.

Driving our attention now to the flow pattern C, Fig. 9

tells us that both the λci and the λω criteria perform badly.

It turns out that strong external shearing introduces, in gen-

eral, relevant effects in vortex identification that demand

improvement.

FIG. 8. Flow pattern B. All the rest as in the caption of Fig. 7.
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FIG. 9. Flow pattern C. All the rest as in the caption of Fig. 7.

The visualization of a typical Monte Carlo sample of the

flow pattern C is given in Fig. 10, where we see, as a dom-

inant effect, coalescence percolation of flaps and vortices in

the application of the λci-criterion. On the other hand, the

image associated to the λω-criterion looks qualitatively differ-

ent, and although most of the input vortices have been retrieved

from the sample, they are surrounded by several spurious struc-

tures that can spoil the histograms, like the ones we consider

here.

In order to deal with the shortcomings associated with

shearing/vorticity backgrounds, we put forward an improved

computational strategy, based on the subtraction of the back-

ground velocity field, sample by sample, from individual

velocity field realizations. This is, of course, nothing more

than the method of Reynolds decomposition, which, actually,

has been already employed in the previous studies of coher-

ent structure identification, as in Ref. 61. The idea, thus, is

to revisit our previous analyses, by just replacing the origi-

nal velocity field components 3i(~r) by its fluctuations over the

background, that is,

δ3i(~r) = 3i(~r) − 〈3i(~r)〉 , (4.4)

where 〈3i(~r)〉 stands for the expectation value of the velocity

field taken over the ensemble of configurations. Furthermore,

FIG. 10. A sample of 20 vortices—the same as in Fig. 6, now in the pres-

ence of strong background shear (flow pattern C), investigated through the

(a) swirling strength and (b) the vorticity curvature fields. The color bars

represent the λci and λω fields in arbitrary units.

FIG. 11. Analysis of the flow pattern B, with background subtraction. All the

rest as in the caption of Fig. 7.

as an important prescription, in order to avoid additional spu-

rious effects, we assign a given point in the flow to a vortex if

it is detected in the vortex identification screening carried out

with and without the background subtraction procedure.

We compare, in the next six sets of histograms, the per-

formance of the λci and the λω criteria, both with background

subtraction procedure for the flow patterns B and C, while

analogous comparisons are done for the flow patterns D and

E, with and without background subtraction. We do not report

here the additional background subtraction analysis of the flow

pattern A, since (as expected) we find that both criteria work

again as in Fig. 7, due to the fact that the balanced mixing

of vortices with positive and negative circulations produces a

very small background.

The weak shear case, flow pattern B, is given in Fig. 11,

where both the λci and λω criteria are noted to improve in their

performances, with a clear advantage for the latter.

FIG. 12. Analysis of the flow pattern C, with background subtraction. All the

rest as in the caption of Fig. 7.



015101-10 J. H. Elsas and L. Moriconi Phys. Fluids 29, 015101 (2017)

FIG. 13. Analysis of the flow pattern D, without background subtraction. All

the rest as in the caption of Fig. 7.

For the flow pattern C, we conclude, from Figs. 9

and 12, that the background subtraction procedure consid-

erably improves the performance of the λω-criterion, which

now becomes valid as a method of vortex identification.

Its only residual deficiency is the suppression of vortices

which have relatively large radii and small positive circu-

lations. This is, very clearly, a side effect of the Heaviside

filtering function, which erases positive-circulation vortices

that are completely “submerged” in the negative vorticity

background.

As a way to loosely mimic some of the turbulence bound-

ary layer characteristics found in streamwise/wall normal

planes, where the background vorticity has the same sign as

most of the viscous layer vortices,2,49,53,54 we have devised the

flow regimes D and E. Note that in the flow pattern D, there

is no external background, ω̄ = 0, but there is an essentially

uniform negative vorticity background produced by the many-

vortex system because 〈vi(~r)〉 , 0. Curiously, as it can be seen

FIG. 14. Analysis of the flow pattern D, with background subtraction. All the

rest as in the caption of Fig. 7.

FIG. 15. Analysis of the flow pattern E, without background subtraction. All

the rest as in the caption of Fig. 7.

from Figs. 13 and 14, the λω-criterion is acceptable in both

cases, but it works a bit better, for the flow pattern D, if the

background was not subtracted. This has to do, this time, with

the existence of vortices that are placed in regions of the flow

where the local vorticity background is momentarily greater,

due to the effect of fluctuations, than the mean self-induced

vorticity background.

For the strong background case, flow pattern E, it turns out,

as indicated from Figs. 15 and 16, that the background subtrac-

tion procedure leads to an improvement, mainly in recovering

circulation statistics, which brings the quality of vortex iden-

tification back to the reasonably good standards observed in

the analysis of the flow pattern D.

The above benchmarking Monte Carlo study shows that

the λω-criterion, enhanced by the background subtraction pro-

cedure, provides an appropriate identification prescription for

the investigation of two-dimensional vortex systems. With the

confidence acquired from the numerical experiments carried

out with synthetic samples, we focus now on the analysis of a

more realistic flow situation.

FIG. 16. Analysis of the flow pattern E, with background subtraction. All the

rest as in the caption of Fig. 7.
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V. APPLICATION TO A TURBULENT CHANNEL FLOW

Cross sections of spanwise vortices, interpreted as

heads of hairpin vortices, have been usually observed in

streamwise/wall normal plane sections of wall-bounded

flows.2,47–50,52–54 We have investigated the statistical proper-

ties of such two-dimensional vortex flow patterns by means of

the λci and the λω criteria, for a turbulent channel flow DNS.

The turbulent channel flow simulation has friction

Reynolds number Reτ ≃ 395 and setup parameters described

in Table III. We follow here the simulation guidelines put for-

ward by Kim, Moin, and Moser.62 The streamwise, normal to

the wall, and spanwise coordinates are, respectively, x, y, and z;

periodic boundary conditions are imposed along the stream-

wise and spanwise directions; the grid is not uniform, with

enhanced resolution near the walls, so that the viscous sub-

layer can be resolved with approximately one viscous length

per lattice spacing. The simulation has been validated by stan-

dard tests, like the reproduction of the law of the wall and of

statistical moments.

We have recorded, at every ten time steps in the turbu-

lent stationary regime, the projection of the velocity field of

three parallel streamwise/wall normal planes z = 0, z= π/3, and

z = 2π/3. The ensemble defined in this way has a total number

of 5268 flow configuration snapshots, which are, then, studied

as two-dimensional velocity fields.

We show, in Fig. 17, vortex identification images for

one representative snapshot, analysed in three different ways.

Figs. 17(a) and 17(b) give the results obtained from the appli-

cation of the λci-criterion without and with the use of the

background subtraction procedure, respectively. Fig. 17(c) is

the analogous result associated to the use of the λω-criterion

with background subtraction; no circulation cutoff has been

used in the identification of vortices.

There are expressive qualitative differences between the

two images produced by the λci-criterion, for regions which are

closer to the wall, where shear effects become more relevant.

The λω-criterion leads, on the other hand, to a much better vor-

tex resolution, but the background subtraction procedure does

not lead, in visual terms, to expressive modifications—that is

why we have not shown the picture associated to the applica-

tion of the λω-criterion without background subtraction. This,

in fact, suggests that the flow takes place in weak background

shear conditions. There are, however, small but meaningful

improvements from the use of the background subtraction pro-

cedure that become evident only through histogram analysis,

as we will show below.

As a practical remark to be emphasized here, we note that

as it is a higher order derivative method, the λω-criterion is

related to the identification fields that typically fluctuate over

a much wider range of values than the ones associated to the

TABLE III. Parameters for the DNS of a turbulent channel flow.

System’s dimensions (Lx , Ly, Lz) = (2π, 2, π)

Grid size 256 × 192 × 192

Kinematic viscosity ν ≃ 8.6 × 10−4

Kinematic pressure gradient dP/dx = 0.11

Simulation time step ∆t = 1.2 × 10−3

FIG. 17. Density plots of the λci [figures (a) and (b)] and the λω [figure (c)]

fields in a streamwise/wall normal plane for the DNS of a turbulent channel

flow, for all the channel extension and from the bottom wall up to the mid-

channel height. No threshold is used in the vortex identification analyses. The

background subtraction procedure is implemented only in figures (b) and (c).

The color bars represent the λci and the λω fields in linear and logarithmic

scales, respectively.

λci-criterion. This justifies our use of the logarithmic scale

in the elaboration of the image given in Fig. 17(c). Fixing

attention on the λω-criterion, the natural application of the

logarithmic scale implies, furthermore, that an optional use

of thresholds is somewhat delicate for the case of turbulent

(intermittent) flows: in fact, if the threshold is defined, for

instance, as 20% of the maximum value of the logarithm of the

λω field, then its effects are likely to be irrelevant, since only

structures with very low kinetic energy would be discarded;

alternatively, if an analogous definition of the threshold is given

in a linear scale, it is not difficult to see that almost all of the

vortex structures would be erased in this way.

A closer look at the structures identified by the

λω-criterion is given in Fig. 18, where we plot their contours

and the surrounding streamlines, computed for the velocity

field fluctuations around their mean values. The streamwise

FIG. 18. Streamlines (red lines) for the velocity fluctuations around the mean

flow and the closed contours (grey lines) of vortices identified through the

vorticity curvature criterion, in the region of wall units 0 ≤ y+ ≤ 395 and

590 ≤ x+ ≤ 990 (corresponding to 0 ≤ y ≤ 1 and 1.5 ≤ x ≤ 2.5 in Fig. 17(c)).
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and wall normal coordinates are defined in wall units. From

this picture, we can have a hint on some known important fea-

tures of boundary layer flows, as (i) the larger aspect ratios

and typical inclination of the structures below the onset of the

logarithmic layer (y+ < 30), (ii) the scaling of structure sizes

with their distances to the wall, (iii) the presence of strong

vortices which dominate the local velocity fluctuations (there

at least, two of these in the picture), and (iv) the fact that the

zones of quasi-uniform momentum are correlated with vortex

regions,25 which in our specific example is particularly clear

from the organization of the streamlines in the upper region of

the sample (y+ > 300).

The streamwise/wall normal plane snapshots of the tur-

bulent channel flow are partitioned in thin streamwise stripes

which have vertical width (bin size) ∆y+ ≈ 4. Through a com-

putational strategy analogous to the one discussed in Sec. IV,

we identify vortices for each one of the stripes and determine

their mean circulation, peak vorticity, mean radius, and mean

number as a function of the stripe distance to the wall. Results

are reported in Figs. 19–22. We provide, for some of the pic-

tures, insets which magnify their details, for the sake of better

visual inspection.

Similar evaluations of the mean vorticity and mean vortex

radii as a function of the distance to the wall have been dis-

cussed in Refs. 53 and 54 where, however, vortex parameters

are obtained from Levenberg-Marquardt fittings of the identi-

fied structures to the Lamb-Oseen vortex pattern. Their results

derived from a large turbulent database are compatible with

ours, in the context of the λci-criterion.

The application of the λω-criterion to the turbulent chan-

nel DNS data brings a phenomenologically interesting per-

spective on the statistical properties of the spanwise vortices.

It is clear, from Figs. 19–21, that even with the use of the back-

ground subtraction procedure, the λci-criterion gives, for all

the heights, distinct absolute values of the mean circulations,

vorticities, and radii for the populations of positive (retrograde)

FIG. 19. Absolute mean values of the circulation for retrograde (open sym-

bols) and prograde (solid symbols) vortices, as a function of the distance to

the wall. All the quantities are given in wall units (friction velocity uτ ≃ 0.34

and viscous length lτ ≃ 2.5 × 10−3). Plots (a) and (b) are associated to the

vortex identification by theλci-criterion, while (c) and (d) are associated to the

λω -criterion. The background subtraction procedure has been applied only

for the results depicted in (b) and (d).

FIG. 20. Mean radius values for retrograde (open symbols) and prograde

(solid symbols) vortices, as a function of the distance to the wall. All the rest

as in the caption of Fig. 19.

and negative (prograde) vortices. The application of the back-

ground subtraction procedure in the λω-criterion yields, on

the other hand, a fine collapse of these quantities for y+ > 50,

which extends all throughout the logarithm boundary layer, as

it can be appreciated from Figs. 19(d), 20(d), and 21(d). If we

now take a look at the populations of prograde and retrograde

vortices in Figs. 22(b) and 22(d), they are found to match each

other in both criteria, but only after the background subtraction

procedure is carried out.

We know, from the law of the wall, that the mean vortic-

ity background is, in the logarithm layer, 〈ω+〉= 2.5/y+. It is

clear, thus, from the inspection of Fig. 21, that the mean peak

vorticity of the vortex structures is well above the vorticity

background value for y+ > 50, which tells us that the there is

in fact a weak background shear regime in the log-layer, fol-

lowing the convention put forward in Sec. IV. However, as it

is suggested from Fig. 21(d), the buffer layer is likely to be the

FIG. 21. Absolute mean values of the peak vorticity, i.e., |〈Γ/πr2
c 〉 | for ret-

rograde (open symbols) and prograde (solid symbols) vortices, as a function

of the distance to the wall. The dashed line is the average vorticity of the

turbulent channel (which closely agrees with the law of the wall). All the rest

as in the caption of Fig. 19.
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FIG. 22. Vortex counting per stripe of width ∆y+ = 4, for retrograde (open

symbols) and prograde (solid symbols) vortices, as a function of the distance

to the wall. All the rest as in the caption of Fig. 19.

region where shear effects can become relevant in the problem

of vortex identification.

From the above compilation of statistical results, we find

that the detected vortical structures have their vorticities and

circulations enhanced within the region 5< y+ < 30. This is

likely to be related to the observation that near the bottom of

the buffer layer, streamwise velocity fluctuations become more

intermittent as the distance to the wall decreases, as quantified

by a kurtosis analysis.63 A simple explanation of why individ-

ual vortices carry stronger vorticity as they get closer to the wall

can be addressed from a combination of the no-slip boundary

condition with the attached eddy hypothesis.18 It is expected,

of course, that fluctuations will disappear deep down in the

viscous layer, y+ < 5, which, unfortunately, is poorly resolved

in our data.

The data collapse attained in Figs. 19(d), 20(d), 21(d),

and 22(d) is an important point for the consolidation of the

λω-criterion, once it supports the long-standing phenomeno-

logical assumption of small scale turbulence isotropization in

turbulent boundary layers.64–67 The λci-criterion yields data

collapse only for the vortex counting histogram, Fig. 22(b),

failing to do so in the evaluations of vortex circulation, peak

vorticity, and radius parameters, as it can be clearly seen from

Figs. 19(b), 20(b), and 21(b).

The validity of the isotropic turbulence hypothesis in the

turbulent boundary logarithm layer has been usually checked

with the help of general theoretical relations that should hold

for the expectation values of some local fluid dynamical

observables.64–67 This is a relevant aspect of the turbulent

boundary layer phenomenology that has lacked so far proper

corroboration within the structural analyses, a fact due, essen-

tially, to the limitations of the standard λci vortex identification

methodology.

VI. EXTENSION TO THREE-DIMENSIONAL
VELOCITY FIELDS

It is interesting to devise three-dimensional generaliza-

tions of the λω-criterion as a way to investigate the coherent

structures that are behind their identified two-dimensional

cross sections. There are several ways to do that, following two

essential principles that all of the three-dimensional extensions

have to satisfy. They have to

(i) be covariant under rotations and

(ii) reduce to the λω-criterion in two-dimensional slices of

the flow.

With the above constraints in mind, let ~ω(~r) be the three-

dimensional vorticity vector field, so that we can define, anal-

ogously to Eqs. (3.6) and (3.7), the pseudo-velocity and the

pseudo-vorticity vector field components, respectively, as

3̃i(~r) = ǫ ijk∂jωk(~r) (6.1)

and

ω̃i(~r) = −∂2ωi(~r) . (6.2)

We can then pick up any of the standard three-dimensional

vortex identification methods, like the Q or ∆ criteria, to write

down a straightforward generalization of the λω-criterion.

Taking the extensively used Q-criterion,27–29 as our specific

example, recall that

Q(∂j3i) = −
1

2
∂i3j∂j3i . (6.3)

Vortex regions are defined as the connected sets of points where

Q > 0. Resorting to the pseudo-velocity and pseudo-vorticity

vector fields, the Qω-criterion, which extends the λω-criterion

to three dimensions, is defined from the scalar field

Qω(~r) = Θ(ωiω̃i)Q(∂j 3̃i) . (6.4)

The filtering function previously used in the two-dimensional

context is re-written above in terms of the three-dimensional

vorticity field. We cannot get rid of it in the definition of the

Qω-criterion, otherwise we would surely recover the vortex

identification problems for the cases where the flow is quasi

two-dimensional, where Qω(~r) becomes essentially equivalent

to λω(~r), Eq. (3.9).

In the same fashion as it is done with the Q-criterion, we

look now for the regions of the flow which have Qω > 0 in

order to find vortices. The implementation of the background

subtraction procedure can be readily done by the substitution

of the velocity field by its fluctuation around the mean, exactly

as given in the Reynolds decomposition prescription defined

by Eq. (4.4).

To contrast the role of locality in the definitions of the

Q and the Qω criteria, note that we may write, as it is well

known, Q= (Ω2
ij
− S2

ij
)/2, where Ωij and Sij are the matrix

components of the rotation and the rate of the strain tensors,

respectively. Even though the rotation tensor content is iden-

tical to the one given by the set of vorticity field components,

the Q-criterion is, in fact, not fundamentally dependent on the

local properties of the vorticity field (as it is the case for the

Qω-criterion). To understand it more clearly, just recall that the

strain tensor contribution to Q can be expressed as a non-local

functional of the vorticity field, as a direct consequence of

Eq. (1.1).

In Fig. 23, we show how the Q and the Qω criteria perform

for the simulation of the turbulent channel flow considered in

Sec. V. As expected, there are many more, and better resolved,
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FIG. 23. Vortex identification, with the

use of thresholds, as seen from the top

of the turbulent channel flow, accord-

ing to the DNS addressed in Sec. V.

(a) Q-criterion with no background

subtraction, Q >102; (b) Qω -criterion

with background subtraction, Qω > 1.1

×109; (c) Qω -criterion with background

subtraction, Qω > 1.2 × 108. The color

scheme gives the magnitude of the

velocity field on the coherent structures.

The bottom of the channel is depicted as

a uniform blue background.

structures obtained from the use of the Qω-criterion. The color

scale indicates the absolute value of the velocity field, which

turns out to be a bit more intense for general regions of the

flow in the case where the background subtraction procedure

has been carried out.

We show, in these pictures, regions which have Q or Qω

fields greater than the prescribed thresholds, in order to obtain

a clear visualization of flow structures at different distances

from the wall. Figs. 23(a) and 23(b) are the maps of the coher-

ent structures detected, approximately, for heights y+ < 50,

while Fig. 23(c) is related to the structures found within

y+ < 100.

The Qω images, at variance with the Q ones, suggest

long-range correlations between the regions which have higher

magnitudes of the velocity field and the presence of vortex

packets, a fact that can be related to the existence of the very

large-scale motions (VLSMs) observed in the boundary layer

flows.68,69

Also, when we compare Figs. 23(b) and 23(c), it is tempt-

ing to evoke here the conjecture that low speed streaks are

connected with the formation of aligned packets of hairpin

vortices, as it has been put forward in Ref. 2.

The Qω-criterion seems, therefore, to be a promising

tool to address the three-dimensional organization of vortex

structures in the boundary layers at high Reynolds numbers.

However, since our aim in this section is just to give a first

glimpse on three-dimensional vortex identification, we left

this and other interesting issues to further comprehensive

studies.

VII. CONCLUSIONS

We have introduced in this work an alternative vortex iden-

tification method—the λω-criterion (or “vorticity curvature”

criterion)—which is fundamentally based on the local proper-

ties of the vorticity field. As the starting point of our approach,

we have critically revisited the usual swirling strength,

λci-criterion, in order to classify its main shortcomings in

simple two-dimensional vortex configurations (in two dimen-

sions, most of the velocity gradient-based vortex identification

methods become equivalent to the λci-criterion, which, then,

has a central status in the general problem of vortex recogni-

tion). A careful and rigorous benchmarking analysis has then

been carried out, through an extensive statistical Monte Carlo

treatment of synthetic vortex systems, in order to compare the

performances of the λω and the λci criteria. We have been

able to find, in this way, that the λω-criterion leads, in gen-

eral, to a considerably better and accurate identification of

two-dimensional vortices, as well as of their parameters of

circulation, size, and position. We have also shown how to

deal with possible spoiling external shear effects, by means of

a simple background subtraction procedure, which amounts in

the use of the local Reynolds decomposition of the velocity

field.

We note that some further, but not very expressive, refine-

ment of the λω-criterion may be necessary for the cases of

moderate/strong background shear in anisotropic vortex dis-

tributions (i.e., systems which have more negative than pos-

itive vortices, for instance), which may be relevant in flow

conditions like the turbulent boundary viscous sublayer.

There are two crucial points that explain the observed

good performance of the λω-criterion: (i) the interesting local

properties of the vorticity field, when compared to the ones of

the streamfunction (which is a non-local function of vorticity)

and (ii) the use of the filtering Heaviside functionΘ(ωω̃) in the

definition of the λω-criterion, as given in Sec. III. This filter

removes most of the spurious vortices and renders the vorticity

curvature method essentially free from the need of subjective

threshold parameters.

We have provided the evidence which supports the appli-

cation of the λω-criterion to flow configurations obtained by

direct numerical simulations, taking the paradigmatical tur-

bulent channel flow as an example. It turns out that DNS

velocity fields are smooth enough to allow the use of the

λω-criterion, a third order derivative scheme. We have been

able, in this way, to address the issues of isotropization in
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the turbulent boundary layer, which have, so far, eluded the

structural approach. The application of the λω-criterion to

the turbulent channel flow problem has led, for the first

time (to the authors’ knowledge), to a clear indication of

isotropization in the turbulent boundary layer, within the struc-

tural point of view. More work is needed here, of course, in

combination with the investigation of the three-dimensional

coherent structures.

The λω-criterion is directly generalizable to three-

dimensions in more than one way. We have explored

the three-dimensional extension motivated by the defini-

tion of the standard Q-criterion, which we have denoted as

the “Qω-criterion.” Preliminary visualizations based on the

Qω-criterion show a profusion of well-resolved vortex struc-

tures, not revealed in any of the previous standard analyses

based on the Q-criterion (likely to be affected by both vortex

coalescence and erasing due to thresholding), and may shed

light on the nature of the VLSMs, once they suggest some

correlation between percolating stronger velocity fluctuations

and the formation of vortex packets in the turbulent boundary

layer.

The study of other important boundary layer aspects is

in order, which can now be more accurately addressed. We

mean, for instance, an investigation of the coherent structures

in the turbulent viscous layer, and their role in the production

of viscous drag. In this respect, it is worthwhile mentioning

that phenomenological elements like the VLSMs and quasi-

streamwise vortices, which can be identified with improved

resolution through the Qω-criterion, have been, actually, the

subject of previous works focused on the wall shear-stress

fluctuations.70,71

An interesting discussion, which we touch in passing,

leaving a detailed account for a future study, is related to the

description of the coherent structures in terms of Kolmogorov

scales as developed in Refs. 53 and 61. Consistently with the

results of these works, we have found, through an application

of the λci-criterion to the streamwise/wall normal planes of

our turbulent channel DNS samples, that the Kolmogorov-

rescaled vortex radii, mean circulations, and mean vortici-

ties become very approximately constant for y+ > 50. This,

again, is a strong indication that the local Reynolds num-

ber (a function of y/η where η is the Kolmogorov dissipa-

tion length scale) is stable within the large regions of the

flow where turbulence can be considered to be effectively

isotropic.

To put the bulk of our findings into a proper context, it is

important to stress that the λci-criterion (or the Q-criterion

as well) still offers a reasonably good computational cost-

benefit ratio for the investigation of high Reynolds number

flows, both in experimental and numerical studies. As it can

be clearly seen from the turbulent channel analysis put for-

ward in Sec. V, results found from the use of the λci-criterion

can be seen as a first approximation to the more accurate ones

related to the application of the λω-criterion, as far as coherent

structure resolution and background shear effects are not the

points of concern. In such cases, the λci-criterion can be loosely

interpreted as a low-pass filtered version of the λω-criterion.

While the λci-criterion relies on the set of first spa-

tial derivatives of the velocity field and its application to

DNS or Particle Image Velocimetry (PIV) data is, there-

fore, comparatively less affected by numerical/measurement

errors, some special care is necessary when the λω-

criterion comes into play, once it is a higher-order derivative

method.

In order to deal with PIV or DNS data at higher Reynolds

numbers, we point out here the main points related to the

accuracy of the λω-criterion. On practical grounds, it is neces-

sary to comply with two basic conditions, namely, (i) the data

must be smooth enough to support accurate velocity deriva-

tives up to third order and (ii) the grid resolution has to be

fine enough to resolve both the boundaries and interior of

the vortex regions. In a general DNS, one can assure that the

computations of velocity fields and their second derivatives

are accurate if k4E(k), where E(k) is the energy spectrum,

is smooth and peaked at inertial range scales.72,73 However,

the condition (i) can only be achieved if the resolution is

high enough so that the tail of the energy spectrum is steeper

than k☞7, which can be sometimes a stringent requirement.

Of course, smooth velocity fields can be artificially attained

through low-pass filtering, as long as some resolution lost is

still acceptable. On the other hand, while condition (ii) is not

very problematic in the applications of the swirling strength

criterion, which usually produce well resolved large vortex

regions, it can be a matter of concern for the vorticity curva-

ture criterion. If the data are already smooth enough, it may be

necessary to use a high order interpolation scheme to reach the

grid resolution that would resolve vortex domains. In this way,

not only PIV but also DNS data may require a careful post-

processing for the use along the lines of the vorticity curvature

criterion.

The application of the λω-criterion to the conventional

PIV data can be pursued without much worry when the goal is

to study the large scale vortices in the turbulent boundary layer

(length scales within and above the logarithmic layer) after the

procedure of velocity field smoothing is carried out. Hopefully,

smaller structures, within viscous layer dimensions, could be

also identified with the help of high resolution PIV data, a

subject we deserve for future research.
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