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■ Abstract This review summarizes fundamental results and discoveries concern-
ing vortex-induced vibration (VIV), that have been made over the last two decades,
many of which are related to the push to explore very low mass and damping, and to
new computational and experimental techniques that were hitherto not available. We
bring together new concepts and phenomena generic to VIV systems, and pay special
attention to the vortex dynamics and energy transfer that give rise to modes of vibration,
the importance of mass and damping, the concept of a critical mass, the relationship be-
tween force and vorticity, and the concept of “effective elasticity,” among other points.
We present new vortex wake modes, generally in the framework of a map of vortex
modes compiled from forced vibration studies, some of which cause free vibration.
Some discussion focuses on topics of current debate, such as the decomposition of
force, the relevance of the paradigm flow of an elastically mounted cylinder to more
complex systems, and the relationship between forced and free vibration.

1. INTRODUCTION

Vortex-induced vibration (VIV) of structures is of practical interest to many fields

of engineering. For example, it can cause vibrations in heat exchanger tubes; it

influences the dynamics of riser tubes bringing oil from the seabed to the surface;

it is important to the design of civil engineering structures such as bridges and

chimney stacks, as well as to the design of marine and land vehicles; and it can

cause large-amplitude vibrations of tethered structures in the ocean. These are a

few examples out of a large number of problems where VIV is important. The

practical significance of VIV has led to a large number of fundamental studies,

many of which are discussed in the comprehensive reviews of Sarpkaya (1979),

Griffin & Ramberg (1982), Bearman (1984), Parkinson (1989); in a book chap-

ter by Anagnostopoulos (2002); and in books by Blevins (1990), Naudascher &

Rockwell (1994), and Sumer & Fredsøe (1997). Here we focus on the more recent

accomplishments of researchers, especially within the last decade. One stimulus

for a resurgence of interest in VIV came from the Ocean Engineering Division of
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414 WILLIAMSON ¥ GOVARDHAN

the U.S. Office of Naval Research, which mounted a University Research Initiative

and brought together many international researchers to work on common ground.

This also led to focused conferences, supported by the ONR, IUTAM, and ASME,

and other international bodies, on this topic, namely the series Bluff Body Wakes

and Vortex-Induced Vibrations (BBVIV ), which has been held in Washington, D.C.

(1998); Marseille, France (2000); and Port Douglas, Queensland (2002).

In this review, we are concerned principally with the oscillations of an elastically

mounted rigid cylinder; with forced vibrations of such structures; with bodies

in two degrees of freedom; with the dynamics of cantilevers, pivoted cylinders,

cables, and tethered bodies. As a paradigm for such VIV systems, we shall consider

here an elastically mounted cylinder restrained to move transverse to the flow, as

Figure 1a shows. As the flow speed (U) increases, a condition is reached when the

vortex formation frequency (fV) is close enough to the body’s natural frequency

(fN) such that the unsteady pressures from the wake vortices induce the body to

respond. Certain wake patterns can be induced by body motion, such as the 2S

mode (2 single vortices per cycle, like the classic Karman street) and the 2P mode

(comprising 2 vortex pairs formed in each cycle of body motion), following the

terminology introduced in Williamson & Roshko (1988). Interestingly, a forced

vibration can also lead to other vortex modes including a P + S mode, which

is not able to excite a body into free vibration. In essence, a nominally periodic

vibration ensues if the energy transfer, or work done by the fluid on the body, over

a cycle is positive. This net energy transfer is influenced significantly by the phase

of induced side force relative to body motion, which in turn is associated with

the timing of the vortex dynamics. The problem of VIV is therefore a fascinating

feedback between body motion and vortex motion. In this review we present not

only response phenomena, but also the important vortex dynamics modes leading

to the response.

Even in the simple case of the elastically mounted cylinder many fundamental

questions exist that are outstanding, for example: (a) What is the maximum possible

amplitude attainable for a cylinder undergoing VIV, for conditions of extremely

small mass and damping? (b) Under what conditions does the classically employed

mass-damping parameter collapse peak-amplitude data? What is the functional

shape for a plot of peak amplitude versus mass-damping? (c) What modes of

structural response exist, and how does the system jump between the different

modes? (d) What vortex dynamics give rise to the different body response modes?

(e) What generic features can be discovered that are applicable to all VIV systems?

To what extent are the enormous number of studies for bodies restricted to motion

transverse to the flow, relevant to other, more complex VIV systems? ( f ) Because

almost all of the studies of VIVs are at low and moderate Reynolds numbers, how

do these results carry across to high Reynolds numbers?

This review brings together for the first time a number of new phenomena, many

of which are related to the above questions. One fascinating phenomenon, which

highlights the potential for new techniques since the previous review by Bearman

(1984) in Annual Review of Fluid Mechanics, comes from low-Reynolds-number
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VORTEX-INDUCED VIBRATIONS 415

(Re = 100) computations undertaken by Tony Leonard, Doug Shiels, and Anatol

Roshko at Caltech (Shiels et al. 2001), and is seen in Figure 1. The wake is

essentially a Karman vortex street, but is actually generated by a body that has no

mass, no spring, and no damping! At every instant in time, the transverse ideal

added mass force is exactly balanced by the vortex force. This phenomenon is but

one in a whole set of new results made possible by accurate use of new methods.

Computational studies are used to attack two- and three-dimensional flows, as well

as to compute higher-Reynolds-number flows, bodies of long aspect ratio, and

flexible structures. On the other hand, experimentalists now extensively utilize the

highly effective Particle-Image Velocimetry (PIV) technique to determine vorticity.

Here we introduce an equation of motion generally used to represent VIV of a

cylinder oscillating in the transverse Y direction (normal to the flow) as follows:

mÿ + cẏ + ky = F, (1)

where m = structural mass, c = structural damping, k = spring constant, and

F = fluid force in the transverse direction. In the regime where the body oscillation

frequency is synchronized with the periodic vortex wake mode (or periodic fluid

force), a good approximation to the force and the response is given by

F(t) = Fo sin(ωt + φ) (2)

y(t) = yo sin(ωt), (3)

where ω = 2π f and f = body oscillation frequency. The response amplitude and

frequency may be derived in a straightforward manner from Equations 1–3, as

done by several previous investigators. Here we formulate the equations in terms

of a chosen set of nondimensional parameters, as in Khalak & Williamson (1999):

A∗ =
1

4π3

CY sin φ.

(m∗ + CA) ς

(

U ∗

f ∗

)2

f ∗ (4)

f∗ =

√

m∗ + CA

m∗ + CEA

, (5)

where CA is the potential added mass coefficient (taking the value 1.0), and CEA

is an “effective” added mass coefficient that includes an apparent effect due to the

total transverse fluid force in-phase with the body acceleration (CY cos φ):

CEA =
1

2π3

CY cos φ

A∗

(

U ∗

f ∗

)2

. (6)

Quantities in the above equations are defined in the Appendix. Animated debate

often surrounds the definition of added mass (CEA) in these problems. Of course,

it is not a true added mass, because it has a significant force component due to the

vorticity dynamics. Note that the amplitude A∗ in Equation 4 is proportional to the
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416 WILLIAMSON ¥ GOVARDHAN

transverse force component that is in-phase with the body velocity (CY sin φ), and,

for small mass and damping, the precise value of the phase angle φ has a large

effect on the response amplitude.

Feng (1968) contributed some important classic measurements of response and

pressure for an elastically mounted cylinder. Figure 2a presents his minimum

damping case, and it is apparent that there are two amplitude branches, namely

the “initial” branch and the “lower” branch (in the terminology of Khalak &

Williamson 1996), with a hysteretic transition between branches. The mass ratio

(or relative density) is very large because the experiments were conducted in air

(m∗ ∼ 250). Much of the new work we review in the following sections comes

from the push to explore much smaller mass and damping, generally using water

as the fluid medium. Regarding the frequency response, the classical definition of

lock-in or synchronization is often perceived as the regime where the frequency

of oscillation (f), as well as the vortex formation frequency (fV), are close to the

natural frequency (fN) of the structure throughout the regime of large-amplitude

vibration, so that f∗ = f/fN ∼ 1 in Figure 2b. However, recent studies (in Sections 2

and 3) show a dramatic departure from this classical result; bodies can conceivably

vibrate with large amplitude, at hundreds of times the natural frequency!

Feng also noted that the jump in response amplitude was reflected by a sig-

nificant jump in the phase of the pressure fluctuations relative to body motion.

One might suspect that a jump in phase angle (between transverse force and dis-

placement) through resonance, as shown in Figure 2c, will be matched by a switch

in the timing of vortex shedding. Zdravkovich (1982) showed this for the first

time using visualisations from previous studies. An excellent demonstration of

this timing switch comes from the comprehensive forced vibration study of On-

goren & Rockwell (1988a), shown in Figure 3a, where the switch in timing of

vortex formation is evident as the body’s frequency is increased through a crit-

ical value (roughly f/fV ∼ 1.05). Gu, Chyu & Rockwell (1994) confirmed this

from forced vibrations at small A∗ = 0.2, in the groundbreaking first study of

this problem using PIV. This phenomenon has also been found in the simula-

tions of Meneghini & Bearman (1993, 1995), Lu & Dalton (1996), Blackburn &

Henderson (1999), Anagnostopoulos (2000a,b), Guilmineau & Queutey (2002),

and further experiments by Krishnamoorthy et al. (2001).

It is important to ask what the relationship is between the maximum response

amplitude and the system mass and damping. Generally, this information has been

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 2 Free vibration of an elastically mounted cylinder at high mass ratios. In

(a), we compare the classical response amplitudes of Feng (1968) (triangle symbols),

with Brika & Laneville (1993) (open symbols), both at the same (m∗ζ ) in air. (b) and

(c) show the vibration frequency and phase of the transverse force, as measured in water,

but with the same (m∗ + CA)ζ ∼ 0.251 as used in the air experiments (Govardhan &

Williamson 2000). Brika & Laneville’s smoke visualizations (d) showed for the first

time that the response branches correspond with the 2S and 2P modes.
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418 WILLIAMSON ¥ GOVARDHAN

plotted as A∗
max versus a parameter, SG, proportional to the product of mass and

damping, following the first comprehensive compilation of existing data by Griffin

and coworkers in the 1970s, and labeled for convenience as the “Griffin plot” by

Khalak & Williamson (1999). Figure 3c shows one of Griffin’s (1980) original

plots, illustrating the characteristic shape whereby the amplitude reaches some

limiting value as SG (reduced damping) becomes small. The logic in choosing a

combined mass-damping parameter comes from Equation 4 for A∗. For example,

Bearman (1984) demonstrated that for large mass ratios (m∗ >> 1), the actual

cylinder oscillation frequency (f ) at resonance will be close to the vortex shedding

frequency for the static cylinder (fV), and also close to the system natural frequency

(fN), i.e., f ≈ fV ≈ fN, and thus f∗ ≈ 1.0 (see Equation 5 for large m∗). Thus, at

resonance, the parameter (U∗/f∗) = (U/fD) ≈ (U/fV D) = 1/S, where S is the

Strouhal number of the static cylinder, suggesting a resonance at the normalized

velocity, U∗ ≈ 5–6. Therefore, the assumption is often made that both (U∗/f∗) and

f∗ are constants, under resonance conditions, giving (from Equation 4)

A∗
max ∝

CY sin φ.

(m∗ + CA)ς
. (7)

As Khalak & Williamson (1999) discussed, if (U∗/f∗) is assumed constant, then

the excitation (CY sin φ) is a function of {A∗} only. Therefore, under these assump-

tions, A∗
max is a function only of the product of mass and damping (m∗ + CA)ζ . We

stress that Equation 7 depends on the earlier assumptions remaining reasonable,

namely that f∗ ≈ 1.0, which is not self-evident. The Griffin plot has become an

integral part of the offshore design codes (for example, Det Norske Veritas codes),

and so it is important to determine it accurately. As discussed in Section 4, a final

accurate definition of this important plot is surprisingly not yet available.

Aside from studies of elastically mounted structures, one approach to an un-

derstanding and possible prediction of vibrations has been to undertake forced

vibrations of a structure. A central contribution of Sarpkaya to VIV has been his

well-known and much-referenced data set of transverse force coefficients for con-

trolled sinusoidal vibration of a cylinder transverse to a free stream. Sarpkaya

(1977, 1978) expressed the transverse force as

CY = Cmy sin ωt − Cdy cos ωt, (8)

where Cmy and Cdy are the inertia (in-phase) and drag (out-of-phase) force coef-

ficients of the transverse force coefficient CY. An example set of data, at constant

amplitude (A∗ = 0.5) and for varying normalized velocity, VRSt, which is equiva-

lent to (U∗/f∗)S, is included in Figure 3d (from Sarpkaya 1995), where he included

more recent data from Moe & Wu (1990) and Gopalkrishnan (1993). We note that

the agreement between these newer data sets and his own classical data is remark-

able despite the different experimental conditions. Further discussion of forced

vibrations will be presented in Section 5.

Williamson & Roshko (1988) studied the vortex wake patterns for a cylinder,

translating in a sinusoidal trajectory, over a wide variation of amplitudes (A/D up
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VORTEX-INDUCED VIBRATIONS 419

to 5.0) and wavelengths (λ/D up to 15.0). They defined a whole set of different

regimes for vortex wake modes, using controlled vibrations, in the plane of {λ/D,

A/D}, where a descriptive terminology for each mode was introduced. Each peri-

odic vortex wake pattern comprises single vortices (S) and vortex pairs (P), giving

patterns such as the 2S, 2P, and P + S modes, which are the principal modes

near the fundamental lock-in region in Figure 4. Visualization of the 2P mode is

clearly presented in this figure also. Williamson & Roshko (1988) described other

patterns, such as those formed by coalescence of vortices, or from more vortices

per cycle (e.g., the “2P + 2S,” representing a one-third-subharmonic mode).

The 2P and P + S modes have been found in controlled vibration studies in-

line with the flow (Griffin & Ramberg 1976, Ongoren & Rockwell 1988b). The

P + S mode was also found in Griffin & Ramberg’s (1974) well-known smoke

visualizations for transverse motions (see also Zdera et al. 1995). The significance

of these modes from controlled vibration is that they provide a map of regimes

within which we observe certain branches of free vibration. One deduction from

the Williamson & Roshko study was that the jump in the phase φ of the transverse

force in Bishop & Hassan’s (1964) classical forced vibration paper, and also the

jump in phase measured in Feng’s (1968) free-vibration experiments, were caused

by the changeover of mode from the 2S to the 2P mode. This has since been

confirmed in a number of free-vibration studies, and we address this in Section 2.

Such vortex modes occur for bodies in one or two degrees of freedom, for pivoted

rods, cantilevers, oscillating cones, and other bodies. Response data from all of

these studies have been correlated with the map of regimes described above.

2. FREE VIBRATION OF A CYLINDER

Brika & Laneville (1993, 1995) were the first to show evidence of the 2P vortex

wake mode from free vibration, using a vibrating cable in a wind tunnel. They stated

that “the 2S and 2P modes can be clearly recognized, and the earlier explanation

by Williamson & Roshko (1988) for the hysteresis loop in terms of a change in

wake vortex patterns is confirmed.” Figure 2d shows their smoke visualization of

these modes. They found a clear correspondence of the 2S mode with the initial

branch of response, and the 2P mode with the lower branch.

Phenomena at low mass ratios and low mass-damping are distinct from those

mentioned above. A direct comparison is made between the response in water

(m∗ = 2.4) (from Khalak & Williamson 1997b), with the largest response plot of

Feng conducted in air (Figure 5). The lighter body has a value of (m∗ζ ), around

3% of Feng’s value, yielding a much higher peak amplitude. The extent of U∗ over

which there is significant response is four times larger than that found by Feng.

(The widening of the synchronization regime for decreasing mass is an effect which

was shown by Griffin & Ramberg 1982). Although these are trends that might be

expected, the character of the response for low mass-damping is also distinct. The

low-(m∗ζ ) type of response is characterized by not only the initial branch and the
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lower branch, but also by the new appearance between the other two branches of

a much higher “upper response branch.” Khalak & Williamson (1996; 1997a,b;

1999) showed the existence of these three distinct branches, and using the Hilbert

Transform to find instantaneous phase, force, and amplitude, they showed that the

transition between the Initial ⇔ Upper branches is hysteretic, while the Upper ⇔
Lower transition involves instead an intermittent switching. On the other hand,

in Figure 2, for high mass-damping, it is well known that Feng (1968) found a

hysteresis between the initial and lower branches.

The phenomenon of lock-in, or synchronization (see Blevins 1990, Sumer &

Fredsøe 1997), traditionally means that the ratio f∗ = f/fN remains close to unity,

as seen in Figure 2 for high mass ratio. However, for light bodies in water, in this

case for m∗ = 2.4 in Figure 5, the body oscillates at a distinctly higher frequency

(f∗ = 1.4). Experimentally, the departure of f∗ from unity, through the lock-in

regime, was shown by Moe & Wu (1990), and more recently was reported in

Khalak & Williamson (1997b, 1999) and in Gharib et al. (1998). Therefore, one

might define synchronization as the matching of the frequency of the periodic

wake vortex mode with the body oscillation frequency. Correspondingly, the force

frequency must match the oscillation frequency, which is the definition of lock-in

now used by Sarpkaya (1995).

It is relevant to mention some early experiments of Meier-Windhorst (1939),

who measured the response of a very short cylinder section immersed in a shallow

“water table” flow, giving a length/diameter of only 1.8. He used end plates, that

moved with the body, which were wider than the cylinder length. The fact that

his cylinder arrangement moved in an arc results in a contribution to the effective

restoring force coming from the drag force, thereby leading to nonlinearities in

spring stiffness. As discussed in Naudascher & Rockwell (1994), the “data includes

unusual end effects, because of the small depth of his test section.” Despite the

fact that there are discrepancies of around 100% in amplitude when plotted against

recent data in the Griffin plot, the data curves suggest that an upper branch appears

for sufficiently low damping.

Donald Rockwell’s group at Lehigh University (see Gu et al. 1994) was the first

to measure vorticity dynamics using PIV on the problem of controlled cylinder

vibration. The first vorticity measurements for free vibrations, by Govardhan &

Williamson (2000), confirmed that the initial and lower branches correspond to

the 2S and 2P vortex wake modes, and these are illustrated in Figure 6. The upper

branch comprises the 2P mode, but the second vortex of each pair (in each half

cycle) is much weaker than the first one, as seen in Figure 6b. One of the first

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 4 The map of regimes for vortex wake modes (Williamson & Roshko 1988),

showing principally the 2S, 2P, and P + S mode regimes, which are relevant to the

fundamental synchronization regime. The 2P mode, comprising two vortex pairs per

half cycle, is visualized clearly below the mode map. Cylinder is towed through fluid

in a sinusoidal trajectory to the left.
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Direct Numerical Simulations (DNS) of the 2P mode, by Blackburn et al. (2001),

is included in Figure 6d, and represents a direct comparison of vorticity dynamics

between numerical and physical experiments.

It is well known that a reduction in mass, for example from m∗ = 8.6 to 1.2, in

Figure 7, leads to a wider synchronization regime, in this case yielding a significant

increase of the lock-in regime, which reaches U∗ ≈ 17. The normalized velocity

used here, U∗, is the traditional parameter for free-vibration experiments. However,

by replotting the data versus the parameter (U∗/f∗) S, which is equivalent to (fvo/f)

(or the inverse of the ratio of actual oscillating frequency to the fixed-body shedding

frequency), the data sets collapse very well. Khalak & Williamson (1999) made

the first such collapse of free-vibration data and showed that this collapse cannot

a priori be predicted. An equivalent “true” reduced velocity has been used, not

only in the numerical simulations, but also in experiment (Moe & Wu 1990, Hover

et al. 1998, Sarpkaya 1995). With the renormalization above, there is a good

correspondence between the vortex wake modes of the free response branches

with the vortex mode regimes deduced from forced vibration in the Williamson &

Roshko map (see Figure 7b).

Consider the switch in the timing of vortex shedding described by Zdravkovich

(1982) when the amplitude jumps from the initial to lower branch in high mass-

damping cases such as Feng (1968). In contrast, for low mass and damping, there

are two mode jumps, and it is not immediately clear which one corresponds to

the switch in vortex shedding timing. To throw light on this question, Govardhan

& Williamson (2000) considered the “total” fluid force, as well as the “vortex”

force. The concept of vortex force, or the relationship between impulse of vorticity

and fluid momentum, has been used extensively in fluid mechanics (Lamb 1932,

Moreau 1953, Batchelor 1967, Saffman 1992). In the present context, Lighthill

(1979, 1986) showed that the total fluid force (FTOTAL) can be split into a “potential

force” component FPOTENTIAL, given in this case by the potential added mass force,

and a “vortex force” component (FVORTEX) that is due only to the dynamics of all

the shed vorticity. The idea of relating force in a qualitative manner to the vor-

tex dynamics was used, for example, in Maull & Milliner (1978) and Williamson

(1985), the latter triggered by Lighthill (1979).

In some computational methods, particularly vortex methods, an evaluation

of the total fluid force on a body is often made by adding potential and vortex

force components. In Govardhan & Williamson’s (2000) experimental study, they

approached the study of the forces from a different perspective; they set out to

deduce what the vortex force is, from direct experimental measurement of the

total fluid force. The vortex force FVORTEX, can be simply computed from the total

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 5 Free vibration at low mass and damping is associated with the existence

of an upper branch of high amplitude response, which appears between the initial and

lower branches. The frequency of the lower branch is not close to the natural frequency,

and is remarkably constant in (b). From Khalak & Williamson (1997b). Open symbols

in (a) show the contrasting high-m∗ζ response data of Feng (1968).
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fluid force: FVORTEX (t) = FTOTAL (t) – FPOTENTIAL (t), where the potential force

is given by FPOTENTIAL (t) = −[CA · md · ÿ (t)], and where md = displaced fluid

mass = (πρD2L/4), and CA is the ideal added mass (= 1.0). How can one write the

equation of motion in such a manner as to indicate necessarily when a jump in

the timing of vortex formation may be found? One can do this by retaining only

the vortex force on the right-hand-side of the equation of motion. Govardhan &

Williamson thus introduced a “vortex force coefficient” and a “vortex phase,”

φVORTEX, defined as the phase between vortex force and displacement, writing the

equation of motion as:

Equation using “Vortex force”:

(m + mA)ÿ + cẏ + ky = FVORTEX sin(ωt + φVORTEX), (9)

whose solution is compared to that from the traditional equation of motion:

Equation using “Total force”:

mÿ + cẏ + ky = FTOTAL sin(ωt + φTOTAL). (10)

Absorption of the added mass (mA) into the total oscillating mass has sometimes

been used in texts on fluid-structure interactions (e.g., Blevins 1990, Sumer &

Fredsøe 1997), and it is often used in offshore engineering to predict force and

dynamics of structures. The new idea in the present context was to define and

to evaluate these parameters {FVORTEX, φVORTEX, FTOTAL, φTOTAL} directly from

actual experiments. The overview diagram in Figure 8 summarizes how there

are two distinctly different jumps between modes for low (m∗ζ ). In essence, the

transition from initial → upper branch is associated with a jump in vortex phase

φVORTEX, as the response frequency passes through the value f = fN MEDIUM (natural

frequency in the fluid medium; for example, water). At this transition there is a

switch in the timing of vortex shedding that is associated with the jump from the

2S to the 2P vortex modes. The second transition from upper → lower branch

corresponds with a jump in total phase φTOTAL, as the response frequency passes

through the value f = fN VACUUM. This transition is not associated with a switch

in timing of the shedding, in contrast to Zdravkovich’s (1982) deductions at high

mass-damping.

We briefly return to the important and much-debated question of added mass.

As mentioned above, Lighthill (1979, 1986) discussed a formal decomposition of

the total fluid force into its potential and vortex force components. As Lighthill

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 7 Effect of a mass reduction can dramatically increase the width of the syn-

chronization regime (m∗ = 8.63 and 1.19) when plotted with velocity (U∗) used tradi-

tionally for free vibration. These response data collapse well if one uses the “true” nor-

malized velocity (U∗/f∗)S, yielding a good correspondence between response branches

and vortex mode regimes in Williamson & Roshko’s (1988) map. From Govardhan &

Williamson (2000).
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Figure 8 Overview diagram of the low-m∗ζ type of response, showing the three principal

branches, and the corresponding two jump phenomena. This plot shows the jump in vortex

phase (φVORTEX) and the jump in total phase (φTOTAL), as the vibration frequency passes

through the natural frequency in the fluid medium (fN-WATER), and the natural frequency in

vacuum (fN-VACUUM), respectively. From Govardhan & Williamson (2000).

put it, the “additional” vorticity (ωA), which contributes to the vortex force, refers

to the entire vorticity in the flow field minus “part of the distribution of vorticity

attached to the boundary in the form of a vortex sheet allowing exactly the tangential

velocity (slip) associated with the potential flow.” A full knowledge of the vorticity

field would yield the vortex force through the concept of vorticity impulse. As

Koumoutsakos & Leonard (1995) wrote, the total force on a body (per unit length)

is given by

FV = ρ
d

dt

∫

(ωA × x) dV +
ρπ D2

4

dU

dt
. (11)
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One of the more recent debates comes from the BBVIV-3 Conference in Mar-

seille, in June 2000 (see Leweke, Bearman & Williamson 2001), which triggered

much-needed clarification. Leonard & Roshko (2001) specifically discussed added

mass of an accelerating body, defining it as “the impulse given to the fluid during an

incremental change of body velocity, divided by that incremental velocity.” They

point out that such “properties of the added mass are well known from textbook

derivations which are usually obtained for irrotational flow, and so it is not as well

known that the resulting definitions are applicable more generally, e.g., in sepa-

rated flows, such as those that occur in problems of flow-induced vibration. As a

result, empirical relations are sometimes introduced into models, unnecessarily.”

Leonard & Roshko provide a clear proof for the validity of the decomposition of the

force in a general viscous flow, which of course includes bluff bodies undergoing

VIV.

Sarpkaya (2001) made a contrasting conclusion, stating that “Lighthill’s asser-

tion that the viscous drag force and the inviscid inertia force acting on a bluff body

immersed in a time-dependent flow operate independently, is not in conformity

with the existing exact solutions and experimental facts.” Sarpkaya quoted an ex-

act solution given in a famous paper by Stokes (1851) concerning the force F(t)

on an oscillating sphere in a viscous fluid, valid for small amplitude. He presented

the solution as his proof that “it is impossible to decompose F(t), for the flow

under consideration, into an inviscid inertia force and a viscous force.” Sarpkaya

concluded that such a force decomposition is equally impossible in the case of the

transverse forces acting on bluff bodies undergoing VIV.

It is important to note the use of terminology in these problems, particularly

where it is used in practice. For example, it is common in offshore engineering

to use the expression “added mass” to mean all the fluid force in phase with

acceleration (see, for example, Vikestad et al. 2000), which is distinct from the

potential added mass.

There have been excellent advances in the methods to measure induced force on

a body, employing the concept of vorticity impulse. Two research groups, one at

Lehigh University and the other at Caltech, have been pushing forward these tech-

niques, coupled with their development of highly accurate PIV techniques. Lin &

Rockwell (1996) found good agreement when comparing the directly measured

lift force with the force computed from vorticity, effectively using Equation 11.

Because the vorticity remained in the neighborhood of the body, they could take

into account all the vorticity. However, in VIV problems, the flow domain is

too large to capture fully, and there have therefore been developments to com-

pute the force by measuring the velocity field and its derivatives within a fi-

nite control volume surrounding the body, as shown in papers by Unal et al.

(1997) and Noca et al. (1997, 1999). Noca et al. (1999) employed a relation

that only requires evaluating velocity derivatives on the external control sur-

face. The sophisticated derivations and new relations in these papers are a major

step forward, although some problems remain with implementing the methods in

practice.
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3. EXISTENCE OF A “CRITICAL MASS”

We see from several investigations that, as the structural mass decreases, so the

regime of velocity U∗ over which there are large-amplitude vibrations increases

(see, for example, Figure 7). Anthony Leonard indicated the large extent of such

regimes for very low mass ratios, based on results related to numerical simulation,

at the ONR Meeting at Brown University (June 1997). We make the deduction

here that when mass ratio (m∗) tends to zero, then the extent of the synchronization

regime of large-amplitude motion extends to infinity! (We simply deduce this from

Equation 5.) However, a more surprising result shows that the synchronization

regime becomes infinitely wide, not simply when the mass becomes zero, but

when the mass falls below a special critical value whose numerical value depends

on the shape of the vibrating body.

The higher end of the synchronization regime for free vibration of a cylinder,

with low mass-damping, is generally distinguished by a lower amplitude branch,

which has a remarkably constant vibration frequency (f∗LOWER), as typified by

Figure 5b, and whose frequency level increases as the mass is reduced. Govardhan

& Williamson (2000) presented a large data set for the lower branch frequency

(f∗LOWER) plotted versus m∗, yielding a good collapse of data onto a single curve

fit based on Equation 5:

f ∗
LOWER =

√

m∗ + 1

m∗ − 0.54
. (12)

This expression provides a practical and simple means to calculate the highest

frequency attainable by the VIV system in the synchronization regime, if one is

provided the mass ratio, m∗. An important consequence of Equation 12 is that the

vibration frequency becomes infinitely large as the mass ratio reduces to a limiting

value of 0.54. Therefore, Govardhan & Williamson concluded that a critical mass

ratio exists

Critical mass ratio, m∗
CRIT = 0.54 ± 0.02 (13)

below which the lower branch of response can never be reached for finite velocities,

U∗, and ceases to exist. These conditions are applicable for finite (U∗/f∗), so when

the mass of the structure falls below the critical value, one predicts that large-

amplitude vibrations will be experienced for velocities U∗ extending to infinity:

U∗
end of synchronization = 9.25

√

m + 1

m − 0.54
. (14)

This expression accurately marks the upper boundary of the shaded synchroniza-

tion regime in Figure 9a. The fact that the critical mass turns out to be 54% is

significant because it is in the realm of the “relative densities” of full-scale struc-

tures in engineering. We note carefully that this unique value of the critical mass

is valid under the conditions of low mass and damping, so long as (m∗ + CA)ζ <

0.05.
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Figure 9 Discovery of a critical mass. The synchronization regime of high-amplitude vi-

bration (shaded regime) extends to infinite velocities as m∗ approaches the value 0.54, in (a)

(Govardhan & Williamson 2000). The lower plot in (b), from an independent set of exper-

iments at infinite U∗, shows that there is a sudden appearance of large-amplitude response

when m∗ just falls below 0.54 (Govardhan & Williamson 2002). Symbols in (a) are: •,

Govardhan & Williamson (2000); △, Khalak & Williamson (1999); , Hover et al. (1998);

⊙, Anand (1985).
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We make the point here that added mass coefficients having a negative value

can be observed in data sets collected from forced vibration (see Mercier 1973,

Sarpkaya 1978, Gopalkrishnan 1993) and in recent free-vibration data sets (see

Vikestad et al. 2000, Willden & Graham 2001). The implications to free-vibration

phenomena, such as the possible existence of a “critical mass,” were not deduced

in these works. However, it has generally been recognized that added mass (or

CEA) can predict free-vibration frequencies.

For very small mass ratios, m∗ ∼ 1, as observed by Shiels et al. (2001), Gharib

et al. (1997, 1998), Govardhan & Williamson (2000), and Willden & Graham

(2001), there is no regime of constant oscillation frequency of the kind observed

earlier in Figures 2b and 5b. The vibration frequency rises almost linearly as

U∗ increases, which is expected if one considers that the synchronization regime

becomes large. There is nothing in principle to suggest that an experiment (consider

the m∗ = 0.52 case in Govardhan & Williamson 2000) cannot reach U∗ ∼ 300,

for example, at which point the system will vibrate vigorously at 32 times the

natural frequency. This is far from the classical concept of synchronization, where

resonant vibration is expected around U∗ ∼ 5–6.

It is possible, even within a laboratory, to take the normalized velocity (U∗)

to infinity simply by removing the restraining springs, as done by Govardhan &

Williamson (2002). The concept of removing springs is not new; in Shiels et al.’s

(2001) numerical simulations they set such structural coefficients (m, c, k) to

zero, in their equation of motion. In the experiments, a reduction of mass led to

a catastrophic change in response; large-amplitude vigorous vibrations suddenly

appear as the mass ratio is reduced to below a critical value, m∗ = 0.542 (see

Figure 9b). This accurately proves the prediction of the earlier paper (Govardhan &

Williamson 2000); resonant oscillations persist up to infinite (normalized) flow

speeds, and in this sense the cylinder resonates forever.

How generic is the phenomenon of critical mass? Govardhan & Williamson

(2002) deduced that it will be a universal phenomenon for all systems of VIV

whose induced forces and dynamics are reasonably represented by the Equations

1–3. In fact, one finds a critical mass, m∗ ∼ 0.30, for a tethered sphere system

(Govardhan & Williamson 2003), a critical mass, m∗ ∼ 0.50, for a pivoted cylinder

(Flemming & Williamson 2003), as well as m∗ ∼ 0.52, for an elastically mounted

cylinder in two degrees of freedom (Jauvtis & Williamson 2003c). Note that these

values are valid for small mass-damping.

4. THE GRIFFIN PLOT

An important question that has been debated for about 25 years is whether a com-

bined mass-damping (m∗ζ ) parameter could reasonably collapse peak-amplitude

data A∗
max in the Griffin plot. The use of a mass-damping parameter stems from

several studies. Vickery & Watkins (1964), who considered an equation of motion

for flexible cantilevers, plotted their peak amplitudes versus their Stability para-

meter = KS = π2 (m∗ζ ). Scruton (1965) used a parameter, proportional to KS,
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for his experiments on elastically mounted cylinders that has since been termed

the Scruton number = Sc = π
2

(m∗ζ ). A slightly different parameter was inde-

pendently derived from a response analysis involving the van der Pol equation by

Skop & Griffin (1973), and they compiled data from several different experiments

as a means to usefully predict response amplitudes. The combined response pa-

rameter was subsequently termed SG in Skop (1974), and is defined here as

Skop-Griffin parameter = SG = 2π3S2(m∗ζ ). (15)

As a side note, the late Dick Skop (private communication) wrote to us stat-

ing that the well-known SG initials actually represented the researchers Skop and

Griffin, a fact that is not generally known. Griffin et al. (1975) made the first ex-

tensive compilations of many different investigations, using SG, and subsequently

the classical log-log form of the plot (Griffin 1980), as shown in Figure 3c, has

become the widely used presentation of peak response data. Despite the extensive

use of the log-log Griffin plot by practicing engineers, it is not known precisely

under what conditions the assumptions regarding (U∗/f∗) and f∗ would hold, that

would lead to a unique curve of A∗
max versus SG, as discussed in Section 1.

Perceived problems regarding the validity of this widely used plot were pointed

out clearly in a number of papers by Sarpkaya (1978, 1979, 1993, 1995). He

stated that simple observation of his equation of motion (equivalent to Equation 1)

showed that “one must conclude that the dynamic response is governed, among

other parameters, by m∗ and ζ independently, not just by (m∗ζ ).” On the basis of

the analysis of three data points, Sarpkaya (1978) suggested that one should use

the combined parameter SG only if SG > 1.0, which rules out most of the plot, as

one can see in Figure 3c.

On the other hand, Griffin & Ramberg (1982) performed two sets of experi-

ments, each for the same value of SG = 0.5–0.6, but with dissimilar mass ratios,

m∗ = 4.8 and 43. These data demonstrate two points. First, the lower mass ratio

leads to a wider synchronization regime, extending over a larger range of normal-

ized velocity U∗. Second, at the same SG, the peak amplitude is roughly unchanged

at A∗
max = 0.5, despite the fact that SG < 1.0.

If we plot an extension of the Griffin plot for a variety of experiments com-

piled by Skop & Balasubramanian (1997) but in this case using a linear Y-axis in

Figure 10a, we see significant scatter, otherwise masked by the classical log-log

format. An update of Table 1 from Khalak & Williamson (1999) indicates that the

maximum attainable amplitude lies anywhere in the range A∗ = 0.8–1.6. Given

this scatter, it does not appear reasonable to collapse data for such different VIV

systems (free cylinder, cantilever, pivoted cylinders, etc.) in the same plot.

In Figure 10b we present only those data corresponding to elastically mounted

cylinders. Following Khalak & Williamson (1999), we introduce two distinct

curves into the Griffin plot representing the peak amplitudes for both the up-

per and the lower branches. The resulting data from these diverse experimen-

tal arrangements appear to give an approximate functional relationship between

A∗
max and (m∗ + CA)ς over a wide range of parameters; applicable for the regime
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Figure 10 The Griffin plot. (a) presents peak-amplitude data versus Skop-Griffin parameter

(SG) collected by Skop & Balasubramanian (1997), with more recent data (see Table 1),

along with curve fits through the data. This indicates a large scatter. By removing those data

for different vortex-induced vibration systems, in (b), one can demonstrate the reasonable

collapse of data for elastically mounted cylinders (only). In (a), — is Equation 16 with best-fit

B = 0.385; C = 0.120. Symbols in (b) are: •, Khalak & Williamson (1999); N, Govardhan

& Williamson (2000); , Hover et al. (1998); ❡, Griffin (1980); ⊲, Jauvtis & Williamson

(2003); △, Moe & Overvik (1982); ▽, Angrilli et al. (1972); ¤, Owen (2001); ⋄, Gharib et al.

(1998); +, Feng (1968); × , Vikestad (1998); ⊕, Anand & Torum (1985).

A
n
n
u
. 
R

ev
. 
F

lu
id

 M
ec

h
. 
2
0
0
4
.3

6
:4

1
3
-4

5
5
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

n
iv

er
si

d
ad

e 
E

st
ad

u
al

 d
e 

C
am

p
in

as
 (

U
n
ic

am
p
) 

o
n
 0

4
/2

9
/1

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



VORTEX-INDUCED VIBRATIONS 433

TABLE 1 Peak-amplitude data

Investigators Year Medium Re m∗ζ A∗ (peak)

(A) Elastically-mounted rigid cylinders (Y-only)

Angrilli et al. 1974 Water 2,500–7,000 0.049 0.54

Dean et al. (1) 1977 Water 2,800–10,200 0.0055 0.94

Moe & Overvik 1982 Water 6,000–30,000 0.013 1.09

Anand & Torum 1985 Water 6,500–35,000 0.013 1.07

Sarpkaya 1995 Water 6,000–35,000 0.052 0.95

Gharib et al. 1998 Water 11,000–40,000 0.094 0.84

Hover et al. (2) 1998 Water 3,800 0.040 0.80

Khalak & Williamson 1999 Water 5,000–16,000 0.0047 1.18

Govardhan & Williamson 2000 Water 2,900–19,000 0.0027 1.19

Vikestad et al. 2000 Water 14,000–65,000 0.012 1.13

Owen et al. 2001 Water 1,650–7,500 0.036 0.84

Jauvtis & Williamson 2003a Water 5,000–13,000 0.0048 1.13

(B) Elastically mounted rigid cylinders (XY-motion) (3)

Jauvtis & Williamson 2003c Water 7,200–15,400 0.0064 1.50

(C) Cantilevers and Pivoted Cylinders

Vickery & Watkins (4)(5) 1964 Water 7,000 0.016 1.46

King (5) 1974 Water 6,000–22,500 0.020 1.60

Pesce & Fujarra (5) 2000 Water 6,000–40,000 0.013 1.32

Fujarra et al. (5)(6) 2001 Water 1,000–2,500 0.023 0.78

Flemming & Williamson (7) 2003 Water 500–2,000 0.032 1.53

(D) Forced oscillations of cylinders (Amplitude limit of positive excitation)

Mercier 1973 Water 2,000–33,000 1.10

Sarpkaya 1978 Water 5,000–25,000 0.90

Hover et al. 1998 Water 3,800 0.82

(E) Low-Re experiments

Anagnostopoulos & Bearman 1992 Water 90–150 0.179 0.55

(F) Direct Numerical Simulation (DNS)

Blackburn & Karniadakis (8) 1993 2-D Code 200 0.012 0.64

Newman & Karniadakis (8) 1995 2-D Code 200 0.00 0.65

Shiels et al. 2001 2-D Code 100 0.00 0.59

Fujarra et al. 1998 2-D Code 200 0.015 0.61

Guilmineau & Queutey 2000 2-D Code 100 0.179 0.54

Blackburn et al. 2001 2-D Code 430–560 0.122 0.47

Evangelinos & Karniadakis 1999 3-D Code 1,000 0.00 0.74

(G) Turbulence Models (LES and RANS)

Saltara et al. (LES) 1998 2-D Code 1,000 0.013 0.67

Guilmineau & Queutey (RANS) 2002 2-D Code 3,800 0.013 0.98

Notes regarding these collected data.

(1) Amplitude response plots show multiple peaks and large scatter.

(2) Virtual free-vibration experiments using real-time force-feedback control system.

(3) Cases where oscillating mass and natural frequency in both directions are identical.

(4) Vickery & Watkins performed experiments with an adjustable cantilever/pivoted cylinder, and not simply a

pivoted cylinder (as usually quoted).

(5) The peak A/D here is less than the tip amplitude, and uses a modal parameter as defined in Griffin, Skop &

Ramberg (1975).

(6) Restricted to transverse Y-motion only.

(7) Pivoted cylinder with two degrees of freedom.

(8) X-Y motions were simulated (two degrees of freedom).
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m∗ > 2, and for (m∗ + CA)ς > 0.006. There seems to be a regime of validity

for the Griffin plot that extends to two orders of magnitude lower mass-damping

(down to SG ∼ 0.01) than the limits (SG > 1) suggested by Sarpkaya, and often

quoted in the literature.

Equations to fit the compiled data in the Griffin plot have been put forward by

several investigators whose complicated empirical functions are listed in Blevins

(1990; see Table 3-2 therein). Sarpkaya (1978) used an equation of motion for

the vibrating structure to formulate a more simple and useful empirical equation

relating A∗
MAX to SG, as follows

A∗
MAX =

B
√

C + S2
G

. (16)

Note that B and C are not strictly constants. (The value of B is proportional to

force coefficient CY, and Sarpkaya noted that CY depends on A∗.) The resulting

best-fit curve (with B = 0.385 and C = 0.120) is plotted in Figure 10a, and serves

reasonably well to represent the data, although it is difficult to validate in the

presence of such large scatter of the data. However, we show in Section 6 that

Sarpkaya’s formula fits very well the data for low Reynolds numbers, in the laminar

vortex formation regime.

Finally one might observe in Figure 10b that, even for the smallest mass-

damping, the peak amplitudes are not yet close to saturating at a specific value.

One might ask: What is the maximum attainable amplitude that can be reached

as (m∗ + CA)ς gets ever smaller? The largest peak amplitude achieved so far in

the Griffin plot is A∗ = 1.19, but the trend of the data suggests this is not the

limit. One can conclude that, despite the enormous effort over the last 25 years to

critique and define accurately this useful plot, it is not yet fully defined.

5. FORCED VIBRATION OF A CYLINDER

One approach to predicting VIV has been to generate an experimental force data

base by testing cylinders undergoing forced or controlled sinusoidal oscillations in

a free stream. Several investigators, including Bishop & Hassan (1964), Mercier

(1973), Sarpkaya (1977, 1978), Staubli (1983), Gopalkrishnan (1993), and more

recently Hover et al. (1997, 1998), Sheridan et al. (1998), and Carberry et al.

(2001, 2003a,b,c), have measured the forces on bodies in harmonic, as well as

multifrequency motion. As mentioned in Section 1 in conjunction with Sarpkaya’s

well-known data set, in these experiments the transverse force is generally de-

composed into two components, one in phase with the velocity (CY sin φ, which

predicts when free vibration should occur) and one in phase with the acceleration

(CY cos φ, which yields the effective added mass).

Predictions using controlled vibration data with an assumed equation of mo-

tion have been compared with free-vibration tests (Parkinson 1974, Sarpkaya 1978,

Staubli 1983). Staubli built up a complete response plot to match Feng’s (1968)
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free-vibration experiments. There are parametric regions where such comparison

is successful, and other regions where the comparison is not close. For example,

Carberry et al. (2003a,b) found that cases where free vibration shows the excita-

tion is obviously positive might be contrasted with equivalent cases in the forced

vibrations (with strictly sinusoidal motion), where energy transfer is negative.

Hover et al. (1997, 1998), in conjunction with Michael Triantafyllou’s research

group at MIT, developed an ingenious and extremely versatile experiment, namely

a novel force-feedback Virtual Cable Testing Apparatus (VCTA). The system,

mounted on a carriage over the MIT Towing Tank, comprises (a) a computer using

a measured force signal from the test cylinder to drive in real time a numerical

simulation of an equivalent mass-dashpot-spring system, and (b) a servomotor

that imposes the computed motion to the submerged cylinder. Figure 11a, from

Hover et al. (1998), shows contours of excitation (CY sin φ), and there is a re-

markable agreement between the superposed free-vibration response plot (sym-

bols) for almost zero damping, and the contour of zero excitation (CY sin φ =
0). These results have all been superposed on the Williamson & Roshko map of

vortex mode regimes.

One of the many interesting results from this novel apparatus is that the cor-

relation between force transducers at each end of the cylinder is high in general,

with the exception of the region of maximum amplitude, suggesting a 3D vortex

formation process for the upper-lower branch transition (Hover et al. 2003). Cor-

relation is clearly important when predicting VIV. The versatile force-feedback

system is also used to look at multimode motions, traveling waves, and structural

nonlinearities; parameters need only be changed in software!

The combined groups of Don Rockwell at Lehigh University and John Sheridan

of Monash University recently made extensive measurements of force from con-

trolled vibrations of cylinders, resulting in a number of papers (Sheridan et al.

1998 and Carberry et al. 2001, 2003a,b,c). Carberry et al. (2001) showed conclu-

sive evidence that the force phase shift ( jump in φ) is associated with the change

in vortex pattern from a low-frequency (low-f) mode to a high-frequency (high-f)

mode of vortex formation. This is in direct agreement with the conclusions from

free vibration in Govardhan & Williamson (2000). Thus, Carberry et al.’s (2003b)

paper compares directly the controlled vortex modes (see Figure 11b) with these

free-vibration modes. The low-f mode is a 2P mode, while the high-f mode is the

2S vortex wake mode. Carberry et al. (2003a,b,c) also discovered an intermedi-

ate mode, which is the equivalent of the upper branch 2P mode in free vibration.

Govardhan & Williamson (2001) studied the mean velocity and mean vorticity

for the various modes, noting the clear departure from the classical near wake

recirculation regime for the 2S mode type of wake, and the appearance of a down-

stream jet-like near wake structure (for the 2P mode). Carberry et al. (2003b,c)

found mean vorticity plots from corresponding forced vibration studies (included

in Figure 11c), indicating such a jet flow. In summary, despite the extensive work

on controlled vibrations, it is still an open question whether (strictly sinusoidal

motion) controlled experiments can be used to predict free vibration accurately.
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6. LAMINAR VORTEX-INDUCED VIBRATION

There is only one free-vibration experiment, to our knowledge, that has been con-

ducted within the laminar vortex shedding regime, and it is described in the paper

by Anagnostopoulos & Bearman (1992), over a range, Re = 90–150. Their re-

sponse amplitude plot corresponds very well with the results from a much larger

number of two-dimensional numerical simulations at Re = 100–200 (for exam-

ple, Blackburn & Karniadakis 1993; Anagnostopoulos 1994; Newman & Karni-

adakis 1995, 1996; Saltara et al. 1998; Evangelinos & Karniadakis 1999; Shiels

et al. 2001; Zhou et al. 1999; and others; see Table 1F).We directly compare

selected response plots, for the first time, in Figure 12a. Not only is the com-

parison remarkably good between experiment and computation, but we demon-

strate the existence of a possible hysteresis at the low-velocity end of the syn-

chronization regime, which apparently has not been discussed previously. These

data correlate well with the map of regimes for low Reynolds numbers, shown

in Figure 12b, adapted from Meneghini & Bearman (1993). These authors also

demonstrated that the 2S mode persists up to a level of A∗ = 0.6, beyond which

they found the P+S mode, in agreement with Griffin & Ramberg’s (1974) clas-

sical smoke visualizations. There is a striking agreement in Figure 13 between

simulations and experiment for the P + S mode, as distinct from the 2S mode.

(Please see Note Added In Proof for recent findings regarding the laminar map of

regimes.)

We conclude that there is a clear correspondence between the nonexistence of

any free-vibration amplitude A∗ in excess of 0.6, even in the case of the simulations

where damping can be set to zero, with the fact that the vortex wake mode changes

over to the P + S mode. Unlike the 2P mode, which only appears when the

shedding becomes turbulent for Re > 200 (Williamson & Roshko 1988), the

P + S mode apparently does not deliver a net positive energy of excitation enabling

free vibration.

Finally, in Figure 12c, we present a Griffin plot, dedicated to the laminar regime,

where typically Re < 200 (see Table 1E,F). It is immediately apparent that the

maximum amplitudes saturate at A∗ ∼ 0.6. Given the excellent definition of this

data, we represent it by the curve fit of Sarpkaya (Equation 16, with B = 0.1470,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 12 Laminar vortex-induced vibration response (Re < 200). In (a), we compile

sets of response amplitude data from different investigators into one plot, indicating

good agreement, and also a possible hysteresis. There is a good correspondence with the

map of modes, adapted from Meneghini & Bearman (1993), in (b). The Griffin plot can

now be accurately defined in (c), yielding a saturation amplitude of A∗ ∼ 0.6. Symbols

in (a) and (c) are: •, Anagnostopolous & Bearman (1992); ❡, Anagnostopolous (1994);

¤, Newman & Karniadakis (1997); △, Shiels, Leonard & Roshko (2001); ⊲, Willden

& Graham (2000); ▽, Guilmineau & Queutey (2000); ⊳, Fujarra et al. (1998); ⋄,

Blackburn & Karniadakis (1993); +, Blackburn et al. (2001).
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Figure 13 Direct comparison between the 2S and P + S vortex modes between exper-

imental dye visualizations (Williamson 1987, unpublished) and numerical simulations

(Meneghini & Bearman 1995), illustrating a remarkable agreement. Such visualiza-

tions can only be seen clearly in the laminar regime (Re < 200).
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C = 0.0585), yielding a good fit and thus demonstrating the usefulness of this

empirical function to represent peak-amplitude data in the Griffin plot.

7. THE LEONARD-ROSHKO-SHIELS “EFFECTIVE

ELASTICITY”

Illuminating ideas have come from the computational approach of Tony Leonard

and Anatol Roshko’s group at Caltech, triggered by the unique possibility in simu-

lations to set mass, damping, and stiffness (or any combination of these) to precisely

zero, in the equation of motion of an elastically mounted cylinder, at Re = 100.

This has led directly to a new single-parameter formulation for the response, in-

volving a quantity they have defined as the “effective elasticity.” These researchers

(Roshko et al. 2000, Shiels et al. 2001, Leonard & Roshko 2001) adopted a differ-

ent scaling for the equation of motion than conventionally employed; rather than

the mechanical quantities {m, c, k}, they used the flow quantities {U, ρ, µ} to

normalize their equation:

m∗y∗ + b∗y∗ + k∗y∗ = CY(t∗), (17)

where the terms are laid out clearly in Shiels et al. (2001). (Note that m∗ and f∗

are defined differently here.) If one sets all the mechanical coefficients to zero:

m∗ = b∗ = k∗ = 0, then the resultant transverse force is zero: CY(t∗) = CYA(t∗) +
CYW(t∗) = 0, so if the body moves, it will have to satisfy a balance between the

added mass force CYA(t∗) and the vortex wake force CYW(t∗) at all times. Despite the

fact that the body is completely disconnected with the mechanical system (although

restrained streamwise), it vibrates at a significant amplitude (A∗ = 0.47), with a

frequency of vibration given by (fD/U) = 0.156, close to the fixed-body result.

This is a remarkable result! The vorticity dynamics are illustrated beautifully by

the image in Figure 1b.

If one continues to assume that the damping is zero, b∗ = 0, one can write the

equation of motion, with the assumption of sinusoidal force (CY = CL sin ω∗t∗)

and response (y∗ = A∗ sin ω∗t∗), as follows:

[−ω∗2m∗ + k∗]A∗ = k∗
EA∗ = CL. (18)

The inertial and spring terms in the equation (which are precisely out-of-phase)

are combined into an “effective elasticity” = k∗
E, and thus the amplitude and

frequency{A∗, f∗} are dependent on this parameter, as Figure 14 shows (Leonard &

Roshko 2001). The same response plot is also applicable for any value of the mass,

m∗. Given the assumption of zero damping, one has a useful reduction of variables

in the problem, from three variables: A∗ = f{m∗, b∗, k∗}, to one variable: A∗ =
g{k∗

E}.

As Leonard & Roshko (2001) stated, the mechanical parameters are “hidden”

in the solutions. In fact, one can generate a set of “mapped” response plots, using
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the data in Figure 14. If one chooses a particular mass ratio (m∗), then one can

deduce the amplitude (A∗) and frequency (f∗) as a function of U∗ (the traditionally

used velocity), and build up a complete response plot for the chosen m∗.

8. XY MOTION OF BODIES

Despite the large number of papers dedicated to the problem of a cylinder vibrating

transverse to a fluid flow (Y motion), there are very few papers that also allow the

body to vibrate in-line with the flow. One principal question that may be posed is:

How does the freedom to vibrate in-line with the flow influence the dynamics of

the fluid and the structure?

In most past experimental work with XY vibrations (Moe & Wu 1990,

Sarpkaya 1995), the mass ratios and natural frequencies were chosen to have

different values, except for one data set for the same frequency in Sarpkaya. Un-

der their chosen special conditions, these studies demonstrated a broad regime of

synchronization, similar to Y-only studies, but with no evidence of the different

response branches. Sarpkaya concluded from his work that bodies in XY motion

do not lead to surprising changes in the expected maximum resonant amplitudes as

compared to bodies in Y motion. Jeon & Gharib (2001) recently adopted a differ-

ent approach, forcing a cylinder to move in the X and Y directions, in a fluid flow,

under the prescribed motions given by x(t) = AX sin(2ωt + θ ); y(t) = AY sin(ωt).

Specific phase angles θ = 0◦ and −45◦ were chosen because they stated that “na-

ture prefers a figure-eight type motion.” One of the most interesting results from

Jeon & Gharib’s study is that even small amounts of streamwise motion (AX/AY =
20%) can inhibit the formation of the 2P mode of vortex formation. Note that in

Jauvtis & Williamson’s (2003c) free-vibration study, body motions exist that can

be different from a figure-eight motion. Clearly, the selection of amplitudes and

phases will influence the resulting conclusions.

Full-scale piles in an ocean current (Wooton et al. 1972), and similar cantilever

models in the laboratory (King 1974), vibrate in-line with the flow with peak am-

plitudes of the cantilever tip (A∗
X ∼ 0.15). As Bearman (1984) and Naudascher

(1987) noted, oscillations ensue if the velocity is close to U∗ ∼ 1/2S. King (1974)

showed a classical vortex street (antisymmetric) pattern, although these investi-

gators also discovered a second mode where the wake formed symmetric vortex

pairs close to the body. One subsequent approach, where these two modes have

been observed, is to vibrate bodies in-line with the flow (Griffin and Ramberg

1976, Ongoren & Rockwell 1988b). Ongoren & Rockwell also demonstrated a

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 14 The Leonard-Roshko-Shiels “effective elasticity,” k∗

E, which permits a

collapse of data for very “light” damping (b∗ ∼ 0), and allows the definition of mapped

response plots {A∗ or f∗} versus U∗, for any chosen mass ratio, m∗. From Leonard &

Roshko (2001).
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P + S type of mode, although this was not seen in streamwise free-vibration stud-

ies. Numerical investigations at low Reynolds numbers (for example, Blackburn

& Karniadakis 1993, Newman & Karniadakis 1995, Zhou et al. 1999), which gen-

erally observe figure-eight trajectories, demonstrate that there does not appear to

be much influence on the forces if one also allows streamwise body motion.

In most practical cases, cylindrical structures (such as riser tubes or heat ex-

changers) have the same mass ratio and the same natural frequency in both the

streamwise (X) and transverse (Y) directions. Two recent arrangements that en-

sure such conditions are the air bearing platform of Don Rockwell’s group at

Lehigh University (Leyva et al. 2003), and a pendulum setup at Cornell (Jauvtis

& Williamson 2003a,b,c). Both studies demonstrate a set of response branches,

in contrast to previous XY experiments. Even down to the low mass ratios, where

m∗ = 6, it is remarkable that the freedom to oscillate in-line with the flow hardly

affects the response branches, the forces, and the vortex wake modes. These results

are significant because they indicate that the extensive understanding of VIV for

Y-only body motions, built up over the last 35 years, remain strongly relevant to

the case of two degrees of freedom.

However, there is a dramatic change in the fluid-structure interactions when

mass ratios are reduced below m∗ = 6. A new response branch with significant

streamwise motion appears in what Jauvtis & Williamson (2003b,c) defined as the

“super-upper” branch, which yields massive amplitudes of three diameters peak-

to-peak (A∗
Y ∼ 1.5), as seen in Figure 15. This response corresponds with a new

periodic vortex wake mode, which comprises a triplet of vortices being formed in

each half cycle, defined as a “2T” mode following the terminology that Williamson

& Roshko (1988) introduced.

9. “COMPLEX FLOWS”: FLEXIBLE, TAPERED, PIVOTED,

AND TETHERED BODIES

As bodies become more directly practical, they generally become more complex,

although many of the phenomena discovered for the simpler paradigm of the

elastically mounted cylinder carry across to more involved structures, including

those whose vibration amplitude varies along the span. For example, in the case of

flexible cantilevers, the recent work of Pesce & Fujarra (2000) and Fujarra et al.

(2001) indicates that there is an initial branch of (tip) amplitude response, which

has a hysteretic transition to a lower branch, similar to the elastically mounted

or free cylinder. Techet et al. (1998) discovered a 2S-2P Hybrid mode (shown in

Figure 16a), comprising the 2S and 2P modes occurring along different spanwise

lengths of their tapered cylinder, with vortex dislocations between the spanwise

cells. They showed an excellent correlation and prediction of these modes in the

framework of the Williamson & Roshko (1988) map of modes.

Vortex-induced vibrations of pivoted cylinders also exhibit similar branches of

response to the cantilever and free cylinder, as seen from Balasubramanian et al.
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VORTEX-INDUCED VIBRATIONS 443

Figure 16 (a) shows the Techet et al. (1998) “2S-2P Hybrid” mode, comprising spanwise

regimes of 2S and 2P modes, separated by periodic vortex dislocations, for a controlled

transverse vibration of a tapered cylinder. In (b), the “bumpy” cylinder of Owen et al. (2001)

provides vortex-induced vibration (VIV) suppression until a sufficiently low mass-damping

(m∗ζ ) is reached when VIV resumes.

(2000) and Weiss & Szewczyk (2000), who studied many scenarios, comprising

uniform and nonuniform cylinders in uniform or sheared flows. They indicate the

broadening of the response regime and reduction in tip amplitude (A∗ ∼ 0.3) for

sheared flows, and an interesting case where the taper and shear effects cancel

each other to yield the most uniform vortex shedding along the span, and hence

an increased response. Voorhees & Wei (2002) observed some similar modes to

those of the “free” cylinder (see also Dong et al. 2003), for their pivoted cylinder,

and investigated the effects of spanwise flows. These studies confine vibrations to

transverse motion, but Flemming & Williamson (2003) recently studied the case

of a pivoted cylinder free to move streamwise as well as transverse to the flow.
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Over a range of body inertias I∗ (equivalent to m∗), a number of different spanwise

modes were discovered. For cases with high I∗, and negligible streamwise motion,

either the 2S or 2P modes were observed along the span, but for lighter structures,

the Techet et al. 2S-2P Hybrid mode was found. Finally, Flemming & Williamson

discovered a distinct new mode along the span, comprising two corotating vortices

formed each half cycle, namely the “2C” mode in Figure 17b, for the lightest of

their structures. For this case, they also found three response amplitude branches,

which need to be plotted in a 3D version of the Williamson & Roshko map (in

Figure 17a) to indicate that the crossover of branches (upper and lower) actually

occur at different heights (different A∗
X). The higher branch corresponds with the

“2C” mode.

Kim Vandiver at MIT has undertaken extensive field and laboratory experimen-

tal studies concerning cable dynamics (see for example, Vandiver 1993, Vandiver

& Jong 1987), and he has developed a well-known cable VIV prediction program

“SHEAR 7” (Vandiver 2003) that is currently based on data for short laboratory

cylinders. There are several ongoing validation studies, which consider multimode

response, as described by Vandiver & Marcollo (2003), including some upcom-

ing large-scale towed cable experiments to be conducted in Seneca Lake, NY

(“Deepstar” joint industry program). Marcollo & Hinwood (2002) have just com-

pleted related experiments involving a cable in uniform flow, where they find

evidence for similar added mass values and response branches as those found for

short cylinders.

The group of George Karniadakis at Brown University have performed ex-

tensive computational studies, beginning with their studies to investigate laminar

flow past a freely vibrating cable (Blackburn & Karniadakis 1993; Newman &

Karniadakis 1995, 1996, 1997). In these cases, they employed a simple wave

equation to model the structure and found two possible wake states: one for a

traveling wave (oblique vortices), and one for a standing wave response (Lambda-

shaped vortices). The potential of 3D computational studies is perhaps illus-

trated by the simulation in Figure 18a showing the different types of vortex

formation discovered at the nodes and antinodes of the cable undergoing stand-

ing wave vibration. Subsequent works (for example, Evangelinos & Karniadakis

1999) developed a new class of spectral methods suitable for unstructured and

hybrid grids. They computed a mixed response mode, comprising oblique and

parallel shedding, caused by modulated traveling wave motion, whose effect on

the lift force distribution has been studied. Lucor et al. (2001) investigated very

long bodies (aspect ratio >500) in uniform and sheared flows to observe vortex dis-

locations of the kind found for fixed-body flows (Williamson 1992), which cause

substantial modulation of lift forces. Figure 18b illustrates the intricate type of ca-

ble response, where the time history of the distribution of transverse displacement

is exhibited, for a standing wave pattern in an exponential shear distribution.

Modeling the flow and vibrations of cables recently received a renewed interest.

Triantafyllou & Grosenbaugh (1995) were able to usefully compute cable dynam-

ics with an empirical model of the lift force excitation as a linear function of the
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amplitude. This group also has been exploiting the unique Virtual Cable Testing

Apparatus (Section 5) to study dynamic response for multimode models, aris-

ing from inclined cable dynamics (Hover et al. 1997). Skop & Balasubramanian

(1997) and Skop & Luo (2001) undertook extensive modeling of spanwise vor-

tex shedding and structure dynamics of cylinders in uniform and sheared flows

using van der Pol type oscillators, with a coupling term proportional to body

velocity.

In a systematic paper, Facchinetti et al. (2003) studied the effect of a cou-

pling term between the equation for near wake dynamics (van der Pol), and the

one degree-of-freedom structure oscillator. They found good comparison between

their model and the recent results of Govardhan & Williamson (2000) and Vikestad

et al. (2000), but perhaps the principal conclusion is that the optimal coupling term

involves the body acceleration, rather than the displacement or velocity. This is

a useful result for future modeling developments. Facchinetti et al. (2002) also

observed cellular shedding (of the kind found experimentally in Stansby 1976),

and they were able to suppress VIV with their model. Facchinetti et al. (2003) also

looked into the problem of vortex-induced waves (VIW), using both their mod-

eling approach and also experiment. Kim & Perkins (2002) studied other cable

models, showing the essential character of experimental VIV response, includ-

ing hysteresis. Finally, Willden & Graham’s (2001) approach is unique in that

they developed an efficient “quasi-3D” simulation, where the two-dimensional

flow is computed at various spanwise locations, and these are linked by a three-

dimensional large-scale vortex lattice representation. In the case of sheared flows,

their method yields cellular shedding, in agreement with other modeling results,

and with the experimental work of Stansby (1976).

Recent investigations to suppress VIV stemmed from the original work of

Tombazis & Bearman (1997) and Bearman & Owen (1998), where they investi-

gated the influence of an imposed spanwise waviness of the flow separation lines

around bluff bodies. They achieved a drag reduction of 30% and a suppression of

classical vortex shedding. A principal idea is to weaken vortex shedding without

the drag increase associated with traditional “helical strakes” (Zdravkovich 1981).

Subsequently, Owen et al. (2001) studied the effects of a sinuous waviness to the

axis of a cylinder, as well as the effects of introducing hemispherical bumps to the

cylinder surface, which yield an encouraging 25%–47% reduction in drag. These

methods diminished the value of mass-damping below which vibrations set in,

as shown in Figure 16b, but have not completely eliminated the problem of VIV.

Introduction of trip wires by Hover et al. (2001) have also diminished the response

magnitude and regime of lock-in for VIV.

Finally, we mention the dynamics of tethered structures. In the case of teth-

ered spheres, Govardhan & Williamson (1997, 2003), Williamson & Govardhan

(1997), and Jauvtis et al. (2001) explored a wide range of masses, m∗ = 0.1–

1000, and a range of velocities from U∗ = 0–300, by using both light spheres

in a water channel facility and heavy spheres in a wind tunnel. They found a

number of modes of response, analogous to the cylinder VIV problem, yielding
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amplitudes up to one diameter. The principal vortex structure in Figure 19a ap-

pears to be a system of streamwise vortex loops (Govardhan & Williamson 2003),

which can be related with the vortex force on the body giving rise to vibra-

tion. They compiled a Griffin plot for the sphere VIV problem, and also de-

duced a critical mass, in analogy to the cylinder studies described above. The

group of Kerry Hourigan and Mark Thompson at Monash University are con-

ducting studies, both computational and experimental, not only on the tethered

sphere problem, but also on the problem of a tethered cylinder (a horizontal cylin-

der tethered by lever arms to the floor of a water channel). Up to this point,

the tethered cylinder results (Ryan et al. 2003) indicate two modes of response,

broadly described as an in-line oscillation for small layover angle, corresponding

to a classic Karman street wake, and a transverse oscillation for larger tether an-

gles at higher flow speeds, corresponding with the formation of vortex pairs in

Figure 19b.

10. CONCLUDING REMARKS

In this review, we discuss many of the new fundamental results, but we do not

cover all topics fully. Excellent work has been done by many researchers to bring

the fundamentals into practical design codes. There is clearly inadequate full-scale

data for fluid-structure interactions in a variety of conditions, including sheared

flows in the ocean. VIV behavior at large Re is in need of a parallel effort to

see which phenomena in this review remain relevant to full-scale structures, and

to discover what new phenomena appear. VIV suppression is important. Further

understanding of the modes and regimes for yawed cylinders is needed, follow-

ing Ramberg’s (1983) key work. There are ongoing efforts to model, compute,

and undertake experiments concerning cable and riser tube dynamics in ocean

engineering.

There are some important efforts underway to explore phenomena at high

Reynolds numbers. Triantafyllou (2003) has described some high Re ∼ 106 exper-

iments, taken from a massive facility in St. Johns, Newfoundland, which suggest

the existence of distinct response branches and the 2S and 2P modes, although

as yet the key results have not been made public. A further significant result has

been presented by Bearman et al. (2001), who have presented excellent agreement

between in-line response measurements at Re ∼ 104 (at Imperial College, London)

and at Re ∼ 105 (at the large Delta Flume, Delft, Netherlands). There was also good

agreement for the limited transverse VIV response data at these Re. In essence,

we have encouraging signs of agreement between laboratory-scale response with

full-scale VIV data, but there is no complete comparison for transverse VIV at

high Re that is yet available in the public domain. There is a distinct need for

further high Re experiments in VIV. One of the most fundamental questions con-

cerning VIV is, what is the maximum attainable amplitude in VIV of an elastically

mounted cylinder? We may also ask, what is the functional relationship between
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peak amplitudes and mass-damping, in the Griffin plot? Surprisingly, neither of

these questions has been answered definitively, although there are ongoing efforts

to yield precise well-defined data. On the other hand, owing principally to the two-

dimensional computations, we present in this review an accurate determination of

the maximum amplitude and definition of the Griffin plot for the laminar regime,

at Re < 200.

What generic characteristics exist for VIV, which carry across from the para-

digm of the elastically mounted cylinder, in transverse vibration, to more complex

systems? It is fascinating that the response branches for this “simple” paradigm

are found similarly for cylinders in XY motion, for flexible cantilevers, for pivoted

cylinders, for vibrating cables, and possibly for other systems. Analagous modes

are found also for tethered bodies. Vortex wake modes that are now known to cause

free vibration, at moderate Re, comprise the following set:

{2S, 2P, 2T, 2C},

and in the laminar regime, the set comprises only {2S}. For VIV systems with

spanwise amplitude variation, we observe the 2S-2P Hybrid mode. The P + S

mode, ubiquitous in forced vibrations, apparently does not induce free vibration.

Conditions where such free-vibration modes exist in these VIV systems corre-

spond well with the Williamson & Roshko (1988) map of modes in the plane of

amplitude-velocity, compiled from forced vibration experiments. The concept of a

critical mass has been introduced, whereby the regime of synchronization extends

to infinite flow velocity—in a sense the body resonates forever! Values of critical

mass have been identified for several VIV systems, under conditions of low mass-

damping, such as the cylinder in Y-only motion, as well as XY motion, the pivoted

cylinder, the tethered sphere, and so on. In fact, one expects to find a critical mass

for all VIV systems. In essence, we continue to find generic or universal features

that are common to all VIV systems.

Some debates continue on VIV problems, for example the “controversy” re-

garding added mass, and the problem of relating data from controlled vibrations

with the results from free vibration. There is also debate about whether results from

our paradigm, the Y-only free vibration of a cylinder, carry across to two degrees

of freedom (XY motion). Fortunately, for the hundreds of papers concerned with

the paradigm, the results generally carry across very well. However, this similarity

breaks down for very low vibrating mass.

Further ideas have been developed in the last few years. One of these ideas is

the concept of utilizing vorticity dynamics to measure the force on bodies, which

received a boost from the increased capabilities to simulate flows, and to accurately

evaluate vorticity using PIV in experiment. Another recent fundamental contribu-

tion is the use of the effective elasticity concept to reduce the number of parameters

to define the VIV problem for very small damping. As the tools of analysis, simu-

lation, and experiment are further sharpened, we may expect more fundamentally

new contributions to emerge, and further universal or generic characteristics to be

discovered, which carry across from one VIV system to another.
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APPENDIX Nondimensional Groups

Mass ratio m∗ m

πρD2L/4

Damping ratio ζ
c

2
√

k(m + m A)

Velocity ratio U ∗ U

fN D

Amplitude ratio A∗ yo

D

Frequency ratio A∗ f

fN

Streamwise force coefficient CX

FX

1
2
ρU 2 DL

Transverse force coefficient CY

FY

1
2
ρU 2 DL

Reynolds number Re
ρU D

µ

Notes regarding these groups:

■ We use fN as the natural frequency in still water, and correspondingly use

ζ as the ratio of (structural damping)/(critical damping in water). The fre-

quency f, used in f ∗, is the actual body oscillation frequency during induced

vibration.

■ The added mass, mA = CAmd, where md = πρD2L/4 is the displaced mass

of fluid, and where L is the cylinder length, and cA = 1.0.
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NOTE ADDED IN PROOF

Ponta & Aref (2003) found similar vortex dynamics in their simulations of the

laminar regime (Re = 140). An interesting contribution of their work is the sug-

gestion that the mode boundaries in the Williamson and Roshko map are related

to the deviation of the instantaneous vortex shedding period relative to its value

at the peak Reynolds number found in a cycle. This brings in a dependence on

Reynolds number and thus might be related to the existence of the 2P mode at tur-

bulent Re (Re > 200), and its replacement by the P + S mode in the laminar regime

(Re < 200). They also suggest the possible existence of other “exotic” wake modes

based on results from their point vortex models (Aref & Stremler 1996, and other

ongoing studies).
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VORTEX-INDUCED VIBRATIONS C-1

Figure 1 (a) Schematic diagram of an elastically mounted cylinder, restrained to vibrate

transverse to the free stream (Y-direction). A feedback between the fluid and body motion is

now known to lead to several different vortex formation modes, for example, the 2S mode

(comprising two single vortices per cycle of motion) or the 2P mode (comprising two vor-

tex pairs per cycle). The P + S mode, ubiquitous in low-Re forced vibration, is never found

in free vibration. (b) The wake and vortex-induced vibrations of a cylinder, which has no

mass, no damping, and no springs, and so is disconnected from mechanical structure in the

transverse direction. Shiels et al. (2001) discovered, from numerical simulation at Re = 100,

that the body undergoes large-amplitude vibration at a frequency close to the fixed-body

vortex shedding frequency. 
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C-2 WILLIAMSON  ■ GOVARDHAN

See legend on next page
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Figure 6 Evidence from Particle-Image Velocimetry vorticity measurements in free vibra-

tion that the initial branch corresponds with the 2S vortex wake mode, and that the upper

and lower branches both reflect the 2P mode (Govardhan & Williamson 2000). Blackburn

et al. (2001) make a good comparison, computing the 2P mode of the lower branch, which

is only possible with 3D simulations.

Figure 3 Some classic results from vortex-induced vibration (VIV). (a) shows the switch

in timing of vortex shedding as forced vibration frequency increases (Ongoren & Rockwell

1988a). (b) presents the same phenomenon using the Particle Image Velocimetry technique,

and represents the first use of this technique in the VIV field (Gu, Chyu & Rockwell 1994).

Yellow vorticity magnitude contours are for low frequency, with the body at the top of its

vertical motion. Red contours are for higher frequencies above a critical value for the switch

in timing, again for the body at the top of its motion. (c) presents one of the original Griffin

plots, showing peak amplitudes plotted versus the Skop-Griffin parameter (SG), from

Griffin (1980). (d) shows the agreement of force coefficient (CDY) data from Moe & Wu

(1990) and Gopalkrishnan (1993), with Sarpkaya’s (1977) well-known data. Taken from

Sarpkaya (1995).
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C-4 WILLIAMSON  ■ GOVARDHAN

Figure 11 Contours of excitation (CY sin f), in (a), from Hover et al. (1998), compare well

with free-vibration response amplitudes, evaluated from their ingenious force-feedback vir-

tual cable testing apparatus. Vr is the true reduced velocity, equivalent to (U*/f*).  Forced

vibrations in (b) show the 2S-2P-2P modes corresponding with the high-intermediate-low

frequency modes of Carberry et al. (2003b). Mean vorticity contours are shown in (c) cor-

responding to the same modes in (b).
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VORTEX-INDUCED VIBRATIONS C-5

Figure 15 Discovery of a “super-upper” branch of high-amplitude response that appears

for XY cylinder vibration when mass ratios, m* < 6. This corresponds with the appearance

of a “2T” vortex wake mode, comprising a triplet of vortices to form in each half cycle.

From Jauvtis & Williamson (2003b,c).
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C-6 WILLIAMSON  ■ GOVARDHAN

Figure 17 Response amplitude branches for a pivoted cylinder, exhibited in a three-dimen-

sional version of the Williamson & Roshko (1988) map of modes, and the corresponding

“2C” vortex mode (below), comprising two corotating vortices each half cycle, which

appears for the high-amplitude branch. From Flemming & Williamson (2003).
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VORTEX-INDUCED VIBRATIONS C-7

Figure 18 Three-dimensional computations of vortex-induced vibration of a flexible cable

are now possible; here we see wake vortex dynamics at nodes and antinodes of a cable

vibrating with a standing wave (Newman & Karniadakis 1996, 1997). Further results from

the research group at Brown University show contours of transverse amplitude along the

span of a cable (vertical axis) as a function of time (horizontal axis), for a cable undergoing

a mixed response of traveling and standing waves.
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Figure 19 Dynamics of tethered bodies. In (a), one of the principal modes of tethered

sphere oscillation comprises a periodic streamwise vortex loop wake, which gives rise to

transverse forces necessary to sustain free vibration (Govardhan & Williamson 2003). In

(b) and (c), one finds two distinct modes of vibration for a tethered cylinder (Ryan et al.

2003).  A low-amplitude mode at low velocities gives rise to a classical vortex street (b),

with a tether angle of 27°.  In (c), an increased flow velocity leads to a higher-amplitude

mode involving a vortex-pairing wake, for a tether angle of 44°.
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