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Vortex-induced vibration (VIV) of a rotating circular cylinder at a low Reynolds

number of 150 and a low mass ratio of 2 is studied numerically. Simulations are

conducted at three rotation rates of α = 0, 0.5, and 1 and reduced velocities in the

range of 1–13 with an interval of 0.2. The numerical results show that the rotation of

the cylinder increases the response amplitude and widens the lock-in regime for the

one-degree-of-freedom (1-dof) VIV in the cross-flow direction. The two-degree-of-

freedom (2-dof) responses of the cylinder at α = 0.5 and 1 are significantly different

from that at α = 0. For the 2-dof VIV, the response amplitude in the inline direction,

which is much smaller than that in the cross-flow direction at α = 0, is increased

significantly at α = 0.5 and 1. One initial branch is found at α = 0.5 and two initial

branches are found at α = 1. In the initial branches, the response frequency locks onto

a frequency that is smaller than the natural frequency of the cylinder and the response

amplitude increases with the reduced velocity. The vortex shedding is found to be in

the P+S mode for reduced velocities near the higher boundary of the initial branches

and 2S mode in all other reduced velocity ranges for the 2-dof VIV. Simulations are

conducted under both the increasing and decreasing reduced velocity conditions. A

hysteresis region is found near the higher boundary of the lower branch for α = 0, 0.5,

and 1 in the 1-dof of VIV and for α = 0 in the 2-dof VIV. The hysteresis region occurs

near the higher boundary of the initial branches for α = 0.5 and 1 in the 2-dof VIV.

By analysing the component of the force coefficient that is in phase with the velocity

of the cylinder, it is found that pressure force excites the vibration and the viscous

force damps the vibration in both the inline and the cross-flow directions in the 2-dof

VIV. The magnitude of the time averaged pressure and viscous force coefficients

that are in phase with the velocities of the cylinder in the lock-in regime are found

to be much greater than their counterparts outside the lock-in regime. C© 2014 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4886196]

I. INTRODUCTION

Vortex shedding flow in the wake of a circular cylinder in a fluid flow has been of interest in many

studies due to its engineering importance. Flow in the wake of a circular cylinder transitions from

two-dimensional (2D) to three-dimensional (3D) when the Reynolds number exceeds a critical value.

The critical Reynolds numbers for the transition of the flow from 2D to 3D found in different studies

differ slightly in the range of 140–190.1 The Floquet stability analysis by Barkley and Henderson2

showed that the 3D instability starts at a Reynolds number of about 188.5. Miller and Williamson3

a)Author to whom corresponding should be addressed. Electronic mail: m.zhao@uws.edu.au. Tel.: +61 2 4736 0085.
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found that the highest Reynolds number for laminar vortex shedding could be extended up to

Re = 194 and even beyond 200 for a short period of time if the end effect is eliminated. The

transition of the flow from 2D to 3D was intensively studied by many researchers.2, 4–9

If a cylinder rotates in the fluid flow, the rotation speed of the cylinder affects the wake flow.

In addition to the Reynolds number, flow past a rotating cylinder is also dependent on the rotation

rate α, which is defined as the ratio of the rotating speed of the cylinder surface to the free stream

velocity. Vortex shedding in the wake of a rotating cylinder was found to be fully suppressed if

the rotation rate is greater than 2.10–14 Early studies of flow past a rotating circular cylinder were

focused on very low Reynolds numbers of Re ≤ 100.15, 16 Kang et al.17 simulated flow past a rotating

circular cylinder numerically at low Reynolds numbers and found that the critical rotation rates were

about 1.4, 1.8, and 1.9 for Re = 60, 100, and 160, respectively, and the Strouhal number was nearly

independent on the rotation rate. The large eddy simulation by Karabelas18 showed that the vortex

shedding for a high Reynolds number of 1.4 × 105 was suppressed at a rotation rate of 1.3.

Stojkovic et al.19 found a second vortex shedding regime in the rotation speed range of 4.8

≤ α ≤ 5.15 for Re = 100. The second vortex shedding mode is observed in the range of 4.85

≤ α ≤ 5.17 for Re = 100 and is characterized by the shedding of one counterclockwise vortex from

the upper part of the cylinder in one vortex shedding period.20 Mittal and Kumar21 and Lu et al.22

found that, for Re = 200, the flow remained stable for 1.91 ≤ α ≤ 4.34 but lost its stability again

for α ≈ 4.35. The vortex shedding disappears again as the rotation ratio exceeds around 4.8. Lam27

studied flow past a rotating cylinder at Re = 3600 to 5000 and α ≤ 2.5 using flow visualization and

PIV measurements. It was found that the wake became increasingly narrow and deflected sideways

with the increasing cylinder rotation speed and the formation length of the vortices decreased with

increasing α, leading to a slow increase in the vortex shedding frequency.

Three-dimensionality of flow past a rotating cylinder has also been studied. Mittal28 found that

the centrifugal instabilities existed along the entire span in a three-dimensional setup for a rotation

rate of 5 and flow separation occurred near the cylinder ends due to the effect of the “no-slip”

side-wall. The Direct Numerical Simulations (DNS) by Akoury et al.29 showed that the rotation

of the cylinder attenuated the three-dimensional instability and increases the critical Reynolds

number for three-dimensionality. The flow was found to be three-dimensional at Re ≈ 220 for α

= 0.5. Rao et al.30 found that, while the three-dimensionality for α ≤ 1 was similar to that of the

non-rotating cylinder, the three-dimensional scenario at higher rotation rates became increasingly

complex.

Vibration of a rotating circular cylinder in fluid flow has attracted less attention than that of

a non-rotating circular cylinder. Extensive reviews of VIV of a circular cylinder can be found in

Refs. 31–36. Large-amplitude oscillations of an elastically mounted cylinder in a fluid flow occur

when the vortex shedding frequency synchronizes with the oscillation frequency of the cylinder.37

The synchronization between the vortex shedding and the vibration of the cylinder is also called the

“lock-in” or “lock-on” in literature. Lock-in occurs in a range of reduced velocities and the lock-in

regime of the reduced velocity is dependent on the mass ratio and damping ratio of the system.34, 35

The mass ratio is defined as the ratio of the cylinder mass to the displaced fluid mass. The reduced

velocity Vr is defined as Vr = U/ fn D, where U is the free-stream velocity, fn is the structural natural

frequency, and D is the cylinder diameter, which is measured in vacuum. The natural frequency of

the free vibration of a cylinder in still water (defined as fnw in this study) is used in many laboratory

studies of VIV to define the reduced velocity, i.e., Vr = U/ fnw D.38–41 In most of the numerical

studies of VIV at low Reynolds numbers, the reduced velocity is defined using the structural natural

frequency.42, 43 At high mass ratios, the structural natural frequency and the response frequency in

fluid are essentially the same and the VIV frequency locks in with the natural frequency.31, 44 When

the mass ratio is in the order of O (1), the response frequency can be significantly greater than the

natural frequency.41

Williamson and Roshko37 found that the vortex-shedding pattern in the wake of a vibrating

cylinder is related to the response mode of the cylinder. They conducted studies of a vibrating

cylinder in fluid flow and used the number of the vortices that are shed from the cylinder to define

the vortex shedding mode. For example, the 2P mode stands for two pairs of vortices being generated

in one cycle of vibration and 2S mode stands for two single vortices being generated in one cycle
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(a)     Computational domain      (b) Finite element mesh near the cylinder
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FIG. 1. Computational domain and computational mesh for flow past an elastically mounted rotating circular cylinder.

of vibration. For VIV of a circular cylinder in the cross-flow direction at low mass ratios, the vortex

shedding is in the 2S mode in the initial branch and 2P mode in the upper and lower branch.41 If

the cylinder is allowed to vibrate both in the in-line and the cross-flow directions, the maximum

response amplitude is increased to about 1.5 diameters of the cylinder and the velocity regime where

the amplitude reaches its maximum is defined as super upper branch.40 2T mode (two triplets of

vortices are shed from the cylinder in each vibration cycle) was observed when the amplitude is the

maximum. For VIV of a circular cylinder at low Reynolds numbers in the laminar flow regime, the

wake flow was found to be in the 2S mode throughout the lock-in regime.42

While flow past a rotating cylinder has been investigated extensively in the past, little attention

has been paid to the influence of the rotation of the cylinder on the VIV. Rotating cylinder has been

used for flow control around a non-vibrating cylinder.22 Bourguet and Jacono23 studied the one-

degree-of-freedom (1-dof) flow-induced vibration of a rotating cylinder in the cross-flow direction

for a low Reynolds number of 100 and investigated the impact of the symmetry breaking due to the

imposed rotation on the VIV. In this study, the 1-dof and two-degree-of-freedom (2-dof) VIV of an

elastically mounted rotating circular cylinder, as shown in Fig. 1(a), are investigated numerically

by solving the two-dimensional Navier-Stokes equations using the finite element method. The

rotation rate α is related to the angular velocity ω of the cylinder as α = ωD/2U. The vibration

of the cylinder is calculated by solving the equation of the motion. Both the 1-dof VIV in the

cross-flow direction only and the 2-dof VIV are studied. The study of VIV of a rotating cylinder

is focused on a constant Reynolds number of 150, a constant mass ratio of 2, and low rotation

rates of 0, 0.5, and 1.0. The numerical model is firstly validated against existing independent

experimental and numerical results of flow past a rotating circular cylinder and 1-dof VIV of a

rotating cylinder. Then the 1-dof and the 2-dof responses of the cylinder are discussed in detail

separately.

II. NUMERICAL METHOD

The incompressible Navier-Stokes equations are solved by the Petrov-Galerkin finite element

method (PG-FEM) to simulate the flow around a rotating cylinder. The finite element mesh is

updated after each computational time step to accommodate the evolution of cylinder position. The

Arbitrary Lagrangian Eulerian (ALE) method, which has been found to be an accurate method

for simulating the VIV of cylinders in fluid flow,45, 46 is used in this study. The velocity (u, v),

the time t, the length (x, y), and the pressure p are nondimensionalized as (u, v) = (ũ, ṽ)/( fn D),

t = t̃ fn , (x, y) = (x̃, ỹ)/D, p = p̃/(ρ f 2
n D2), respectively, where the tilde denotes the dimensional

parameters and ρ is the fluid density. The non-dimensional ALE formulation of the NS equations

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.95.223.58 On: Mon, 16 Nov 2015 05:46:13



073602-4 Zhao, Cheng, and Lu Phys. Fluids 26, 073602 (2014)

for incompressible flows is expressed as45, 46

∂ui

∂t
+

(

u j − u j,mesh

) ∂u j

∂x j

+
∂p

∂xi

=
Vr

Re

∂2ui

∂x j∂x j

, (1)

∂ui

∂xi

= 0, (2)

where x1 = x and x2 = y are the Cartesian coordinates in the in-line and transverse directions of

the flow, respectively; ui is the fluid velocity component in the xi-direction; t is the time; and ui, mesh

is the velocity of the movement of the mesh nodes. The nondimensionalization method used in

this study leads to a nondimensional free-stream velocity that is equal to the reduced velocity and

a nondimensional vibration frequency that is equal to the ratio of the vibration frequency to the

structural natural frequency. The nondimensional equation of the motion of the cylinder is

Ẍ i + 4πζ Ẋ i + 4π2 X i =
2

π

V 2
r CFi

m∗ , (3)

where X1 = X and X2 = Y are the displacements of the cylinder system in the inline and cross-flow

directions, respectively; Ẋ i and Ẍ i are the velocity and the acceleration of the cylinder, respectively;

m* = m/md is the mass ratio with m being the mass of the cylinder and md = ρπD2/4 being the

displaced mass of the fluid; ζ = c/
(

2
√

km
)

is the damping ratio with c and k being the damping

constant and spring constant of the system, respectively; and CF1 = CD and CF2 = CL are the drag

and lift coefficients, respectively, which are defined as CD = FD/(ρDU2/2), CL = FL/(ρDU2/2) with

FD and FL being the drag and lift forces on the cylinder, respectively. The equations of motion,

Eq. (3), are solved using the fourth-order Runge-Kutta algorithm.

After each computational time step in the numerical simulation, the position of the cylinder

changes and each finite element node needs to be moved accordingly. The governing equation for

calculating the displacements of the nodes of the FEM mesh is

∇ · (γ∇Si ) = 0, (4)

where Si represents the displacement of the nodal points in the xi-direction and γ is a parameter that

controls the mesh deformation. In order to avoid excessive deformation of the near-wall elements,

the parameter γ in a finite element is set to be γ = 1/A, with A being the area of the element.

By specifying the displacements at all boundaries, Eq. (4) is solved by the Galerkin FEM. The

displacement Si is the same as the displacement of the cylinder plus the rotation speed of the

cylinder on the cylinder surface and zero on the rest of the boundaries.

A square rectangular computational domain of a boundary length of 200D is discretized into

quadrilateral four-node linear finite elements. Figure 1(b) shows an example of the finite elements

around the cylinders. Zhao et al.47 simulated VIV of a cylinder at Re = 1000–15000 and found that

if the width of the computational domain to the cylinder diameter ratio is greater than 10, the effects

of the side boundaries on the results have been negligibly weak in the lock-in regime. Prasanth

et al.48 found that the blockage factor (the diameter to the domain width ratio) must be no more

than 1% in order to obtain accurate results for Re ≤ 150. It is expected that the blockage factor of

0.5% used in this study will be small enough to eliminate the effects from the domain size on the

numerical results. Initially, the velocity and the pressure in the whole computational domain are set

to zero. The non-dimensional velocity at the inlet boundary is Vr and the velocity at the cylinder

surfaces equals to the sum of translational and rotational velocities of the cylinder surface. At the

outlet boundary, the pressure and the gradient of velocity in the inline direction are set to zero. At

the two lateral boundaries, the gradient of the pressure and the velocity in the cross-flow direction

are set to zero.

III. VALIDATION AND MESH DEPENDENCY STUDY

Simulations of flow past a rotating non-vibrating cylinder are conducted and the results of the

velocity, pressure, and force coefficient are compared with the available data in published literature.
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(d) Drag coefficient for Re=100

FIG. 2. Variations of amplitudes of the force coefficient of a non-vibrating rotating cylinder with the rotation rate.

For flow past a rotating circular cylinder, the computational domain size must be large enough

to ensure that the results are convergent. Numerical results based on three meshes of different

computational domain sizes of H/D = 40, 120, and 200 are compared with each other with H being

the length of the side boundary of the domain as defined in Fig. 1(a). The computational domains

for H/D = 40, 120, and 200 are divided into 15256, 35616, and 39196 four-node quadrilateral finite

elements, respectively. There are 160 elements along the cylinder surface and the minimum mesh

size in the radial direction is 0.002D. Figure 2 shows the comparison between the present results of

the force coefficients for flow past a rotating cylinder at Re = 100 and 160 from the three meshes

with the numerical results reported in Ref. 17, where a circular computational domain of a diameter

of Hc = 50D was used. ACD and ACL in Fig. 2 stand for the amplitudes of the drag and lift coefficients

respectively. It can be seen that the results of the force coefficients at H/D = 200 are almost identical

with those at H/D = 120, indicating the convergence of the results. The calculated force coefficients

at H/D = 40 are slightly greater than those at H/D = 200 and 120 because of the stronger blockage

effect. Present results agree well with those reported in Ref. 17. Judging by the zero amplitudes of

the drag and lift coefficients, it can be confirmed that the vortex shedding is fully suppressed at α

= 1.9 and 2.0 for Re = 100 and 160, respectively. The amplitude of the drag coefficient increases

with α for α < 1.5, while that of the lift coefficient changes little. The amplitudes of both the lift

and drag coefficients decrease rapidly as α is increased from 1.5 to 2 for Re = 160 and from 1.5 to

1.9 for Re = 100. In this study, the mesh with H/D = 200 is used in all the subsequent simulations.

Simulation for Re = 200 and α = 0.5 is conducted and the velocity distribution along the

two radial lines of θ = 90◦ and θ = 0◦ (see Fig. 1(a) for the definition of θ ) are compared with

the experimental data reported in Ref. 49 and the numerical results published in Ref. 17 in Fig. 3.

The cylinder and the fluid are initially stationary and given an impulsive fluid velocity and impulsive

rotation speed. It can be seen that the flow velocity in the boundary layer changes quickly at the

early stage of the flow. The present numerical results of the velocity distribution are almost identical

with the numerical results in Ref. 17 and agree reasonably well with the experimental data. Flows

past a cylinder at high rotation rates of α = 3, 4, and 5, where the vortex shedding is suppressed,

are also simulated and the results of the lift and drag coefficients are compared with other numerical

results in Table I. Mittal and Kumar21 used a square computational domain with a boundary length

of H = 100D and Padrino and Joseph50 used a circular computational domain with a diameter of

Hc = 125D. The agreement among the lift coefficient from the three studies is excellent. However,
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FIG. 3. Comparison of the numerical results of velocity profiles at Re = 200 and α = 0.5 with the experimental data by

Coutanceau and Menard.49

TABLE I. Comparison of the force coefficient from different models for Re = 200 and α = 3, 4, and 5.

α 3 4 5

Force coefficient CL CD CL CD CL CD

Present (H/D = 200) − 10.342 0.005 − 17.585 − 0.137 − 27.206 − 0.005

Mittal and Kumar (2003) (H/D = 100) − 10.366 0.035 − 17.598 − 0.055 − 27.055 0.168

Padrino and Joseph (2006) (Hc/D = 125) − 10.340 0.012 − 17.582 − 0.124 − 27.029 0.011

the drag coefficients obtained from different models are quite different. This is because the drag

coefficients are extremely small and the relative errors are magnified.50

Figure 4 shows the comparison of the distribution of the pressure coefficient along the cylin-

der surface for Re = 200 and α = 3, 4, and 5. The pressure coefficient is defined as CP = (p

− p∞)/(ρU2/2) with p∞ being the pressure at the inlet boundary. The present results of pressure also

agree well with those reported in Ref. 50. Because of the rotation of the cylinder, the pressure on

the cylinder surface is very asymmetric, i.e., the difference between the pressures at θ = 90◦ and

270◦ increases with α. The increased pressure difference between the top and bottom sides of the

cylinder at large α leads to an increase in the lift coefficient.

Table II shows the comparison among the Strouhal numbers from different numerical models

for Re = 100 and α = 0, 0.5, 1, and 1.5. The Strouhal number is defined as St = fsD/U with fs being

-40

-35

-30

-25

-20

-15

-10
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0

5

0 45 90 135 180 225 270 315 360

P

(degree)

=3, Present

=3, Ref. 52

=4, Present

=4, Ref. 52

=5, Present

=5, Ref. 52

FIG. 4. Distribution of the pressure coefficient along the cylinder surface for Re = 200 and α = 3, 4, and 5.
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TABLE II. Comparison of the Strouhal number for Re=100.

α 0 0.5 1 1.5

Present 0.1641 0.1645 0.1650 0.1630

Stojkovic et al.51 0.1650 0.1657 0.1658 0.1626

Pralits et al.20 0.1646 0.1647 0.1656 0.1634

the vortex shedding frequency, which is obtained based on the oscillation of the lift coefficient in

this study. It can be seen that the rotation rate has a very small effect on the Strouhal number when

it is less than 1.5. As the rotation rate is increased from 0 to 1.5, the Strouhal number is decreased

from 0.1641 to 0.1630. The difference between present Strouhal number and any of the other three

numerical results is less than 0.72% for α in the range of 0–1.5.

The present numerical model was previously used by the authors for the simulations of VIV of

non-rotational cylinders. For validating the numerical model, Zhao and Yan46 simulated VIV of a

circular cylinder at a mass ratio of 10 and a Reynolds number of 100 and Zhao45 simulated VIV of a

circular cylinder at a mass ratio of m∗ = 2.546 and Re = 150. The results of these two studies agree

very well with those in Refs. 42, 52, and 53, respectively. To testify the validation of the numerical

model on the VIV of a rotating cylinder, the 1-dof VIV of a rotating cylinder in the cross-flow

direction for m∗ = 12.73, Re = 100, and ζ = 0 is simulated and the numerical results of the response

amplitude and the mean (time-averaged) lift coefficients are compared with the numerical results

by Bourguet and Jacono23 in Fig. 5. Since the maximum rotation ratio studied in this paper is 1, the

results for α = 0, 0.5, 1, and 1.5 are compared with those in Ref. 23. Both the amplitudes and the

mean lift coefficients agree with the numerical results in Ref. 23 very well. The lock-in range of the

reduced velocity is found to increase with the rotation ratio. Similar to that of a stationary cylinder,

the magnitude of the negative lift coefficient increases with the increase of the rotation rate of the

cylinder.

When the lock-in occurs, the cylinder oscillates at a frequency that is related to the effective

added mass, which is induced by the fluid force in phase with the acceleration of the cylinder.25

Previous studies of the VIV of a cylinder have shown that the effective added mass coefficient may

be very different from the potential flow value of 1.23–26 The effective added mass coefficients in the

x- and y-direction are defined as Cmx and Cmy, respectively, and they can be calculated by26

Cmx = −
2V 2

r

π

Ci Ẍ

Ẍ2
and Cmy = −

2V 2
r

π

Ci Ÿ

Ÿ 2
. (5)

There is an extra term of V 2
r in Eq. (5) compared with Eq. (5.13) in Ref. 23, because of the

difference in the non-dimensionalization method for the time. The added mass coefficients for the

rotation ratios of α = 1 and 1.5 are compared with the calculated results by Bourguet and Jacono23 in

Fig. 6. The effective added mass coefficients calculated from the two numerical models are close
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FIG. 5. Comparison between the present numerical of VIV of a cylinder for Re = 100, m* = 12.73, and ζ = 0 with the

numerical results in Ref. 23.
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FIG. 6. Comparison of the effective added mass coefficient.

to each other. As reported by Dahl et al.,25 the effective added mass coefficient reduces with the

increasing reduced velocity. It can be seen that the effective added mass coefficients are generally

different from 1. The negative added mass coefficients are observed because of the out of phase

between the lift coefficient and the displacement.

IV. ONE-DEGREE-OF-FREEDOM VIV OF A ROTATING CYLINDER

A. Response amplitude and frequency

One-degree-of-freedom VIV of a rotating cylinder is simulated at a constant Reynolds number

of 150 and a constant mass ratio of m∗ = 2. The cylinder is located at the centre of the square

computational domain with a boundary length of 200D. The structural damping ratio is set to

zero in order to achieve large response amplitudes. Three rotation rates of α = 0, 0.5, and 1 are

considered and the reduced velocities range from 1 to 13 with an increment of 0.2. It has been

found that the response of the cylinder at the reduced velocities near the low- and high-boundary

of the lock-in regime exhibits hysteresis, i.e., the response of the cylinder depends on how the

velocity is initialized. In the experimental study of 2-dof VIV of a circular cylinder in steady flow,

Jauvtis and Williamson40 investigated the VIV response of a cylinder under the increasing velocity

(the velocity was gradually increased in the experiment) and decreasing velocity (the velocity was

gradually decreased) conditions. It was found that the response amplitude of the cylinder under the

increasing velocity condition is significantly greater than that under the decreasing velocity condition

in the super upper branch. In many experimental studies, the reduced velocity was usually varied

by keeping the structural natural frequency fixed and increasing the Reynolds number. In order

to investigate the effect of the reduced velocity at a fixed Reynolds number, the structural natural

frequency is varied in many numerical studies.42, 48, 54 In this study, the Reynolds number is fixed at

150 and the simulations are conducted under both the increasing and decreasing reduced velocity

conditions. In the increasing reduced velocity condition, the reduced velocity is 1 initially and after

the equilibrium response is achieved, a new simulation is conducted by using the last computational

step results as the initial conditions and increasing the reduced velocity by 0.2. Every time when the

equilibrium response is achieved, the reduced velocity is increased by 0.2 again and the simulation

is continued until the reduced velocity reaches to 13. In the decreasing reduced velocity condition,

the reduced velocity is initially set to be 14 and is decreased by 0.2 after each equilibrium state is

achieved until it is 1. After the reduced velocity is increased or decreased by 0.2, the simulations are

conducted for enough long time to ensure at least 20 periods of equilibrium response are obtained.

Figure 7 shows the variation of the response amplitude in the cross-flow direction with the

reduced velocity for α = 0, 0.5, and 1. The response amplitude in the cross-flow direction is defined

as Ay = (Ymax − Ymin)/2, where the maximum and minimum displacements Ymax and Ymin in the

cross-flow direction are obtained based on the time history of the cylinder displacement in 20 periods

of vibration. The hysteresis response at the reduced velocities near the higher end of the lock-in

regime can be clearly seen. However, the hysteresis is not obvious near the lower end of the lock-in

regimes. In the numerical study by Singh and Mittal42 for Re = 100 and m∗ = 10, the hysteresis

region of the reduced velocity near the lower end of the lock-in regime was very narrow (about 0.1).
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FIG. 7. Variation of the response amplitude with the reduced velocity for 1-dof VIV.

It is not observed in this study because the increment of the reduced velocity is 0.2, which is not

small enough to capture the very narrow hysteresis region. Since this study is focused on the effects

of the rotation rate on the response in a wide range of reduced velocity both in the 1-dof and 2-dof

VIVs, efforts are not made to identify the very small region of hysteresis near the lower end of the

lock-in regime. It is expected that the difference between the numerical results under the increasing

and decreasing Vr conditions is only located in the very small reduced velocity range narrower than

0.20 near lower boundary lock-in regime. However, it can be seen in Fig. 7 that the hysteresis occurs

at a wide range of reduced velocity near the higher end of the lock-in regime. The range of the

reduced velocity for lock-in widens with the increase of the rotation ratio α. For α = 0, 0.5, and 1,

the higher boundaries of the lock-in regime under the increasing reduced velocity condition are 9,

9.4, and 10.8, respectively, and those under the decreasing reduced velocity condition are 7.8, 8.4,

and 10.4, respectively. Outside the hysteresis region, the response amplitudes under the increasing

Vr and decreasing Vr conditions are almost the same. When α is increased from 0 to 1, the maximum

non-dimensional response amplitude is slightly increased from 0.60 to 0.64. However, the response
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FIG. 8. Variation of the response frequency with the reduced velocity for 1-dof VIV.

amplitude near the higher boundary of the lock-in regime is increased significantly. For instance, the

response velocity at Vr = 9 is increased from 0.27 to 0.50 after α is increased from 0 to 1. It can be

seen in Fig. 7 that the difference in the response amplitude between α = 0.5 and 1 is bigger than that

between α = 0 and 0.5, indicating that the change of the response amplitude with α become faster

as α increases.

Figure 8 shows the comparison between the response frequencies under the increasing and

decreasing Vr conditions for α = 0, 0.5, and 1. Similar to the response amplitude, the response

frequency under the increasing Vr condition is the same as that under the decreasing Vr condition,

except in the hysteresis regions. The whole range of the reduced velocity can be divided into four

regimes based on Fig. 8. In the regimes of Vr ≤ 3 for α = 0 and 0.5 and Vr ≤ 3.4 for α = 1, the

response frequency increases with the reduced velocity linearly for all the three rotation ratios. In

the regimes of 3.2 ≤ Vr ≤ 3.8, 3.2 ≤ Vr ≤ 4, and 3.6 ≤ Vr ≤ 3.8 for α = 0, 0.5, and 1, respectively,

the response frequency locks onto a constant frequency which is lower than the natural frequency.

In the third regime of the reduced velocity for each α, the non-dimensional response frequency f/fn
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is close to 1. The Strouhal numbers for a non-vibrating rotating cylinder at α = 0, 0.5, and 1 are very

close to each other and they are St = 0.1843, 0.1840, and 0.1835, respectively. The reduced velocity

corresponding to a natural frequency which is the same as the vortex shedding frequency is about

5.426, 5.435, and 5.450, respectively, for α = 0, 0.5, and 1. It can be seen that when the reduced

velocity is smaller than about 5.4, the response frequency of the cylinder does not exactly match the

structural frequency, and the detuning increases as the reduced velocity moves away from about 5.4

(natural frequency moves away from the vortex shedding frequency of a non-vibrating cylinder).

This phenomenon was referred to as soft-lock-in in Ref. 55. When the reduced velocity is greater

than the higher boundary of the lock-in regime, the response amplitude becomes very small and the

response frequency increases linearly with the increasing reduced velocity. A sudden jump in the

response frequency occurs when the reduced velocity exceeds the higher boundary of the lock-in

regime.

If the cylinder rotates, the mean position of the cylinder in the cross-flow direction moves

in the negative y-direction and its magnitude increases with the increase of the reduced velocity.

Figure 9 shows the variation of the mean position of the displacement in the cross-flow direction

with the reduced velocity. The magnitude of the mean position of the cylinder increases with the

increasing rotation rate. This is due to the increase in the magnitude of the mean lift coefficient,

which has been found in Refs. 17 and 56 for a non-vibrating cylinder.

B. Force coefficients

It has been well known that the phase between the force and the vibration displacement in

the cross-flow direction jumps from 0◦ to 180◦ at the boundary between the upper and lower

branches.39, 40 For VIV of a cylinder, the fluid forces were found to only peak at the vibration

frequency or at frequencies corresponding to higher harmonic of vibration frequency.23 The higher

harmonics in the forces also exist in the case of VIV of a non-rotating cylinder.25, 40 Bourguet

and Jacono23 decomposed both the displacement and the force into harmonics of the fundamental

frequency of the displacement and examined the phase between the first harmonic components of the

displacement and the force. In this study, the phase between the displacement and the force (defined

as ψy) is examined by the correlation between the displacement and the force. The correlation

between the displacement and the force in the x- and the y-directions is defined as

Rx = (X − X̄ )(CD − C̄D)/(X ′C ′
D) and Ry = (Y − Ȳ )(CL − C̄L)/(Y ′C ′

L), (6)

respectively, where the primes stand for the root mean square values and the over-bars stand for

the averaging over time. The correlation coefficient is 1 if the displacement is in phase with the

force and −1 if the displacement is out of phase with the force. Figure 10 shows the variation of

the correlation coefficient between the Y-displacement and the lift coefficient for the 1-dof VIV in

the increasing Vr condition. For all the three rotation ratios, the correlation coefficient is found to
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FIG. 10. Correlation between the displacement in the cross-flow direction and the lift coefficient for the 1-dof VIV in the

increasing Vr condition.

change from 1 to −1 when the reduced velocity is increased from 5 to 6. If the structural damping is

zero, the vibration frequency is lower than the natural frequency when Ry ≈ 1 (ψy = 0◦) and higher

than the natural frequency when Ry ≈ −1 (ψy = 180◦).35 It can be seen by comparing Fig. 8 with

Fig. 10 that the vibration frequency exceeds the natural frequency when the correlation changes

from 1 to −1.

For a damped system, part of the energy of the flow has to be transferred to the system to

overcome the energy loss due the structural damping. Because the structural damping ratio is zero

in this study, the net time averaged energy transferred from the flow to the system should be zero.

However, the instantaneous energy transfer between the flow and the structure is found to oscillate

with time.23 A force excites the vibrations if it is in phase with the velocity of the cylinder, and

damps the vibrations if it is out of phase with the velocity of the cylinder. Bourguet and Jacono23

found that the force due to pressure (referred as pressure force) excites the vibration and the force

due to viscosity (referred as viscous force) damps the vibration of the cylinder. In this study the

contributions of the forces due to pressure and viscosity are quantified. The components of the total,

the pressure, and the viscous lift coefficients that are in phase with the velocity of the cylinder are

defined as CLv, C
p

Lv, and Cv
Lv, respectively, and they are calculated by

CLv =
√

2(CL − C̄L)Ẏ
√

Ẏ 2

, C
p

Lv =
√

2(C
p

L − C̄
p

L)Ẏ
√

Ẏ 2

, Cv
Lv =

√
2(Cv

L − C̄v
L)Ẏ

√

Ẏ 2

, (7)

where pressure and viscous lift coefficients (C
p

L and Cv
L) are obtained by integrating the pressure and

the shear stress over the cylinder surface, respectively.

Figure 11 shows the variations of the time averaged coefficients C̄
p

L and −C̄v
L with the reduced

velocity for the 1-dof VIV in the increasing Vr condition. It is found that the pressure force always

excites the vibration, while the viscous force always damps the vibration both inside and outside

the lock-in regime. Because C̄v
L is found to be always negative, −C̄v

L is shown in Fig. 11 in order

to compare the two force coefficients straightforwardly. It can be seen that both C̄
p

L and −C̄v
L reach

their maximum value at a same reduced velocity as the vibration amplitude of the cylinder does.

C̄
p

L and −C̄v
L outside the lock-in regime are very small, especially for reduced velocities higher than

the upper boundary of the lock-in regime. C̄
p

L and −C̄v
L are almost the same as each other in all the

cases, leading to a zero net energy transfer from the fluid flow to the structure.

C. Vortex shedding flow

Figure 12 shows the vorticity contours of the wake flow under the increasing velocity condition

for α = 0 and 1 at the instants when the cylinder is at its highest position. The non-dimensional

vorticity is defined as ω = (∂v/∂x − ∂u/∂y)/Vr . The vortex shedding for all the reduced velocities

and rotation ratios is in the 2S mode, i.e., two single vortices are shed from the cylinder in one

period of vibration. However, the vortex shedding patterns in different reduced velocities may be

different from each other significantly. The reduced velocities in Figs. 12(a) and 12(d) are those

when the response amplitudes reach its maximum. A negative vortex and a positive vortex are shed
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FIG. 11. The lift coefficients that are in phase with the velocity of the cylinder for the 1-dof VIV in the increasing Vr

condition.

from the cylinder when the cylinder is at its highest and lowest positions, respectively. For Vr = 4,

the vortex shedding patterns at α = 0 and 1 are very similar to each other. In Figs. 12(a) or 12(d) the

most upstream negative vortex in the top row is attached by a very weak positive vortex. This small

positive vortex is very weak and dissipates very quickly. The vortex shedding patterns in Figs. 12(a)

and 12(b) were similar to the 2PO mode identified by Morese and Williamson.57 The lift force is in

phase with the displacement in the 2PO mode and transfer positive energy to the cylinder, resulting

in the maximum amplitude in the lock-in regime.

Figures 12(b) and 12(e) correspond to reduced velocities slightly smaller than the upper bound-

ary of the lock-in regime. Compared with that in Figs. 12(a) and 12(c), the shear layers in Figs. 12(b)

and 12(e) from the two sides extend further downstream before they form vortices. The vortices

become elongated if the time taken by the shear layers to form vortices increases. The delay in
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FIG. 12. Contours of the vorticity for the 1-dof VIV under the increasing velocity condition for α = 1 and Vr = 4.
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the formation of the vortices enables the vortex shedding frequency being locked onto the vibration

frequency of the cylinder in a large range of the reduced velocity in the lock-in regime. The widening

of the lock-in regime for a rotating cylinder is explained by examining the vortex shedding pattern

shown in Fig. 12. When the cylinder rotates anticlockwisely, the relative velocity of the fluid at

the bottom surface of the cylinder is reduced. The weakened shear layer postpones the timing of

the formation of the positive vortices from the bottom surface of the cylinder. The elongation of

the vortices shed from the bottom surface of the cylinder is a good indication of the delay in the

formation of the vortices from the bottom surface of the cylinder. It is observed that each vortex from

the bottom surface of the cylinder is so elongated that it is split into two while travelling downstream.

Kang et al.17 reported that the vortex shedding frequency reduced with the increasing rotation ratio

at Re = 160 for a non-vibrating rotating cylinder. A slight change in the phase of vortex-induced

force can lead to a change in the energy input from the vortices to the cylinder (sometimes from

negative to positive).57

The reduced velocities in Figs. 12(c) and 12(f) are slightly higher than the upper boundary of

the lock-in regime. The vortices in Figs. 12(c) and 12(f) are shed from the cylinder faster than those

in Figs. 12(b) and 12(e) because more vortices are aligned downstream the cylinder. The vortex

shedding patterns for α = 0.5 are similar to those for α = 1 and are not presented in Fig. 12. The

difference between the vortices from the bottom surface and those from the top surface for α = 0.5

is weaker than that for α = 1 (Fig. 12(e)).

V. TWO-DEGREE-OF-FREEDOM VIV OF A ROTATING CYLINDER

A. Vibration amplitude and frequency

The input parameters for simulating the 2-dof VIV of a rotating cylinder are the same as those

used in the 1-dof VIV, except that the cylinder is allowed to vibrate in both the inline and the

cross-flow directions. The structural natural frequencies in the inline and cross-flow directions are

the same. The XY-trajectories of the 2-dof vibration of the cylinder for α = 0, 0.5, and 1 are shown in

Fig. 13. For α = 0, the vibration trajectories in the lock-in regime are in the shape of “8”, except that

at Vr = 9, the higher boundary of the lock-in regime. Based on the shape of the vibration trajectories,

it is observed that the vibration frequency in the inline direction is twice that in the cross-flow

direction for α = 0. When the reduced velocity is outside the lock-in regime (for example, Vr = 3

and 10 in Fig. 13(a)), the cylinder almost vibrates only in the cross-flow direction with negligibly

small amplitude in the inline direction. The trajectories of the cylinder in the lock-in regime for α

= 0.5 and 1 are similar to each other and are significantly different from those for α = 0. If the

cylinder rotates at α = 0.5 and 1, the trajectory of the cylinder in one period of vibration comprises

one single loop as shown in Figs. 13(b)–13(d). The single-loop trajectories suggest that the vibration

frequency in the inline direction is the same as that in the cross-flow direction. It appears that the

dimension of the XY-trajectory in the inline direction increases with α, indicating the increase of

the inline amplitude. Some of the vibrations are not exactly periodic such as those at Vr = 5 for

α = 0.5 and at Vr = 4 and 5 for α = 1. These reduced velocities are near the boundaries between

two branches.

Figure 14 shows the variations of the response amplitudes in the inline and the cross-flow

directions with the reduced velocity. The response amplitude in the inline direction is defined as

Ax = (Xmax − Xmin)/2 with Xmax and Xmin being the maximum and minimum displacements in

the inline direction, respectively. Figure 15 shows the variation of the response frequency in the

cross-flow direction with the reduced velocity for the 2-dof VIV. Similar to that of the 1-dof VIV, the

hysteresis near the lower boundary of the lock-in regime is not obvious. Weak difference between

the response amplitudes under the increasing and the decreasing Vr conditions is observed in the

reduced velocity range between 3 and 4. For α = 0, the response amplitude in the in-line direction is

negligibly smaller than that in the cross-flow direction. This agrees with experimental observations

at high Reynolds numbers in Refs. 40 and 58 and the numerical simulations at low Reynolds

numbers in Refs. 42 and 59. The response amplitude reaches its maximum in the upper branch

in the 2-dof VIV of a non-rotating cylinder.35, 38, 39 The upper branch cannot be clearly identified
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FIG. 13. XY-trajectory of the cylinder under the increasing Vr condition for the 2-dof VIV.

at low Reynolds numbers. Due to the wake vibration in the inline direction, the variation of the

response amplitude with the reduced velocity in the cross-flow direction at α = 0 for the 2-dof

VIV is very similar to that for the 1-dof VIV. When the cylinder rotates at α = 0.5 and 1, both

the response amplitude and the response frequency are very different from those for a non-rotating

cylinder (α = 0). For α = 0.5, the maximum response amplitude in the lock-in regime is increased

significantly compared with that for α = 0. It is about 0.65 at α = 0 and is increased to 0.79 at

α = 0.5. For α = 1, the maximum response amplitude is increased to 1.09. Anagnostopoulos and

Bearman60 conducted an experimental study of VIV of a cylinder at very low Reynolds numbers

between 90 and 150 and reported that the maximum response amplitude occurred near the lower

boundary of the lock-in regime, which is similar to what was observed in this study for α = 0.

However, when the rotation rate α is increased to 0.5, the maximum amplitude occurs in the middle

of the lock-in regime. It is interesting to see that the response for α = 1 includes two maximum

response amplitudes. For both α = 0.5 and 1, the disconnection in the variation of the response

amplitude with the reduced velocity occurs after the response amplitude reaches its maximum value.

Another striking difference between the responses of a rotating cylinder from that of a non-rotating

cylinder is that the response amplitude in the inline direction is significantly increased in the lock-in

regime.
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FIG. 14. Variation of the response amplitude with the reduced velocity for 2-dof VIV.

It can be seen from Fig. 15 that the response frequency locks onto a constant frequency which is

smaller than the natural frequency in the range of 3.4 ≤ Vr ≤ 3.8 and 3.2 ≤ Vr ≤ 5.4 for α = 0 and

0.5, respectively, for the increasing Vr condition. For α = 1, the response frequency in the increasing

Vr condition locks onto a constant frequency in two ranges: 3 ≤ Vr ≤ 5.8 and 7 ≤ Vr ≤ 9. These

ranges of reduced velocity are referred to be the initial branches in this study. It can be seen in

Fig. 14 that in these ranges of reduced velocity, the response amplitude increases with the reduced

velocity. The reduced velocity ranges where the response frequency increases gradually with the

reduced velocity to values close to the natural frequency are referred to be lower branches. In the

increasing Vr condition, the lower branch is 4 ≤ Vr ≤ 9.2, 5.6 ≤ Vr ≤ 6.6 and 6 ≤ Vr ≤ 6.8 for α

= 0, 0.5, and 1, respectively. The upper boundary of the lower branch is very clear for α = 0 and
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FIG. 15. Variation of the response frequency in the cross-flow direction with the reduced velocity for 2-dof VIV.

1, because both the vibration amplitude and the frequency of the cylinder jumps. For α = 0.5, the

upper boundary of the lower branch cannot be clearly identified in Fig. 14(b). The reduced velocity

of 6.6 is treated to be the upper boundary of the lower branch in the increasing Vr condition because

the change rates of the amplitude and the response frequency with reduced velocity change suddenly

at this reduced velocity.

Figure 16 shows the variation of the mean position of the cylinder with the reduced velocity

under the increasing Vr condition for the 2-dof VIV. Similar to that for the 1-dof VIV, the mean

position of the cylinder in the cross-flow direction is negative. The magnitudes of the mean position

of the cylinder in both the inline and the cross-flow directions generally increase with Vr. As the

reduced velocity exceeds the higher boundary of the initial branch for α = 0 (Vr is increased from

5.8 to 6 and from 9 to 9.2), the mean positions of the cylinder in both the inline and the cross-

flow directions decrease suddenly. The sudden change in the mean displacement in the cross-flow

direction can also be seen at the two ends of the lower branch for α = 0.5 (Vr = 5.6 and 6.6).

It appears that the effect of the rotation rate α on the mean position of the cylinder in the inline

direction is weaker than that in the cross-flow direction for α = 0.5. Overall, the change rates of
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FIG. 16. Mean position of the cylinder for the 2-dof VIV in the increasing Vr condition.

FIG. 17. Correlation between the force and the displacement for the 2-dof VIV in the increasing Vr condition.
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FIG. 18. Variations of the RMS drag and lift coefficients with the reduced velocity for the 2-dof VIV in the increasing Vr

condition.

the mean position of the cylinder with the reduced velocity in both the inline and the cross-flow

direction increases with the increasing reduced velocity.

B. Force coefficients and effective added mass coefficients

The correlation coefficients between the vibration displacement and the force coefficient in both

the x- and the y-directions are shown in Fig. 17. The variation of the correlation coefficient Ry with

Vr for α = 0 and 0.5 is similar to their counterparts in the 1-dof VIV. The correlation Rx for α = 0

varies between 1 and −1 a number of times as shown in Fig. 17(a). By comparing Fig. 17(a) and

Fig. 14(a) it can be seen that whenever the Rx changes from −1 to values close to 1, i.e., the drag force

change from out of phase to in phase with the inline displacement, the amplitude in the x-direction

increases. The variations of Rx and Ry with the reduced velocity are similar to each other for

α = 0.5. It can be seen in Fig. 14(b) that the variations of the displacements in the x- and y-

directions with the reduced velocity are also similar to each other. The variation of Ry with the

reduced velocity for α = 1 is very different from those for α = 0 and 0.5. The sudden reduction

of Ry in the reduced velocity range of 6 ≤ Vr ≤ 7 leads to significant reduction in the response

amplitude.

Figures 18(a) and 18(b) show the variation of the root mean square (RMS) drag and lift

coefficients (C′
D and C′

L) with the reduced velocity for the 2-dof VIV under the increasing Vr

condition, respectively. The increase in the rotation rate α leads to significant increase in both the

drag and lift coefficients. The increased drag and lift coefficients on a rotating cylinder correspond

to the increase in the response amplitudes. Another reason why the maximum response amplitude

increases with the increasing rotation rate is because the initial branch, where the response amplitude

increases with the increasing Vr, is widened significantly.

Of the total force, only the component that is in phase with the velocity of the cylinder excites

the vibration. Figure 19 shows the variation of the time averaged force coefficients that are in phase

with the velocities of the cylinder for 2-dof VIV in the increasing Vr condition. The pressure and
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FIG. 19. Variation of the time averaged force coefficients that are in phase with the velocities of the cylinder for 2-dof VIV

in the increasing Vr condition.

FIG. 20. Variations of the effective added mass with the reduced velocity for the 2-dof VIV in the increasing Vr condition.
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FIG. 21. Contours of the vorticity for the 2-dof VIV at α = 1 and Vr = 5.4 under the increasing Vr condition.

the viscous components of the drag coefficient that are in phase with the velocity of the cylinder are

defined as C
p

Dv and Cv
Dv, respectively. As in the 1-dof VIV, the pressure force excites the vibration

and the force damps the vibration in both the inline and the cross-flow directions. Negative values

of C̄v
Lv and C̄v

Dv are plotted in Fig. 19 for the convenience of comparison. Disconnections in the

excitation force coefficients are observed at the upper boundaries of the initial branches for α = 0.5

and 1 (Vr = 5.4 for α = 0.5 and Vr = 5.8 and 9 for α = 1). For α = 0, the small jump of the mean

force coefficients at the upper boundary of the initial branch (Vr increases from 3.8 to 4) can also be

seen in Fig. 19(a). Although the mean total force coefficient that are in phase with the velocity of

the cylinder is zero, the magnitudes of the excitation pressure and viscous force coefficients in the

lock-in regimes are significantly greater than their counterparts outside the lock-in regimes. This is

the reason for the increase of the vibration amplitude in the lock-in regime.

The variations of the effective added mass coefficients in the x- and y-directions are presented

in Fig. 20. As in the 1-dof VIV, the added mass coefficients generally decrease with the increasing
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FIG. 22. Contours of the vorticity for the 2-dof VIV under the increasing velocity condition at α = 1 and Vr = 6.4.

reduced velocity except in the second initial branch for α = 1. Disconnection occurs at the boundaries

of the response branches. If a response is sinusoidal, the effective added mass coefficients is related

to the response frequency as f/ fn =
√

m∗/(m∗ + Cm), where f and Cm stands for the vibration

frequency and the added mass coefficient in either the x- or the y-direction. Based on the XY-

trajectories in the shape of “8”, the vibration frequency in the x-direction is twice that in the

y-direction for α = 0. Because of this, the effective mass coefficient in the x-direction is smaller than

that in the y-direction for α = 0. The one-loop XY-trajectories for α = 0.5 and 1 indicate that the

fundamental vibration frequencies in the x- and the y-directions are the same. However, the slight

difference between the added mass coefficients in the x- and the y-directions occurs for α = 0.5

because the vibration is not exactly sinusoidal, and this difference becomes strong for α = 1. The

correlation between the added mass coefficient and the response can be seen by observing Figs. 14,

15, and 20. For instance, the lock-in of the response frequency to an almost constant value in the

range of 3.4 ≤ Vr ≤ 3.8 corresponds to the constant added mass coefficient in the same range of

reduced velocity. Instead of being constant as the response frequency, the added mass coefficients
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FIG. 23. Contours of the vorticity for the 2-dof VIV under the increasing velocity condition at α = 1 and Vr = 8.6.

in both the x- and the y-directions decrease slowly with the reduced velocity in the initial branch

3.2 ≤ Vr ≤ 5.4 for α = 0.5 and the first initial branch (3 ≤ Vr ≤ 5.8) for α = 1, probably because the

response is not sinusoidal. Bourguet and Jacono23 reported that when a response is not sinusoidal,

the effective added mass coefficient has difference from the one predicted by assuming the response

to be sinusoidal. For α = 1, the added mass coefficient in the second initial branch increases with

the increasing reduced velocity, although the response frequency changes little. This is because

the response is very different from a sinusoidal response as shown in Fig. 19(d). Whenever the

effective added mass coefficient is zero, the response frequency becomes the same as the natural

frequency.

C. Vortex shedding flow patterns

Figure 21 shows the vorticity contours of the wake for α = 1 and Vr = 5.4, where the re-

sponse amplitude is the maximum in the first initial branch under the increasing Vr condition. The

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.95.223.58 On: Mon, 16 Nov 2015 05:46:13



073602-25 Zhao, Cheng, and Lu Phys. Fluids 26, 073602 (2014)

FIG. 24. Contours of the vorticity for the 2-dof VIV under the increasing velocity condition for α = 0.5 and Vr = 5.4.

instantaneous position of the cylinder on the XY-trajectory is shown in each diagram in Fig. 21.

The vortex shedding flow, which is asymmetric due to the rotation of the cylinder, is found to be

in the P+S mode, i.e., one pair of vortices and one single vortex are shed from the cylinder in

one period of vibration. When the cylinder moves from its lowest position to its highest position,

one positive vortex is shed from the bottom side of the cylinder as shown in Fig. 21(b). One negative

vortex starts to be shed from the cylinder as the cylinder is at its highest position as shown in

Fig. 21(c). When the cylinder moves from its highest to its lowest position, a small posi-

tive vortex is shed from the cylinder as shown in Fig. 21(d). This small positive vortex dissi-

pates out as x/D exceeds 20. Govardhan and Williamson (2000) also found that, in each pair

of the vortices in the 2P vortex shedding mode, the second vortex is smaller than the first

one.

Figure 22 shows the vorticity contours of the wake flow under the increasing velocity condi-

tion at α = 1 and Vr = 6.4, which is in the lower branch between the two upper branches. The

vortex shedding is in the 2S mode, i.e., two vortices are shed from the cylinder in one period of
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vibration. Because of the rotation of the cylinder, the vortex street in the wake of the cylinder is

aligned above y/D = 0 line. The vortices in the wake of the cylinder are in pairs and are regularly

arranged.

Figure 23 shows the vorticity contours of wake flow under the increasing velocity condition at

α = 1 and Vr = 8.6, where the response amplitude is the highest in the second upper branch. Similar

to the vortex shedding mode observed in Fig. 21, the vortex shedding mode in Fig. 23 is in the P+S

mode. However, the formation of the vortices in the wake of the cylinder is found to be different

from that in Fig. 21. The shear layers in Fig. 23 from the top and bottom sides of the cylinder

extend further downstream before they form vortices, in contrast to those in Fig. 21. The delay in

the formation of the vortices contributes to the smaller drag and lift coefficients in the second upper

branch than those in the first upper branch. The timing of the vortex shedding in Fig. 23 is not the

same as that in Fig. 21. For example, the small positive vortex is shed from the cylinder when the

cylinder is at its lowest position in Fig. 23, while it is shed when the cylinder is moving down in

Fig. 21.

Figure 24 shows the vorticity contours of the wake flow under the increasing velocity condition

for α = 0.5 and Vr = 5.4, where the response amplitude is the maximum in the upper branch. The

pattern of the vortex shedding flow in Fig. 24 is very similar to that at α = 1 shown in Fig. 17.

However, the small positive vortex that is shed from the cylinder in Fig. 24 is weaker than that in

Fig. 17. At α = 0, the vortex shedding in the whole lock-in regime becomes 2S mode and the vortex

shedding is very similar to that shown in Fig. 22 and is not shown here.

VI. CONCLUSIONS

Vortex-induced vibration of a rotating circular cylinder at a low Reynolds number of 150 and a

low mass ratio of 2 is studied numerically. Simulations are conducted for three rotation rates of 0,

0.5, and 1 and reduced velocities in the range of 1 to 13 with an interval of 0.2.

For 1-dof VIV, the rotation of the cylinder widens the lock-in regime and also increases the

response amplitude in the lock-in regime. Apart from the widened lock-in regime and the increased

response amplitude, the variations of the response amplitude and the frequency with the reduced

velocity for α = 0, 0.5, and 1 are similar to each other. The mean position of the cylinder in the

1-dof VIV is negative and its magnitude increases with α.

For α = 0, the response of the cylinder in the 2-dof VIV is very similar to that in the 1-dof VIV

and the response amplitude in the inline direction is significantly smaller than that in the cross-flow

direction. When the rotation rate is increased to 0.5 and 1, the response of the cylinder in the 2-dof

VIV is changed significantly. For α = 0.5 and 1, both the drag coefficient and the response amplitude

in the inline direction are increased significantly and become comparable with their counterparts

in the cross-flow direction. The response amplitudes in the cross-flow direction for α = 0.5 and 1

are also increased significantly compared with that for α = 0. No obvious upper branches in the

variation of the response amplitude with the reduced velocity are observed for α = 0, 0.5, and 1. For

α = 1, two initial branches are observed and the maximum amplitude in the cross-flow direction in

the first initial branch is about 60% higher than that for α = 0. The shape “8” vibration XY-trajectory

in the lock-in regime at α = 0 is changed to the single looped XY-trajectory at α = 0.5 and 1,

suggesting that the vibration frequency in the inline direction is the same as that in the cross-flow

direction.

By analysing the force component that are in phase with the velocity of the cylinder, it is found

that the pressure force excites the vibration and the viscous force damping the vibration in both

1-dof and 2-dof VIVs. Because the damping ratio is zero in this study, the time-averaged total force

that is in phase with the velocity of the cylinder is zero, resulting a zero energy transfer from the

fluid to the cylinder.

The vortex shedding in the initial branches for α = 0.5 and 1 are found to be in the P+S

mode, with two positive vortices and one negative vortex are shed from the cylinder in one period of

vibration. In the lower branch and outside the lock-in regime, the vortex shedding is in the 2S mode.

The vortex shedding in the 1-dof VIV for α = 0, 0.5, and 1 and that in the 2-dof VIV for α = 0 is

always in the 2S mode, regardless inside or outside the lock-in regime.
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