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As they fly or swim, many animals generate a
wake of vortices with their flapping fins and
wings that reveals the dynamics of their loco-
motion. Previous studies have shown that the
dynamic interaction of vortices in the wake with
fins and wings can increase propulsive force.
Here, we explore whether the dynamics of the
vortex interactions could affect the predictability
of propulsive forces. We studied the dynamics of
the interactions between a symmetrically and
periodically pitching and heaving foil and the
vortices in its wake, in a soap-film tunnel. The
phase-locked movie sequences reveal that abun-
dant chaotic vortex-wake interactions occur at
high Strouhal numbers. These high numbers
are representative for the fins and wings of
near-hovering animals. The chaotic wake limits
the forecast horizon of the corresponding force
and moment integrals. By contrast, we find peri-
odic vortex wakes with an unlimited forecast
horizon for the lower Strouhal numbers
(0.2-0.4) at which many animals cruise. These
findings suggest that swimming and flying
animals could control the predictability of
vortex-wake interactions, and the corresponding
propulsive forces with their fins and wings.
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1. INTRODUCTION

Many swimming and flying animals create large vor-
tices with their fins and wings. These vortices are
shed, and together they form the ‘footprint’ of the
animal in the fluid: the wake. In the wake, vortices
arrange in shapes and patterns that not only reflect
the motion of animals, but also the dynamics of
vortex—vortex and vortex—animal interactions. Two
well-known examples of intense vortex—vortex inter-
actions are vortex merging (Cerretelli & Williamson
2003) and stripping (Legras & Dritschel 1993). In
some cases, vortex—animal interactions are beneficial
to an animal’s locomotory performance. Insects, for
example, can recapture their vortex wake and thus gen-
erate extra lift (Dickinson et al. 1999) while some fishes
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tune their body wave to exploit vortices in the wake of
obstacles in running water (Liao er al. 2003). The
dynamics of wake vortices might, however, not
always be as easy to tune into.

Vortex wakes of animals are typically envisioned as a
periodic row of alternating vortices. This is contra-
dicted by several computational fluid dynamic studies
of two-dimensional pitching and heaving (flapping)
foils that model swimming and flight (Lentink &
Gerritsma 2003; Lewin & Haj-Hariri 2003; Alben &
Shelley 2005; Blondeaux et al. 2005; Iima 2007),
which report the existence of some aperiodic and chao-
tic vortex wakes. These chaotic vortex wakes mediate
chaotic fluid forces on foils, with a corresponding
strange attractor in the phase plot of fluid lift and
thrust, and are accompanied by a broad frequency spec-
trum and sensitivity to initial conditions (Lentink &
Gerritsma 2003). Further studies in which the foil
propels itself through the fluid show that these chaotic
forces result in chaotic body motion of which the
extent is determined by the relative inertia of the foil
(Alben & Shelley 2005; Iima 2007). If animals actually
need to cope with chaotic vortex interactions and
forces, it might well constrain their neural control of
body motion. There exists, however, no experimental
confirmation of chaotic vortex-wake interactions gen-
erated by pitching and heaving foils. Further, it is
unknown to what extent vortex interactions are
chaotic in the parametric domain of pitching and
heaving foils representative for animal fins and wings.
Here, we study these vortex interactions with a two-
dimensional flapping foil in a soap tunnel for a wide
range of kinematics representative for slender animal
wings and fins (e.g. Lentink & Dickinson 2009).

2. MATERIAL AND METHODS
We refer to Muijres & Lentink (2007) for a detailed description of
the set-up and method, and to Lentink ez al. (2008) for theory.

(a) Flapping foil in a soap tunnel

Our foil pitches and heaves periodically and symmetrically, with 90°
out of phase sinusoidal kinematics, in a nearly horizontal, gravity
driven, soap-film tunnel that flows at approximately 0.25ms .
We chose symmetric and periodic foil kinematics to ensure that
measured asymmetric and aperiodic vortex-wake interactions can
be linked explicitly to vortex dynamics. The foil is 5 per cent thick
and flaps at 4-25 Hz.

(b) Flapping parameters

The flapping foil generates thrust when the effective angle of attack is
larger than zero: aeg = @jng — @o > 0° (figure 1), which occurs when
the angle of attack amplitude induced by the foil’s flapping motion
g = arctan (27 X A*/A*) is larger than the pitch amplitude «aq
(A* = A/c, dimensionless heave amplitude; A* = U, /fc, dimension-
less heave length; A, heave amplitude; ¢, chord length; U, free
stream velocity; f, flap frequency). The combinations of (A4*, A*,
) studied here are all combinations of (4*=0, 1, ..., 4; A* =3,
5, ..., 13; a9 =10° 15°% ..., 90°) for which a.g > 0°. The average

Reynolds number Re of the foil is Re &~ Rew X {/1+ (44*/A*)?, in

which Re, = Us X ¢/v 7 1000 is the free stream Reynolds number
(Re is of order 1000; soap-film kinematic viscosity v~ 1 x
107°m?s™! (Martin & Wu 1995)).

(¢) Flow visualization and image analysis

We filmed the vortex wake of the foil time (500 Hz) and space
resolved (1024 x 1280 pixels) as a function of (4*, A*, «p), and
phase-locked over 99 periods; at stroke reversal and midstroke. We
obtained interference fringes by illuminating the soap film with a
monochromatic SOX lamp (Rutgers ez al. 2001), which correlate
strongly with the vorticity field (Rivera er al. 1998). For every
single image, we calculated the absolute gradient field and median
filtered it (MatLaB 2007; medfilt2, 5 x 5 pixels) to eliminate
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Figure 1. Phase-locked averages wake images reveal abundant chaotic vortex-wake interactions as a function of flapping foil
kinematics; dimensionless heave amplitude A* and wavelength A*, and pitch amplitude «y, which are illustrated in (a).
(@) A*=1; (b) A* =2. Empty spaces represent a.g < 0° (no thrust) for which we made no measurements. White lines
(dashed) indicate the borderline between chaotic and periodic flow according to A* = 27 x A*/tan(50° + ap/4) (see text for
definition). The blue bar under the figure indicates the range of A* at which swimming and flying animals are known to
cruise for the corresponding A* (which together build up the corresponding Strouhal number range).

background fringes. Next, small pollutants were automatically
removed (MATLAB; bwareaopen). After normalizing the intensity of
these images, we averaged them over all 99 images for stroke reversal
and midstroke. For periodic flows, this average image is identical to
the individual images of the vortex wake, and therefore crisp (frame-
by-frame inspection revealed no higher order harmonics, which is
quantitatively supported by the electronic supplementary material,
figure S2). For chaotic flow, the vortex wake varies erratically over
the 99 frames and the average image is therefore blurred. We
enhanced the dynamic range of all average images and coloured
them using identical and automated PHOTOSHOP image adjustments
(auto levels, shadow/highlight, tri-tone colouring).

(d) Force and moment integrals

We quantify chaos (Lorenz 1963) by calculating the standard
deviation of the moment of area integrals of the 99 phase-locked
image intensity fields I for stroke reversal and midstroke. This
standard deviation should be close to zero for purely periodic flow.
First, we create black and white images using a cut-off value of
0.17, which results in I = 1 where we visualized vortices and =0
elsewhere. Next, we determined the first three polar momel%s
of area of I Iy= [[Idxdy; Iy, = ([[xIdxdy* + [[yIdxdy®) "
L, = [[ (x> +3*)Idxdy for the near wake (integration area starts
¢/4 behind the foil and has width 8¢ and height 16¢). Wu (1980)
shows that, if we calculate these moments using the vorticity field
instead of I, I, would represent circulation, whereas I;, and I,
would be part of the integrals for calculating net force and
moment, respectively. Because I = 1 represents the integration area
where the vorticity is non-zero, we can assume that chaotic variation
of Iy, I, , and I,, indicates that the corresponding circulation, force
and moment integrals will vary chaotically too. The required fidelity
for neural control depends on the short-term fluctuation. Therefore,
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we eliminated slow fluctuations by subtracting the period-16 Butter-
worth filtered time sequence (MATLAB, fourth-order Butterworth).
We use the (phase-averaged) standard deviation of the short-term
variation as a quantitative proxy for chaos.

3. RESULTS
The phase-locked average images of the vortex wakes
reveal a boundary between a region of periodic (crisp
images) and chaotic (blurred images) wakes as a func-
tion of flapping kinematics; figure 1 (4* =1, 2) and
figure 2a (A* = 3) (see the electronic supplementary
material, figure S1 for A* = 0, 4). Several crisp images
of common periodic wake types can be found at rela-
tively low wavelengths for A* =1, such as ‘two
vortex pairs’ (A* =5, ag=15°, 30°) and ‘two single
vortices’ (A* =5, ag = 0°) per flap period (figure 1).
Such periodic vortex configurations are both found in
the wakes of fishes as a function of swimming kinematics
(e.g. Miiller ez al. 2001; Borazjani & Sotiropoulos 2008).
At shorter wavelengths and higher amplitudes, the
wakes are chaotic resulting in blurred images of the
wake, the border between periodic and chaotic vortex
wakes shifts to higher wavelengths for higher
amplitudes.

We find that the normalized standard deviation in
Iy, I, and I,, is similar valued (see the electronic
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Figure 2. (a) Phase-locked averages wake images for 4* = 3 (figure 1). (b) Pooled normalized standard deviation of Iy, I, and
I, (with respect to maximum value) as a function of ;4 at constant «, shows approximately exponential growth. Exponential
fits from left to right for pooled I yield s(I) = 1100 x 10~0¢%982% (g = 0°; r* = 0.95); s(I) = 700 x 1000084 (g = 15°;
r*=0.94); s(I) =210 x 107%e010am  (qy=30° > =0.92); s(I) =93 x 10010  (gy=45% 2 =0.97);
s(I) = 1.1 x 107%%16ams (@y = 60°; = 0.91). (¢) Standard deviation of I, (outer circle), I, (middle circle), and I,,,
(inner circle) plotted as a function of a.ys and «j,q, Which are colour-coded from minimum to maximum/2; (0.40)2 <
s(Ip) < (2.60)% (1.20)° < sy, < (4.16)3%; (2.10* < s(,,) < (5.60)*. We find a periodic vortex-wake domain at low values of
ng (Which corresponds with Strouhal number) and a chaotic domain at high values (yellow area). The border between
both domains can be described by a.gi;= 247° — 3.15a;,q and represents the left border of the yellow area (crosses indicated
the calculated intersections in (b) to which the borderline is fitted). Animals preferably cruise at low Strouhal numbers St,

in the range 0.2—0.4 (Taylor et al. 2003), for which we find solely periodic vortex-wake interactions.

supplementary material, figure S2 for evidence) and
grow roughly exponentially as a function of «;,4 at con-
stant «g, figure 2b. This illustrates the dramatic growth
in variance in the moment of area integrals owing to
chaos. We define the chaos boundary at 15 per cent
of the maximum standard deviation in Iy, I, and I,
in figure 2b and capture it through fitting the combined
normalized standard deviations of I, I; , and I, , with
an exponential function as a function of «@;,q at con-
stant « (0°, 15°, 30°, 45°, 60°; we excluded 75°,
because data lacked for a proper fit) and calculating
the intersection.

To determine how relevant chaos could be for our
understanding of animal propulsion through fluids,
we plot our proxy for chaos, the standard deviations
of Iy, I, and I, (§2), as a function of effective and
induced angle of attack, figure 2¢. This condensed
plot for A* = 1-4 features our linear approximated
borderline between chaotic and periodic wakes,
which we calculated as follows. We linearly fitted
the intersection values of a;,q4 at 15 per cent of the
maximum standard deviation in figure 26 and the cor-
responding values of a.g (plotted in figure 2¢). The
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linear fit o= 247° — 3.15q5,4 describes the 15 per
cent maximum standard deviation boundary between
chaotic and periodic flows well (r*> = 0.99). This bound-
ary yields similar chaos boundaries in figures la,b and
2a: A =27 x A*/tan(50° + ap/4) (rounded coeffi-
cients) that match well with the transition between
sharp (periodic) and blurry (chaotic) wake images.

4. DISCUSSION

Our study of vortex wakes generated by a two-dimen-
sional flapping foil reveals that vortex wakes of
flapping foils are chaotic for A* < 27 x A*/tan(50° +
ap/4) and (A*=1-4; A*=3-13; ay=0-90°

Re ~ 1000 x /1 + (44*/A*)*). This borderline also

predicts the wavelengths for which chaos (Lentink &
Gerritsma 2003) and aperiodicity (Lentink ez al.
2008) have been reported within the range of kin-
ematics studied here (Lewin & Haj-Hariri (2003)
and Alben & Shelley (2005) studied A* <1, while
Blondeaux ez al. (2005) and Iima (2007) studied A* < 3).
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How relevant are chaotic vortex-wake interactions
for swimming and flying animals? Our study is repre-
sentative for cruising flight and swimming only,
because we consider A* > 3 and because two-dimen-
sional foils approximate the flow around foils of
three-dimensional wings best during forward flight
(Lentink & Dickinson 2009). During cruising, animals
predominantly operate at Strouhal numbers St=
tan(ay,q) /7 in the range 0.2—0.4 (Taylor er al. 2003),
which has been found to yield high propulsive effi-
ciency (Triantafyllou er al. 1993). For this cruising
St-range, we find only periodic vortex wakes; see blue
region in figure 2¢ and the corresponding A* range
indicated with a blue horizontal bar in figure 1. Our
model experiments suggest that swimming and flying
animals might encounter chaotic vortex-wake inter-
actions when swimming or flying slower than A* <
27 x A*/tan(50° 4+ ap/4).

Even though our two-dimensional flapping foil
model is a highly simplified representation of an
animal wing or fin, which ignores three-dimensional
flow and high Reynolds number effects, it seems unli-
kely that including these three-dimensional effects in a
vortex-dynamic study of animal locomotion will sup-
press chaos altogether. We therefore predict that
animals could tune their kinematics to evade the
chaos of vortex-wake interactions. Butterflies might
be interesting candidates for studying if some animals
do exploit chaos—the so-called ‘butterfly effect’ of
chaos might help make their flight paths more erratic
to confound predators (Dudley 2000).

This research has been funded by NWO-ALW grant
817.02.012.
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