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Vortex Methods. II: Higher Order Accuracy
in Two and Three Dimensions

By J. Thomas Beale* and Andrew Majda**

Abstract. In an earlier paper the authors introduced a new version of the vortex method for
three-dimensional, incompressible flows and proved that it converges to arbitrarily high order
accuracy, provided we assume the consistency of a discrete approximation to the Biot-Savart
Law. We prove this consistency statement here, and also derive substantially sharper results
for two-dimensional flows. A complete, simplified proof of convergence in two dimensions is
included.

1. Introduction. This paper continues an analysis of the accuracy and convergence
of vortex methods begun earlier by the authors in [1]. The principle of such methods
is to simulate inviscid, incompressible fluid flow in two or three space dimensions by
computing the paths of representative particles in the fluid. In [1] a version of the
vortex method was introduced for three-dimensional flows which can be designed to
represent the flow with arbitrary accuracy. It was shown that this three-dimensional
method converges, provided a certain discrete integral approximation to the velocity
field is consistent to the specified order of accuracy. In the present paper we verify
this last condition, as stated in the Consistency Lemma below, thereby completing
the convergence argument. In addition, we discuss two-dimensional methods in
detail, since our techniques lead to sharper results in this case and allow more
flexibility than the previous work [7], [8]. Given the consistency lemma, the proof of
convergence is drastically simpler in the two-dimensional case. We include this
shorter convergence argument here, so that this paper provides a complete self-con-
tained treatment of two-dimensional vortex methods which can be read indepen-
dently of [1]. Also the proof of stability which we give in Section 5 both generalizes
and simplifies the earlier stability proof in the two-dimensional case due to Hald [7].

Before stating the results more precisely, we review the formulation of the vortex
method in two dimensions. Let z = (z,, z2) denote a point in the plane, «(z, t) =
(M,, u2) the fluid velocity, and w(z, t) the scalar vorticity,

w = u2 , — ui2.

The basis of the vortex method is the fact that, for incompressible flows, the vorticity
determines the velocity: since div u = 0, we can express the velocity u in terms of a
stream function ^,

« = (3^,-3,*)
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30 J. THOMAS BEALE AND ANDREW MAJDA

which satisfies
¿& = -w.

If we write ^ as the convolution of the Green's function with w, we have

(1.1) u{z,t) = f K{z- z')o>{z')dz',
/R2

where AT.z) = -(2ir)"'(92, -3,)log | z | , or

(1.2) K{z) = -(2tt\z\2)-\z2,-zx).

We will use a = (a,, a2) for the Lagrangian coordinates of a fluid particle.Thus, a
particle starting at the position a at time 0 follows a trajectory z(r; a) determined by
the equation

(1.3) jt=u(z,t),       z{0;a) = a.

We denote the solution of the ordinary differential equation (1.3) by zit; a) — $'(«);
thus 0' is the coordinate transformation from time 0 to time t determined by the
flow. It is well known that in two dimensions the momentum equation leads to the
vorticity equation

to, + (w • v)w = 0.

Hence w is conserved on particle paths, i.e.,

(1.4) a{V(a),t) = a(a,Ö).

Now suppose the initial vorticity w0(«) = «(«, 0) has support inside a bounded
set, say

B(R0)= {z:\z\<R0}.

We introduce a square grid in the a-plane with squares of side h centered about the
lattice points hj E A\ where A* = hA and A = {(_/,, j2): /',, y2 integers}. We will
write z (/) = Q'ijh), Ujit) — uiZjit), t) for the position and velocity at time t of a
particle in the ideal flow beginning at a grid point jh E Ah. According to (1.4),
u>izj(t), t) = <o0(/7i) = Uj. Thus, the vorticity at zy(r) is nonzero only for jh E A0,
where A0 = A* n 5(/?0).

In writing equations to approximate zXt), we will smooth out the singularity of
the kernel K in (1.1), as was done in [1] as well as in earlier treatments of the
two-dimensional vortex method. Let i//(z) be a function with / \piz)dz = 1, and let
ypgiz) — 8~2ipiz/8), where 8 is a parameter to be determined in relation to h. We will
replace K with

(1.5) Ks{z)=JK{z-z')Uz')dz'.

Further conditions on \p are specified below. Finally, with the initial vorticity w0(a)
prescribed and h fixed, we compute approximate particle paths ¿^(r), jh E Ah0, as
solutions of the system of ordinary differential equations
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VORTEX METHODS. II 31

Here ü* is a discrete approximation to the velocity expression (1.1) computed from

{*,(')},
(1.7) fi*(/)=    2   K8{lj(t)-2k(t))Ukh2.

kh<Ei\%

Having determined {zy} from (1.6), (1.7), we can compute a continuous approxima-
tion to the velocity field defined, as in (1.7), by

(1.8) «*(*,/)=    1   Ks{z - Zj(t))wjh2.
jheA.%

Theorem 1 below asserts that, subject to certain conditions, {z-{t)} and ühiz, t)
accurately approximate (zy(i)} and m(z, t).

The accuracy of the vortex method is controlled by the choice of the cutoff
function tp and the relative size of 5 and h. As in [1], we will say that \p belongs to the
class FeS~L'p provided three conditions are satisfied:

(l)uV(z) belongs to C2(R2);
(2) jipiz) dz = 1 and /zy\piz)dz = 0, where y is any multi-index with 1 <| y |<

p-i;
(3) L is a positive number, and, for any multi-index ß, the Fourier transform \p\Ç)

satisfies

sap\Df4iS)\<Cßil + \S\yL~W.
feR2

Condition (3) means that \p belongs to the symbol class SXq. It implies that \p is
smooth and rapidly decreasing away from z = 0; see Lemma 2.1. We say \p E
FeS-xp if ip e FeS~L'p for every L > 0. (The notation FeS means the Fourier
transform of a symbol class.) If \piz) is a function only of |z| , the moment
condition (2) is automatically satisfied for | y | odd, so that in this case we might as
well take/) to be an even integer,/» > 2. For example, we can define rp E FeS~x,p by
setting

(1.9) ^p{z) = cpexp{-\!;\p),

normalized so that \p has integral 1. If p = 2, this is the familiar Gaussian distribu-
tion.

We will measure the error in {zy(r)}, {w(z7, r)} by the discrete integral norm

\fM={ i i/yr*2}^.
SeA*0 >

where 1 < u < oo and the error in w(z, t) on any ball BiR0) by the corresponding
norm in LM(B(/\0)). In studying vortex methods with a cutoff such as the Gaussian,
i.e., \p E FeS'L-2, it is crucial that we use the L£ norms with ¡i > 2 and sufficiently
large in the arguments in Section 5. It is an underlying assumption of the analysis
that the flow being approximated is sufficiently smooth. It has long been known
that, with mild regularity assumptions on the initial vorticity, the Euler equations of
ideal flow in two dimensions have a classical solution for all time; for a recent
treatment see McGrath [ 13]. Moreover, if the initial vorticity is smooth, the solution
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32 J. THOMAS BEALE AND ANDREW MAJDA

is also, and bounds for derivatives of the velocity on a time interval 0 < t *£ T, T
arbitrary, can be obtained from bounds on the initial data (e.g., see Lemmas 3.1 and
3.2 of [3]). Our main result for two-dimensional flows is the following.

Theorem 1 (convergence in two dimensions). Assume that the velocity field
w(z, t) is sufficiently smooth for z E R2, 0 < t < T, and that the initial vorticity has
bounded support. Also assume

(i) The cutoff ip belongs to FeS~Lpfor some L, p with 2 < L < oo andp > 2.
(ii) We choose 8 = hq, where 0<q<lifL= oo andO<q<iL- l)/( p + L) if

L < oo.
Then, with 1 < ju. < oo, we have the following estimates for the quantities computed

by the vortex algorithm (1.6)—(1.8):
( 1 ) Convergence of the particle paths

(1.10) max \z ft)-z ft) \Lt^Chpq,
o«(«r

(2) Convergence of the discrete velocity

(1.11) max \üHt)-u(zi,t)\Lt^Ch>">,

(3) Convergence of the continuous velocity

(1.12) max \ühi-,t)-u{-,t)\mB(Ro))<Chpq.
0*r<7"

Here R0 > 0 is an arbitrary finite radius. The constant C depends on T,L,p,
q, fi,R0, the diameter o/suppw0, and bounds for a finite number of derivatives of the
velocity field.

Our analysis builds on the earlier convergence proof of Hald [7] in two dimen-
sions, although the techniques used in the consistency argument given here are quite
different from those in [7]. Hald's main result was essentially that, with p = 4 and
q = { in the notation above, the errors are of order h2 in L2 norms. His assumptions
on >p are rather different, however, and do not require as much smoothness. Besides
conditions (1) and (2) above, he assumes that \p has support in {| z |=s 1} and is C3
for | z | < 1. As indicated by his work and our statement above, when \p is not very
smooth, it seems to be necessary to take 8 considerably larger than h, thereby
reducing the accuracy. If, on the other hand, we use \p E FeS~°°'p, we can take 8
essentially of the order of h (i.e., q near 1) and conclude that the errors are Oihp'c).
Thus, with this class of cutoff functions, which are no more difficult to implement
than others which have been used, we obtain substantial improvement in accuracy.
With p = 4, as in Hald's case, we find essentially fourth order accuracy; with no
moment conditions at all ( p = 2 in the radially symmetric case) we have essentially
second order accuracy. This last case includes the Gaussian distribution, showing
that it is possible to obtain second order accuracy with a positive \p. The fact that u
can be taken arbitrarily large in Theorem 1 means that the convergence is nearly
uniform.

The smoothing of the velocity kernel has the effect of replacing point vortices by
finite cores of vorticity. This technique has been used for some time [5], [11] to
overcome instabilities that arise with point vortices. The numerical experiments of
Hald and Del Prête [8] supported the conclusion that the error is of order 8P = hpq
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VORTEX METHODS. II 33

in the case p = 2; it would be interesting to try test problems such as theirs with
higher order accuracy. Leonard [12] suggested the use of the generalized Gaussians
( 1.9) to obtain increased accuracy. An excellent survey of vortex methods, including
extensive references, may be found in [12]. Additional discussion of the use of
two-dimensional vortex methods was given in [2].

In discussing the consistency and convergence we use discrete velocity approxima-
tions as in (1.7), (1.8), determined by the exact positions of the particles in the actual
flow,

(1.13) uh{z,t)=    S   Ks{z-Zj{t))Ujh2,
y/,EA*0

(1.14) Uj{t)=    2   Ks{zj{t)-zk{t))Ukh2.
kh&i\%

The consistency argument is independent of the space dimension, N, and we
combine the two cases in the statement below. In three dimensions, the Biot-Savart
Law expresses the velocity w(z, t) in the form (1.1), where w = curl u is now a vector
and K is a 3 X 3-matrix-valued function; see (1.2), (1.3) of [1], With N = 3, the
definition of wA(z, /) corresponding to (1.13) above is (1.11) of [1]; the difference is
that Uj is replaced by w($'(zy)> 0 an¿ h2 by h3. The consistency statement is as
follows.

Consistency Lemma. Assume the hypothesis of Theorem 1 above if' N = 2 or the
hypothesis of Theorem 1 of [I] if N = 3. Then for any R0> 0 we have

(1.15) max | uh{z, t) - u{z, t)\< Chpq.
o^/ssr

For N = 3, this lemma completes the convergence proof of [1]; for N = 2, it is
used in Section 5 to prove Theorem 1 above. In the rest of this section we discuss the
estimate (1.15), which is derived in Sections 2-4. The relation between h and 8
expressed in the theorems comes about from balancing the errors in smoothing and
in discretizing, which are somewhat opposite in character. The error due to smooth-
ing is of the order of 8P, and is therefore worse for larger 8. But the error in (1.15)
from the discretization is improved by increasing 8. (The stability estimate also
requires that 8 is at least of the order of h.)

To describe these two errors further, we express uh as Ks * oih, where * is
convolution and

«*(*,/)=    2   8{z-Zj(t))4zj{t),t)h».
yAeA*o

Here 8 is the usual Dirac measure. (The double use of the letter 8 should not cause
confusion.) Then,

uh - u - Ks * uh - K * u = {Ks * to - K * a) + Ks * {uh - a).

Since Ks = K * \ps, the first term is K * i\ps * u> — to). Applying the Fourier trans-
form, we have

(1.16) Us) = U%)
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34 J. THOMAS BEALE AND ANDREW MAJDA

and|7Í(0|<|¿T'>sothat

\(K8*co-K*ci)'($)\<\S\-x\ip(8Ç)-l\\C>($)\.
Now for ̂ p E S'1'", xPiÇ) = 0(| f \p) at f = 0, and in fact | ̂ (50 - 1 |< C(fi | £ I)'';
see the proof of Lemma 4.1. If « is sufficiently smooth, then |£>(£)|<
CR(1 + | f \)'R, so that by taking R large enough we have

| {Ks * to - K* «ft?) |« C8P{1 + Ifl)"*"1.
It follows that Ks * œ — K * to is uniformly of order 8p.

The second term, Ks * (co* — w) or K * [\ps * (w/l — w)], is more subtle and easiest
to discuss at time zero. Except for a negligible part, (see (4.2)-(4.6)), this term can be
estimated (Lemma 2.2) by a Sobolev norm of \ps * (uh — u), i.e., the square root of

/(l + |f|)aj,|A(«|2|Û*(f)-ô(«|2«

for suitable M, or, using (1.16),

(1.17) f{i + \n)2M{i + 8\^\y2L\fh{n\2d^

where fh = w* — to. To estimate this integral we reexpress /A using the Poisson
summation formula (e.g., see [14, pp. 251-252]). Applying the formula to w, we
know that

(1.18) 2 «tt-2tf//A)
yeA

has a Fourier series expansion whose coefficients are w(yVî). But then the inverse
transform of (1.18) is just <o\ and/A = (wÄ) -w is the sum of (1.18) with they = 0
term taken out. Using this representation we estimate the integral ( 1.17) in Proposi-
tion 3.2 and find that it is bounded by Cß~2Lh2(L~M)~e. Provided 8 is of larger order
than h, and L is sufficiently large, this error improves as h -> 0.

For later time we verify that this second term has an error of the same character as
for time zero. Again the important point is to estimate \ps * (w* — w) in a bounded
region. Using $' to change variables, we write this as

fyiVia)-*'iá))f¿ia)dá,
where now

/*'(«) = 2«(«-yA)«(*»(7A),/)A*.
j

Next, we express \ps as the inverse transform of ip. The part of the integral away from
the diagonal a = á is negligible (Lemma 4.3), and for the rest we can change the f
variable and rewrite the integral as

ffe*'-**pB(a,S,á)f¿(á)áadS,
with some symbol ps. We regard this integral as a certain pseudodifferential operator
applied to /A'. By expressing the operator in a more standard form, we reduce the
estimation of this term to the previous case (1.17). Only the most elementary facts
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VORTEX METHODS. II 35

about pseudodifferential operators are needed, but we have to be careful to take into
account the dependence on the parameter 8 and the interaction with /A' as 8, h -» 0
(see Lemmas 2.4 and 4.4).

The necessary properties of pseudodifferential operators are developed in Section
2; the treatment is largely self-contained. The estimation of (1.17) is carried out in
Section 3. As noted above, this essentially proves the consistency at time zero. In
Section 4, we perform the reduction to time zero. The proofs of certain lemmas
stated in Section 4 are deferred to an Appendix, in order to avoid interrupting the
argument. Finally, in Section 5 we present the convergence proof in two dimensions.

2. Some Facts About Integral and Pseudodifferential Operators. First we introduce
the Sobolev spaces HS(RN), s any real number, with corresponding norm 11 - ||s,
defined by

(2.1) ngii2=/ (i + mTisCOi2^
where g(f ) is the Fourier transform of g. When í is a positive integer, we also use the
fact that the norm defined in (2.1) is equivalent to the norm defined by the
expression

(2.2) 2     fjDßg\2dx.
0*1/31*. J*H

For í a positive integer, we denote the Hs norm over an open set ß by || • || s a, where
the integration corresponding to (2.2) is over the set fi.

The first simple fact which we need below is the following one:

Lemma 2.1. Assume \p is a tempered distribution with >//(£) E SXM0; then \piz) is Cx
in RN — {0}, and, for any fixed e0 > 0 and indices y, ß with ß > 0,

sup \z\ß\Dzmz)\^Cßty

with a finite constant Cß  .

The proof of Lemma 2.1 follows immediately from the identity

ON2)"1 i zjweizi =eizS
j= 1   a>j

and repeated integration by parts in the Fourier integral formula

tiz)=fe"-tfiS)dS.
We also need to study convolution operators, which are given by

%f = fK(x-y)f(y)dy,
where, as we see from (1.2) and the Biot-Savart formula in Part I,

(2.3) K is C°° in R" ~ {0} and homogeneous of degree 1 - N.

We need the following simple variant of Lemma 3.8 in Part I (we omit the proof).
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36 J. THOMAS BEALE AND ANDREW MAJDA

Lemma 2.2. Assume that fix) satisfies supp/(x) Ç {x\\x\< R'}, s is a nonnega-
tive integer, and p(x) belongs to CxiRN). Then there is a constant Cp so that

llp9C/ll,+1<Cp||/||f>J,..
In Section 4, we need some elementary facts regarding pseudodifferential opera-

tors and related kernels. We need to consider multiple symbols psia, f, à) with
(a, t, ä)ERN XRN X RN and depending on a parameter 8, 0 < 8 < 1.

Definition. The family of multiple symbols psia, f, a) is uniformly bounded in the
symbol class SXM0, provided for any multi-index iß, y, ß) there is a constant Cß j
independent of 8 so that

(2.4) \DSD¡l>ÍP,\<qt,7jil + \t\)"-M.
Such a family of symbols psia, f, a) is properly supported provided that psia, f, ä)
vanishes for | a — á \ > e0 for some fixed e0 > 0. Associated with a properly sup-
ported multiple symbol is a related operator Ps defined by

(2.5) V = //v    /(a-a>W«.£. *)/(«) datf.

(See Chapter 2 of [15] or pages 102-109 of [10] for a complete discussion.) Given a
symbol qia, f ) G Sx~$, with no á dependence, a classical pseudodifferential operator
is defined by

(2-6) q{a,Dx)f = je-M«A)f{t)dl

The main fact regarding the operators in (2.5) defined by multiple symbols which we
use in Section 4 is that such operators can be expanded as a finite sum of classical
pseudodifferential operators, as defined in (2.6), within a remainder operator of
negative order. More precisely, the following proposition is proved in pages 102-107
of [10] or Section 2 of [15]. (One only needs to remark that these proofs given for a
single operator remain valid for families of operators defined by uniformly bounded
symbols.)

Lemma 2.3. Consider a family of properly supported multiple symbols psia, f, á),
uniformly bounded in S™0, M any number, with corresponding operators Ps defined in
(2.5). Let R be an arbitrary integer. Then there are symbols plia, f ) uniformly bounded
in S^0~y, a remainder operator %s, and an integer KiR) so that

(2-7) P8f=      2     Pïi*,Dx)f+9Laf,
-K<y<M

where 6AS has order -R, i.e.,

(2-8) \\%f\\o<CR\\f\\_R
for a fixed constant CR independent of 8. In fact, p$~yia,Ç) can be computed by the
formula

(2.9) />r~Y(«>?)=   2    ~D¡DÍPs{a,Lá)
l?l=7

The last general fact regarding distributions related to pseudodifferential opera-
tors which we need in Section 4 is the following statement.
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VORTEX METHODS. II 37

Lemma 2.4. Consider a function Qsia, f ) satisfying the condition

(2.10) 2    f\D!Qaia,n\da<gt(S)

for some M > N with gs(f) G L2(RAÍ). Define a function w{a) by the formula

(2.11) *(«) = ( e"-fß4(a,0<«-.

Then wia)EL\RN) and

(2.12) Hw||0<C||g8(Ollo.
where C is independent of 8.

We prove Lemma 2.4 in the following standard fashion. We define Qsir¡, O by

Qsiv,!;)=fe-h>aQsi<x,S)da.

The condition (2.10) implies that for any multi-index ß with | ß |< M

|/||Öa0,,Ol =

and, therefore,

fe^aDßQs{aA)da gsin

|os(T,,ni<C(l + |T,|)-Mgs(0.
If w is defined as in (2.11), w(tj) satisfies

i Hv) i</ie4(Tj - ?,ok< c/o + iu - íirMigd(n i #.
Since M > N and the convolution of an V and L2 function is in L2, we have

iiwii0 = ii^ii0<cii(i + i?i)-wiiL,iigä(niio<ciigäii0.

3. The Error in Approximation at Time Zero. In this section, our main proposition
estimates the difference in the approximation of the vorticity by discrete and
continuous convolutions with \ps at time t — 0 where \p E FeSx$. More precisely, we
consider the function

(3.1) FM(z)=   2   Uz-Zj)o>ijh)hN-jiPsiz-z~)<»iZ)dz
jheAh0

for a given smooth function viz) with compact support and measure Fh s(z) in
positively indexed Sobolev spaces. In the proof in Section 4, we reduce the main
error in the consistency at later times to a finite sum of error terms like the one on
the right-hand side of (3.5) below which estimates || FhSiz)\\ M.

First, we introduce the distribution

(3.2) /„(«)=    2   8{a-jh)oo{jh)hN-U{a),
jh<EAh
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38 J. THOMAS BEALE AND ANDREW MAJDA

where ô(a — jh) is the Dirac measure centered at jh. By Poisson's summation
formula, as discussed in the Introduction, the Fourier transform of fhia) is given by

(3-3) M) =

Since \piÇ) belongs to Sx~¿¡, we have

(3.4) iî(sn
Thus, since FhSiz) is the convolution of ips with/A, we obtain, using the definition
(2.1),

(3.5) WF^iz^^C f{l + m2)M{l + \8^\)-2L\fh{n\2d^

As remarked above, we prove in Section 4 that the main error in consistency at later
time can be bounded by the right-hand side of (3.5) with M = [N/2]. The two facts
which we prove in this section are the following ones:

Proposition 3.1. For a given M > 0, assume that L satisfies L> M + N/2 and
also that 8 satisfies 8 > C0 h, C0 > 0. Then for any e > 0, fixed but arbitrarily small,

(3.6) /(l + | f \2)M{1 + | 8f \Y2L\fhiS) |2 dS « Ce8-2Lh*L-M^.

Here the constant C depends on e and a fixed finite number of derivatives of w. This
number of derivatives also depends on e.

Proposition 3.2. Assume that M satisfies M < -N/2; then

/(i + m)2Mi/*(oi2#<c„A-2*-",
where CM involves finitely many derivatives of w.

Remark 1. In Section 4, we use Proposition 3.1 with M = [N/2] and Proposition
3.2 with M « 0.

Remark 2. Proposition 3.1 indicates the necessity of choosing 8 = hq, q < 1, in the
basic vortex method. After examination of the proof below, it will be evident that

cA-2w</(i + ifiT(i + i«nr2Li/*a)i2^

for appropriate functions «(a) when 8 = C0h, so there is a substantial error in
approximation in nonnegative Sobolev norms unless 8 = hq, q < 1.

The proof of Proposition 3.2 mimics the proof of Proposition 3.1 but is simpler, so
we concentrate on the proof of Proposition 3.1 :

To begin the argument, for simplicity, we assume that w(z) is rapidly decreasing.
Thus, for any positive integer q, we have

(3-7) |û(ni<C,(l + |f|)-'.

2 4ï-MjLy   h
1/1 >o

C,(l + |«f|)    •
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VORTEX methods. II

The proofs below require only a finite number of constants Cq and, therefore, only
fixed finite number of derivatives of w. We introduce the sets Rk, k E A, where

39

a

R, fi- 2-nk, ■rr
<-r,l<,i<N

By utilizing (3.3) and the triangle inequality, we estimate the expression on the
right-hand side of (3.5) by twice the sum of two different groups of terms,

2 I o + m)2M(i + iôfi)
yteA    Rk

-2L

(3.8)    L

2 .(r-¥)
\i-k\>0     y '

yeA

+ 2 / ii|2"(i + IW2Lû(r-^r)
1*1 >0

«

«

^{l}+{2}.

Our first objective is to deduce that the terms in ( 1} satisfy

{l}<CRhR   forany7x->0.

The following elementary lower bound is crucial for the argument:

,     . There is a fixed constant C0 > 0 so that if f G Rk and \j — k
1     ' >0,\^-2wj/h\>CQh-x\j-k\.
From (3.7) and (3.9), we deduce that, for f G Rk,

(3.10)
2 •(;-¥)

\i-k\>0
<cg   2

\i-k\>0
s       h

cqhq 2 \j\-"^cqhq
r|>0

provided that g satisfies q> N; this requirement on <? guarantees that ~2y\>o \j
oo. From (3.8) and (3.10), we see that the term in {1} is bounded by

h2*Cqj(l + \S\)2M{l + \H\y2Ldl.

Since M > 0, the above expression is estimated by

■«<

(3.11)

A^cJl + Z"     |f|2"(l + |8f|)"2Lrff)

<A2»cJi + d-2t-*y (\$\+i)2M~2LdA,

and the last integral is convergent provided L satisfies L> M + N/2. Since we have
8 > C0h, the right-hand side of the last inequality in (3.11) is estimated by

C^hl'q-L)-N _ c^hlR     for any ^ > 0

by choosing q large enough.
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Next we estimate the principal error term (2} in (3.8). Since 1 + | Sf \>\ Sf | and
|f |> n/h, this error term is dominated by

(3.12) 8-2L 2  / If
|A|#0    Rk
keA

2(M-L) ¿>(f 2mk dl

For each &, we split the integral over Rk into integrals over two disjoint sets,

R\=   feß

f*2*=   f

f
2ttA:

27TÂ:>A"

where 0, 0 < 6 < 1, is arbitrarily small but fixed. Because w(f ) is rapidly decreasing,
the estimate in (3.7) applies, and we have

|2 i <i_i. i-2<7

(3.13) ûU 27T/t <C ?
2ttA:

CaA2'9    forf G a'.

Recall that L satisfies L> M + N/2; therefore

S-2L    2      f   m^M-L)J,_^\
l*l#oV \ h   I

(3.14) iEA

¿f

Cfi-2Ln2q6   f l¡-l2(M-L)d¡-^C8-2Ln2qe + 2(L-M)-N

Since M, L are both fixed, 8> C0h, and <? can be chosen arbitrarily large, the last
term in (3.14) above is OihR) for any R>0. What remains in the proof of
Proposition 3.1 is to estimate

(3.15)

2  8~2L f |f |2(W_Z-)
|A|#0 '\S-2wk/H<ih-*

£ f 277Â:
«

2 5-2Lcf |f|2(M-L)¿f,

and this term yields the principal error on the right-hand side of (3.6). By rescaling
(3.15), we have

2 «-"/ f ]2{M-L) dS
|A|#0 |?-2t7*/A|<A-

(3.16) « fi-2£A2(L-Ai)-A/     2      f |f|2(A/-L)i/f
1*1*0 ''If-2^1 «A1-9

< C8~2Lh2{L~M)~Ne   2   \k\2(M~L) <C8~2Lh2(L~M)~m
l*l*o

In deducing the last inequality above, we have used the condition L > M + N/2
which, as in (3.10) above, implies the convergence of the infinite series. By setting
e = N6, we observe that the estimate in (3.16) completes the proof of Proposition
3.1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VORTEX METHODS. II 41

The proof of Proposition 3.2 is similar but simpler. We use the same splitting of
terms into (1} and (2} in this case, where L = 0 but M satisfies M < -N/2. For
term (1), we repeat the argument in (3.9)—(3.11), arriving at an estimate of the form

{l}<C,A2'/(l + |f|)2Wrff,

where q is arbitrary. However, since M < -N/2, the above integral is convergent, so
that

{1} <CRhR   foranyA>0.

For term {2}, this time we are very crude in our estimates and get directly,

{2}<c( (l + lfQ^f^OT2"-"
J\S\>C0h-]

as required in Proposition 3.2. This completes the proof.

4. Reduction to Time Zero and the Proof of Consistency. Here we give the proof of
the main consistency estimate. Besides the facts in Sections 2 and 3, we use several
other technical lemmas which are proved in the Appendix. Before beginning the
proof, we pick a function pxiz) E C™{RN) with pxiz) = 1 for | z |< 1 and pxiz) = 0
for | z |> 2. Below, pRiz) is the smooth cutoff function pRiz) = p^z/R).

We begin the proof by applying the Sobolev lemma,

(4.1)     max | uh{z, t) - u{z, t)\<C max \\pR{z)(uh{z, t) - u{z, r))|L
|z|<R 0«r«r °

with i0 = [N/2] + 1, i.e., s0 — 2 for N = 2,3. Since the initial vorticity has compact
support, we assume that

suppw(z,r) Ç {z||z|<Ä0},       0<t<T,

for some fixed R0 and that R above satisfies R > 2R0. We write Uj{t) = uizjit), t)
and

pR{z){uh{z,t)-u{z,t))

(4.2)
= \pR{z) ¡K{z - z)p5R{z)[    2 a M* - Zjhj«" - «(*. 0) dz\

+ L(z) ¡Kit - z)(l - p5R(z))(    2 h *,i* - *>y(0*W)}

= {AS}+{BS).

We claim that the second term {Bs} defined in (4.2) is a negligible error term, i.e.,

(4.3) II Bs || Jo < Cr8r   for any positive integer r > 0.

On the support of p2/?(z)(l — p5Ri¿)), necessarily \z — z\> R; because K is smooth
in R^ ~ {0} and homogeneous of degree 1 — N, we have

(4.4) 2   \DßK{z - z)\<C   for|z-z|3*Ä.
1**0
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- J5-JV.IAlso, since \Zj\<R and^(f -z¡)- 8'Nipüz - z;)/ô), from Lemma2.1,

(4.5)

lyAEA"0

< Csup I w I I 1 — P5fi(z) I   sup
yA£A*0

8-Nip
z — z¡

< C8N max
y*eA*o

Z    —    Z;
1 -Ps«(f)

<Cfi-w+,(l + |z-|)"s

for any positive integer s > 0. Thus, by (4.4) and (4.5),

(4.6)

2   suPp2JJ(z) _/>*(*-f)(i-P5R(z))( 2 fc(f-*>,**)

*Z8-N+'CJ(\ + |z-|)"sJz<CÔ-A'+s

provided that s satisfies s > N but otherwise s is arbitrarily large. The estimate in
(4.6) easily implies the estimate claimed in (4.3) by setting r = -N + s.

From the above argument, we only need to concentrate on the principal error
term As defined in (4.2). By applying Lemma 2.2, we observe that

(4.7) l^ll,0<C Ps«(*)     2   <^z-Zj)ujhN-o(z,t)\
Vy*eA*0 ' ÎQ-1

The following straightforward estimate involves the moment condition on \p, as
mentioned in the Introduction, and is proved in the Appendix.

Lemma 4.1. If \p belongs to FeSX£,p, L > 0, and w is sufficiently smooth, then

max
o«r«r

jhiz ~ z)u{z, t) dz - u{z, t) <C8P.

Because of Lemma 4.1, the right-hand side of (4.7) is estimated by

(4.8)

with

C8P + C\\G. '»o-l'

(4.9) Gs{z,t) = p5R{z)\    2   fc(* - *>/0**-/fc(*-*)«(*. 0<*I.

Since O'(a) is a one-parameter family of smooth diffeomorphisms, there is a fixed
constant C so that

(4.10) IIG,(*. OIU-i < C||<7,(#'(«), OlU-i,      0<r<r.
The continuous contribution to Gs( $'(«), 0 is given by

(4.11) p5*( *'(«)) fun«) - ¿h¿, o dz.
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If we change variables inside the integral in (4.11) using z = $'(5) and det V0$' = 1,
the integral is equal to

(4.12) /*«(*'(«) - *'(«))«(*'(«). 0 da.

Similarly, the pullback under the map $' of the Dirac measure centered at Zj is the
Dirac measure ô(â — jh). Therefore, following (3.2), we introduce the measure//(a)
defined by

(4.13) /„'(«)=    2   8{a-jh)u{V{jh),t)hN-u{V{a),t).
jheAk0

From (4.11)—(4.13), we deduce the important identity

(4.14) Gs(n«),<) = PsR(n«))(Mna)-nà))f,!{à)dà.JRN

To estimate the term on the right-hand side of (4.14), we use the following
elementary lemma discussed in the Appendix and due to Kuranishi.

Lemma 4.2. There is an e0 > 0 and a smoothly varying invertible N X N matrix
function, e\a, à) defined for \ a — à |< 6e0 and 0 < t < T so that, for any vector
f GR",

(1) (<D'(a) - $'(«)) • f = (o - a) • He'ia, «))'f);
(2) C"'|f |*£|e'(a, «)f |<C|f | for 0 < t < T, \a -ä|<4e0, and for a fixed

positive constant C.

We introduce the cutoff function pegia — á) and write

/*,(*'(<*)-$'(ä))//(«)d&

= yPeo{a - á )*,(*'(<*) - $'(ä))/A'(ä) áá]

+ {/(l - p£o(« - â )*,(*'( a) - $>'(«))/„'(«)</«)

= {£*} + {F,}.
The contribution to || G($'(a), t)\\s _, from {Fs) is negligible and satisfies an error
estimate like Bs in (4.3). To emphasize the main points of our argument, we state this
fact in the lemma below and postpone the proof until the Appendix.

Lemma 4.3. For any positive integer r and 0 < t < T

HPsji(»'(«))^II..-i<C^'.
Thus, by Lemma 4.3,

IIG,(»'<«),»)lU-,<Cttflsl,£,||f0_1 + C^'

(4.15)

(4.16)       <C       2
f f ei'<t>'(a)-<b'(S))-

Xp5Ä(<D'(a))p2 t(a-a)M(8!;)f¿(a)dad!; + Cr8r.
o
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In the last line in (4.16) above, we have used the Fourier integral representation,

U*'(«) - *'(*)) =/e,'(*'(a)-*'(S)W¿(fin#.

To study the terms on the right-hand side of (4.16) we will successively apply
Lemma 4.2 and then Lemma 2.3. First, we introduce the change of variables
f = e'ia, a)f for the operators defined on the right-hand side of (4.16). Then they th
integral above becomes P8fl, defined as

//*««-«• W*'(«)W« - a)(e'ia,á)S)J
Xdet e'(a,ä)$ (8e'{a, á)f )f¿(á)dá dt

where Ps is the properly supported operator associated with the multiple symbol

p8{a, la) = p2 {a - á)p5R($'(a))
(4.18)

X {e'(a,ä)£)Jip (ôe'(a, â)f ) det e'{a, à).

To apply Lemmas 2.3 and 2.4, we need the estimates in Lemma 4.4 below which are
proved by direct computations in the Appendix.

Lemma 4.4. Assume that \p E SXq\ then there are fixed constants Cßy so that, with
ps from (4.18),

\Dpß>DtPs{a,lä)\<Cß,y{l + |6f |)-L(1 + |f |)W-M.
Now, by Lemma 4.4, ps is a uniformly bounded family of multiple symbols in S\]0

so, by Lemma 2.3,

(4.19) Psn=      2     Pli*. Dx)f¿ + &$fk,
-*<7<|/|

where given any r > 0, Kir) is chosen so that

(4.20) mtf¿\\0<C\\f¿\\_r.
We next apply Proposition 3.2 to/Ä'(a) as defined in (4.13), but with w(a) of Section
3 replaced by w($'(«)> Oî tnus

(4.21) max ||//||  r<Ch'-N/2
o«r«r

for any fixed arbitrarily large r. From (4.7), (4.8), and (4.15)—(4.21), it remains to
analyze the principal error contribution to II .Eg II $ _] arising from the finite sum of
terms with the form

(4.22) UpI(a,Dx)f¿\\0,       -Kir)<y<\j\<s0-\,
where the symbol p^ia, f ) is computed from psia, f, à) in (4.18) by the formula in
(2.9). We recall that/^(a, Dx)f¿ is defined by the formula

(4.23) p&a, DM = feia"pl{a, f )/A'(f ) ¿f •
Next, we will apply Lemma 2.4 with Qsia, f ) = /$(a, f )/A'(f ), and this will reduce
the principal error at time I to the quantity estimated in Proposition 3.2 at time
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/ = 0. From Lemma 4.4 and the fact that p5Ä($'(a)) has compact support, it follows
immediately that

2      f\DßQs{a,n\da
|/J|<í0-i

<c,ii + \9s\yLii + \s\y>-l\f¿i!)\=8ais).
Thus, we apply Lemma 2.4 to estimate

(4.24) maXT\\ pï{a,Dx)fh%*cf{l + |f \f'"-l\\ + |5f I)'2'' |/A'(f ) |2¿f.

By applying Proposition 3.1 of Section 3 with M = s0 — 1 = 1 for N = 2, 3, we find
that

(4.25) max || p¡{a, Dx)f¿K < C8'LhL-1^.
o*«r

By adding together the error terms in (4.25) contributing to Es to those obtained
earlier in this argument (especially see Lemma 4.1), we deduce from (4.1), (4.3), (4.8),
and (4.16) that

(4.26) max I u{z, t) - uh{z, t) |< C8P + C8-LhL~x-c + Cr8r,
o««r
\z\<R

where r can be arbitrarily large. We choose 8 so that the first two terms in (4.26)
have equal strength; this requires

8P = 8-LhL-\-t     or     8 = h(L-l-e)/(p+L)

By choosing r to be larger than p, we have finished the required error bound in the
main consistency lemma.

5. Proof of Convergence in Two Dimensions. The proof of Theorem 1 is based on
the consistency lemma whose proof was completed in Section 4, and on the
following stability estimate for the discrete velocity approximation:

Stability Lemma. Assume the hypothesis of Theorem 1. Provided that

(5.1) max  \Zj(t)-Zj{t)\<8
yA<EA*0

for some T^ < T, we have for 0 < t =£ T^ the estimates

(5.2) | ß*(/) - uhj{t) \u *zC\Zj{t) - zj{t) \LV

(5.3) | «*(•, 0 - u"(-,t) \LWo)) < C\Zj{t) - zyit) \I4.

The constant C in (5.2) and (5.3) has the same dependence as in Theorem 1; it is
independent of r„. We will first present the proof of Theorem 1, and then prove the
Stability Lemma. To derive (1.10) we set e} = zj — z} and obtain, as in [1, Section 2]
or in [7], a differential inequality for | e. |Lj;. From the ordinary differential equations
(1.6), (1.3), we have

ijit) = fi*(/) - u(Zj, t) =[fl*(0 - «»(i)]  +[u"iZj, t) - U(Zj, t)].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



46 J. THOMAS BEALE AND ANDREW MAJDA

The consistency estimate (1.15) asserts that the second term on the right is Oi8p) =
Oihpq), uniformly iny, and thus also in LI on the bounded set AA0. Assuming (5.1)
holds, we can apply the stability estimate (5.2) to the first term and obtain

(5.4) l*/(OlLf<Q(lf/(0|£t + A")
for 0 «s t «£ T„. Since e (0) = 0, it follows from this differential inequality that

\ej(t)\LS<y(t),       0<t<T„

where y is the solution of y' = C0iy + hpq), yiO) = 0. (E.g., see [9, Section 1.6].)
Therefore,

(5.5) \ej(t)\Lt<Cxhpi,

as long as (5.1) holds. Here C, depends on Tbut not on Tm.
To complete the proof of (1.10), we need to remove the restriction (5.1). To do

this, we estimate | ey | uniformly in terms of the L*1 norm. We find

max | e}fh2 < (| ej|¿¡;)M   or   max\ej\^h~2/v'\eJ\L^

so that for t < F,, by (5.5),

max|ey|< C^hpq~2^.

Now since the estimates (1.10)—( 1.12) are over a fixed bounded set, there is no loss
of generality in making u as large as we wish. We will assume u is large enough so
that pq — 2/u — q + 8 with 0 > 0. (Since p > 2, this is always possible. For p > 4,
we could take ft = 2 provided q > 1/3.) Then from above,

max|ey|<C,A'A* = C,A'fi«£fi/2,

for h < (2C|)'/9, as long as (5.1) holds. But this means that max | e; | can never reach
Ô, and it follows that (5.5) holds with T^ = T

The first estimate (1.10) of Theorem 1 is now verified. The remaining two
estimates are immediate consequences: for (1.11) we write

üj(t) - Uj{t) =[ü*{t) - «*(/)] +[M*(z,(0, t) - u{Zj{t), /)]

and apply the stability estimate (5.2) to the first term and the consistency estimate
(1.15) to the second. Similarly

û"(z, t) - u{z, t) = [ù"{z, t) - u"{z,,)] + [uh{z, t) - u{z, t)].

Using the continuous stability estimate (5.3) for the first term and the consistency
for the second, we obtain (1.12). The completes the proof of convergence.

In proving the Stability Lemma, we will need a few estimates for the kernel Ks.
Since K * f'= (32,-8])A-1/, the convolution with V-K is a second derivative of A"',
and we have, according to the Calderon-Zygmund inequality, | vK * f\L* < C\f\Ln
for 1 < u < oo. (E.g., see [4, pp. 224, 245-250].) Therefore we can estimate
V(Ks*f)= V(**(irW))by

|v(Ji:,»/)|^<C|^«/|t,*:C'|^|i:.|/|„
or

(5.6) \(vKs)*f\L><C"\f\L>,
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since | ips \L\ is bounded independent of 8. (For u = 2, (5.6) can be verified in a more
elementary way by expressing the convolutions in the transform; see Lemma 3.7 of
[1] or Lemma 8 of [7].)

Pointwise estimates for Ks can be found directly, as in Lemma 5.1 of [1]. Making
only dimensional changes in the argument given there, we have

(5.7) \DßKs{z)\^C8]-M, allz,

(5.8) \DßKi(z)\<C\z\1-^,       \z\>8.
These pointwise bounds lead to integral estimates. If we apply (5.7) for | z | *£ 8 and
(5.8) for | z | > 8, with ß = 0, we obtain

(5.9) (      \Ks{z)\dz<CR.

We will also need estimates for discrete approximations to the V norm of DßKs on a
bounded set. With time t fixed and Zj = $'ijh), let

(5.10) MjP=  max \DßKs{Zj-zk+y)\.
Lv|«c0s

Then for | z}. | < R we have

(5.11) 2   M,<<>A2<,
l^l*«

C | log Ô | ,    1=1,
C8X, 1 = 2.

Here C depends only on C0, R, and bounds for the flow. The order of Ô in (5.11) is
the same in two or three space dimensions. For the derivation of (5.11), based on
(5.7) and (5.8), see [1, Lemma 3.2] or [7, Lemma 5].

To verify (5.2), we estimate the difference üj - u* in terms of ek = zk - zk under
the assumption (5.1). We can write «j* - wj1 = uyn + vf\ where

(5.12) tf = 2 [K8(zj - zk) - Ks{z] - zk)]ukh2,
k

(5.13) tf = 2 [Ks{¿j - h) - K8(Zj - 4)]«,A2.
k

We begin by estimating (5.12). Applying the Mean Value Theorem along the line
from zk to zk, we have

(5.14) tf = 2 VK8(Zj -zk+ yjk) ■ ̂ «,A2.
k

(We ignore the fact thatj^ might depend on the component.) According to (5.1),

(5.15) \yJk\<»
for each y, k.

It will be convenient to regard uj" and ekuk as step functions on a partition
naturally associated with {zy). Withy = (y,, y2) a pair of integers, let Q¡ be the
square of side h centered atyTt. Then {Qy j E A) partitions the plane, and at later
time t, the fluid particles beginning in Qj have evolved to a cell B] — $'(0,)
containing z,-. Since the flow is smooth and area-preserving, each cell has area h2 and
diameter uniformly of order h, and {Byj E A) again partitions the plane.
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Now let S = U {By |y'A |*£ /?0}, where R0 is the radius of support of the initial
vorticity. We define functions u(1) and / on S by setting t)(1)(z) = tf for z G By
f{z') = ekuk for z' E Bk. Also let

%(z, z') = DKs{Zj - zk+yjk),       z E Bp z'EBk.

Then (5.14) is equivalent to

(5.16) v0){z)= ¡%{z,z')f{z')dz',       zES.

Moreover, since the fi-'s have area A2,

lu    k"(S)    \vj   Ilk>       |yk"(S)    leAw*kS"

Thus estimating (5.16) is equivalent to estimating (5.14).
It is natural to rewrite % as 5C,(z, z') + DC2(z, z'), with

%]{z,z')=vKs{z-z'),

%2{z, z') = vK8{Zj -zk+ yjk) - vKs{z - z').

Then the 5C,-term in (5.16) is just ivKs * /)(z), and we have from (5.6), | %xf\Lr <
C\f\L» or, since uk is uniformly bounded, |5íi/|¿/'^ C|et|^. Using the Mean
Value Theorem again, along with (5.15), we can estimate

(5.17) \%2{z,z')\<M}f8,       zEBj,z'EBk,
with M as in (5.10). It is well known that

l^/lz/rs) K II^2II l/U"(S)'
where || % \\ is the smallest number such that

(5.18) (\%{z,y')\dy'<\\%\\, ( | %{y, z') \ ay « ||3C||,

for all z, z' G 5. (For a proof, see, e.g., [6, Section 0.C].) Using (5.17), we see that the
integrals of (5.18) are estimated by the sums in (5.11) with 1=2. Thus

|9C2/|t.<C«-*-I|/|i,<C'|eit|t|.
This finishes the estimation of vjX).

We may apply the Mean Value Theorem to write (5.13) as

„0> = 2eJ-VK8{zj-zk-ryjk)<okh2
k

with yjk again satisfying (5.15). Since eJ factors out of the sum, we will know that
I °y2) Ilk ** CI ek ¡Lt> provided we check that

2 VKs{Zj- zk+ yJk)ukh: <C

uniformly in j. With j fixed, let giz') = uk and %iz') = VKsiZj - zk + yjk) for
z' E Bk. Then the sum above is the same as

l%{z')g(z')dz'.
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Now

| vK8(zj -zk+ yJk) - vK8{zj - z') |< M}?8

for z' G Bk. Thus if we replace %{zr) by vKsiZj — z') in the integral, we commit an
error which, according to (5.11), is bounded by C8 ■ 8~x ■ max | «,-1< C. Further-
more, in the same way we can replace giz') by w(z') with an error bounded by
Ch | log 8 | max | Du | < C. The integral is now replaced by

/ vKs{Zj - z')u{z') dz' =JK8(zj - z')vo(z') dz'.

We estimate this by

Va\f\K8(zj - z') | dz',max

which, in view of (5.9), is bounded by a constant. This completes the proof of (5.2).
The inequality (5.3) can be established by an argument very similar to the estimation
of if above.

Appendix: Proofs of the Lemmas. Here we give the proof of Lemmas 4.1-4.4,
which we used in Section 4.

Proof of Lemma 4.1. By Plancherel's Theorem, we have

max
,    o«i«r

(A-l)

2

j0-l
jip8{z - z)co(z, t) dz - a{z, t)

< max   f(l + \$\2)So~l\l-U8!;)\2\W,t)\2dt.
0«r«r J

Since \p belongs to St~fi"p, it follows that

(A-2a) $iO)=fiHz)dz=\,

(A-2b) Df>p{0) = Cßfzßxp{z)dz = 0    Íbrl<|j8|<|/>|-1,

(A-2c) 2   |Z)°^(f)|<C/)(l+|f|)-z'^'.
\a\=p

From (A-2) and Taylor's theorem with remainder,

\i-UK)\=\Ho)-UK)\
(A-3)

<C\8$?   sup
o<e«i 2   D?î{68$)'i

-p
CI fifi".

Using (A-3), we estimate the right-hand side of (A-l) by

(A-4) 82'C max   f(l + \ f |2)*>-1+* I ¿(f, /) I2 dÇ < C82p.

We have used the fact that the vorticity is sufficiently smooth for 0 < t < T in the
last inequality. This finishes the proof of Lemma 4.1.
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Proof of Lemma 4.2. We include the proof for completeness; it is given in a more
general setting on pp. 102-109 of [10]. By Taylor's Theorem with remainder,

(A-5) (*'(«)" *'(*)),= 2 D¡j(a,a)(aj-aj),
7=1

where the N X N matrix (/)/,) satisfies D¡jia, a) |-=„ = vjb'ia). Since
det(va$'(a)) = 1, it follows by continuity that there is an e0 > 0 so that

(A-6) det(Z)/y.(a, a)) >\    for | a - à |< 6e0, 0 *£ t < T.

Call e'ia, ä) the transpose matrix of (¿>/,(a, â)). Then, from (A-6), e'ia, ä) is
uniformly in vertible for 0 < t =s 7, |o — â|^4e0, and satisfies C~'|f|<
| e'ia, á)f |< C|f | as required in (2) of Lemma 4.2. Also, from (A-5) and the
definition of e'ia, á), for any f G R",

($'(«) - *'(*)) • f = («,«) • {'D'{a, «)f) = («,«) ■ (e'(a,á)f)
as required in (1) of Lemma 4.2.

Proof of Lemma 4.3. We recall that the term Fs is given by

F8 =/(l - pEo(a - â))*a(*'(a) - *'(ä))A'(a) rfä,

where /),'(«) is defined in (4.13) above. In proving Lemma 4.3, our objective is to
estimate

(A-7) max II *«(*'(a))Fa II ,„_,.
o«r<r

First, we concentrate on the contribution to Fs from the continuous portion of fh\a),
more precisely,

(A-8) Fx = j{l - pCo{a,á))>ps(<¡><{<*) - *'{*))"'{*) dà

with w'(«) = "($'(«)> 0- Because p5R($'(a)) has compact support in \a\< R' for
0 < t < 7", we estimate

(A-9)
maxJlpSÄ(*'(a))/Vlli0-,

C     2        sup
\ß\*-sa-\   l«l*2«'

/(,-Pv2)8-«-»*««(*M^*M)„.(a)¿d

with ^(^(z) = iDß\p)iz). Since the fluid velocity vanishes at infinity, $'(«) is a
uniformly Lipschitz family of diffeomorphisms; therefore,

(A-10) Cx | a - á \<\ $'(«) - *'(â) |< C| a - à |

for 0 < r < T and some positive constant C. From (A-10), we deduce that

$'(a) -$'(«)
>C 'e0    for | a — à | > j£o and 8 < 1,
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so by applying Lemma 2.1 we have the key estimate, for any s > 0,

fi-,,i-P^(a>â),|^(iM^M)

(A_11) < cßj-»-w+°\i - peo/2{a,à)\\<t><{<*) - n&)r

<CßfS8-s-W+2(l + \ä-a\f'.

Here we have used (A-10) in the last inequality. Thus, the right-hand side of (A-9) is
estimated by

cs-N-\ß\+s   sup    Î{\ + \a-&\ys\u'{à)\dà
(A-12) 0<,<r'a

<C8-N-M+'  max | a'(a) |< C8~N-^+2,
o««r

since to' has bounded support in a. Therefore, the term on the left-hand side of (A-9)
is dominated by

cs-n-\r+,   for any ¿>0,
so that by choosing r = -N — ß + s, we have verified Lemma 4.3 for the contribu-
tion to F8 from F8. Given the inequalities (A-10) and (A-l 1), we need only repeat a
simple discrete variant of the above argument (as we have already done in (4.5) and
(4.6) above) to complete the proof of Lemma 4.3—we leave these straightforward
details to the reader.

Proof of Lemma 4.4. From the form of ps in (4.18), it is evident that we only need
to verify the bounds

(A-13)    | p2J«, «) 11 D?Dß>D§>4, {8e'{a,à)i;) \< Ç,,r(l + | of |)-L(1 + |f |)"W ,
provided »//(f) G S^q to prove Lemma 4.4. The reader can verify the following
identity by induction:

p2co{a,&)D¡D^Dtí{8e'{a,a)r)

(A"14) =       2       SW + lßlf\ß(«,«)^)(oe'(«,«)f),
W=M+|0|

|0|<|/»il+IAI

where pyüia, a) are smooth functions vanishing for | a — à |< 4e0 and i//<ff)(f ) =
Z>* <Kf). Since i¿(f ) G S;¿, we have

(A-15) \tl§)it)\<c,ii + \s\yL-m.
Also, by (2) of Lemma 4.2,

C-l\!\<\e'ia,ä)S\<C\S\    for|a-â|<4e0.
This fact and (A-15) imply that

|pr,a(a,à)^>(Se'(a,à)f)|
(A-16)

< Q(l + | Ôf |)-L"191 = Q(l +|«f|)-i-M-l°l.
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From (A-14) and (A-16), we have

(1 + \S\)w\p2,o(a,ä)Dp^DMi8e'(a,ä)i)\

<c     2    (n-|f|)lYloM+|ö||f||0|(i + |ö?l)"L~M_|01
(A-17) \Q\<\ßt\ + m

'{8 + 8\Ç\)lyl        |ôf|lQlc     2
|ß|«= 1/8.1+ I&I (l+ô|f|)m  (l + 5|f|)|! (i + i6firL.

Since each quotient in brackets is less than one, the last term in (A-17) is dominated
by

(A-18) C(l + |of|)"¿.
From (A-17) and (A-18), we see that the assertion in (A-13) is verified, as required to
prove Lemma 4.4.
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