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Introduction.

The random vortex method as described in Chorin (1973),'15
intended for the approximation_of flows at high Reynolds number R,

Its main features are as follows: (i) the nonlinear terms in the
Navier-Stokes equation are taken into account by a détailed analysis

of the inviscid interactions between vortices of small but finite core
("vortex blobs"), (ii) viscous diffusion is taken into account by ad&ing
to the mdtion of.the vorticés a small random gaussian coﬁponent of appto—
priate variance, and (3) no-élip bouqdary conditions are approximated by

a vorticity creation algorithm. Fuller details are given below. Develop-
ments, ﬁodifications, and applications of the me;hod can be found e.g. in
Ashurst (1977), Chorin (1978a, 1978b), Leonafd (1975, 1977), McCracken and
Peskin (1978), Shestakov (1975). Theoretical analyéis can be foﬁnd in
Hald (1978), Hald and del Prete (1978), and Chorin et al (1977).

This grid-free method is suitable for the analysis of flow at high
Reynolds number because it has no obvious intrinsic éource of diffusion.
Most approximation methods solve equations which are close to the equations
oné wants to solve; the difference consists of higher order terms
multiplied by small parameters. This is also the form‘of the diffusion
term, and as a result, in most methods,; the effects of a small R_l are
dominated by numerical effects and the physics of high Reynolds number
flow are suppressed. In vortex methods, the misrepresentation of the
ﬁigher harmoniés ﬁhich occurs in the usual discretization methods (which
usually‘has a diffusive effect among other effects) is replaced by the
misrepresentation of the interaction of neighboring vortices (an essehtially

invigcid phenomenon which is a source of error, but not of diffusive error).
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In the absence of the nonlinear terms, the diffusion is approxima;ed‘on
the average exactly. Thus one hay hope that the results of the calculation
approximate the flow at whatever Reynoldé number w;s ihtended; albeit N
with a'statistical.error, rather than at some other lower Reynolds number
intrinsic to the algorithm. A good ghesé‘at the solution of the problem
one ﬁénts to solve is better than an‘unambiguods solution of the wrong
problem.

The method produces é fiéw field which is random. The error in the
calculation is the sum of.two patts: the expected v;lué of the computed
solufion differs from the true solution, and any realization of the computed
solufign (or morevaccurately; any functional theréof)‘differS-from the‘
exéepfed value by a random amount which can>be estiﬁated by its standard
"deviatipn (see e.g;, Laﬁpérti, 1966). The expressions for these quantities
-will be giveﬁ below, when the appropriate notation will be available. -

In the'présent baper'we apply random vortex methods to the analysis
of ﬁhé boundary layer over a flat plate in two and three space dimensions.
The caiculations héve two main objects. In the two dimensional case
we shall show fhat tﬁe vortéx method exhibits a physical instability
at an appropriate Reyﬁplds number. The ability to do so is of coufse
a.basic requirement for any method ﬁhich claims to have some use at
high Reynolds‘number. The specific problem we apply our method to has’

a simplifying fgature, inasmuch as the location of the sharp gradients

is kﬁbwn in advance to be near the ﬁall, and thus the equations of motion
can be solve& in tw§ dimension by finite difference or other non-: ‘ B
statistical methods in appropfiately scaled variables. The interesting

fact about our calculation is that it does not require such preliminary



scaling of the variables, i.e., ;he random waik can be relied upon to
create the appropriate diffusive length scale.

The second main goal of our calculation is go Qse the method to
investigate the much harder problem of boundary layer instabiliﬁy in
three dimensions, and in particular, two of‘the striking features of
its sélution: The formation of streamwise vortices and the creation of
aétive spots. The three dimensional calculétion requires a‘generalization
of our method, and both the two dimensional and three dimensional problems
afford the opportunity to use an improved algorithm for imposing the
boundary conditions accurately.

In the next four sections we present the calculation in two
dimensions. In later sections we present the three dimensional calcu-

lations.
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The Physical Problem in Two Dimensions

‘ Consider a semi-infinite flat plate pléced on the positive half-axis,
with an incompressible fluid of densitf libccupying the half space
¥ > 0. At time t < O the fluid is at rest. At t = 0, the fluid is
impulsively set into motion with velocity U,. The resulting flow ié
assﬁmed to be symmetrical about thevx éxis. The flow is described

by the Navier-Stokes equations,

9.8+ (u"° Vg =0, , (1a)
A\P = -E s ) (lb)
u = -3y¢, v = 3x¢, | (1c)

where u = (u,v) is the velocity vector, r = (x,y) is the position vector,

£ 4is the vorticity, ¢ 1is the stream function, 4 = v2

is the Laplace
operator, and R is the Reynolds number, R = U,L/v, where L is a length

scale typical of the flow. The boundary conditions are

u=(U,,0) at y ==, t >0, (1d)
u=v=0 for y=0, x>0, (le)
%§ =0 fory=20, x<0. (1f)

Initially, u = (U_,,0) everywhere.

If R is large, the Prandtl boundary layer equations should
.provide a reasonable description of the flow near the plate and =
away from the leadiﬁg edge. These equations can be written in the

form [Schlichting (1960), Chorin (1978 a,b)],
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B+ (wDE = e ‘. ~ (2a)
13 = —ayuz, | (2b)
axu + 3yv =0 . ' (2¢)

where &, u, v, x, y have the same meanihg as in equations (1), and Vv

vfl

is the viscosity. If U,= 1 and L =1, R . The boundary conditions

for equations (2) are: u = U, for y = ®, u =0 for y = 0. Equations

(2) have a stationary solution, the Blasius solutibn, which is a function

of the similarity variable u = y/VQVZ' Let fhe displacement thickness

§ be defined by

8§ = S (1-u/ug)dy

the corresponding Reynolds number is Ry = Ug8/v. 1In Blasius flow,

§ =1.,72 J3§; and Rg = 1.72 /v, where it is assumed that U, = 1.

6§ and R, are increasing functions of x. For Ry > R6c the Blasius

§
solution is unstable to infinitesimal perturbations which satisfy

equations (1) (see Lin (1966)). R4, = 520, (See Jordimson (1970)).

These unstable ﬁodes are the Tollmien-Schlichting waves. bThe vortex
interpretation of the waves is as follows: The boundary layer.is a
region of distributed vorticity imbedded in a shear flow. Vorticity
imbedded in a shear tends to become drganized into coherent macroscopic
structures ("negative temperature states™, "local equilibria™, see Onsager
(1949), Chorin (1976)). This tendency is counteracted by the diffusive
effects. The latter become weaker as x increases, since the vorticity
gradients decrease as the layer spreads; Far enough downstream (i.e.,

for Ry large enough), the tendency towards cohérence can overcome
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the diffusive effects; the Tollmien-Schlichting waves can be viewed
as a weak train of organized vortex structures.

The vgiue of RGC given above has t§ be lowered if the unperturbed
flow is treated as a non-parallel flow and if edge effects are taken
into account (Townsénd (1958)). ﬁofe importantly, the boundary layer
is unstable to perturbations of a finite amplitude for values of R
smaller than RGC (for analysis of similar situations, see Eckhaus
(1965), Meksyn and Stuart (1951). A survey of finite amplitude stability
theory for the flat plate problem isﬁgiven in Roshotko (1976)). The
boundéry layer becomes more unstable if the outside flow is turbulent
or contains vortical structures (see Schlichting (1960), Rogler and
Reshotko (1975)). Since our calculation will by its very natﬁre contain
vfinite amplitude perturbations, vortices, a substantial amount of noise,
and edge effects, the apbropriate value of R; which seéaratesvstable
from unstable regimes is unclear. Presumably, there exists a value Réc
such that for Ry < Réc all perturbations dgcayg the best guess of

Rl

Sc I can obtain by looking at the references above is Réc = 300,

with a substantial margin of error. Cebeci and Smith (1974) suggest a
value Réc = 320.

For R, Z_Rsc, the pertufbatiohs can grow, but I found littlg'
information as to what they do in two dimension; p;esumﬁbly they grow .
and reach some finite amplitude equilibrium; this is the typical situation
in other two—dimensional stability problems, for example in the thermal
convection problem (see e.g. Chorin (1967)).  All egperimentaL studies .

I know deal with the more important and more realistic three dimensional

problem which will be discussed further below.
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The Numerical Methods in Two Dimensions

Consider first the Navier-Stokes equations (1) in the whole plane.
Assume that g = 2Ej, where the £ are functions of smali support
h|
(Ei is a "blob"). Lety = ij, where Ay 5 = Ej‘ (I1f we had

§(x - xj), Kj= constant, we would have concluded that

o
K _ . : .
*j =.E%_log|x - le.) For Ej smooth but of small support, let
Ky ij dxdy, and we must have
| Y
1im 1
x| > 3 log |x-x,|
= 2m 3
K

For |5j§j| small, ¥ 5 differs from 2" log |Xj§jl (or else it would introduce

undesirable unbounded velocities, see Chorin (1973), Hald (1978)). We set

K

5% log |x-x,l, Ixl >0 ~ (3a)
by = Ky =l o |
T + constant, |§J < g . (3b)

This is the form introduced in Chorin (1973); it differs from the forms
described in Hald (1978) for reasons which Qill become apparent below.
Clearly 55 =.—ij, is of small support. o is a cut-off which remains
to bé determined.

. Equations (1) state that the vorticity moves with the velocity
field which it induces, i.e., let‘gj = (uj,vj) be the velocity field

induced by the j-th blob, and let ry = (x;,y;) be the center of the

i-th blob. Then

9
v T jg:l Bj R (.‘_’j evaluated at ri).
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This equation can be approximated by

AR RS DY | )
j#i
where k is a time step anquin z Ei(nk). Hald (1978) has shown that
a higher order method is indeed more accurate bqt we shall use (4)
for the ;ake of siﬁplicityJ
The heat equation is well known to be solvable by a random walk
algorithm (see Chorin (1973)). As a result equations‘(l) can be

solved by moving the blobs according to the law

Iy =£‘.‘+k23_.+vn | (75.).

whefe n = (“l’“Z)’ ny, np independent gaussian random variables
with mean O and variance 2k/R.
Suppose we wish to solve equatioﬁs (1) in a domain D with
boundary 3aD. The normal boundary condition u*mn = 0 on.aD,.B normal
to 3D, can be readily taken into account by solving Ay = - subject
to the.appropriate boundary condition, with ﬁhe help of potential theory. -
In thevgasg of flqw,over a flat plate, the method of images will do the
job. The no-slip boundary condition u's = 0, s t#ngent to 3D can be
- imposed through the creation of the appropriate amount of vorticity:. - -
Let u, be the velocity component tangent to the wail created by the.
algorithm as described so far, and suppose ué # 0. The né-slip qondif
tion and the viscosity will create a boundary layer in which the total e

vorticity per unit length is
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interior [ 3 ‘
fwall Edn=f5-§dn=uo

In the algorithm presented in Chorinv(l973), we reproduced

/

this effect numerically by creating a vortex sheet of strength u,
at the wall, dividing its vorticity among blobs, and allowing these
blobs to partiéipate in the subsequent motion of the blobs according
to the laws (5). If a blob is created at every piece of boundary -

of length h, its intensity is

E=uh. (6)

If a blob inside the fluid happens to cross the.boundary, it is
Aremo§ed. It should be apparent that thé amount of vorticity created

at each‘time step depends on the cut-off o, If o is small, the
backwash of the vortex may be iarge, and a vortex whose center is

near the boundary will create a vortex whose intensity will_have'ah
opposite sign, etc. If 0 is large, the backwash of a newly created
vortex may not be sufficient.to énnihilate u,, and more vortices will
be created, all of the same sign. Presumably, on thg average the total’
amount of vorticity is independent of 0.. The algorithm in this form

is not accurate (see Chorin et al (1977)). - This ambiguity as well

as the desire to rgduce the amount of compufational labor have led to
the formulation of the vortex sheét algorithm which solvés the bouﬁdary
layer equations (2). (Chorin, 1978a). The computational elements are’
Begmen;s of a vortex sheet. Let u be the.velocity component p#;allel
to the wall. A segment § ofjavvortexlshee: is A sggment of a straight

line,‘of length h, parallel to the wall, such that u above S differs



_10...

from u below S by an amount £ ("above” means "further from the

wall™), u = §, £ is the intensity of the sheet.

above ~ Ybelow
Consider a collection of N segments Si,'with intensities

£, i=1,....,N. Let the center of Sy be ry=(x; yy). To describe

i,
their motion, one begins with equations (2b) and (2c). Equation (2b)

can be integrated in the form
u(x,y) = U, — _f; E(x,a)da , (7a)

where U_ is the velocity at infinity seen by the layer. Equation (2c)

yields
v(x,y) = -3 fTu(x,a)de (7b)

Equations (7a) and (7b) allow ome to determine u,v if & = &(x,y) ‘is
given; One can visualize each sheet as casting a shadow between
itself and the wall. The darker the shadow, the smalier u becomes.
Whafévéf fluid enters a shadow region from the left and cannot leave
on the right must leave upwards. From'equatiﬁns (7) one can derive -
the following eXpréssion for uy =‘(ui,vi)‘at the center r; of the
i~th sheet

= 1 ' .
SRR UL (82)

v vwhere‘dj =1 - lxi-xj|/h is a smoothing function, and éhe summation
is over all Sj,for which 0 < dJ <1 and yj‘z,yi. This is of course
a small subset of all the sheets; only the sheets which lie in a

narrow vertical strip around uy affect u;. Similarly.

v = ~(L, - D/n, - (8D)
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where
+ %
Ii = Un - zi Ejdj Yj s . (8C)
+
* .
Yj -min(yi,yj) . | _ (8e)

The sum I (resp. I_) is over all 54 such that_d§.§ 1 (resp. d} < 1.

The motion of the sheets is then given by

_x?+1 = x? + kuy , (9a)
y?+1 = y? +kvg + 10, _ (9b)

These formulas are analogous to (4); n is a gaussian random variable
with mean 0 and variance 2vk; it appears only in the y c&mponent
because equations (2) take into account diffusion in the y direction
only.

This .vortex sheet algorithm generates a velocify field u = (u,v)
which satisfies the boundary condition u= U, at y = =, Q =0 at
y = 0. The no-slip boundary cﬁndition u=0at y =0 can be satisfied
by the following vorticity generation procedure (see Chorin 1978):
Continue fhe flow from y> 0 to y < 0 by antisymmetry, i.e., u(x,-y) =

9

-u(x,y). Since § = - Fg-, and both u and y change signs, we have

E(x,-y) = E(x,y); 1if u(x,0) = u, # 0, we also have a vortex sheet

of strength 2u, at the wall. This sheet can be divided into segments.
and allowed to participate in the subsequent motion. The antisymmetry

can be imposed by reflecting any sheet which crosses the wall back

“into the fluid. One can require that all the sheets created satisfy
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the requirement |€1| <g , where Emax is some reasonably small

max
quantity. To do this, one may have to create more than one sheet at
any one point at any given timé step. Tﬁersheet method can be modified -
to make it more efficient and to reduce the variance at thevresults
(see Chorin 1978a). fhe interaction of the sheets is not singular and v
no cut-off is needed. The amount of vorticity created at the wall is
unambiguous, and the cost of the calculation is small. This is of course
balanced by the fact that thé Prandtl equations are not uniformly valid
appréximations to the Navier-Stokes equations, and the transition from
sheets to blobs involves in general a decision proéess which in turn is
not.unambiguous.

Note that the antisymmetry just described cannot be used diréctly
with the vorgex blob method. Indeed, if u (x,-y) = -u(x,y), it does not

follow in general that

E(x,my) = (- $8 4§D at (x,my) = Exy)

since x does not change sign. Thus, to impose the boundary conditions
'-aécurately on the blob method we shall have to use the sheet method as
a transition near the wall, see below.

The version of the sheet method that we shall use is almost identical
to the one described in Chorin (1978) and documented in detail in Cheer
(1978); this includes tagging and variance reduction techniques. The "
- only difference is the following: In the earlier program, sheets are o
created at the wall, and on the average, half of them disappears at each

step. In the present program, we make exactly half of them disappear

at each step and this reduces the total number of sheets retained. This
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is accomplished as follows; At each point at which sheets are
créated,btheir intensity is adquted so that their number is even.
A rejection technique (Handscomb and Hammersley (1966)) is then used
to insure that any successive n's used at well have differing signs.
This rejection technique can be used only at the wall, or else it
would destroy the independeﬁce of the successive n's in the interior
and thus fail to deécribe the diffusion process éorrectly.
The sheets and the blobs arebobjects of a very similar nature, they
are determined by the same parameters, position and intensity. A
computational element (xi, Yi» Ei) can be treated‘as either a sheet or
a blob,vdepending on the circumstances. A sheet of negative intensity
casts a shadow which shows the fluid under it, by the equation of
vcontinuity, this creates an upward flow to the left and a downward flow
to the right, just as if the sheet were a vortex. The circulation around
a sheet of intensity £ is £h, and if the sheet becomes a blob, the
‘iatter;s intensity must be x = Eh, in agreemént with equation (5).
These_facts can be used to create a transition between the blobs
and the wall. Pick a length % such that a blob has a small probability
of jumping‘more than 22 in one random jump, i.e. % a multiple of the
standard deviation YZk/R of n.. Any vortex which finds itself less than &
from the boundafy (inside or outside) becones a-sheet and is reflected
accordingly, and also taken into account accordingly when u, is computed.
I1f a blob is further outside the boundary than & it is removed (presumably
this happens rarely). If a sheet is inside the domain and its distance
from the boundary is more than £ it may become a blob again.

The cut-off o remains to be determined. A natural condition to
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to impoée is the following: consider a collection of blobs. As they

tend to each other and to the boundary, their ipteraction should converge
to the interaction of the corresponding sheéts._ Consider a sheet of
intensity £ at (X,Y), as well as.vortex of intensity £h at (X,Y), together
with its image vortex at (X,-Y) required to saﬁisfy the boundary conditions
(the sheets need no images). If 0 = h/T, the velocity fields induced

along the vertical line x = X are identical (Figure 1). The lateral
effects will tendbto each other as y *» 0.. Thus, if o =h/7, the interaction
of the blobs will tend to the interaction of the éheets when the blobs
approach the boundary. Thus o = h/7T is a natural choice for o. Note that
the form (3) of ¥ ensures that for |x| < ¢ the magnitude of u is constant.
This is the reason (3) is used. Remarks: (i) the value of ¢ is twice

the value used in Chorin (1973). (ii) The choice of o has the greatest
effect near the Qall, and thus it is natural to determine the value of ¢

by considering Vhat happens ‘near the.wall. (1i1) Our value of o is large
compared to the mean distance between blobs which is of order R-l/z; this
is inagreement with the requirements in Hald's .proof. In summary the -
computational glements should be viewed as sheets near the wall, and as
blobs far from fhe wall.

A heuristic error analysis in Chorin (1973) provides error estimates -
for the expected value of the velocity field produced by our methods in
the form error = 0(k) +O(R_l/2), R = Reynoids number based on a velocity
and length scales typical of the flow away frém thé wall. Hald's analysis
of the inviscid case suggests that this could be reduced to O(kZ) +50(R—1/2)
if the time integration were carriea out more accurately. The standard

deviation of a smooth functional of the velocity should be O(R—llz).
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Application of the Numerical Method in Two Dimensions.

In this section we describe the applicatidn of the vortex methods
to the specific ptoblem at hand. Notefthat if the sheet method is used
by itself on the flat plate problem and if it convergés in ﬁhe meaﬁ
to a stationary solution of_the Prandtl equations (2), that solution
is a function of the simiiarity variable ¥ only; more specifically,
if two computer runs are made, with the same numerical parameters k, h,
Emax,etc, the same sequence of random numbers, and the same impulsive
initial conditions, but with two distinct values of Vv, tﬁe resulting
computed solutions will be identical for equal values of y/vxXV and x.
These facts are straightforward consequences of equations(8) (see
| Chorin, 1978b). As a consequence, the instability of the boundary layer
cannot be seen with the sheet method, and our mﬁin tool will be the
blob method. We shall use the sheet method for the following limited
purposes onlyé (i) to provide a rational argument in favor of the value
0 = h/m; (i1) as a vorticity creation algorithm, (iii) as a way of imposing
an approximate Blasius flow before allowing unstable modes to grow; and
(iv) as a diagnostic tool.

The number of vorticity.éleﬁents required to describe the flow is
large, since enough of them must be included to resolve the Tollmien-~
Schlichting waves, and those have a short.wave length. From linear
stability theory (see Lin, (1966) and Jordinson, (1970)) one finds that
the wave number of unstable Tollmien-Schlichting waves is between roughly
0.1/8 and 0.4/6 for modeérate values of Ry, say very rougly 0.3/6 = 0.2/7/%v.

The cbrrespodaing wave length is ~10T/xv ; the number of waves between

0 and x is roﬁghly'x divided by 10mxv , i.e. ~ R6/50; The first
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unstable modes occur when R, ~ 500, i.e., one has to be able to resolve

S
at least 10 waves between the leading edge and the first occurence of
growing modes. Omne can also sée that thé time period is.correspondingly
small. For this reason sfability calculations based on the Navier-Stokes
equations are very expensive indeed (see e.g. Fasel (1976)).

There is an additional restricting cons;raint in the present work.
It is interesting to compare the behavior of the growing modes in two
dimension with the corresponding behavior in three dimensions; the two
cases are quite different, and the contrast is very instructive when
one is interested in the transition to turbulence. We wish to use
comparable nqmerical parameters in two and in three dimensions, so that
the comparison of the results be believable; the cost of three dimen-
sional calcualations i5 of course much larger even than the cost of two
dimenéional calculations; we must therefore look for ways of representing
the boundary léyer which are as economical as possible and yet exhibit
a correct behavior.

There is no dbviOQS way in which the steady Blasius p;ofilg can be
imposed exactly on our array of Qortex elements at the initial time. Qn
the other hand, a calculgtion which starts from 1mpuls1ye initial data
contains a large and rather long-lived transient component whose behaviof
is nbt.easy distinguishable from tbat-of a growing mode. Part of this
problem can be removed as follows: Start the calculation by using the
'sheet representation only (which is cheap and allows no‘instability),

and run for a time 0 < t < T T, large enough so that thg'Blésius profile

(o 24

will have been reached with some not unreasonable accuracy. At time

t = T, allow some or all of the sheetsto become blobs. 1In all the

~
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two dimensional runs described below we sét To = 1.

It is quite obvious that we shall not be able to d;plicate the
results of linearized stability theory.' The initial data will not
coincide exactly with the Blasius solution. The perturbations will not
be small. In Fasel (1976) the perturbation amplitude was about 0.05 -of

the free-stream velocity - an impossibly low level for our method. Our

results should be compared with the behavior of finite amplitude pertur-

bations in noisy flow. The advantages of our numerical method can be

seen from the facf that the method requires no scaling. The very same

program could be used to solve an interior flow problem. The algorithm

provides its own scaling and"concentrates the computing effdrt where

it is needed. This should be particularly important in other problems

where thin shear layers occur at locations which are not known in advance.
In the calculations described below, the vorticity is created atv

walls in the form of sheets, with all IEil < gma*’ -1f the amount of

vorticityvneeded to satisfy the boundary conditions is less than Eb,

no sheets are created; here, Eo = &ma*/z} When sheets find themselves
at-y > % at time t > T,, they become blobs; they become sheets again

1f y < 2. & must be such that the probability that n > 2% is small.

We checked that as long as ! v 1.5x standard deviation of n, the results
are insensitive to the value of . Detailed calculafionsvwere perfprmed
for 0 < x < i; i.e., the typicalvstreamwisé length L is 1, and thus

R = UL/v = v'l, Both sheets and blobs were followed fér x> 1 but
allowed to move‘only with the random component in their laws of motion.

When they reéched x = X they were deleted. This was done to ensure that

the right boundary at x = 1, which is introduced only for computational
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convenience, behaves as an absorbing boundary and does not affect
adversely the calculations in the region of interest 0 < x < 1.
We usually picked X = 2,

The interaction of two elements at least one of thch was a sheet,
was computed as if bothvwere sheets. Two blobs interacted as blobs.
In tﬁe computation of the tangential velocity at the wall, all elements
_ are treated as sheets.
After much experimentation we picked Emax = 0.6, This is large

value of Ema and produces a crude and noisy boundary layer; however,

X
it-is sufficient for exhibiting the main effects. A relatively large

value of §

X reduces the number of elements in the calculation, and,

as explained above, this is of particular importance since wetintend
to present a three dimensional calculation. The choices of h and k
are described in the next section.
in the steady state, the drag D(x) on the piece of boundary bgtween
-0 and x can be computed by the momentum defect formula (Schlichting 1960).

D(x) = Sou(U, —uddy, u = u(x,y). (10a)

The normalized drag is defined as
d(x) = D(x)/D(x), (10b)

where Do(x) is thévBlasius drag D, (x) = 0.6641/xV, which caﬁ be obtained
from the Blasius solution. The velocities for use in formulas such as

(10) are computed as if all the elements were sheets. We sghall use d(x)
defined by (10) as a mea;ure of tﬁe amplitude of the growing modgs even

when the flow is not steady and D(x) is not really the drag on [0,x].
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Finally, we observed that if k was too large the solution
exhibited large oscillation of no possible physical significance.
This is readiiy understood. ﬁe are soiving a moderately stiff system
of ordinary differential eqﬁations by Euler's method. The remedy is

to reduce k. k < h is adequate.
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Numerical Results in Two Dimgnsions-

In Table I and Fig. 2 we display the normalized "drag” d(x) at
X = 1/2 as a function of R and t. (d(X) is the rat?o D(X)/Do, see
formulav(lO)_above). Ihese calculations were made with k = h =0.05;
the other parameters are as described in the preceding section;
Emax =,0‘6’ X=2,0=nh/nmn The point X = 1/2 is in the middle of the
region of interest. In our units, Vv =\R-1, and Rg = 6/v = 1,72 /R/2.
From Table I and Fig. 2 one can see that d(X) is growing for Ry =394,
R =‘105; d(X) 1is not growing for Ry = 122, R = 104, and d(X) is
initially excited but ultimately slowly decaying for RG = 272,
R=5x 104. This last fact is debatable and the value Rs = 272 seems
to be the approximate value of Réc' These results are reasbnable in
viéw of what is known from the theory and from experiments.

In Fig. 4 we exhibit the edge of the boundary layer as a function
of x for t=3, R=104. The edge is defined as the smallest value of
y for which u = U_,. The edge is not at infinity because we have .finite
number of vortex elements and thus the tail of the probability distribution
of the locations of the elements is not accurately approximated. The
layer is stable at this value of R, yet the edge 1s ragged and the
layer appears to be “"intermittent” (for a definition of intermittency
see Cebeci and Smith (1974). The-"intermittency" is due to the presence
of discrete vortices; this connection will be exploited elsewhere for
producing models of intermittency. It is obvious from Fig. 4 that
the wave length of the growing modes cannot be determined directly from
the instantaneous velocity distribution. However, it can be estimated

indirectly. Consider the following question: how small must h be to
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allow us to distinguish between‘stable and unstable 1ayers?‘ Suppose

that for h > h, this distinction can be made, but for h < ho'the

layer appears to be stable even when it should not be.‘ Then hj is an

estimate of the wavé length of the growing modes; since when h < ho‘

these modes are suppressed. In Table II we present the values of d(X)

ét X =1/2 as a functién of h for R=10°. We see that 10 < h, < 15, in

a reasonable if rough agreement with the Tollmien-Schlichting theory.
In Fig. 3 we display the velocity as a function of ¥ = y/fvi at

X =1/2 for R = 104 and R = 105, averaged over 10 steps bétween t = 2.5

at t'=.3. Curve I is the laminar steady Blasius profile, and curve II

was drawn in what appears to the eye as a reasonable neighborhood of

" the points obtained at R = 105. The fluctuations are large (as one

may well expect since Emax = 0.6), but the points at R = 104 are in
a reasonable agreement with the Blasius curve; curve II (an unstable
case) has a different shape. The gradients are first sharper, then

smaller than in the stable case. This is consistent with experience in

- the unstable regime of thermal convection (see e.g. Chorin (1967)). It

is also consistent with data for a turbulent boundary layer in ther
following sense: The Tollimen-Schlichting waves are large écale struc-
tures in comparison with boundary layer thickness, while in the stable
fegime there are no organized structures. In the turbulent regime one
can associate a velocity with an eddy size; the changes in the profile
due to fhe transition from the stable to the unstable regime éhould be
of the same nature as the changes in the velocity profile which occur
when the eddy size increases. This is indeed the case;(see Favrg et

al,(1967); their data are reproduced in Lighthill, (1970)).
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‘A typicdl run from t = 0 to t = 3 with the numerical parameters
used here took about 10 minutes on the UC Berkeiey CDC 6400 Computer.

At the end of the calculation, there were'about 200 sheets and 300 blobs. .
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Table 1

Drag as a Function of Reynolds Number and Time

R = 10000 R = 50000 R = 100000
t (R§ = 122) (R§ = 272) (R6 = 384)
1 1.1 1.11 1.11
1.5 1.23 1.87 1.97
2 0.89 1.18 1.39
2.5 1.15 1.44 1.57
3 77 1.25 1.65

Table II

Drag as a function of h, R = 100000; R§ = 384

h=1/20,k=1/20 {
h=1/15,k=1/15 {

h=1/10,k=1/10 {

t =1 1.5 2 2.5 3

d = L1l 1.97 1.39 1.57 1.65
t = 1.27 2.67 3.33

d= .98 1.48 1.66 .70

t =1 2 3

d= .98  1.10  1.08
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The Physical Problem in Three Space Dimensions

We now consider the three dimensional version of the preceding
problem.
| Consider a semi-infinite flat plate plaéed on the half plane
z =0, x > 0. A fluid of density 1 occupies the half space z > 0.
. At time t < 0 the fluid is at rest, at t=0 the fluid is impulsively
set into motion with velocity U, = 1. The Navier—Stokes equations

in three dimensional space can be written in the form:

3,8 + (u¥E - ' Vu = R g, (11a)
£ =curl u , :  (11b)
divu=0. (11&)

u = (u,v,w) is the velocity vector, and r = (x,y,z) is the

position vector. The boundary conditions are

u=(,0,00 forz=e=, t>0, (12a)
u=0 forz=0,x>0, (12b)
%‘;}=0 for z =0, x <0 . (12¢)

Appropriate Prandtl equations can also be written. We shall not
need them in this paper. The only fact about three dimensional boundary -
iayer approximations that we shall use is the following: The vertical

component of the vorticity vanishes, i.e., for a solution of the Prandtl

equations, 5_5.(E1,52,0)-
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The Prandtl equations in three dimensions admit a two dimensional
solutiqn, the Blasius solution. That solution is unstable at high
enough k. Squire's theorem (Lin, (1966), p. 27) states that the problem
of instability to three dimensional infinitesimal perturbation is
equivalent to a two dimensional problem at lower R.

Once the two dimensional perturbations bégin to grow, several
striking phenomena occur. In particular, before turbulence sets in,
streamwise vortices (l.e. vortices whose axis is parallel to the mean
flow) make their appearance. Intense secondary instabilitiesvfollow,
and spots of intense motion emerge at random locationms. Experimentalv
investigations of Soundary layer instability can be found in Klebanoff
‘et al (1962), Kline et al (1967). Experimental investigations of
boundary 1ayefs, in wﬁich phenomena resembling those which first arise
immediately after the onset of instability persist and may be responsible
for some of the observed features, are described e.g. in Favre et al.
(1967), Kline et al (1967), Willmarth (1976); theoretical aspects of
several aspects of instability are found in Greenspan and Benney (1967),
Benney (1960), Lighthill (1970). One of the major conclusions from the
experimental data (see in particular Klebanoff et al., 1962) is that the
_perturbed flow is periodic in the transverse direction (i.e., y direction).
It is therefore.natural to consider in three dimensions equations (11)

with the added periodicity conditions
g(X,Y*q,Z) = E(x_sYtz)) é(x:)&q)z) = Q(X,Y.Z) ’ \ (13)

etc. Furthermore, from Klebanbff et al (1962) we conclude that q is

roughly equal to the wave length of the first unstable Tollmien-Schlichting



~26-

.waves; roughly, q = 0,1 in our units. We shall therefore be solving
equations (11) with the boundary conditions (12) and (13), and

q = 0.1.
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The Numerical Methods in Three Dimensions

We consider first the thfee dimensional analogue of the blob
method. The three dimensional problem is more difficult because the
vorticity £ is now a stretchable vector quantity which must satisfy
div £ = 0.
In earlier three dimensional calculations (Leonard,(1975),(1977),

Del Prete (1978), Chorin, (unpublished)), the vorticity field was re-
presented as a sum of vortex filaments. The difficulties with'this
épprdach are: (i) a huge amount of bookkeeping is required to keep track
of the changiﬁg vortex‘configurations; (ii) there is no obvious way to |
generate the filaments at the boundary in a consistent manner. We bypass
these difficulties by representing the vorticity as a sﬁm of Qortex segments
(Fig. 5). E;ch vortex segment moves in the flow field induced by all the
others. The condition div £ = 0 will be satisfied only approximately. The
segments have no independent physical significance. The two dimensional
blobs do not have one either; physical vortices or Qortex tubes are
expected to emerge from the superposition of the computational blobs or
segments. A segment A is defined by seven quantities: The coordinates
Eﬂl) = (x(l), y(l), z(l)) of the center of its base, the coordinates

5‘2)= (x(z),y(z), z(g)) of the center of its top, and its'intensity K. We
shall write Ay = (x$17, y{1), 21 x(2) 42D o(2) vy, 4=1.. N,

N = number of segments. The base and.the top are circles of radius

o, (the cut-off), which will be determined below.

| Given a vorticity yield g (), the velocity field in a fluid which
fills out the whole space is given by the Biot-Savart formula (see e.g.

Batchelor, (1967)):
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a=r-r',a-=lal.

If the vorticity field is a sum of N closed vortex lines with the

i-th line having intensity Ki» (14) becomes

1 X axs |
W = -4 T K = ds . (15)
| i#1 i-th line a .

s = 8(r') is the unit'tangent'vector to the i-th line at r', ds = ds(r')

is the arc length along the i-th line, and as before a = r-r'. We
now'sgek an interaction law between vortex segments which will approximate
~the motion induced by (14) or (15).
Inside the segment the velocityvfiéld must be kept bounded, justA
"‘as 'is the case in two dimension. Furthermore, the field must be modified
inside the segments in‘such a way that the segments will be compatible
with the boundary calculations (see below). The problem of the finding
the éorrect formulation of the vortex method in three dimensions is difficult,
(see e.g. Leonard (1977)). The'férmulation offered here is plausible but
not rigorously justified.

We require that the motion of a vortéx ring or iine made up of
vortex segﬁents should preserve the shape of the ring or line. This
can be accomplishgd by ensuring that the cénfiguration ofvthe vectors
a and of the velocity vectoré which enter the formula for the motion of
the tips of the segment is the appropriate translate of the corresponding
configurétions which determiné the motion of the bases. Thus, let

Ai’ Aj be two vortex segments; define

.
N
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{1 = (D

’ Y§l)’ zgl))s

_1,_(2) = (X§2). y§2), Z§2))>
gy = 2§D - 24D,

1 1 (1 =
_gJ) g ) £§ ), _a_%) = £S,Z) _,_r_§2) ,

“with agJ) = |a(1)|, etc.

The velocity fields G{}), {4 induced by a; at r{!) and r®)

will be approximated by:

agg) > ¢ and a(g) > 0
(1 —% 2ﬁ?x§j -
S5 T@m LM - (6a)
Rt
| (2) »
@ 12y Ty (16b)
aij
If either _(g) < g or agl) < g :
(1)
D R (17a)
——13 4r - 2 (1) ’
aij
. (2)
(2) =K 31 X S
& T T O (17b)
. 1_-]

The equations of motion for each segment can now be obtained by
summing the contributions of all the other segments and then adding to

that sum the appropriate random component. This yields

.Eil)n+l ; (l)n + k& gg) + n, - (188)
j#l o
£§2)n+1 - (2)n + k3 Gg%) +1 , _ (18b)

hid!
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where Eil)“ H Eil)(nk), etc., and n 1s a vector n = ("1’“2’"3)’
with N> Np» N3, gaussian random variable with means 0 and variances
2k/R, independent of each other. n in (18a) is identical to n in
(18b), since diffusion does not introduce rotaéion or stretching.
One can write the boundary layer equétion in three dimensions
and solve them by‘a method in which the computational elements are
pieces of a vortex sheet (="tiles") with sides hi‘in the x direction
and hZ in the y direction. Each tile carries a twovdimensional vortex
with components §;, §,. As observed earlier, £ = 0 in the boundary
layer equations. However, we shall -use the tiles only.near the
boundary, where ﬁortex stretéhing is presumably negligible, or to
Acreate an initial Blasius profile, in which stretching iS‘exaétly

zero. Therefore, the boundary layer equations we shall be solving

reduce to
2°E,
3. E. + (u*vV)g, = v
t°l — =/>] 322
322
by + @DE = v —2
9z
— 9v - _ 2
E1 iz ° E2 35"

divu =0, u = (u,v,w) .

These eqqations can be solved by a straightforward extension of the sheet
method described earlier. No’vorie# stretching will be taken into account,
and we shall not take the trouble to write ou£ the equations in full,

The rejection and variaﬁée reduction techniques carry o&er from the

two—dimensional case. Care is taken to ensure that VE%H;% L S
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A tile created near the wall can become a segment if t > T or
if z4 > 8, A segment'which falls below £ becomes a tile again. The
transformation of tiles into segments (and vice versa) must obey the
- following conditions:

(1) A_tile must become a segment parallel to the wall; i.e.,
if a tile (xi, Yi» zi,bﬁli, 521) becomes a segment |

9,0 250,20 52,20 ) e munt e

ng) _'z§2) =0. (19;)

(1i) A flow which is two dimensional when described.by tiles must

remain two dimensional when described by segments. The two dimensionality
of a flow described by segments will be perserved only if the flow fields
seen by the tips of the segments are translates of the‘flo% fields

‘seem by ‘the bases, with a translation vector normal to the plane of the
flow and pointing in the direction of a fixed normal n to that

A‘plane. |

(iii) The stretching of the several segments represents the stretching

of vorticity, which will be represented accurately‘only if the length

" of the segments is reasonably'small° A reasonable normalization of

that length in our problem is -
y§2) - yg}) = h, when a segmeht is created. (19b)

(iv) The circulation around a vortex line made up of tiles must
equal the circulation around a vortex line made up of segments. If

y§2) - ygl) is normalized by (19b) this requirement leads to
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Ky = hlqﬁfi + E-%i sgn(§'-n) , (19¢)

where §£' = (511,521);.3 is the fixed normal to the plane of the flow
and sgn(a) =1 if a > 0, sgn(a) = -1 1f a < O,

The remaining connecting forﬁulas between segments and tiles are

obviously‘
x&l? = xy, (19d)
yD =y, , | 'g19e)
vzgi) =z, . (195)

Formulas (19) are of course invertible, and the computational elements
can be treated as either tiles or segments, as the occasion warrants.
When two segments'interact, their interaction is given by formulas
(19); when a segment and a tile interact, they are both viewed as tiles.
Finally, the cut-off s must be determined. We must require that
if we consider on one hand the interaction of two infinite vortex lines
parallel to‘the y axis represented by segments, and on the other hand
the interaction of the same vortex lines represented by tiles, the
former should approach the latter as the lines approach the wall. This
requirement obviously reduces to the condition imposed on 0 in two
dimensions, aﬁd yields o = hllﬂ. This conclusion is of course legi-
timate only if most of the vorticity does indeed point in é direction

parallel to the y axis. ' ' : .
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Application of the Numerical Methods in Three Diménsions.

In this section we discuss some of the features of(the numerical
method which are specific to the partiéular application at hand. Most
of fhe numerical parameters are chosen just as they were chosen in
the ﬁwd-dimehsional case; in particular, 2 and L. We picked
hl =k = 1/15, since the two-dimensional calculations showed fhat this
was a minimal but adéquate choice. We picked h, = q/4, after some
experimentation shoﬁed'that this value was sufficient to exhibit
important effects.

The two major difficulties we encountered in three dimensions were:

the large amount of computational labor, and the difficulty in imposing:

 periodic boundary conditions on a grid-free method. The amount of

labor is large not only be;ause three~dimensional calculations are always
mofe costly than two-dimensional calculations, but also (and especially)
because the specific nature of the secondary instabilities which arise

in three dimensions (see the next section) requires the creation of

large amounts of vorticity at the walls. In consequence we used Emax = ].

" This value seems to yield results which are compatiblé with two-dimensional

résults obtained with smaller values of £ but it is obviously so

max?
large that one may legitimately argue that what we have is a model rather
than‘an approximation. |

Periodic boundary conditions can be imposed on a vortex calculation,
but the price in computing labor is high. There again we.did the least
we could reasonably do. For each vortex seément with base located at

at (x, y, z) (or its image created to satisfy the normal boundary

condition, with a base at (xX,y,-z),) we created two more segments, based
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at (x,y*q,z), q = the period and took their velocity fields into
account when we mdved the segment. Similarly, new tiles must be
created ou;sidg the strip 0 < y < q with locations and strengths
determined by periodicity. Some rather complex programming is needed
to keep track of the several image systems as the tiles become
segments and vice versa.

Finally, we note that if §; = 0 at t = 0, i.e., if there is no
streamwise vorticity at all at t = 0, none will ever be created by
our algorithm. Thus, 1f we are to observe the effects of streamwise
vorticity, we must introduce some by artificial means. We proceeded
as follows: At t = 0, for one time step, we changed the veloéity at

infinity. Instead of u(x,y,») = (U,,0,0) we set

(U,,A,0) for.% <y<3q

u(x,y,=) = ,{ 4
(U,,0,0) elsewhere

We usually picked A = 1073 (note that U, = 1). For t > k; we reverted
to u(x,y,») = (U,,0,0) everywhere. The effect of this initial
perturbation is to create a small streamwise vortex at.the boundary,
whose subsequent history is determined by diffusion, transport, and

stretching.

5
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Numerical Results in Three Dimensions
Calculations done in three dimensions with A=0 (i.e. ﬁith ﬁo
perturbation which could trigger three dimensional effécts) produce
results similar to the results of two dimensional calculations.
They afford a check on both, but are not worth discussing separately.
Even a very small value of A (i.e. a very small three dimensional
pe;turbation) has a substaﬁtial'effect at all values of R we tried.-
First of all the amplitude of the three dimensional motion grows slowly
in time. The reason seems to be that a streamwise vortex produces
streamwise VOrticity at the wall; it then moves some of it away from
the wall; the vorticity which is moved away from the wall has the
effect of amplifying the initial motion induced by the streamwise vortex
(see Figure 6). However, it is easy to see that this amplification
does not produce an increase in the total amount of streamwise vorticity.
‘As a result of this secondary motion, the computed boundary layer

thickness 8 increases. ¢ at (X,Y) is defined by
8 = J U - ulx,y,e)/U.)da.

Indeed, the part of the boundary layer which expands can expand sub-
stantially, while the part which contracts cannot contract below zero. .

In Figures 7 and 8 we plot the ratio 8/8, where § = computed boundary

layer thickness at X = 1/2 averaged over a period in y, and 6b = boundary

layer thickness at X 1/2 computedvfrom the steady Blasius solution.
In Figure 7, R = 20000. Note that at t = 3, R; computed with the steady
8 is R5 =187, and thus the layer should be steady. However, if R; is

evaluated with the computed boundary.layer thickness, R; at X = 1/2
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_1s approximately 300, and Ry at X = 1 1is appfoximately 440; well over
the value at which the laye; because unstable in the two-dimensional
calculation. In Figure 8, R=100000, and the same effect is feproduced.
The computed value of the drag are notvgreatly affected by this
thickening of the layer. (This is quite plausible, in view of the
extra factor u in the integrand in the formula for the drag; the
effeét of this factor is to reduce the‘dependence of the drag on the
velocity préfiie near the wall.)

.When the layer becomes unstable to Tollmien-Schlichting waves, .
the streamwise vorticity begins to grow. The possible ﬁecﬁanisms
for this growth are well known: . The waves stretch lines; furthérmore,
they can create situations 1h which a horizontal streamwise.line

.tilté away ffom the horigontal; its higher parts move faster than
the lower parts, and stretching results. All segments are initially
created with length hy. If they stretch their length becomes
[£§2)ﬁ£§1)l. The ratio g = [Egz)ﬁggl)ilhz is the stretching ratiof
In Figures 8 and 9 we plot g, the gvefage value of g, averaged.
over all segments. It is seen to grow slowly with time. These
figures are for R = 20000 and 100000. Note that at the time when
g begins tovgfow with R = 20000 the layer had become thicker as a
result of secondary motion and Ry 1s larger than the critical value.
In Figure 9 we also plotted s, the total streamwise vorticity, and
r, the ratio of newly created streamwise vorticity to nearby created
transverse vorticty. Roughly r is an indication of the rate of growth
of 8. All these quantities are seen to grow slowly and steadily. The

growth can be started earlier by increasing A. At value of R smaller
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than 10000, we never did succeed'in induciﬁgvsuch g;owthﬂwithin a>time
we could afford and without using very large values of A (i.e. A of
order 1 - not a plausible value for oufvproblem). |

The more interesting.graph in figuré§‘9 and 10 is the graph of
the maximum valﬁé 8nax of tﬁe strétching rétio. Thisvvaluékcan become
very large.(“:17); which indicates that some vortices are stretched
by a large amount. Thisvsuggeéts aﬁ extraordinary spbttiness of
thevstretching process. This spottiness_can be explained as follows:
because our method is random, the local velocity profile can differ
from point to point. At some points the local profile may be much
more unstable than at others, and as a result secondary instabiiities,-
whose gfowth rate is very large (Greenspan (1962)) will occur at some
points and not at otheré. One can also argue that as a fesult of
the variation in local profiles, at some boints the segments may depart
from the horizontal more than at othérs, and therefore the stretching
mechnanism is more intense there. These two explanations may of course
be identical. These "spots” make thevmajor contribution to the growth
of the mean quantitieé. Their pfesence indicates that the layer
contains a mechanisms for ampliffing greatly small differences in local
conditions. However, one should remember that our numerical layer is
much noisier than a real layer is likely to be.

Iﬁ Table II1 we plot the values of the streamwise component of

uat x=1h;, y = jhy, 2z =0and R = 2 x 105, t = 2.6. The details

.of the fluctuations do not seem to have any particulatfphysical sig-
nificanée. The values of R and t were picked somewhat arbitrarily;

the table shows the spottiness of the field, and also shows that, as
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expected, the streamwise componeﬁt of £ increases as the layer
thickené.

When g increases, more and more segménts‘and tiles have to be
created; this is why we needed a large value of Ema#‘ A further
consequence is that computing for larger times than what we displayed -
is more exéensiie than we could afford. A typicai fun for 0 <t <3

took about one hour of CDC 6400 time at Berkeley.

1 .
L]
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Table III

Streamwiée Vorticity at the Bouﬁdary, R=2x 165, t =2.6
=1 2 3 4
i=1’ .000 .000 .000 -.001
2 .000 .000 .000 .000
3 .000 .000 .000 -000
4 .003 000 - .000 .000
5 .028 .000 .001 .000
6 .000 -~ .000 .000 .001
7 -.046 -.012 5501 .001
8 ~.046 —ﬂdoa‘ ~.008 -.010
9 -.038 -.028 -.002 -.244
10 -.187 -.054 ~-.007  -.093
11 .091 -.065 .030 .076
12 -.062 -.310 .136 .205
13 2.260 .507 .480 - 1.070
14 -.077 .150 .826 -.621
15 ~.552 422 .001 -.273
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Conclusions
Our vortex methods, including the new three dimensional version

and the new vorticity creétibn ffbcédure, seem to be aBle_to reprdduce
important featurés of boundary layer behaQiqr in two aﬂd ﬁhree—dimen-
sions and at Reynolds numbers wﬁe:e instability is expectedT The
thfee-dimensional calculation does exhibit a growth of streamwise
vorticity\gnd'qu;tiness;rhowever, it was not performed for times
iong enoggh for anything rgsemﬁling fully developed turbulence to be

present. Unlike other methods,.ourlmethods‘are not limited at high .
* R by the difficulty in distinguishing real from numerical diffusion,
they are however limited, like other methods, by the fact that effects
not resolved‘canggt be seen; i.e., if there are not enough computational'
elements to represent a phenomeﬁon, that phenomenon will not be observed.
Sincé fully turbulent flow is very complicated, our methpds do not

obviate the need for careful modeling; they may indeed be compatible

with such modeling.
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