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Vortex models based on similarity solutions of the two-dimensional
diffusion equation
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Fluid Dynamics Laboratory, Department of Physics, Eindhoven University of Technology, P.O. Box 513,
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In this paper, a class of two-dimension@D) vortex models is analyzed, which is based on
similarity solutions of the diffusion equation. If the nonlinear advective term is neglected, the 2D
Navier-Stokes equation reduces to a linear problem, for which a complete orthonormal set of
eigenfunctions is known on an unbounded 2D domain. Some of the basic modes represent models
for diffusing monopoles, dipoles, and tripolar vortices, which evolve self-similarly in time. Here, we
mainly confine ourselves to an analysis of the dipole solution. In several respects, especially the
decay and, to a lesser extent, the lateral expansion properties, the dipole model appears to be in fair
agreement with the real evolution of dipolar vortices for finite Reynolds number, as obtained from
numerical simulations of the full 2D Navier-Stokes equations. However, the simulations reveal that
nonlinear effects result in small differences compared to the evolution according to the model. The
most important nonlinear effect that was observed is the formation of “tails” of vorticity in the wake

of the dipole. After a while, any initial condition leads to a vorticity distribution lying in between the
viscous similarity solution and the Lamb dipole solution, which represents the limit of a stationary,
inviscid flow. The exact form of the vorticity distribution is believed to be determined by an
equilibrium between diffusion of vorticity through the separatrix and advection of vorticity into the
wake of the dipole, which results in the formation of vorticity tails. A comparison revealed profound
qualitative agreements between the model together with the simulations and dipolar vortex
structures that were studied by laboratory experiments in stratified flui@90® American Institute

of Physics[DOI: 10.1063/1.1804548

I. INTRODUCTION examples of monopolar vortices in geophysical flows are
high and low pressure areas in the atmosphere and, for in-
An important feature of two-dimensioné2D) turbulent  stance, Meddies and Gulf Stream Rings in the Atlantic
flows is the emergence of vortices. Numerical simulations ofOcean. A famous example of an elliptical monopolar vortex
2D flows and several laboratory experiments have showis Jupiter's Great Red Spot, which already has been existing
that in (nearly planar flows, coherent vortices may form for more than 300 years.
spontaneously from an initially turbulent flow field a pro- The next type, the so-called dipolar vortex, consists of
cess which is due to the inverse energy cascade in 2D flomsvo closely packed counterrotating vortices propagating
and which is commonly referred to as self-organization.along a straight lingéor a curved path, if the vortices do not
These coherent vortices are abundant in quasi-2D flows andhve the same strengthThe dipole is self-propelling and
play an important role in the evolution, the dynamics, andcontains a net amount of linear momentum. Dipolar vortex
the transport properties of such flows. During the past destructures are believed to be the universal outcome of any
cades, a lot of research has been devoted to 2D turbulen¢guasiy2D flow force containing net linear momentum. In
and the dynamics of vortices, not in the least for their rel-nature, such dipolar flows play an essential role in, for in-
evance in the field of geophysical fluid dynamics. The flowsstance, the phenomenon known as atmospheric bloéking.
in the Earth’s atmosphere and oceans can be considered @ipoles have also been reported frequently in laboratory
approximately two-dimensional due to the rotation of theexperiment$>® and were studied extensively in numerical
Earth, the presence of a density stratification in the oceansimulations’®
and in the atmosphere, and also the geometrical confinement A third vortex type is the tripole, a structure with an
of the flow. elliptical core vortex surrounded by two semicircular satellite
Several types of vortices can be observed in nature, andortices of oppositely signed rotation. The tripolar vortex
have been studied in laboratory experiments and numericdhus rotates as a whole. Tripoles have been reported in forced
simulations. The most common type is the monopolar vortexiwo-dimensional turbulen¢®and, as a result of an unstable
which is defined as a swirling flow with one center of rota- shielded monopole, in rotatigand stratified fluids” A
tion that can be circular as well as elliptical in shape. Typicalnatural tripolar vortex has been observed some time ago in
the Bay of Biscay by infrared satellite imagéfy.
IAuthor to whom correspondence should be addressed. Electronic mail: ~ More complicated multipolar vortices, such as triangular
maurice_satijn@yahoo.com and square vortices, which consist of a core surrounded by
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s nondimensional by introducing the Reynolds number, which
0.4 is here defined as Re¥_?/ v, with v the kinematic viscosity
i and() andL representing typical values for the vorticity and
horizontal length scale in the flow, respectively. An alterna-
e tive formulation of(1), which is commonly used, is given by
dw 1,
E o E+J(w,¢)—R—eV w, 2

where J(w, ) is the Jacobian operator. The quantityis
the stream function, which is related to the vorticity by
w=-V2.

Several models have been formulated to describe mono-
poles and dipolar vortices. For circularly symmetric mono-
fe 1 E e of & laborat et decaving dinole i poles, the nonlinear term irfl) and (2) vanishes, i.e.,
e e e o teangt -V 0=3(0,)=0, sincev L V. The problem s thus re-
the vorticity extremes for four different times. Courtesy from RRRef. 16. duced to a linear one. Several models for monopoles exist,

but we will mainly confine ourselves to a particular class of
vortices—vortex structures with zero net circulation. A use-
three and four satellites, respectively, have also been reportédl model for shielded monopoles was introduced by Carton
in rotating” and stratified fluids> However, monopoles, di- and McWilliams'’ Its vorticity distribution in plane polar
poles, and tripoles are the only types of 2D vortices whichcoordinatedr, 6) is given by
may be stable, and can thus be considered as the “elementary N
particles” of two-dimensional flows. o(r,a) = (1 2 ar“)exp(— r, 3
mod-lzl];a fglrnt]hg;etrlljlesr;uedr?talfy"tc\)/oa:?;iyé%eas.Sgg\(/::ailcfrf;yct’ifyvherea IS the so-called steepness parameter. A special case
cal models for monopoles and dipoles have already bee%”ses fora=2. The evolut|.on of the sr_uelded monopolar
formulated and some of them will be recalled briefly in Sec./ortex can then be described by a time-dependent self-
Il. Most of the existing models for dipoles and tripoles do sn’mlar soI_utlo_n. The vorticity dlstrlbutlom)(r,F) of this so- _
C . . {utlon, which is also referred to as the shielded Gaussian
not include viscous effects. For geophysical flows, turbulen

. : : Co vortex, has the following form:
transport will replace molecular viscosity, but dissipative ef- g

fects are still expected to be small. The laboratory experi- B 1 r2 r2
ments and numerical simulations mentioned above, however, o(r,t) = 4 \2 1- exg —- , (4
are governed by molecular viscosity, and dissipative effects (1 + —et) 1+ R_et 1+ R—et

are mostly not negligible: vortices are observed to decay and

to expand radially due to lateral diffusion. A clear example,which may be written as

which serves as a practical application of our study, is the 5 5
. . . o . A r r

decay and expansion of a qllpolar vortex in a stratified fluid, o(r, ) =AM 1- 55— exp(— T) (5)

as presented by FI&P see Fig. 1. r=(t) r4(t)

The models that will be discussed in this paper do in- R i )
clude viscosity. More specifically, these models will be de-'t follows that the vortex radius(t), defined as the location
rived from the 2D diffusion equation, which is described Where the vci/rgcny profile changes sign, increases’ (@p
briefly in Sec. IIl. In this paper, we will confine ourselves to =11 *(4/R&t]"~. Its amplitudea(t), which is the maximum
the analysis of the shielded monopole and the dipole. In Se¢alue Of_z the vorticity at r=0, decays asa(f)=[1
IV, the numerical code is briefly discussed and several nu (4/Ret". It was shown by Kloosterziti and Beckerst
merical simulations to test the validity of the dipole model @l that several axisymmetric shielded initial vorticity dis-
are presented. Finally, in Sec. V, some conclusions are brieﬂVIbUtlons evolve towards this specific profile. In fact, it rep-

summarized. resents the asymptotic behavior of any axisymmetric vortic-
ity distribution (with zero net circulation consisting of a
Il. 2D FLOWS AND VORTEX MODELS positive core surrounded by an annulus of negative vorticity.

. _ _ Although the vortex itself is stable, it may transform into a
Basically, two-dimensional flows are governed by thetripole when sufficiently perturbed. We already emphasized
2D Navier-Stokes equation, which yields in vorticity formu- that several other models for monopolar vortices exist. For

lation instance, a similar time-dependent model for a nonshielded
Jw 1 monopole is known, for which the time evolution of the vor-
Al Vo= R—eVzw, (1) ticity distribution is given by(see, e.g., Kloosterzit)
2
with v=(u,v) the velocity vector. The vorticity is a scalar w(r,t) = ! exp - ' . (6)
. . . . _ ! 4
quantity in 2D flows and is defined as=(dv/dx)—(dul dy) 14—t 14—t
in Cartesian coordinategs,y). The equation has been made Re Re
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Models for dipoles are rarer, and for the tripole no ana-and isovorticity contours of the dipole reveals thatV o
lytical solution has been found yet. It could be noted that=0 in the major part of the flow field, since approximately
some properties of these vortices can be understood by poimte havev | V w. This is(to a lesser exteptlso the case for
vortex modeling, which is the most simplified vortex model a tripole. Note the relation of our approximation with the
that exists. However, we will confine ourselves here to mod-construction of the Lamb dipole. For the Lamb dipole a sta-
els with a continuous vorticity distribution. tionary and inviscid flow was assumed, leaving us with the

An analytical model for a stationafw/dt=0) and in-  equationv:Vw=J(w,#)=0. For the construction of our
viscid [(1/ReV2w=0] dipole was given by Chaplygitsee  models, weassumehis relation and are thus left with the 2D
the review by Meleshko and van Hefftand by Lamif'  diffusion equation. Since we have a physical reason for drop-
based on an assumed linear relationship between the vortiping the nonlinear term, it is tempting to assume that the
ity o and the stream functiony, i.e., w=k?y, so that evolution of the “elementary particles” of two-dimensional
J(w,¥)=v-Vw=0. Note that for any functional relationship flows is mostly governed by diffusion, even for moderate
w=f(y) the nonlinear term vanishes. It was also assumedalues of the Reynolds number. In other words, the influence
that the vorticity distribution equals zero outside a circle withof advection on the evolution at longer time scales may be
radiusr=a. The vorticity distribution of the so-called Lamb small: if one considers a dipole or a tripolar vortex in a
dipole can then be derived and is giver?by comoving or corotating frame, one mainly observes the de-

cay and lateral expansion of the structure.

Uk
w(r,0) = ——Ji(kr)sing, r=<a,

Jo(ka)
(7) Ill. SIMILARITY SOLUTIONS OF THE DIFFUSION
w(r,/)=0, r>a. EQUATION
Here,J, is thenth-order Bessel function of the first kinka The large-time asymptotics of the diffusion equation on

the first zero of];, andU the translation speed of the dipole. an infinite plane was discussed by KloosterZfelt was
Note thatr =a represents a closed streamline, which is com-shown that an expansion in similarity solutions provides an
monly referred to as the separatrix. Fluid elements canncgfficient method for recognizing the long-term behavior of
cross the separatrix and the dipole thus carries its own “at@ny initial vorticity field that is square integrable with respect
mosphere.” The results of several laboratory experiments oto the weight functionN(x,y):ex;{%(xz+y2)]. We will not
dipolar vortices have been compared with the Lamb dipolaliscuss the mathematical details of the analysis here, but
model and in some cases, a remarkable agreement has bemmfine ourselves to some essential points. For details, the
found between the experiments and this mogele, e.g., reader is referred to Kloosterzi#i.
Trieling, van Wesenbeeck, and van Héfst It should be The two-dimensional diffusion equation for the vorticity
noted that the “kink” in the vorticity distribution of the Lamb in Cartesian coordinatg,y) is given by
dipole forr=a is not realistic for a 2D flow with viscosity,
which is a serious drawback of this model. To overcome part Jo - ivz - i{(?z_w + 52_“’} 8)
of this discrepancy, Swatérdiscussed a dipole with viscos- & Re Re| ox*  oy?
ity, which predicts an exponential decay of the flow field, but
no radial expansion. Recently, several decay properties of tneomplete sets of orthonormal similarity solutions of the dif-
Lamb dipole were also analyzed by Nielsen and Rasmusserfusion equation on an infinite plane were formulated for sev-
However, their model is limited by the fact that the dipole is eral coordinate systent8In Cartesian coordinates, the simi-
assumed to expand adiabatically in the limit of weak viscoslarity solutions in one dimensiorb,(x), are given by
ity (see their paper for detajls = 1
In most of the laboratory experiments that have been ¢ (x) = Hn(X/\"Z)eXp(_ EXZ) (9)
reported, monopoles, dipoles, and tripolar vortices are ob- " v2™n! \ZT '
served to expand radially due to lateral diffusion. For the
monopole, this is well described li#), but for the dipole whereH,(x) are the Hermite polynomials, defined as
and tripole no solutions of this form have been analyzed |
b_efore. Another ef_fect that pla_ys a role in the_radlal expan- Ho(x) = (- 1)" exp(xz)d— expl- x9). (10)
sion of the dipole is the entrainment of irrotational ambient dx"
fluid (see, e.g., the experimental and numerical results on » ) L
dipoles in a stratified fluid by Beckeet aI.24). The influence Any initial condition with vorticity distributionw®(x,y) that
of the entrainment will be discussed briefly in Sec. IV. is square integrable with respect to £3p+y?)] can be
As was mentioned in the Introduction, one of the goals€Xpanded in terms of the eigenfunctiobg(x) and®n(y) in
of the present analysis is to formulate analytical models fothe following way:
two-dimensional diffusing dipoles and tripoles. We will de- o o
rive these models from the 2D diffusion equation, thus as- 0 _
suming that any nonlinearity is negligible during the evolu- 0 0y) = goz,oanm@n(x)cpm(y). (1)
tion of the flow field. This seems a reasonable approximation
for the following reason: close inspection of the streamlinesThe coefficientsa,,,, are then given by
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anm= J ) f ’ w"(x,y)@n(X)@m(y)exp[%(x2+yz)]dx dy. wt

(12 05|

The complete time-dependent solution of the flow field, start-

ing with initial condition @®(x,y), then yield$® or :
o< 8 X y os] ]
Y.t = O — | P = |, 13
P ”<b(t)> m( b(t)) (19
whereb(t)=(1+2pt)Y? (with 8 a constantis introduced to B — o ] , s
provide a similarity variable. The long-term evolution, or the y —

asymptotic behavior, is determined &y, for which the sum

n+m s as low as possible aray,,,# 0. This corresponds to FIG. 2. Time evolution of the vorticity distribution of the Stokes dipole.

the mode with the longest decay time. Shown are the cross sections through the vorticity extremestféte2-0,
By assuming some arbitrary dipolar-like initial flow o4 08 and1.2.

field, one is able to derive the asymptotic state for the dipole.

For instance, assume an initial distribution of vorticity given

by }rz
1 2 .
Yr,0t)=—| L—exg - sin @. (16)
oOxy)=1, -1<x<1, 0<y<I1, ' 1+—t
(14) Re
o(xy)=-1, -1<x<1, -1<y<0, From the stream function, we can calculate the induced

velocities at the vorticity extrema, which are located at
with %(x,y)=0 outside the square. The first coefficieats, ~the  coordinates ([1+(2/Ret]'?,#/2) and (1
are given byag,=0, a;0=0, anda01=2/\"57. The long-term +(2/Ret]¥2,37/2). At the extrema, the horizontal velocity
behavior of this distribution thus turns out to be related to the! €an be obtained frora,=—dyi/dr, while the vertical veloc-
solutionW o, = P®;. The combination¥;, also represents a 1ty v can be determined from,=(1/r)(dy/46). The veloci-
dipole, but with its axis oriented in thedirection. The vor-  ti€s (U,v) induced in the extrema are thus given by

ticity distribution can easily be derived and is given by 1 2
u(t):—(T,z—1>, v=0. (17)
" 1+ %t
o(r,0,t) = 3 2
(1 +—t) (1 +—t> Note that the positions of the extrema only change due to
Re Re lateral diffusion.
1, We will also evaluate the evolution of the energythe
i enstrophyV, and the palinstroph{?, which are well-known
xXexp - 5 sin 6. (15  integral quantities defined as
1+—t 1 1
Re Ezéff|v|2dx dy, Vziffwzdx dy, (19

dinates(r,#) here. This solution describes a dipolar flow
field, which expands radially a&t)=[1+(2/Ret]*? while
its amplitude decreases agt)=[1+(2/Ret]™>% Hereafter, For the Stokes dipole, the time evolution of these quantities

we will refer to this model as the “Stokes dipole.” A related can pe calculated by usir@5) and(16) and are given by
solution has been found by Voropayev and Afana§§/€m a

Note that we have rewritten the solution in plane polar coor- 1
P:EIJ|Vw|2dxdy.

dipolar-like 2D flow resulting from a point-wise forcing. In E(t) = i, V() = Lz, P(t) = %
Fig. 2, the time evolution of the cross section of the vorticity ( _) ( ﬂ) ( 3)

ST L . 1+ 1+ 1+
distribution along they axis is shown for four different Re Re Re
times. The time has been rescaled with the Reynolds number (19)
here. Note the nice qualitative agreement with the laboratory
experiment shown in Fig. 1. whereEy=;me, Vo=;me, andPy=3me.

The stream function for the dipole solution can also be  In a similar way as described above, one is able to derive

calculated fromw=-V?2y and is given by a solution for the tripole, which is given by
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1
- —r2 = . =
wo(r,o,t) = 5[ 1- 2 ex > |
(1+—t) 1+—t 1+—t
Re Re Re

with dD the boundary of the domaid, is a conserved quan-

(20 tity while using periodic boundary conditiori# fact, I'=0).

. . . The second moment of the vorticity, or the enstrophy, is not
tTigr? \glpo(lsr tqumsdoel;)tetr?dit;% %?]Sﬁ;'%er?er?é‘tti;iTiiriSﬁ%L“ncéonserved but decreases in time due to viscous effects. It has
v coorzresponzgls o a quadrupolar vortex str.ucture consistinbeen checked that the f|n|te_ness of the domain does not affect
ofltlwo patches of positive and two patches of ne:qative vor-.gn © resilts of th? computations. Some effect.s of th.e period-
-~ . ) ) icity of the domain cannot be avoided. This will be discussed
ticity, which we will not discuss here. Note that such a qua

q lar struct wally splits info two dinoles. It Id'in detail later in this section.
rupolar structure eventually SpHts into two dipoles. It cou The evolution of the flow was studied with a shielded

also ﬁe Vet.“f'es‘f'l; by fr?’?ph?“ﬂg the d”O”“”edar e(‘j’o'““?“ of the 1 onopole, the Stokes dipole, and the Lamb dipole as initial
eigentunctionsym, that higner order modes do ot corre- -, qiion The evolution of the vorticity distribution, the de-

spond to stqble isolated _coherent vortex structures “k%ay of the amplitud@(t), and the evolution of the raditigt)
monopoles, dipoles, and tripoles. of the monopole as well as the dipoles, as defined in Sec. Il,
have been evaluated. Moreover, we have studied the decay of
the integral quantities energy, enstrophy, and palinstrophy of
IV. NUMERICAL SIMULATIONS the flow field.

. .- . .- The calculated vorticity field(x,y) and stream function
To verify the validity of the dipole model for finite Rey- Jx.y), are written on a ?/egular( g??d The location of the

nolds numbers and to examine the effect of nonlinearity on” "’ £ 1h ity distribution is | | not
the evolution of the flow field, numerical simulations of the ma;lxwrnumt Od e vor_(ljm Y !{S fl du_lo(r; Its in _ge(rjlebra . nto exl-
complete 2D Navier-Stokes equation (im, ) formulation actly located on a grid point and IS determined by interpoia-

(2) have been performed using a Fourier pseudospectrgl'lon' Irc]j or(;er ]EO d(;tef;mm;e_t;g '02""“0” of tnh_e ][natxmug] a
solver. A resolution of 512 Fourier modes in each direction>¢Cc0Nd-0raer iunctionlx,y)= n=0=meo@mnX"Y" IS first fitte

was used for all the runs. The flow is well resolved for thisthrough the computational datdocated around the grid

resolution: increasing the number of Fourier modes does ndoint with thf? mam_mt(;mt compu(;att)lor}al vorilg)t)_/l'_l'r?en, th(ta
significantly alter the evolution of the flow field. A simula- MaXimum off(x,y) is determined bf(x,y)=0. This poin

tion under typical conditions using 1024nodes leads to a canthbg found by applying a Newton-Raphson iteration
maximum relative difference in the vorticity field of only method.
0.05%, which is negligible for our purpose.

. . ; A. Evolution of the shiel monopolar vortex
The simulations have been performed in a square box of olution of the shielded monopolar vorte

dimensionsL,=L,=64 with periodic boundary conditions. First, a numerical simulation has been performed for a
Note that the circulatiol’, or the first moment of the vortic- shielded monopolar vortex for Re=1000. Since the solution
ity, defined as for the monopole is exact, this case should be a good oppor-

05 | Tk g 12 F g

4t/ Re — 4t/ Re —

(2) (b)

FIG. 3. Numerical simulation of a shielded monopole for Re=1000. Shown are the time evolutiantieé amplitudea(t) and (b) the radiusf(t) of the
shielded monopolar vortex. The-marks represent the data from the simulations and the dashed lines the predictions of thgseméejs(4) and(5)].
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FIG. 4. Results of a numerical simulation of a Stokes dipole with Re=500. Shown are contour plots of the vorticityRfor @.02(a), 0.04 (b), 0.08(c),
0.20(d), 0.32(e), and 0.40(f). The contour levels are given hy=+0.01(0.01) 0.05 and +0.10.1) 1.0.

tunity to test the solver as well as our interpolation method.

The initial condition of the simulation is given bg) for
t=0

o(r) = (1 -r?)exp-r?). (22

The results of the simulation are shown in Fig. 3, where
the decay of the amplitudg-ig. 3@)] and the expansion of
the vortex[Fig. 3b)] is compared to the prediction by the
model. Here, and further, the--marks represent the data
from the simulation and the dashed lines represent the
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FIG. 5. Results of a numerical simulation of a Stokes dipole with Re=500. Showwa#@-scatter plots foKa) 2t/Re=0 andb) 2t/Re=0.8.

model. The time is rescaled by using the Reynolds numbenf the periodic boundary conditions of the computational do-
Comparison between simulation and model indeed revealsain.

that the amplitude decays aé&)=[1+(4/Ret]? and the ra- We have carefully checked the influence of the finiteness
dius increases aft)=[1+(4/Ret]¥2 A perfect agreement of the domain by performing simulations in a smaller box
between simulation and model is found in both cases, so thatith L,=L,=32. It was found that the vertical dimension of
it can be concluded that the solver and the interpolation prothe domain did not affect any of the results of our computa-
gram are reliable. Note that in this case, an interpolationions. Furthermore, the 6464 box is large enough to avoid
method has also been used to determine the radius for whiahe collision of the dipole with its tail, while we are still able

w(r)=0. to study its evolution for a considerable amount of time. This
. . is an important point, since we found that in the smaller box
B. Evolution of the Stokes dipole the dipole-tail collision leads to a different growth rate of the

For the dipoles, several different initial conditions were radius during the collision and the subsequent shedding of a
taken. First, the evolution of the Stokes dipole will be com-"new” tail. After the collision process, the radius increases
pared to the model for Re=500. Then, simulations with othesMoothly again. This can be considered as a numerical arti-
Reynolds numbers will be considered, since it can be extact that contaminates the data. The decay of the amplitude is
pected that the validity of the model depends on the value ofot affected by the collision. We have checked that the
the Reynolds number. In the final part of this section, somédlipole-tail collision is the only effect of the periodicity of the

simulations of the Lamb dipole will be discussed. computational domain in thg direction: the results of the
The initial condition for the Stokes dipole is given by Simulations in the initial stage remain the same in the smaller
(15) for t=0 box.

The structure of dipoles is often characterized by evalu-
ating the(w, i)-scatter plot, which is shown in Fig. 5 for the
Stokes dipole. Note that is the stream function in a comov-
ing frame, i.e.,¢y=¢/ —Uy, whereU represents the transla-
The factore? is introduced to assure that the maximumtion speed of the dipole ang’ the stream function in the
vorticity wma=Q=1. In Fig. 4, the time evolution of the fixed frame of reference. The initidlw, y)-scatter plot is
vorticity distribution is shown for this dipole. Here, and here- shown in Fig. §a). Of course, no functional relationship be-
after, solid lines represent contours of positive vorticity andtweenw and ¢ can be recognized here. The scatter plot for
dashed lines contours of negative vorticity. The dipole propa2t/Re=0.80 is shown in Fig.(b). It can be seen that the
gates from the left to the right. It can be seen that the dipoleénaximum values of the vorticity and stream function de-
loses its circular shapgsee Fig. 4b)] and, subsequently, it crease in time. It can also be observed that the relation itself
can be observed that two tails are formed behind the dipolbas changed in time and tends towards some functional rela-
[see Figs. &) and 4d)], which is due to nonlinear effects: tionship w=f(), which appears to be slightly nonlinear.
the initial distribution of vorticity has nonzero low-amplitude We also studied the influence of nonlinear effects quan-
vorticity outside the dipole’'s separatrix, which is advectedtitatively by evaluating the Jacobialiw, ). Figure 6 shows
into its wake in the beginning of the evolution. Note that, two contour plots ofJ(w, ) in a comoving frame of refer-
after a while, the dipole will collide with its own tail because ence. The distribution of the initial condition is shown in Fig.

1
o(r,0) =e'?r exp(— Erz)sin 6. (23
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FIG. 6. Results of a numerical simulation of a Stokes dipole with Re=500. Shown are contour plots of the Ja@oehjarfor (a) 2t/Re=0 and(b)
2t/Re=1.2. The circle represents the separdyix0). The contour spacindJ(w, ¥) is (a) 2.5xX 10* and(b) 2.5x 10°5.

6(a). Obviously, J(w,#)# 0, otherwise the Stokes dipole ter that, a steady increase is observed. The fast increase of
would have been an exact solution of the 2D Navier-Stokeshe radius in the beginning is caused by the tail formation as
equation. It is observed that the nonlinear term consists afliscussed above. One may argue that after this initial tran-
eight patches of alternating sign. Four of the patches arsient the model predicts the expansion of the dipole more
located within the separatrix of the dipole and four mainlyaccurately. Therefore, the expansion of the dipole after ap-
outside its separatrix. After a while, the nonlinear term isplying a time shift of 2t/Re=0.20 is shown in Fig. 9 and
only active in the four core aredsee the contour plot in Fig. again compared with the model. We thus compared the
6(b)]. The area of the four central patches is larger now, ashifted data with[rg+(2/Re)t]1’2, with ry=1.47, i.e., the
the dipole has expanded in the meantime. The disappearangealue off for 2t/Re=0.20. It can be seen that frort/Re
of the four patches outside the separatrix can be explained by 0.20, the expansion of the structure seems to be reasonably
the formation of the tails as mentioned above. The remainingvell predicted by the model. Note that the exact value of the
patches are not symmetrical around the dipole’s center buime shift is more or less arbitrary. The dipole expands
are slightly affected by its translation. The distribution of slightly faster than the model predicts, which is believed to
J(w,¥) in four areas within the dipole’s separatrix can bebe caused by the entrainment of ambient irrotational fluid.
understood by means of the topology of the dipole: a circulaiThe exact influence of this entrainment cannot be measured
dipole has two axes of symmetry for whicw,#)=0, precisely, however.
namely, the line through the vorticity extrema and the line It can be concluded that nonlinear effects do not signifi-
between the two halves of the dipole. In the four areasantly affect the decay of the maximum vorticity, but they do
J(w, ) # 0, since the streamlines are not exactly parallel toaffect its location. Because of the deviant behavior of the
the isovorticity contours. A similar distribution of four radius, another measure of the horizontal dimension of the
patches has also been found in a laboratory experiment of dipole might be preferable. The radius of the dipole could be
dipole in a stratified fluid. In Fig. 7, we show a typical ex- defined in several ways, for instance, by the location of the
ample of a measurev, ¢) relationship and the correspond- maximum vorticity(or the half distance between the vortic-
ing distribution of the Jacobian. A good qualitative agree-ity extrema of the dipolg as was used above. Another pos-
ment can be observed between the experiment and the resudibility to characterize the lateral expansion of the dipole
of our simulation[Figs. §b) and gb)]. could be an evaluation of the radius of the separatrix, al-
Figure 8 presents the decay of the peak vorti@ty)  though it should be noted that the shape of the separatrix is
[Fig. &a)] and the increase of the dipoles radiifs) [Fig.  not perfectly circular. The radius of the separativhere ¢
8(b)]. The actual evolution of these quantities, as indicated=0) is now defined as the distance between the center of the
by the +-marks, is compared with the prediction based ondipole and the separatrix through the point with maximum
the model(indicated by the dashed lineHere, the model vorticity. We have also evaluated the radius of the dipole
predicts thafi(t)=[1+(2/Ret] 32 andf(t)=[1+(2/Ret]¥2  with this particular definition in time and it was concluded
It can be concluded that the decay of the amplitude is perthat no significant differences were found in the time evolu-
fectly described by the model. For the radius, a differentiion of the radii. Hereafter, we will only evaluate the location
behavior is found. It can be seen that the radius of the dipolef the maximum to measure the radius of the dipole.
increases fast during the beginning of the computation. Then, It may be expected that the results change for different
for 2t/Re=0.08, the value of the radius suddenly drops. Af-Reynolds number, since for higher Reynolds numbers, the
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FIG. 7. Example of a laboratory experiment of a dipolar vortex in a strati- (b)

fied fluid. Shown arga) the measuredw, ¢) relationship andb) a contour

plot of the Jacobiad(w, ). Courtesy from FI6(Ref. 16. FIG. 8. Results of a numerical simulation of a Stokes dipole with Re

=500. Shown are the time evolution ¢d) the amplitudea(t) and (b) the
radiusf(t) of the dipole. The dashed lines represent the model.

nonlinear term becomes relatively more important. There-

fore, the simulation of the Stokes dipole, as discussed above,

has also been performed for other values of the Reynolds

number, being Re=100, 1000, and 5000. We have compared 2
the decay of the amplitude and the evolution of the radius for o L
the Stokes dipole with the model. The results for Re=100 G L
and Re=1000 are shown in Fig. 10. For all the Reynolds et
numbers considered here, the decay of the amplitude is very Lt - )
well described by the model. Apparently, the decay of the R
maximum vorticity is not affected by nonlinear effects for sk ’
the range of Reynolds numbers that we have considered ]
here. For the radius, the validity of the model is found to
depend considerably on the Reynolds number. We have not
applied a time shift for the data presented here. It can be
observed, however, that the results of the simulations for
lower Reynolds numbers agree much better with the model.
It should be noted that the deviation from steady growth 0 1

around 2/Re=0.9, as observed for the simulation with Re 2t/Re —

::.I'OOO' IS Caqsed by a CQHISIOH of the dipole with its own IG. 9. Results of a numerical simulation of a Stokes dipole with Re
tail. For the simulations with the largest Reynolds numbers.500. shown is the raditi(t) after applying a time shift of &t/Re=0.2.
we were not able to avoid the collision during the simulation,The dashed line represents the model.
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FIG. 10. Numerical simulations of a Stokes dipole for Re#0@nd Re=1000x). Shown are the time evolution ¢d) the amplitudea(t) and(b) the radius
f(t) of the dipole. The dashed lines represent the model.

since the dipole’s propagation speed becomes larger as the First, a simulation has been performed with Re=500.

Reynolds number increases. For Re=5000, it was found thallote that the effective Reynolds number is somewhat lower,

the expansion of the dipole could no longer be predictebecause the Lamb dipole contains less energy than the

accurately by the model, even when a time shift, as discusseStokes dipole fol.=1 andw,4=1. FOr a proper comparison

above, was applied. with the predictions of the Stokes dipole model, we will
Finally, we have evaluated the time evolution of the en-rescale the Reynolds numb@s used in the modehccord-

ergy, the enstrophy, and the palinstrophy for different Rey-ing to

nolds numbers and compared the results with our model. The

results are presented in Fig. 11. It can be concluded that the

decay of the energFig. 11(a)] is perfectly described by the Re, = Re /ﬂ, (24)

model, since the model and the data of the simulations all Estokes

collapse on a single curve. This is also the case for the en-

strophy[Fig. 11(b)], except for a smal(hardly visible dif-

fergnce in the _evolution_of the enstr_ophy for _Re:5000._Th amb and the Stokes dipole, respectively.

palinstrophy[Fig. 11(c)] is found to increase in the begin- The evolution of the vorticity distribution is shown in

ning of the evolution, with a relatively stronger increase forFig 12. It can be observed that the Lamb dipole also forms

larger Reynolds numbers. After this initial transient, the pa'.vorticity tails, although they are much weaker than in the

linstrophy decreases according to the model. The increase thse of the Stokes dipole. The reason for this weak tail for-
the beginning can be explained by the tail formation, as 98 ation is the following: initially, the Lamb dipole does not
dients of vorticity are created in the wake of the dipole dur-, .. vorticity outside its sefaaratrix. However. as time
ing th'is Process. In this way, the tail formgtion also enh"’mceﬁvolves, vorticity will diffuse through the separ,atrix and
the dissipation somewnhat, an effect that is apparently strons,,yihen the kink in the initial vorticity distribution. Part of
ger when the Reynolds number is larger. We may COnCIUd?nis vorticity will subsequently be advected into the wake,

thf.it’ although we have ob_served local d|f_ference§ in the ®V%esulting in the formation of small tails. Note that a very low
lution and decay of the dipolée.g., the tail formatioy the contour level was needed to visualize the tails.

decay is very well described in terms of the integral quanti- The evolution of the(w, y)-scatter plot has also been
ties energy and enstrophy for the range of Reynolds number&amined for the Lamb dipc')Ie. In Fig. @8, the scatter plot

considered here. is shown for 2/Re=0. Of course, the relationship is linear
here, according to Lamb’s model. The valuekaé given by
k=1.85. In Fig. 18b), the (w, ¢)-scatter plot is shown for
The initial condition for the Lamb dipole is given lty),  2t/Re=0.80. It is observed that the form of the, ¢) plot
scaled such thdt=1 andw,,,==1. The typical horizontal changes as time proceeds. The relationship becomes slightly
dimensionL is here defined as the distance from the center ohonlinear. A similar behavior was already observed by van
the dipole to the location of the maximum, in analogy with Geffen and van HeijﬁA comparison with the scatter plot in
the simulations of the Stokes dipole. Fig. 5 reveals that thdw,)-scatter plot tends towards

with E;mp, and Egoesbeing the initial kinetic energy of the

C. Evolution of the Lamb dipole
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FIG. 11. Results of numerical simulations of a Stokes dipole. Shown are the -10 | R
time evolution of(a) the energyE, (b) the enstrophyV, and(c) the palin-
strophyP for different Reynolds numbers. The results have been compared
with the model.

(C) r —

roughly the same form as for the Stokes dipole. We may

conclude that the vorticity distributions of the dipoles appeaiF!G. 12. Results of numerical simul'aFion of a Lamb dipole with Re=500.

t0 tend towards the same form. B e e e o e
The evolution of the peak vorticit(t) and the growth 1) 1.0.

of the radiusf(t) of the dipole are shown in Fig. 14. Also

here, the data from the simulations have been compared teviant behavior, but a very fast increase during the begin-

the predictions of the Stokes dipole model. It can be seen ining of the evolution, as observed for the Stokes dipole, is

Fig. 14a) that the decay of the amplitude is somewhatnot observed here. Initially, the radius of the dipole even

slower than predicted by the Stokes model. This is mostlecreases somewhat, which can be explained by the smooth-

likely related to the less pronounced tail formation comparedening of the vorticity profile in the early stage of the evolu-

to the case of the Stokes dipole. The radius shows a slightlgion.
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FIG. 15. Numerical simulations of a Lamb dipole for Re= 180 and Re=100Q X). Shown are the time evolution ¢) the amplitudea(t) and(b) the radius
f(t) of the dipole. The dashed lines represent the model.
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E/Eyt ' ' ' ' | We have also studied the decay of the energy, the enstro-

phy, and the palinstrophy for different Reynolds numbers.
The results are shown in Fig. 16. We have compared the
results of the simulations with the predictions according to
the Stokes dipole mod€ll9) and the model developed by
Nielsen and Rasmussémhe latter model predicts that the
energy and enstrophy will decay according to

Eo Vo

k2 k2 27
<1+—t) (1+—t>
Re Re

with Ey andV, being the initial energy and enstrophy of the
Lamb dipole, andk being the constant as introduced in Sec.
Il. Note that we have rewritten the expressions in a nondi-
mensional form here. For the range of Reynolds numbers
considered here, we observe that the actual decay of the in-
tegral quantities lies in between the predictions of the Stokes
dipole model(upper solid lines and the model of Nielsen
and Rasmusselllower dashed lings although the latter
model is somewhat more accurate. Note that the expansion
of the Lamb dipole has also been studied by Nielsen and
Rasmussen(see their paper for detajldt can be concluded
that their model seems to predict the expansion of the Lamb
dipole more accurately than the Stokes dipole model does.
Finally, we have compared the evolution of the Stokes
and Lamb dipole by considering the evolution of the vortic-
ity distribution. In Fig. 17, the evolution of a cross-sectional
vorticity distribution (through the extremegds shown for a
Stokes dipole as well as for a Lamb dipole. Several features
that have been discussed above, for instance, the different
radial expansion of the Stokes dipole and the faster decay of
the amplitude of the Lamb dipole are also clearly visible
here. It can be seen in these figures that the vorticity profile
for both dipoles tends towards the same form. A feature that
has not been observed earlier is the slightly lower slope of
the vorticity distribution near the dipole’s axis=0). This is
an indication of entrainment of irrotational ambient fluid
which we mentioned before. The entrainment most likely
explains the enhanced expansion of the dipole compared to
the predictions of our model.
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V. CONCLUSIONS AND DISCUSSION

FIG. 16. Results of numerical simulations of a Lamb dipole. Shown are the  |n this paper a class of vortex models is formulated

time evolution 0f(&) the energyE, (b) the enstrophy, and(c) the palin- pagay on similarity solutions of the 2D diffusion equation
strophyP for different Reynolds numbers. The upper solid lines represents !

the Stokes dipole model, the lower dashed lines the model of Nielsen anfl€r€, We mainly Conﬁn'ed ourselveg tO. an a'nalySiS of the
Rasmusse(Ref. 7). model that can be derived for a diffusing dipolar vortex.

Numerical simulations of the complete 2D Navier-Stokes
equation have been performed for the Stokes dipole, as well
The evolution of the Lamb dipole has also been studiedas for the familiar Lamb dipole. We found that the evolution
for different Reynolds numbers, namely, Re=100 and Reof 2D dipolar vortices is in certain respects close to the pre-
=1000. The results of these simulations are shown in Fig. 15iction by the model based on the diffusion equation. The
Here, it is not found that the evolution of the flow is better decay properties and, to a lesser extent, the radial expansion
predicted by the Stokes model for lower Reynolds numbersof the dipoles are found to be well predicted by the model for
In all cases, the decay of the amplitude is slower than prelow and moderate values of the Reynolds number. The non-
dicted by the model. It can be observed that the evolution ofinear effects only lead to small deviations in the behavior of
the radius was very well predicted for Re=500. For thethe vortices. The most important nonlinear effect is the for-
smaller and larger Reynolds numbers discussed here, the viaration of tails of vorticity in the wake of the dipole. The
lidity of the model is worse. entrainment of ambient fluid is another small effect. Al-
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FIG. 17. Comparison of the evolution of a Stokes and a Lamb dipole for Re=500. Shown are cross sections of the vorticity glaris floe 2/Re=0,
2t/Re=0.8(lines with the+-mark9 and the prediction according to the Stokes model t@R2=0.8 for(a) the Stokes dipole an¢b) the Lamb dipole.

though small deviations exist due to these effects, we havBows are not perfectly 2D and other effe¢igkman damp-
found that the Stokes dipole model provides accurate predidng, vertical diffusion may play an additional role in the
tions in terms of the decay of the integral quantities energylow evolution.
and enstrophy.
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