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Vortex models based on similarity solutions of the two-dimensional
diffusion equation
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Fluid Dynamics Laboratory, Department of Physics, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

(Received 24 December 2003; accepted 16 August 2004; published online 5 October 2004)

In this paper, a class of two-dimensional(2D) vortex models is analyzed, which is based on
similarity solutions of the diffusion equation. If the nonlinear advective term is neglected, the 2D
Navier-Stokes equation reduces to a linear problem, for which a complete orthonormal set of
eigenfunctions is known on an unbounded 2D domain. Some of the basic modes represent models
for diffusing monopoles, dipoles, and tripolar vortices, which evolve self-similarly in time. Here, we
mainly confine ourselves to an analysis of the dipole solution. In several respects, especially the
decay and, to a lesser extent, the lateral expansion properties, the dipole model appears to be in fair
agreement with the real evolution of dipolar vortices for finite Reynolds number, as obtained from
numerical simulations of the full 2D Navier-Stokes equations. However, the simulations reveal that
nonlinear effects result in small differences compared to the evolution according to the model. The
most important nonlinear effect that was observed is the formation of “tails” of vorticity in the wake
of the dipole. After a while, any initial condition leads to a vorticity distribution lying in between the
viscous similarity solution and the Lamb dipole solution, which represents the limit of a stationary,
inviscid flow. The exact form of the vorticity distribution is believed to be determined by an
equilibrium between diffusion of vorticity through the separatrix and advection of vorticity into the
wake of the dipole, which results in the formation of vorticity tails. A comparison revealed profound
qualitative agreements between the model together with the simulations and dipolar vortex
structures that were studied by laboratory experiments in stratified fluids. ©2004 American Institute
of Physics. [DOI: 10.1063/1.1804548]

I. INTRODUCTION

An important feature of two-dimensional(2D) turbulent
flows is the emergence of vortices. Numerical simulations of
2D flows and several laboratory experiments have shown
that in (nearly) planar flows, coherent vortices may form
spontaneously from an initially turbulent flow field,1–3 a pro-
cess which is due to the inverse energy cascade in 2D flows
and which is commonly referred to as self-organization.
These coherent vortices are abundant in quasi-2D flows and
play an important role in the evolution, the dynamics, and
the transport properties of such flows. During the past de-
cades, a lot of research has been devoted to 2D turbulence
and the dynamics of vortices, not in the least for their rel-
evance in the field of geophysical fluid dynamics. The flows
in the Earth’s atmosphere and oceans can be considered as
approximately two-dimensional due to the rotation of the
Earth, the presence of a density stratification in the oceans
and in the atmosphere, and also the geometrical confinement
of the flow.

Several types of vortices can be observed in nature, and
have been studied in laboratory experiments and numerical
simulations. The most common type is the monopolar vortex,
which is defined as a swirling flow with one center of rota-
tion that can be circular as well as elliptical in shape. Typical

examples of monopolar vortices in geophysical flows are
high and low pressure areas in the atmosphere and, for in-
stance, Meddies and Gulf Stream Rings in the Atlantic
Ocean. A famous example of an elliptical monopolar vortex
is Jupiter’s Great Red Spot, which already has been existing
for more than 300 years.

The next type, the so-called dipolar vortex, consists of
two closely packed counterrotating vortices propagating
along a straight line(or a curved path, if the vortices do not
have the same strength). The dipole is self-propelling and
contains a net amount of linear momentum. Dipolar vortex
structures are believed to be the universal outcome of any
(quasi-)2D flow force containing net linear momentum. In
nature, such dipolar flows play an essential role in, for in-
stance, the phenomenon known as atmospheric blocking.4

Dipoles have also been reported frequently in laboratory
experiments3,5,6 and were studied extensively in numerical
simulations.7–9

A third vortex type is the tripole, a structure with an
elliptical core vortex surrounded by two semicircular satellite
vortices of oppositely signed rotation. The tripolar vortex
thus rotates as a whole. Tripoles have been reported in forced
two-dimensional turbulence10 and, as a result of an unstable
shielded monopole, in rotating11 and stratified fluids.12 A
natural tripolar vortex has been observed some time ago in
the Bay of Biscay by infrared satellite imagery.13

More complicated multipolar vortices, such as triangular
and square vortices, which consist of a core surrounded by
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three and four satellites, respectively, have also been reported
in rotating14 and stratified fluids.15 However, monopoles, di-
poles, and tripoles are the only types of 2D vortices which
may be stable, and can thus be considered as the “elementary
particles” of two-dimensional flows.

The aim of this study is to analyze a special class of
models for these “elementary” vortex types. Several analyti-
cal models for monopoles and dipoles have already been
formulated and some of them will be recalled briefly in Sec.
II. Most of the existing models for dipoles and tripoles do
not include viscous effects. For geophysical flows, turbulent
transport will replace molecular viscosity, but dissipative ef-
fects are still expected to be small. The laboratory experi-
ments and numerical simulations mentioned above, however,
are governed by molecular viscosity, and dissipative effects
are mostly not negligible: vortices are observed to decay and
to expand radially due to lateral diffusion. A clear example,
which serves as a practical application of our study, is the
decay and expansion of a dipolar vortex in a stratified fluid,
as presented by Flór,16 see Fig. 1.

The models that will be discussed in this paper do in-
clude viscosity. More specifically, these models will be de-
rived from the 2D diffusion equation, which is described
briefly in Sec. III. In this paper, we will confine ourselves to
the analysis of the shielded monopole and the dipole. In Sec.
IV, the numerical code is briefly discussed and several nu-
merical simulations to test the validity of the dipole model
are presented. Finally, in Sec. V, some conclusions are briefly
summarized.

II. 2D FLOWS AND VORTEX MODELS

Basically, two-dimensional flows are governed by the
2D Navier-Stokes equation, which yields in vorticity formu-
lation

]v

]t
+ v · = v =

1

Re
¹2v, s1d

with v=su,vd the velocity vector. The vorticityv is a scalar
quantity in 2D flows and is defined asv=s]v /]xd−s]u/]yd
in Cartesian coordinatessx,yd. The equation has been made

nondimensional by introducing the Reynolds number, which
is here defined as Re=VL2/n, with n the kinematic viscosity
andV andL representing typical values for the vorticity and
horizontal length scale in the flow, respectively. An alterna-
tive formulation of(1), which is commonly used, is given by

]v

]t
+ Jsv,cd =

1

Re
¹2v, s2d

where Jsv ,cd is the Jacobian operator. The quantityc is
the stream function, which is related to the vorticity by
v=−¹2c.

Several models have been formulated to describe mono-
poles and dipolar vortices. For circularly symmetric mono-
poles, the nonlinear term in(1) and (2) vanishes, i.e.,
v·=v=Jsv ,cd=0, sincev' =v. The problem is thus re-
duced to a linear one. Several models for monopoles exist,
but we will mainly confine ourselves to a particular class of
vortices—vortex structures with zero net circulation. A use-
ful model for shielded monopoles was introduced by Carton
and McWilliams.17 Its vorticity distribution in plane polar
coordinatessr ,ud is given by

vsr,ad = s1 − 1
2 aradexps− rad, s3d

wherea is the so-called steepness parameter. A special case
arises fora=2. The evolution of the shielded monopolar
vortex can then be described by a time-dependent self-
similar solution. The vorticity distributionvsr ,td of this so-
lution, which is also referred to as the shielded Gaussian
vortex, has the following form:

vsr,td =
1

S1 +
4

Re
tD231 −

r2

1 +
4

Re
t4exp1−

r2

1 +
4

Re
t2 , s4d

which may be written as

vsr,td = âstdF1 −
r2

r̂2stdGexpS−
r2

r̂2std
D . s5d

It follows that the vortex radiusr̂std, defined as the location
where the vorticity profile changes sign, increases asr̂std
=f1+s4/Redtg1/2. Its amplitudeâstd, which is the maximum
value of the vorticity at r =0, decays as âstd=f1
+s4/Redtg−2. It was shown by Kloosterziel18 and Beckerset
al.19 that several axisymmetric shielded initial vorticity dis-
tributions evolve towards this specific profile. In fact, it rep-
resents the asymptotic behavior of any axisymmetric vortic-
ity distribution (with zero net circulation) consisting of a
positive core surrounded by an annulus of negative vorticity.
Although the vortex itself is stable, it may transform into a
tripole when sufficiently perturbed. We already emphasized
that several other models for monopolar vortices exist. For
instance, a similar time-dependent model for a nonshielded
monopole is known, for which the time evolution of the vor-
ticity distribution is given by(see, e.g., Kloosterziel18)

vsr,td =
1

1 +
4

Re
t

exp1−
r2

1 +
4

Re
t2 . s6d

FIG. 1. Example of a laboratory experiment on a decaying dipole in a
stratified fluid. Shown are cross sections of the vorticity distribution through
the vorticity extremes for four different times. Courtesy from Flór(Ref. 16).
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Models for dipoles are rarer, and for the tripole no ana-
lytical solution has been found yet. It could be noted that
some properties of these vortices can be understood by point
vortex modeling, which is the most simplified vortex model
that exists. However, we will confine ourselves here to mod-
els with a continuous vorticity distribution.

An analytical model for a stationarys]v /]t=0d and in-
viscid fs1/Red¹2v=0g dipole was given by Chaplygin(see
the review by Meleshko and van Heijst20) and by Lamb,21

based on an assumed linear relationship between the vortic-
ity v and the stream functionc, i.e., v=k2c, so that
Jsv ,cd=v·=v=0. Note that for any functional relationship
v= fscd the nonlinear term vanishes. It was also assumed
that the vorticity distribution equals zero outside a circle with
radiusr =a. The vorticity distribution of the so-called Lamb
dipole can then be derived and is given by21

vsr,ud =
2Uk

J0skad
J1skrdsinu, r ø a,

s7d
vsr,ud = 0, r . a.

Here,Jn is thenth-order Bessel function of the first kind,ka
the first zero ofJ1, andU the translation speed of the dipole.
Note thatr =a represents a closed streamline, which is com-
monly referred to as the separatrix. Fluid elements cannot
cross the separatrix and the dipole thus carries its own “at-
mosphere.” The results of several laboratory experiments on
dipolar vortices have been compared with the Lamb dipole
model and in some cases, a remarkable agreement has been
found between the experiments and this model(see, e.g.,
Trieling, van Wesenbeeck, and van Heijst22). It should be
noted that the “kink” in the vorticity distribution of the Lamb
dipole for r =a is not realistic for a 2D flow with viscosity,
which is a serious drawback of this model. To overcome part
of this discrepancy, Swaters23 discussed a dipole with viscos-
ity, which predicts an exponential decay of the flow field, but
no radial expansion. Recently, several decay properties of the
Lamb dipole were also analyzed by Nielsen and Rasmussen.7

However, their model is limited by the fact that the dipole is
assumed to expand adiabatically in the limit of weak viscos-
ity (see their paper for details).

In most of the laboratory experiments that have been
reported, monopoles, dipoles, and tripolar vortices are ob-
served to expand radially due to lateral diffusion. For the
monopole, this is well described by(4), but for the dipole
and tripole no solutions of this form have been analyzed
before. Another effect that plays a role in the radial expan-
sion of the dipole is the entrainment of irrotational ambient
fluid (see, e.g., the experimental and numerical results on
dipoles in a stratified fluid by Beckerset al.24). The influence
of the entrainment will be discussed briefly in Sec. IV.

As was mentioned in the Introduction, one of the goals
of the present analysis is to formulate analytical models for
two-dimensional diffusing dipoles and tripoles. We will de-
rive these models from the 2D diffusion equation, thus as-
suming that any nonlinearity is negligible during the evolu-
tion of the flow field. This seems a reasonable approximation
for the following reason: close inspection of the streamlines

and isovorticity contours of the dipole reveals thatv·=v
<0 in the major part of the flow field, since approximately
we havev' =v. This is(to a lesser extent) also the case for
a tripole. Note the relation of our approximation with the
construction of the Lamb dipole. For the Lamb dipole a sta-
tionary and inviscid flow was assumed, leaving us with the
equation v·=v=Jsv ,cd=0. For the construction of our
models, weassumethis relation and are thus left with the 2D
diffusion equation. Since we have a physical reason for drop-
ping the nonlinear term, it is tempting to assume that the
evolution of the “elementary particles” of two-dimensional
flows is mostly governed by diffusion, even for moderate
values of the Reynolds number. In other words, the influence
of advection on the evolution at longer time scales may be
small: if one considers a dipole or a tripolar vortex in a
comoving or corotating frame, one mainly observes the de-
cay and lateral expansion of the structure.

III. SIMILARITY SOLUTIONS OF THE DIFFUSION
EQUATION

The large-time asymptotics of the diffusion equation on
an infinite plane was discussed by Kloosterziel.18 It was
shown that an expansion in similarity solutions provides an
efficient method for recognizing the long-term behavior of
any initial vorticity field that is square integrable with respect
to the weight functionwsx,yd=expf 1

2sx2+y2dg. We will not
discuss the mathematical details of the analysis here, but
confine ourselves to some essential points. For details, the
reader is referred to Kloosterziel.18

The two-dimensional diffusion equation for the vorticity
in Cartesian coordinatessx,yd is given by

]v

]t
=

1

Re
¹2v =

1

Re
F ]2v

]x2 +
]2v

]y2 G . s8d

Complete sets of orthonormal similarity solutions of the dif-
fusion equation on an infinite plane were formulated for sev-
eral coordinate systems.18 In Cartesian coordinates, the simi-
larity solutions in one dimension,Fnsxd, are given by

Fnsxd =
Hnsx/Î2dexps− 1

2x2d
Î2nn ! Î2p

, s9d

whereHnsxd are the Hermite polynomials, defined as

Hnsxd = s− 1dn expsx2d
dn

dxn exps− x2d. s10d

Any initial condition with vorticity distributionv0sx,yd that
is square integrable with respect to expf 1

2sx2+y2dg can be
expanded in terms of the eigenfunctionsFnsxd andFmsyd in
the following way:

v0sx,yd = o
n=0

`

o
m=0

`

anmFnsxdFmsyd. s11d

The coefficientsanm are then given by
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anm=E
−`

` E
−`

`

v0sx,ydFnsxdFmsydexpF1

2
sx2 + y2dGdx dy.

s12d

The complete time-dependent solution of the flow field, start-
ing with initial conditionv0sx,yd, then yields18

vsx,y,td = o
n=0

`

o
m=0

`
anm

bstd2+n+mFnS x

bstd
DFmS y

bstd
D , s13d

wherebstd=s1+2btd1/2 (with b a constant) is introduced to
provide a similarity variable. The long-term evolution, or the
asymptotic behavior, is determined byanm for which the sum
n+m is as low as possible andanmÞ0. This corresponds to
the mode with the longest decay time.

By assuming some arbitrary dipolar-like initial flow
field, one is able to derive the asymptotic state for the dipole.
For instance, assume an initial distribution of vorticity given
by

v0sx,yd = 1, − 1, x , 1, 0, y , 1,

s14d
v0sx,yd = − 1, − 1, x , 1, − 1, y , 0,

with v0sx,yd=0 outside the square. The first coefficientsanm

are given bya00=0, a10=0, anda01=2/Î2p. The long-term
behavior of this distribution thus turns out to be related to the
solutionC01;F0F1. The combinationC10 also represents a
dipole, but with its axis oriented in they direction. The vor-
ticity distribution can easily be derived and is given by

vsr,u,td =
1

S1 +
2

Re
tD3/23 r

S1 +
2

Re
tD1/24

3exp1−

1

2
r2

1 +
2

Re
t2sinu. s15d

Note that we have rewritten the solution in plane polar coor-
dinates sr ,ud here. This solution describes a dipolar flow
field, which expands radially asr̂std=f1+s2/Redtg1/2 while
its amplitude decreases asâstd=f1+s2/Redtg−3/2. Hereafter,
we will refer to this model as the “Stokes dipole.” A related
solution has been found by Voropayev and Afanasyev25 for a
dipolar-like 2D flow resulting from a point-wise forcing. In
Fig. 2, the time evolution of the cross section of the vorticity
distribution along they axis is shown for four different
times. The time has been rescaled with the Reynolds number
here. Note the nice qualitative agreement with the laboratory
experiment shown in Fig. 1.

The stream function for the dipole solution can also be
calculated fromv=−¹2c and is given by

csr,u,td =
1

r 31 − exp1−

1

2
r2

1 +
2

Re
t24sinu. s16d

From the stream function, we can calculate the induced
velocities at the vorticity extrema, which are located at
the coordinates sf1+s2/Redtg1/2,p /2d and sf1
+s2/Redtg1/2,3p /2d. At the extrema, the horizontal velocity
u can be obtained fromuu=−]c /]r, while the vertical veloc-
ity v can be determined fromur =s1/rds]c /]ud. The veloci-
ties su,vd induced in the extrema are thus given by

ustd =
1

1 +
2

Re
t
S 2

e1/2 − 1D, v = 0. s17d

Note that the positions of the extrema only change due to
lateral diffusion.

We will also evaluate the evolution of the energyE, the
enstrophyV, and the palinstrophyP, which are well-known
integral quantities defined as

E =
1

2
E E uvu2dx dy, V =

1

2
E E v2dx dy, s18d

P =
1

2
E E u = vu2dx dy.

For the Stokes dipole, the time evolution of these quantities
can be calculated by using(15) and (16) and are given by

Estd =
E0

S1 +
2t

Re
D , Vstd =

V0

S1 +
2t

Re
D2, Pstd =

P0

S1 +
2t

Re
D3 ,

s19d

whereE0= 1
4pe, V0= 1

4pe, andP0= 1
2pe.

In a similar way as described above, one is able to derive
a solution for the tripole, which is given by

FIG. 2. Time evolution of the vorticity distribution of the Stokes dipole.
Shown are the cross sections through the vorticity extremes for 2t /Re=0,
0.4, 0.8, and 1.2.
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vsr,u,td =
1

S1 +
2

Re
tD231 −

r2 cos2 u

1 +
2

Re
t 4exp1 −

1

2
r2

1 +
2

Re
t2 .

s20d

The tripole turns out to be described by the Cartesian func-
tion C02 (or C20, depending on its orientation). The solution
C11 corresponds to a quadrupolar vortex structure, consisting
of two patches of positive and two patches of negative vor-
ticity, which we will not discuss here. Note that such a qua-
drupolar structure eventually splits into two dipoles. It could
also be verified, by computing the nonlinear evolution of the
eigenfunctionsCnm, that higher order modes do not corre-
spond to stable isolated coherent vortex structures like
monopoles, dipoles, and tripoles.

IV. NUMERICAL SIMULATIONS

To verify the validity of the dipole model for finite Rey-
nolds numbers and to examine the effect of nonlinearity on
the evolution of the flow field, numerical simulations of the
complete 2D Navier-Stokes equation insv ,cd formulation
(2) have been performed using a Fourier pseudospectral
solver. A resolution of 512 Fourier modes in each direction
was used for all the runs. The flow is well resolved for this
resolution: increasing the number of Fourier modes does not
significantly alter the evolution of the flow field. A simula-
tion under typical conditions using 10242 modes leads to a
maximum relative difference in the vorticity field of only
0.05%, which is negligible for our purpose.

The simulations have been performed in a square box of
dimensionsLx=Ly=64 with periodic boundary conditions.
Note that the circulationG, or the first moment of the vortic-
ity, defined as

G =R
]D

v ·ds=E E
D

vdA, s21d

with ]D the boundary of the domainD, is a conserved quan-
tity while using periodic boundary conditions(in fact, G=0).
The second moment of the vorticity, or the enstrophy, is not
conserved but decreases in time due to viscous effects. It has
been checked that the finiteness of the domain does not affect
the results of the computations. Some effects of the period-
icity of the domain cannot be avoided. This will be discussed
in detail later in this section.

The evolution of the flow was studied with a shielded
monopole, the Stokes dipole, and the Lamb dipole as initial
condition. The evolution of the vorticity distribution, the de-
cay of the amplitudeâstd, and the evolution of the radiusr̂std
of the monopole as well as the dipoles, as defined in Sec. II,
have been evaluated. Moreover, we have studied the decay of
the integral quantities energy, enstrophy, and palinstrophy of
the flow field.

The calculated vorticity fieldvsx,yd and stream function
csx,yd, are written on a regular grid. The location of the
maximum of the vorticity distribution is in general not ex-
actly located on a grid point and is determined by interpola-
tion. In order to determine the location of the maximum, a
second-order functionfsx,yd=on=0

2 om=0
2 amnx

myn is first fitted
through the computational data(located around the grid
point with the maximum computational vorticity). Then, the
maximum offsx,yd is determined by=fsx,yd=0. This point
can be found by applying a Newton-Raphson iteration
method.

A. Evolution of the shielded monopolar vortex

First, a numerical simulation has been performed for a
shielded monopolar vortex for Re=1000. Since the solution
for the monopole is exact, this case should be a good oppor-

FIG. 3. Numerical simulation of a shielded monopole for Re=1000. Shown are the time evolution of(a) the amplitudeâstd and (b) the radiusr̂std of the
shielded monopolar vortex. The1-marks represent the data from the simulations and the dashed lines the predictions of the model[see Eqs.(4) and (5)].
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tunity to test the solver as well as our interpolation method.
The initial condition of the simulation is given by(4) for
t=0

vsrd = s1 − r2dexps− r2d. s22d

The results of the simulation are shown in Fig. 3, where
the decay of the amplitude[Fig. 3(a)] and the expansion of
the vortex[Fig. 3(b)] is compared to the prediction by the
model. Here, and further, the1-marks represent the data
from the simulation and the dashed lines represent the

FIG. 4. Results of a numerical simulation of a Stokes dipole with Re=500. Shown are contour plots of the vorticity for 2t /Re=0.02(a), 0.04 (b), 0.08 (c),
0.20 (d), 0.32 (e), and 0.40(f). The contour levels are given byv= ±0.01 (0.01) 0.05 and ±0.1(0.1) 1.0.
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model. The time is rescaled by using the Reynolds number.
Comparison between simulation and model indeed reveals
that the amplitude decays asâstd=f1+s4/Redtg−2 and the ra-
dius increases asr̂std=f1+s4/Redtg1/2. A perfect agreement
between simulation and model is found in both cases, so that
it can be concluded that the solver and the interpolation pro-
gram are reliable. Note that in this case, an interpolation
method has also been used to determine the radius for which
vsrd=0.

B. Evolution of the Stokes dipole

For the dipoles, several different initial conditions were
taken. First, the evolution of the Stokes dipole will be com-
pared to the model for Re=500. Then, simulations with other
Reynolds numbers will be considered, since it can be ex-
pected that the validity of the model depends on the value of
the Reynolds number. In the final part of this section, some
simulations of the Lamb dipole will be discussed.

The initial condition for the Stokes dipole is given by
(15) for t=0

vsr,ud = e1/2r expS−
1

2
r2Dsinu. s23d

The factor e1/2 is introduced to assure that the maximum
vorticity vmax=V=1. In Fig. 4, the time evolution of the
vorticity distribution is shown for this dipole. Here, and here-
after, solid lines represent contours of positive vorticity and
dashed lines contours of negative vorticity. The dipole propa-
gates from the left to the right. It can be seen that the dipole
loses its circular shape[see Fig. 4(b)] and, subsequently, it
can be observed that two tails are formed behind the dipole
[see Figs. 4(c) and 4(d)], which is due to nonlinear effects:
the initial distribution of vorticity has nonzero low-amplitude
vorticity outside the dipole’s separatrix, which is advected
into its wake in the beginning of the evolution. Note that,
after a while, the dipole will collide with its own tail because

of the periodic boundary conditions of the computational do-
main.

We have carefully checked the influence of the finiteness
of the domain by performing simulations in a smaller box
with Lx=Ly=32. It was found that the vertical dimension of
the domain did not affect any of the results of our computa-
tions. Furthermore, the 64364 box is large enough to avoid
the collision of the dipole with its tail, while we are still able
to study its evolution for a considerable amount of time. This
is an important point, since we found that in the smaller box
the dipole-tail collision leads to a different growth rate of the
radius during the collision and the subsequent shedding of a
“new” tail. After the collision process, the radius increases
smoothly again. This can be considered as a numerical arti-
fact that contaminates the data. The decay of the amplitude is
not affected by the collision. We have checked that the
dipole-tail collision is the only effect of the periodicity of the
computational domain in thex direction: the results of the
simulations in the initial stage remain the same in the smaller
box.

The structure of dipoles is often characterized by evalu-
ating thesv ,cd-scatter plot, which is shown in Fig. 5 for the
Stokes dipole. Note thatc is the stream function in a comov-
ing frame, i.e.,c=c8−Uy, whereU represents the transla-
tion speed of the dipole andc8 the stream function in the
fixed frame of reference. The initialsv ,cd-scatter plot is
shown in Fig. 5(a). Of course, no functional relationship be-
tweenv andc can be recognized here. The scatter plot for
2t /Re=0.80 is shown in Fig. 5(b). It can be seen that the
maximum values of the vorticity and stream function de-
crease in time. It can also be observed that the relation itself
has changed in time and tends towards some functional rela-
tionshipv= fscd, which appears to be slightly nonlinear.

We also studied the influence of nonlinear effects quan-
titatively by evaluating the JacobianJsv ,cd. Figure 6 shows
two contour plots ofJsv ,cd in a comoving frame of refer-
ence. The distribution of the initial condition is shown in Fig.

FIG. 5. Results of a numerical simulation of a Stokes dipole with Re=500. Shown aresv ,cd-scatter plots for(a) 2t /Re=0 and(b) 2t /Re=0.8.
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6(a). Obviously, Jsv ,cdÞ0, otherwise the Stokes dipole
would have been an exact solution of the 2D Navier-Stokes
equation. It is observed that the nonlinear term consists of
eight patches of alternating sign. Four of the patches are
located within the separatrix of the dipole and four mainly
outside its separatrix. After a while, the nonlinear term is
only active in the four core areas[see the contour plot in Fig.
6(b)]. The area of the four central patches is larger now, as
the dipole has expanded in the meantime. The disappearance
of the four patches outside the separatrix can be explained by
the formation of the tails as mentioned above. The remaining
patches are not symmetrical around the dipole’s center but
are slightly affected by its translation. The distribution of
Jsv ,cd in four areas within the dipole’s separatrix can be
understood by means of the topology of the dipole: a circular
dipole has two axes of symmetry for whichJsv ,cd=0,
namely, the line through the vorticity extrema and the line
between the two halves of the dipole. In the four areas
Jsv ,cdÞ0, since the streamlines are not exactly parallel to
the isovorticity contours. A similar distribution of four
patches has also been found in a laboratory experiment of a
dipole in a stratified fluid. In Fig. 7, we show a typical ex-
ample of a measuredsv ,cd relationship and the correspond-
ing distribution of the Jacobian. A good qualitative agree-
ment can be observed between the experiment and the results
of our simulation[Figs. 5(b) and 6(b)].

Figure 8 presents the decay of the peak vorticityâstd
[Fig. 8(a)] and the increase of the dipoles radiusr̂std [Fig.
8(b)]. The actual evolution of these quantities, as indicated
by the 1-marks, is compared with the prediction based on
the model(indicated by the dashed lines). Here, the model
predicts thatâstd=f1+s2/Redtg−3/2 and r̂std=f1+s2/Redtg1/2.
It can be concluded that the decay of the amplitude is per-
fectly described by the model. For the radius, a different
behavior is found. It can be seen that the radius of the dipole
increases fast during the beginning of the computation. Then,
for 2t /Re.0.08, the value of the radius suddenly drops. Af-

ter that, a steady increase is observed. The fast increase of
the radius in the beginning is caused by the tail formation as
discussed above. One may argue that after this initial tran-
sient the model predicts the expansion of the dipole more
accurately. Therefore, the expansion of the dipole after ap-
plying a time shift of 2Dt /Re=0.20 is shown in Fig. 9 and
again compared with the model. We thus compared the
shifted data withfr0

2+s2/Redtg1/2, with r0=1.47, i.e., the
value of r̂ for 2t /Re=0.20. It can be seen that from 2t /Re
.0.20, the expansion of the structure seems to be reasonably
well predicted by the model. Note that the exact value of the
time shift is more or less arbitrary. The dipole expands
slightly faster than the model predicts, which is believed to
be caused by the entrainment of ambient irrotational fluid.
The exact influence of this entrainment cannot be measured
precisely, however.

It can be concluded that nonlinear effects do not signifi-
cantly affect the decay of the maximum vorticity, but they do
affect its location. Because of the deviant behavior of the
radius, another measure of the horizontal dimension of the
dipole might be preferable. The radius of the dipole could be
defined in several ways, for instance, by the location of the
maximum vorticity(or the half distance between the vortic-
ity extrema of the dipole), as was used above. Another pos-
sibility to characterize the lateral expansion of the dipole
could be an evaluation of the radius of the separatrix, al-
though it should be noted that the shape of the separatrix is
not perfectly circular. The radius of the separatrix(wherec
=0) is now defined as the distance between the center of the
dipole and the separatrix through the point with maximum
vorticity. We have also evaluated the radius of the dipole
with this particular definition in time and it was concluded
that no significant differences were found in the time evolu-
tion of the radii. Hereafter, we will only evaluate the location
of the maximum to measure the radius of the dipole.

It may be expected that the results change for different
Reynolds number, since for higher Reynolds numbers, the

FIG. 6. Results of a numerical simulation of a Stokes dipole with Re=500. Shown are contour plots of the JacobianJsv ,cd for (a) 2t /Re=0 and(b)
2t /Re=1.2. The circle represents the separatrixsc=0d. The contour spacingDJsv ,cd is (a) 2.5310−4 and (b) 2.5310−5.
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nonlinear term becomes relatively more important. There-
fore, the simulation of the Stokes dipole, as discussed above,
has also been performed for other values of the Reynolds
number, being Re=100, 1000, and 5000. We have compared
the decay of the amplitude and the evolution of the radius for
the Stokes dipole with the model. The results for Re=100
and Re=1000 are shown in Fig. 10. For all the Reynolds
numbers considered here, the decay of the amplitude is very
well described by the model. Apparently, the decay of the
maximum vorticity is not affected by nonlinear effects for
the range of Reynolds numbers that we have considered
here. For the radius, the validity of the model is found to
depend considerably on the Reynolds number. We have not
applied a time shift for the data presented here. It can be
observed, however, that the results of the simulations for
lower Reynolds numbers agree much better with the model.
It should be noted that the deviation from steady growth
around 2t /Re=0.9, as observed for the simulation with Re
=1000, is caused by a collision of the dipole with its own
tail. For the simulations with the largest Reynolds numbers,
we were not able to avoid the collision during the simulation,

FIG. 7. Example of a laboratory experiment of a dipolar vortex in a strati-
fied fluid. Shown are(a) the measuredsv ,cd relationship and(b) a contour
plot of the JacobianJsv ,cd. Courtesy from Flór(Ref. 16). FIG. 8. Results of a numerical simulation of a Stokes dipole with Re

=500. Shown are the time evolution of(a) the amplitudeâstd and (b) the
radius r̂std of the dipole. The dashed lines represent the model.

FIG. 9. Results of a numerical simulation of a Stokes dipole with Re
=500. Shown is the radiusr̂8std after applying a time shift of 2Dt /Re=0.2.
The dashed line represents the model.
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since the dipole’s propagation speed becomes larger as the
Reynolds number increases. For Re=5000, it was found that
the expansion of the dipole could no longer be predicted
accurately by the model, even when a time shift, as discussed
above, was applied.

Finally, we have evaluated the time evolution of the en-
ergy, the enstrophy, and the palinstrophy for different Rey-
nolds numbers and compared the results with our model. The
results are presented in Fig. 11. It can be concluded that the
decay of the energy[Fig. 11(a)] is perfectly described by the
model, since the model and the data of the simulations all
collapse on a single curve. This is also the case for the en-
strophy[Fig. 11(b)], except for a small(hardly visible) dif-
ference in the evolution of the enstrophy for Re=5000. The
palinstrophy[Fig. 11(c)] is found to increase in the begin-
ning of the evolution, with a relatively stronger increase for
larger Reynolds numbers. After this initial transient, the pa-
linstrophy decreases according to the model. The increase in
the beginning can be explained by the tail formation, as gra-
dients of vorticity are created in the wake of the dipole dur-
ing this process. In this way, the tail formation also enhances
the dissipation somewhat, an effect that is apparently stron-
ger when the Reynolds number is larger. We may conclude
that, although we have observed local differences in the evo-
lution and decay of the dipole(e.g., the tail formation), the
decay is very well described in terms of the integral quanti-
ties energy and enstrophy for the range of Reynolds numbers
considered here.

C. Evolution of the Lamb dipole

The initial condition for the Lamb dipole is given by(7),
scaled such thatL=1 andvmax=V=1. The typical horizontal
dimensionL is here defined as the distance from the center of
the dipole to the location of the maximum, in analogy with
the simulations of the Stokes dipole.

First, a simulation has been performed with Re=500.
Note that the effective Reynolds number is somewhat lower,
because the Lamb dipole contains less energy than the
Stokes dipole forL=1 andvmax=1. For a proper comparison
with the predictions of the Stokes dipole model, we will
rescale the Reynolds number(as used in the model) accord-
ing to

Reeff = ReÎ Elamb

Estokes
, s24d

with Elamb and Estokesbeing the initial kinetic energy of the
Lamb and the Stokes dipole, respectively.

The evolution of the vorticity distribution is shown in
Fig. 12. It can be observed that the Lamb dipole also forms
vorticity tails, although they are much weaker than in the
case of the Stokes dipole. The reason for this weak tail for-
mation is the following: initially, the Lamb dipole does not
have vorticity outside its separatrix. However, as time
evolves, vorticity will diffuse through the separatrix and
smoothen the kink in the initial vorticity distribution. Part of
this vorticity will subsequently be advected into the wake,
resulting in the formation of small tails. Note that a very low
contour level was needed to visualize the tails.

The evolution of thesv ,cd-scatter plot has also been
examined for the Lamb dipole. In Fig. 13(a), the scatter plot
is shown for 2t /Re=0. Of course, the relationship is linear
here, according to Lamb’s model. The value ofk is given by
k=1.85. In Fig. 13(b), the sv ,cd-scatter plot is shown for
2t /Re=0.80. It is observed that the form of thesv ,cd plot
changes as time proceeds. The relationship becomes slightly
nonlinear. A similar behavior was already observed by van
Geffen and van Heijst.8 A comparison with the scatter plot in
Fig. 5 reveals that thesv ,cd-scatter plot tends towards

FIG. 10. Numerical simulations of a Stokes dipole for Re=100s+d and Re=1000s3d. Shown are the time evolution of(a) the amplitudeâstd and(b) the radius
r̂std of the dipole. The dashed lines represent the model.
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roughly the same form as for the Stokes dipole. We may
conclude that the vorticity distributions of the dipoles appear
to tend towards the same form.

The evolution of the peak vorticityâstd and the growth
of the radiusr̂std of the dipole are shown in Fig. 14. Also
here, the data from the simulations have been compared to
the predictions of the Stokes dipole model. It can be seen in
Fig. 14(a) that the decay of the amplitude is somewhat
slower than predicted by the Stokes model. This is most
likely related to the less pronounced tail formation compared
to the case of the Stokes dipole. The radius shows a slightly

deviant behavior, but a very fast increase during the begin-
ning of the evolution, as observed for the Stokes dipole, is
not observed here. Initially, the radius of the dipole even
decreases somewhat, which can be explained by the smooth-
ening of the vorticity profile in the early stage of the evolu-
tion.

FIG. 11. Results of numerical simulations of a Stokes dipole. Shown are the
time evolution of(a) the energyE, (b) the enstrophyV, and (c) the palin-
strophyP for different Reynolds numbers. The results have been compared
with the model.

FIG. 12. Results of numerical simulation of a Lamb dipole with Re=500.
Shown are contour plots of the vorticity for 2t /Re=0.08(a), 0.20 (b), and
0.32 (c). The contour levels are given byv= ±0.01 (0.01) 0.05 and ±0.1
(0.1) 1.0.
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FIG. 13. Results of a numerical simulation of a Lamb dipole with Re=500. Shown aresv ,cd-scatter plots for(a) 2t /Re=0 and(b) 2t /Re=0.8.

FIG. 14. Numerical simulation of a Lamb dipole for Re=500. Shown are the time evolution of(a) the amplitudeâstd and(b) the radiusr̂std of the dipole. The
dashed lines represent the model.

FIG. 15. Numerical simulations of a Lamb dipole for Re=100s+d and Re=1000s3d. Shown are the time evolution of(a) the amplitudeâstd and(b) the radius
r̂std of the dipole. The dashed lines represent the model.
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The evolution of the Lamb dipole has also been studied
for different Reynolds numbers, namely, Re=100 and Re
=1000. The results of these simulations are shown in Fig. 15.
Here, it is not found that the evolution of the flow is better
predicted by the Stokes model for lower Reynolds numbers.
In all cases, the decay of the amplitude is slower than pre-
dicted by the model. It can be observed that the evolution of
the radius was very well predicted for Re=500. For the
smaller and larger Reynolds numbers discussed here, the va-
lidity of the model is worse.

We have also studied the decay of the energy, the enstro-
phy, and the palinstrophy for different Reynolds numbers.
The results are shown in Fig. 16. We have compared the
results of the simulations with the predictions according to
the Stokes dipole model(19) and the model developed by
Nielsen and Rasmussen.7 The latter model predicts that the
energy and enstrophy will decay according to

Estd =
E0

S1 +
k2

Re
tD , Vstd =

V0

S1 +
k2

Re
tD2 , s25d

with E0 andV0 being the initial energy and enstrophy of the
Lamb dipole, andk being the constant as introduced in Sec.
II. Note that we have rewritten the expressions in a nondi-
mensional form here. For the range of Reynolds numbers
considered here, we observe that the actual decay of the in-
tegral quantities lies in between the predictions of the Stokes
dipole model(upper solid lines) and the model of Nielsen
and Rasmussen(lower dashed lines), although the latter
model is somewhat more accurate. Note that the expansion
of the Lamb dipole has also been studied by Nielsen and
Rasmussen7 (see their paper for details). It can be concluded
that their model seems to predict the expansion of the Lamb
dipole more accurately than the Stokes dipole model does.

Finally, we have compared the evolution of the Stokes
and Lamb dipole by considering the evolution of the vortic-
ity distribution. In Fig. 17, the evolution of a cross-sectional
vorticity distribution (through the extremes) is shown for a
Stokes dipole as well as for a Lamb dipole. Several features
that have been discussed above, for instance, the different
radial expansion of the Stokes dipole and the faster decay of
the amplitude of the Lamb dipole are also clearly visible
here. It can be seen in these figures that the vorticity profile
for both dipoles tends towards the same form. A feature that
has not been observed earlier is the slightly lower slope of
the vorticity distribution near the dipole’s axissx=0d. This is
an indication of entrainment of irrotational ambient fluid
which we mentioned before. The entrainment most likely
explains the enhanced expansion of the dipole compared to
the predictions of our model.

V. CONCLUSIONS AND DISCUSSION

In this paper a class of vortex models is formulated
based on similarity solutions of the 2D diffusion equation.
Here, we mainly confined ourselves to an analysis of the
model that can be derived for a diffusing dipolar vortex.
Numerical simulations of the complete 2D Navier-Stokes
equation have been performed for the Stokes dipole, as well
as for the familiar Lamb dipole. We found that the evolution
of 2D dipolar vortices is in certain respects close to the pre-
diction by the model based on the diffusion equation. The
decay properties and, to a lesser extent, the radial expansion
of the dipoles are found to be well predicted by the model for
low and moderate values of the Reynolds number. The non-
linear effects only lead to small deviations in the behavior of
the vortices. The most important nonlinear effect is the for-
mation of tails of vorticity in the wake of the dipole. The
entrainment of ambient fluid is another small effect. Al-

FIG. 16. Results of numerical simulations of a Lamb dipole. Shown are the
time evolution of(a) the energyE, (b) the enstrophyV, and (c) the palin-
strophyP for different Reynolds numbers. The upper solid lines represents
the Stokes dipole model, the lower dashed lines the model of Nielsen and
Rasmussen(Ref. 7).
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though small deviations exist due to these effects, we have
found that the Stokes dipole model provides accurate predic-
tions in terms of the decay of the integral quantities energy
and enstrophy.

In reality, the actual vorticity distribution of a dipole
always lies in between those of the Stokes and the Lamb
model. It was also found that both initial conditions seem to
evolve towards this “intermediate” vorticity profile. The ex-
act form of the vorticity distribution is believed to be deter-
mined by an equilibrium between diffusion of vorticity
through the dipole’s separatrix and advection of vorticity into
its wake, which results in the formation of the tails. The
exact balance is of course determined by the value of the
Reynolds number. Thusfar, there is no detailed insight into
the observed deviations between model and simulations, al-
though the formation of the tails for the Stokes dipole can be
understood from the initial distribution of the Jacobian.

It would be interesting to perform a similar analysis for
the tripole solution of the diffusion equation, which we only
mentioned briefly in Sec. III. For the tripole, nonlinear ef-
fects most likely result in the formation of filaments out of
the core vortex, which are subsequently advected around the
satellites. However, for this solution a problem could arise
due to the rotation of the tripole. If one considers the tripole
in a corotating frame of reference, with a rotation rate that
decreases in time, the rotation gives rise to an additional
contribution in the vorticity equation. For the dipole, this
effect is absent since a uniform velocity field(in a comoving
frame of reference) does not contain any vorticity.

Practical applications of our study may be various. In the
Introduction and in the discussion of our results, we already
mentioned the relation of our work with the studies of dipo-
lar vortices in a stratified fluid. An interesting comparison of
our results with experimental work on coherent vortex struc-
tures could also be made in other(geophysical) laboratory
situations, such as experiments in a rotating system or in
shallow fluid layers. It should be noted, however, that such

flows are not perfectly 2D and other effects(Ekman damp-
ing, vertical diffusion) may play an additional role in the
flow evolution.
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