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SUMMARY

In this work a penalization method is discussed in the context of vortex methods for incompressible flows

around complex geometries. In particular we illustrate the method in two cases : the flow around a rotating

blade for Reynolds Numbers 1000 and 10000 and the flow past a semi-circular body consisting of a porous

layer surrounding a rigid body at Reynolds numbers 550 and 3000. In the latter example, the results are

interpreted in terms of control strategy. Copyright c© 0000 John Wiley & Sons, Ltd.

KEY WORDS: vortex methods, penalization technique, moving obstacles, porous medium

1. INTRODUCTION

Vorticity is an important characteristic of flows in many applications. It is a signature of wakes in

bluff body flows and, as such, is related to aerodynamic performance of moving or fixed obstacles

[1]. The vorticity formulation of the Navier-Stokes equations is therefore a natural framework to

address questions related to flow control. In these equations, for moderate and high Reynolds

numbers the vorticity advection is predominant, which motivates the use of Lagrangian or semi

Lagrangian schemes to discretize these equations. Particle methods belong to this category. They

∗. Correspondence to: Iraj Mortazavi3, iraj.mortazavi@cnam.fr
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2 C. MIMEAU, F. GALLIZIO, G.-H. COTTET, I. MORTAZAVI

have long been used for the simulation of vortex flows, and in particular for bluff body flows, since

the pioneering simulation of flows past a 2D cylinder in [2]. Three dimensional simulations followed

this work [3, 4, 5]. In all these works the no-slip condition at the body surface is imposed through

vorticity fluxes. This method relies on an analysis of the relationship between vorticity fluxes and

velocity boundary conditions [6, 4]. Vorticity fluxes are implemented in vortex methods by means

of integral equations [7]. This method is physically appealing but relies on a delicate tuning of

several parameters and remains delicate to implement. Immersed boundary conditions have been

proposed in [8, 4] to simplify the treatment of complex geometry and the computation of velocity

from vorticity. Later on, following the work of [9, 10], a penalization method coupled to the vorticity

formulation of the Navier-Stokes equation was proposed and extended to the two-way interaction of

a rigid body and a three-dimensional incompressible fluid in [11]. The method was validated in three

dimensional flows at low Reynolds numbers and was extended to deforming bodies and applied to

find optimal swimming modes of fishes [12, 13, 14]. The work in [15] provides additional 2D

validations of the method and illustrates its efficiency in the context of GPU computing.

The purpose of this work is to further illustrate its flexibility by focusing on the case of two

bi-dimensional complex flows where the combined use of vortex and penalization methods proves

to be efficient : the flow around a vertical axis turbine (VAT), on the one hand, and the flow past

a semi-circular obstacle made of a porous layer surrounding a rigid core, on the second hand. In

the first case, we discuss the different flow patterns and frequencies corresponding to moderate and

high Reynolds numbers. In the second case we study the influence of the porous layer on the wake

strength and on the drag value. We also provide validation studies which allow to determine the

numerical parameters needed to provide the desired accuracy on these applications.

This paper is organized as follows. In section 2 we describe the vortex penalization model and

its implementation in a vortex particle method. In particular, we indicate how the body forces are

computed in such a model. In section 3 we provide convergence studies of the method with respect

to the penalization parameter and the grid size, and we validate the method on the benchmark test of

the flow past a 2D circular cylinder at various Reynolds numbers. In section 4 we apply the method

Copyright c© 0000 John Wiley & Sons, Ltd.
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VORTEX PENALIZATION METHOD FOR BLUFF BODY FLOWS 3

to the case of a rotating turbine blade and section 5 is devoted to the analysis of the flow around

a semi-circular cylinder with a porous coating, where the characteristics of the flows are analyzed

from the point of view of flow control. Finally section 6 summarizes our results and draws some

conclusions.

2. NUMERICAL ALGORITHM

2.1. Vorticity formulation and remeshed particle method

The dynamics of an incompressible flow without external force fields is governed by the

incompressible Navier-Stokes equations :

∇ · u = 0 in D (1)

∂u

∂t
+ (u ·∇)u = −∇p+

1

Re
∆u in D, (2)

where D is the computational domain and Re is the Reynolds number.

Taking the curl of equation (2) and using equation (1), we get the Helmholtz or the Vorticity

Transport Equation (VTE) for the vorticity ω = ∇× u :

∂ω

∂t
+ (u ·∇)ω − (ω ·∇)u =

1

Re
∆ω in D, (3)

This equation has to be coupled to the system giving the velocity in terms of the vorticity. It is

convenient to use the Helmholtz decomposition :

u = ∇×ψ +∇ϕ. (4)

The stream function ψ and potential ϕ satisfy the following systems in D :

−∆ψ = ω, ∇ ·ψ = 0, ∆ϕ = 0, (5)

complemented with appropriate boundary conditions. The VTE does not explicitly contain the

pressure term but the pressure can be recovered from the velocity field by integrating the following

Poisson equation :

∆p = −∇ · (u ·∇)u, in D, (6)

Copyright c© 0000 John Wiley & Sons, Ltd.
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4 C. MIMEAU, F. GALLIZIO, G.-H. COTTET, I. MORTAZAVI

which is derived as the divergence of equation (2).

The previous equations are approximated using a remeshed vortex particle method [16], [2, 6]. In

this approach, the vorticity is carried by particles. Particles follow the trajectories associated to the

velocity field. Simultaneously the vorticity carried by the particles is updated to account for vortex

stretching and diffusion. Particle remeshing is used to overcome accuracy loss due to local distortion

of the flow map [2]. In that case, particles are remeshed through interpolation on a regular mesh at

each time step. This grid is used to compute the velocity through a Poisson solver. Details of the

algorithm are given in the sequel.

In incompressible flows, the unique sources of the vorticity are boundaries. It is therefore

important to capture in an accurate way vorticity boundary conditions. In classical implementations

of vortex methods, the no-slip boundary condition is satisfied through the creation of vortex

elements [16, 17, 18] or by updating particle strength to account for vorticity fluxes at the boundary

[7, 2, 4]. The no-through flow boundary conditions is implemented together with the Poisson

equation to determine stream functions and potential in (5).

These methods involve several parameters to enforce the no-slip conditions at the boundaries : a

more straightforward alternative to these techniques can be derived from the penalization method.

2.2. Vortex penalization method

2.2.1. Penalization in velocity formulation

In this section we show how the penalization method can be used successfully to model the flow of

an incompressible fluid around an obstacle. In the penalization technique the system is considered as

a single flow, subject to the Navier-Stokes equation with a penalization term that enforces continuity

at the solid-fluid interface and rigid motion inside the solid. The main advantage of this method is

that it needs neither the mesh to fit the boundaries nor to specify no-slip boundary conditions. In

addition it allows to compute the pressure as a continuous field on the whole domain including the

solids, and the lift and drag coefficients by integrating the penalization term inside the solid bodies

[19].

Copyright c© 0000 John Wiley & Sons, Ltd.
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VORTEX PENALIZATION METHOD FOR BLUFF BODY FLOWS 5

In a porous medium the velocity u is given by the Darcy law :

u = − k

µΦ
∇p, (7)

where p is the pressure, k is the intrinsic permeability, µ is the dynamic viscosity of the fluid and

Φ is the porosity of the medium. On the other hand, assuming that the Boussinesq hypothesis is

satisfied for the fluid saturating the porous medium, we get the Brinkman’s equation that includes

the diffusion inside the solid and is only valid when the porosity coefficient is close to one. Here we

set this coefficient equal to one and take the hypothesis of the viscosity equivalence for both Darcy

and diffusive terms ([20, 21]) :

∇p = − µ

k
u+ µ∆u. (8)

Complementing the Brinkman’s equation with the inertial terms and the Dupuit-Forchheimer

relation [21], we finally obtain the modified Forchheimer-Navier-Stokes equation ([22, 23]) :

ρ ∂tu+ ρ (u ·∇)u +∇p = − µ

k
u+ µ∆u (9)

where ρ is the density of the fluid.

Then, using the following usual substitutions including the mean velocity of the fluid u and the size

of the body H :

u = u
′
u ; x = x′ H ; t = t′

H

u
; p = p′ρ|u|2, (10)

we get the penalized non-dimensional Navier-Stokes equations or Brinkman-Navier-Stokes

equations for the unknowns (u′, p′) denoted (u, p) for the sake of simplicity :

∂tu+ (u ·∇)u− 1

Re
∆u+

u

K
+∇p = 0 in DT = D × (0, T ) (11)

∇ · u = 0 in DT . (12)

This system of equations exactly corresponds to the penalization of equations (1, 2), where K =

ρku
µHΦ represents the non-dimensional coefficient of permeability of the medium and Re = ρuH

µ is the

Reynolds number based onH the height of the body andD the full domain including the solid body.

This model is able to represent the two media as follows. The zone variation is realized changing

Copyright c© 0000 John Wiley & Sons, Ltd.
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6 C. MIMEAU, F. GALLIZIO, G.-H. COTTET, I. MORTAZAVI

the penalization coefficient that defines the permeability of each region. In the fluid the permeability

coefficient goes to infinity, the penalization term vanishes and we solve the non-dimensional Navier-

Stokes equations. In the solid body the permeability coefficient goes to zero and it has been shown

in [9] that solving these equations corresponds to solve Darcy’s law in the solid and that the velocity

is proportional to K. One can thus write K = 1
λχS where χS denotes the characteristic function of

S and λ is a penalization parameter satisfying λ≫ 1. For numerical simulations we typically set

λ ≥ 108. If the full domain including the solid body is defined as D = F ∪ S, one finally obtains

the following penalized Navier-Stokes equations :

∂tu+ (u ·∇)u− 1

Re
∆u+ λχSu+∇p = 0 in D (13)

∇ · u = 0 in D. (14)

In addition as the pressure is computed inside the solid body, it is shown in [19] that one can

compute the drag and lift forces by integrating the penalization term on the volume of the body :

F =
1

Re

∫

S

∆u dx −
∫

S

∇p dx ≈
∫

D

λχS u dx, (15)

2.2.2. Penalization in vorticity formulation and implementation with a vortex method

We first show how to extend the penalization method to the vorticity formulation of the Navier-

Stokes equations.

By differentiation of the velocity based penalization equation (13), we obtain the following non

dimensional [10, 11] vorticity-penalization equation :

∂ω

∂t
+ (u ·∇)ω − (ω ·∇)u =

1

Re
∆ω +∇× [λ χS(us − u)]. (16)

In the above equation we have generalized the boundary value problem to allow for a rigid body

motion of the obstacle S with velocity us, where us is the rigid body velocity and χS is the

characteristic function of the solid. This system has to be complemented by the usual system giving

the velocity in terms of the vorticity :

∇ · u = 0 in D; ∇×u = ω in D (17)

Copyright c© 0000 John Wiley & Sons, Ltd.
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VORTEX PENALIZATION METHOD FOR BLUFF BODY FLOWS 7

and appropriate boundary conditions on the walls ΓD.

We describe here how the vorticity equation (16) is discretized in a vortex method. For simplicity

we assume that the computational domain, including the solid body, is covered by a uniform

Cartesian grid with mesh-size h.

The equation (16) is split in two sub-steps. At each time step, one successively solves the

following equations :

∂ω

∂t
= ∇× (λ χS(us − u)) (18)

∂ω

∂t
+ (u ·∇)ω − (ω ·∇)u =

1

Re
∆ω. (19)

We set tn = n∆t, where ∆t is the time-step. If un,ωn denote velocity and vorticity values on the

grid at time tn, following [11] the resolution of equation (18) is performed using an Euler implicit

scheme, which yields :

ω̃
n+1 = ∇×

[
u
n + λ∆tχSu

n
s

1 + λ∆tχS

]
. (20)

The right hand side above is evaluated by centered finite differences on the grid.

To solve the advection-stretching-diffusion equation (19), we proceed as follows. Particles are

initialized on grid points where vorticity value is above a given threshold (typically 10−5). If xn
p ,ω

n
p

denote the locations (grid points) and vorticity of particles (ωn
p = ω̃n+1(xp)), the equation (19) is

firstly handled by solving the following system of ODEs [6] :





dxp/dt = up

dωp/dt = [∇up]ωp.

(21)

This system is typically solved using a second order Runge-Kutta time-stepping. Let us denote by

x
n+1
p , ω̃n+1

p the locations and strengths of the particle at the end of the time step. Particles are then

remeshed on the original grid points by interpolation, with the formula :

ωn+1
p =

∑

p

ω̃
n+1
p Λ

(
x
n
p − x

n+1
p

h

)
. (22)

Copyright c© 0000 John Wiley & Sons, Ltd.
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8 C. MIMEAU, F. GALLIZIO, G.-H. COTTET, I. MORTAZAVI

In this study, the function Λ in the above formula is obtained by tensor product of a piecewise cubic

third order interpolation kernel, the so-called M ′
4 kernel originally proposed in [24] :

Λ(x) =





0 if |x| > 2

1
2 (2− |x|)2(1− |x|) if 1 ≤ |x| ≤ 2

1− 5x2

2 + 3|x|3

2 if |x| ≤ 1

(23)

The same kernel is used to interpolate grid velocity values onto particles in the time-stepping scheme

to solve (21).

After remeshing, vorticity values are known on the grid and the remaining diffusion equation

is implicitly solved either with a grid-based Poisson solver or with a Fourier method. Grid values

for the vorticity are now available at time tn+1. Velocity values are in turn obtained from vorticity

grid values by solving the system (4,5) with a classical grid-based Poisson solver or using a Fourier

method, and a new cycle of iterations can start.

One of the main feature of particle methods is that they do not have a CFL restriction on the time

step ∆t. It is indeed shown in [25] that a remeshed particle method for a transport equation with

velocity u is stable under the condition

∆t ≤ C

‖∇u‖∞
, (24)

where C is a constant that only needs to be smaller than 1.

2.3. Force calculation

Assume a flow in R
N around a bounded body S with velocity and vorticity vanishing at infinity

and having a prescribed value ub on the body. The formula (15) is based on the velocity-pressure

formulation of the penalization method. It assumes that the velocity is of the order of K inside the

body. In a vorticity formulation however, there is no direct control of the velocity in the body. In

practice one observes that the velocity in the body is small but larger than K. This can be seen in

Figure 2 (left). In that case, we found that accurate computations of forces could not be achieved

using the formula (15) and we instead used force evaluations in terms of vorticity distributions

around the body.

Copyright c© 0000 John Wiley & Sons, Ltd.
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VORTEX PENALIZATION METHOD FOR BLUFF BODY FLOWS 9

The force F exerted by this flow on the body is given by the following formula :

F = − d

dt

∫

S′

u dx, (25)

where S′ denotes the domain outside S. Integration by parts allows to express this force in terms of

the vorticity, with N denoting the space dimension :

F = − 1

N − 1

d

dt

∫

S′

x× ω dx− 1

N − 1

d

dt

∮

∂S

x× (n× u)ds, (26)

where the first integral is the linear hydrodynamical impulse and the second integral is the bound

vorticity (see [26]). For an impulsively started obstacle at early times, the vorticity remains

essentially attached to the body, and this formula can be used by taking a computational domain

large enough to contain the vorticity support. When vorticity shedding occurs, this is no longer

possible. Alternatively, one may use the Navier-Stokes equations and the expression (25) to obtain :

F = −ν
∫

∂S

ω × n ds+

∫

∂S

pn ds. (27)

In the case of a 2D circular cylinder of radius R, this yields the following formula [2] :

F = νR

(∫ 2π

0

ω−→eθ dθ −
∫ 2π

0

∂ω

∂n
−→
eθ dθ

)
. (28)

This expression assumes that vorticity vanishes at infinity, which in practice is always the case, and

allows to distinguish friction (in the first integral) and pressure drag (in the second integral).

For a detached bluff body flow this formula can be used as long as vorticity and its normal

derivatives are accurately captured at the boundary. However, the penalization method just described

is derived from a method which is only first order for the velocity. It therefore does not capture

vorticity values and fluxes at the boundary with enough accuracy to give reliable force evaluation

through (28) with reasonable grid sizes. It is therefore necessary to use a method which does not

involve integrals of the physical quantities on the volume of the body. The technique chosen here

combines time derivatives, volumes integral of the vorticity momentum - like in formula (26) - and

vorticity boundary values as well as fluxes on a surface away from the body, where these quantities

are accurately computed. We follow the approach proposed in [27], and rewrite the force according

Copyright c© 0000 John Wiley & Sons, Ltd.
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10 C. MIMEAU, F. GALLIZIO, G.-H. COTTET, I. MORTAZAVI

to the momentum equation as follows :

F = − d

dt

∫

V

u dx+

∫

Σ

n · γ dx, (29)

where V is a domain containing S, Σ denotes its boundary and

γ = (30)

1

2
|u|2I − 1

N − 1
u · (x× ω) +

1

N − 1
ω · (x× u)

− 1

N − 1

[(
x · ∂u

∂t

)
I− x · ∂u

∂t

]
+

1

N − 1
[x · (∇ · T )I− x(∇ · T )] + T .

In the above equation T denotes the stress tensor :

T = µ(∇u+∇u
t), (31)

where µ is the viscosity. For a sake of simplicity we develop this formula in the two-dimensional

case where the computational box D and the volume control V are two nested rectangles. We use

the notations given in Figure 1. We denote the velocity by u = (u, v)t. The streamwise and vertical

xmin x=0

y=0

S

D

 ΓD

O

u∞

Ly

Lx

V

Σ

A1 A2

A3A4

Fx

Fy

n

xmax

ymin

ymax

FIGURE 1. Computational domain D and control volume V .
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VORTEX PENALIZATION METHOD FOR BLUFF BODY FLOWS 11

components of the force can then be written computed as :

Fx = − d

dt

∫

V

u(1− χS) dxdy

+

∫ A2

A1

[
uv + vωy − y

∂u

∂t
+

1

Re

(
2
∂2u

∂x2
+
∂2u

∂y2
+

∂2v

∂x∂y

)
y − 1

Re

(
∂u

∂y
+
∂v

∂x

)]
dx

+

∫ A3

A2

[
1

2
(v2 − u2)− uωy − y

∂v

∂t
+

1

Re

(
2
∂2v

∂y2
+
∂2v

∂x2
+

∂2u

∂x∂y

)
y +

2

Re

(
∂u

∂x

)]
dy

+

∫ A4

A3

[
−uv − vωy + y

∂u

∂t
− 1

Re

(
2
∂2u

∂x2
+
∂2u

∂y2
+

∂2v

∂x∂y

)
y +

1

Re

(
∂u

∂y
+
∂v

∂x

)]
dx

+

∫ A1

A4

[
−1

2
(v2 − u2) + uωy + y

∂v

∂t
− 1

Re

(
2
∂2v

∂y2
+
∂2v

∂x2
+

∂2u

∂x∂y

)
y − 2

Re

(
∂u

∂x

)]
dy,

and

Fy = − d

dt

∫

V

v(1− χS) dxdy

+

∫ A2

A1

[
1

2
(v2 − u2)− vωx+ x

∂u

∂t
− 1

Re

(
2
∂2u

∂x2
+
∂2u

∂y2
+

∂2v

∂x∂y

)
x− 2

Re

(
∂v

∂y

)]
dx

+

∫ A3

A2

[
−uv + uωx+ x

∂v

∂t
− 1

Re

(
2
∂2v

∂y2
+
∂2v

∂x2
+

∂2u

∂x∂y

)
x+

1

Re

(
∂v

∂x
+
∂u

∂y

)]
dy

+

∫ A4

A3

[
−1

2
(v2 − u2) + vωx− x

∂u

∂t
+

1

Re

(
2
∂2u

∂x2
+
∂2u

∂y2
+

∂2v

∂x∂y

)
x+

2

Re

(
∂v

∂y

)]
dx

+

∫ A1

A4

[
uv − uωx− x

∂v

∂t
+

1

Re

(
2
∂2v

∂y2
+
∂2v

∂x2
+

∂2u

∂x∂y

)
x− 1

Re

(
∂v

∂x
+
∂u

∂y

)]
dy.

For a two dimensional viscous flow past a circular obstacle of diameter dwith free stream velocity

u∞, drag and lift coefficients are expressed by the following formulas :

CD =
2Fx

ρu2∞d
, CL =

2Fy

ρu2∞d
. (32)

3. VALIDATION FOR FLOW PAST A TWO-DIMENSIONAL CIRCULAR CYLINDER

The vortex penalization has been validated in 2D and 3D fluid structure interaction problems at

low Reynolds numbers [11], in the context of multi-resolution [28] and in GPU implementations for

2D flows [15]. To evaluate the accuracy of the method, in particular with respect to the value of the

penalization parameter, we consider here validations on the classical benchmark of the flow around

a two-dimensional circular cylinder for a wide range of Reynolds numbers.
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There is an important literature about the classical benchmark of the 2D circular cylinder. This

benchmark is covered by an important literature. A thorough survey of this subject can be found in

Williamson (1996) [1].

Vortex methods using vorticity flux boundary conditions have allowed to obtain reference results

for a wide range of Reynolds numbers [2]. Recently, the penalization-vortex method has been

implemented on GPU processor. The accuracy and performance of this implementation against

traditional CPU implementations has been tested on this benchmark in an explicit formulation of the

penalization. We use here the same benchmark to illustrate the efficiency of the implicit formulation

(equation (20)).

3.1. Numerical setup and flow conditions

The computational domain and the geometrical setup are shown in Figure 1, where D is a

rectangle delimited by its boundaries ΓD. The non dimensional diameter d of the circular cylinder

is equal to 1 and the body is centered at the origin. The whole computational domain is covered by

a uniform Cartesian grid.

In this section, periodic boundary conditions on the box boundary ΓD were prescribed for

the system (17). A correction of the velocity field was performed at each time step in order to

satisfy free stream velocity u∞ = (u∞, 0) = (1, 0) imposed at the inlet. In all cases the size of the

computational box was chosen large enough so that the effect of these boundary conditions was

found to be negligible.

3.2. Convergence studies

First, we consider the case of an impulsively started cylinder flow with Re = 550 and study the

convergence of the method with respect to the penalization parameter and the grid-size. The left

picture of Figure 2 shows the mean velocity profiles inside the cylinder, averaged over the time

window T = [0, 3]. The results corresponding to the implicit penalization scheme for three values

of λ are compared to the profile obtained with the explicit formulation for a mesh size h = 0.005.

The explicit formulation of (18) requires a maximum value of λ = 1/∆t to guarantee stability.

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using fldauth.cls



VORTEX PENALIZATION METHOD FOR BLUFF BODY FLOWS 13

| 
U

 |

h=0.04

h=0.02

h=0.01

h=0.005

h=0.0025

0

0.005

0.01

0.015

0.02

0.025

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

| 
U

 |

y

=1/ t

=10e3

=10e6

=10e9

FIGURE 2. Left picture : mean velocity magnitude profiles in a section across the center of the cylinder,

at x = 0, obtained with implicit penalization (λ = 10
3, 106, 109) and explicit penalization (λ = 1/∆t) at

Re = 550. Right picture : grid refinement study for the axial velocity at T = 3 on a cross-section at x = 1.5

behind the cylinder.
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FIGURE 3. λ-convergence study for flow past a circular cylinder at Re = 550 with h = 0.005 and ∆t =

0.0025 (a), and at Re = 100 with h = 0.0025 and ∆t = 0.001 (b). The errors eL∞ , eL1 and eL2 are plotted

against λ values.

One can see from this experiment that, to obtain small values of the velocity inside the body, it is

necessary to use larger value of λ, and therefore to implement the implicit scheme (20). As already
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mentioned, one can also notice that velocity values inside the body remain in all cases larger than

1/λ. Unlike for the velocity-pressure formulation, indeed, in the vorticity formulation there is no

direct relationship between the velocity in the body and the parameter λ.

To have a more precise idea of the sensitivity of the results to the value of the penalization

parameter, a λ-convergence study is carried out at Re = 550 with h = 0.005 and ∆t = 0.0025. The

value of λ ranges from 1 to 106, with λ = 108 as reference case (solid case). We evaluate the L1, L2

and L∞ norms of the error e(y) in the mean velocity magnitude profile ¯|u| (at x = 0) with respect

to the reference case :

e(y)L1 =

∫ ymax

ymin

∣∣ ¯|u|λ=108(y)− ¯|u|(y)
∣∣ dy (33)

e(y)L2 =

(∫ ymax

ymin

∣∣ ¯|u|λ=108(y)− ¯|u|(y)
∣∣2 dy

)1/2

(34)

e(y)L∞ = sup
y∈[ymin,ymax]

∣∣ ¯|u|λ=108(y)− ¯|u|(y)
∣∣ (35)

As Figure 3 (a) shows, the numerical error decreases as O(λ−1/2) when λ ≤ 102 and as O(λ−1)

when λ ≥ 102. The same study was performed at Re = 100 with a smaller grid size and time step,

respectively equal to h = 0.0025 and ∆t = 0.001. The results are given by Figure 3 (b) and show that

the error behaves as O(λ−1/2) when λ ≤ 104 and O(λ−1) when λ ≥ 104. These convergence rates

are in agreement with the numerical results found out in [9] where it is stated that to increase λ to

high values (λ ≥ 106) a mesh refinement is necessary. Moreover, these numerical results are slightly

better compared to the theoretical result given in [9], attesting that the upper bound on the global

L∞ error of the penalization is ‖uλ − u‖ ≤ Cλ−1/2. Furthermore, we can see on this figure that

the circular cylinder reaches the solid state from λ = 104, where e(y) ≤ 10−4. Thus, a permeable

medium can be defined by setting the λ-values between 1 and 103, with very low permeability for

the latter one.

Finally, the right picture of Figure 2 shows a grid-refinement study performed at Re = 550 for

a section located in the wake at x = 1.5 and a penalization parameter λ = 1010 in the implicit

formulation. It depicts the instantaneous velocity magnitude at time T = 3 for different grid sizes
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and indicates that for this flow one can consider that convergence is reached for h ≤ 0.005.

Additional validations are given in the next section.

3.3. Flow analysis and validations

The first part of the study is related to the low Reynolds number analysis where the viscous

effects are predominant. Following [8] the adimensional time-step ∆t is determined by the condition

∆t/(h2 Re) ∼ O(1). Various tests have been carried out by increasing the blockage ratio 1/Ly,

where Ly denotes the heigth of the computational box, as shown on Figure 1. The size of

the computational domain was chosen such that the effects of the boundaries on the shedding

frequencies were negligible. Moreover, a careful convergence study with respect to the domain

size has been performed in [4] for flow past a 2D circular cylinder using vortex methods. This

study shows a first-order convergence for the lift coefficient and Strouhal number and third-

order convergence for the drag coefficient. It demonstrates that a domain extending to about 6

cylinder diameters downstream is sufficient to provide reliable flow diagnostics. The subsequent

simulations have been performed in a computational box with dimensions [−7.5, 25]× [−7.5, 7.5]

with 3250× 1500 grid points. This corresponds to a mesh size h = 0.01. The penalization was

introduced using the implicit formulation (20) and the penalization parameter was set to λ = 1010.

For Re < Recrit = 49, the flow regime is laminar and the solution is steady and stable (see [1]).

For larger Reynolds numbers, the flow regime is still laminar but the steady solution becomes

unstable (Re > Recrit). On the left-hand side picture of the Figure 4, the amplitude Aω of the

fluctuation of the vorticity on a monitoring point P = (2.5, 0.5) is plotted for various Reynolds

numbers. For a flow regime close to the bifurcation point Recrit (Re < 60) the wake instabilities

grow very slowly, so the oscillation study is started at Re = 60. Nevertheless, the exact critical

Reynolds number is obtained with a linear extrapolation of the amplification factor curve. The right-

hand side picture of the Figure 4 shows the Strouhal number (given by the shedding frequency) as a

function of the Reynolds number, obtained in our calculations and in the exprimental work [1]. An
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FIGURE 4. Amplification factor Aω curve (left). Strouhal-Reynolds curve (right).

estimate of the mean relative error between the two curves yields ǭ =
1

N

∑

N

|Stref − St| ≈ 0.6%,

where N denotes the number of points on each curve (i.e N = 13).

The evaluation of forces has been carried out using the momentum equation (29). The mean

values and the amplitudes of the fluctuations of drag and lift coefficients for flows at Re = 100

and Re = 200 are computed and given in Table 1. These results are very close to experimental and

numerical data collected by Russell & Jane Wang [29] and Braza et al. [30].

To address a transitional case we focus now on an impulsively started flow at Re = 550 and

compare our results to those of Koumoutsakos & Leonard [2] and Ploumhans & Winckelmans

[8]. The time evolution of the drag coefficient is reported in Figure 5 (a). In our computations the

the grid convergence in a computational domain [−4, 8]× [−5, 5] is achieved with parameters

h = 0.005, ∆t = 0.005 and λ = 108. The various results are in excellent agreement. Figure 6 (a)

depicts the vorticity isocontours which are very similar to the vorticity field presented by Ploumhans

& Winckelmans [8] where h = 6.03× 10−3.

The next simulation was performed at Re = 1000. At this regime, advection effects become

predominant in the flow field. The boundary layer thickness decreases, requiring a finer grid. The

mesh size is consequently set to h = 0.0025 in a computational domain [−4, 8]× [−5, 5] and the

time step is set to ∆t = 0.003. The non-dimensional time evolution of the drag coefficient is given

in Figure 5 (b) and compared to the result in [2]. Table 2 shows the comparison of mean drag
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coefficient, amplitude fluctuation of lift coefficient and Strouhal number with other studies [31, 32]

for long time simulations. All these comparisons confirm an excellent agreement between our results

and the reference results in the literature.

For Re = 3000 the flow is unstable and the shedding generates complex vortex pairings (see

[1]). In this case, grid convergence was obtained in our method for λ = 108, h = 0.0025 and

∆t = 0.0025. Figure 5 (c) shows again a very good agreement in the drag history between our

results and those in [8] and [2]. In [8] h is about 0.002. Vortex contours in Figure 6 (b) confirm this

agreement.

The last simulation addresses the flow around the impulsively started cylinder at Re = 9500. Let

us emphasize that a 2D validation study at such a regime makes sense since we only consider here

the impulsive start of the flow, before the onset of 3D instabilities. In order to capture small spatial

structures and the thin boundary layer, the grid size was reduced to the value h = 0.00125 in the

same computational domain as the one used in the previous cases. The time step was set to 0.002

and λ = 108. The comparison of our results to those obtained by Rasmussen et al. [28] as well as

Koumoutsakos & Leonard [2] is reported in Figure 5 (d). In [28] a multilevel vortex method was

used with a minimal grid resolution corresponding to hmin = 1/1024. The discrepancy observed on

Figure 5 (d) at early times of the drag history indicates that the penalization method has difficulties

to establish the strong initial vortex sheet on the body of the cylinder. For later times our results are

in excellent agreement with [2, 28].

To conclude this section, Table 3 is given to confirm that the choice of the grid resolution h at

each flow regime is appropriate to capture the boundary layer thickness, expressed by δ ≈ D/
√
Re.

The validation study just performed for the 2D circular cylinder benchmark enables us to

determine the appropriate grid resolutions and time steps needed to obtain accurate results in the

more challenging cases that will be considered in the following.
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FIGURE 5. Drag evolution for Re = 550 (a), Re = 1000 (b), Re = 3000 (c) and Re = 9500 (d). Comparisons

of present method (solid red line) with Koumoutsakos & Leonard [2] (dashed line). Solid black line are

results from Ploumhans & Winckelmans [8] in (a), (b), (c) and from Rasmussen et al. [28] in (d).
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(a) Re=550 (b) Re=3000

FIGURE 6. Comparison of vorticity isocontours for the impulsively started cylinder between present method

(left columns) and Ploumhans & Winckelmans [8] (right columns) at (a) T = 1, 3, 5 at Re = 550 and (b)

T = 1, 2, 3 at Re = 3000.
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4. APPLICATION TO FLOW PAST A MOVING TWO-DIMENSIONAL VERTICAL AXIS

TURBINE

In this section, our goal is to take advantage of the flexibility of the vortex penalization method

to handle moving bodies. Here we apply this technique to the two dimensional flow past a Vertical

Axis Turbine (VAT).

The main problem encountered with the aerodynamics of a VAT architecture turbine is the

complex unsteady flow phenomena occurring during its working cycle. For each revolution the

blades undergo a highly unsteady relative motion with large variation of incidence and absolute

value of the relative velocity. This complexity in the flow motion is mainly characterized by flow

detachment, vortex shedding, dynamic stall and turbulence.

The study of the turbulent flow past vertical axis turbine has been addressed recently by some

authors [33], [34], [35] ; however the basic characteristics of the turbulent wake for such a kind of

flow remains essentially an open issue.

[36, 37] provide validation studies of remeshed vortex methods against reference spectral methods

in 3D laminar and turbulent flows. These studies give confidence that remeshed vortex methods,

combined with penalization methods, can be efficient and flexible tools to handle VAT flows.

The VAT is rotating at a given velocity Ω and is immersed in a stream with a uniform far field

velocity u∞. The blade radius and the airfoil chord are denoted by R and c, respectively (Figure 7

(a)).

The motion of a solid obstacle can be described with the vortex-penalization method as follows

[11]. S = S(t) is a moving multi-connected solid region. If one denotes by φ a level-set function

which is negative inside S and positive outside, the characteristic function of S is defined by

χ = H(φ), where H(·) is a suitable step function. Moreover, in a rigid body motion, the level-set

function has to satisfy

∂φ

∂t
+ (us · ∇)φ = 0. (36)
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FIGURE 7. (a) Geometrical setup of VAT. (b) Distance function φ iso-contours ; the dashed rectangle Σφ is

the support of φ.

The above equation enables to evaluate the body trajectory. The equation (36) can be interpreted as a

material derivativeDφ/Dt = 0, and the movement of the blade can be integrated using a Lagrangian

method. The Figure 7 (b), shows some levels of the function φ defining the airfoil on a Cartesian

equispaced grid.

The blade section used in this vertical axis turbine is a symmetrical Kármán-Trefftz airfoil

with a slightly smoothed trailing edge. The frame of reference is set on the rotation axis of

the turbine and the computational domain is D = [−6, 6]× [−3.5, 3.5] with 3001× 1751 grid

points (corresponding to h = 0.004) and the penalization parameter λ = 1010. The Poisson equation

is solved using a fourth order finite differences-based solver, provided by the Fishpack library

[38]. The boundary conditions prescribed on the stream function ψ are the following : on

the upstream/downstream boundaries a Neumann condition is imposed, and on the horizontal

boundaries a Dirichlet condition enforces the flow mass rate through the domain. The Reynolds

number for a VAT can be defined choosing the blade section chord c as reference length and the

maximum relative velocity u
max
rel as reference velocity, where this velocity is given by u

max
rel =

|u∞|+ |ΩR|. For a realistic simulation of a medium/small wind or water turbine it is located in the

range of 104 − 106. The flow is transitional and is dominated by convective phenomena.
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In this section two values of the Reynolds numbers, Re = 1000 and Re = 10000, are considered.

This bench study mainly aims to highlight the great capability of the present method to supply

realistic results for moving bodies with unfitted boundaries and the grid resolution handled here is

convenient to confirm the qualitative physical behaviour of computations.

For the Reynolds number Re = 1000, a wind turbine with a blade section chord c = 0.2 m,

radius R = 0.3 m, rotating speed Ω = 0.185 rad/s and immersed in a stream with u∞ = 0.025

m/s is considered (where νair = 1.6 10−5 m2/s at 20 Celsius degrees). For this Reynolds number,

which corresponds to a low transitional flow with viscous effects, the time step is taken as

∆t = 0.001. A higher Reynolds number for a wind turbine operating at low-wind speed is studied

by considering this VAT geometry with the working conditions Ω = 1.85 rad/s and u∞ = 0.25 m/s.

The corresponding Reynolds number is Re = 10000 and the integration time step is chosen to be

∆t = 0.0002. On Figures 8 (a) and 8 (b) instantaneous vorticity isolines for different rotating times

of the blades at Re = 1000 and Re = 10000 are respectively plotted. The varying incidence of the

velocity occurring at each blade generates separation and vortex shedding ; as the figures show, the

flow is highly unsteady and the blade strongly interacts with the wake. The flow for Re = 1000

generates an almost regular Von-Kármán-like wake with large structures. By contrast, the vortex

shedding for the Re = 10000 becomes very quickly unsteady where small high frequency vortical

structures interact with each other before being transported downstream.

A complementary description of the flow around the turbine is given by the averaged-in-time

streamlines for the absolute flow field shown on Figures 9 (a) and 9 (b), for a wake at Re = 1000

and Re = 10000. The isolines are displayed in the relative frame of reference, that is centered on

the turbine axis and moves jointly with the blades. For the lower Reynolds number Re = 1000 the

average is computed for a simulation time of ≈ 650s, which corresponds to ≈ 19 loops of the blade.

As the Figure 9 (a) shows, for this flow the recirculation zones (one for each blade) are concentrated

between the rotation axis and the inner surface of the blade. For the higher Reynolds number

Re = 10000, the mean flow is computed for a simulation time of ≈ 65s, which still corresponds

to ≈ 19 cycles. In this case, for each blade three recirculating areas can be identified, as in Figure 9
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(b) : two zones are close to the airfoil (outer and inner surfaces) and the third region is the average in

time of the wake generated from the trailing edge of each blade due to complex vortex interactions.

Finally, we study the time evolution of the enstrophy ǫ and the number of vortex particles in order

to better analyze the properties of these two flow regimes. The enstrophy is a quantity that measures

the dissipation of energy in terms of kinetic energy. In a 2D flow field the enstrophy is given by

Z =
∫
D
|ω|2dσ, where D is the computational domain. In figures 10 (a) and 10 (b) the comparison

between the time history of the enstrophy and the number of particles is shown for Re = 1000 and

Re = 10000 respectively. As the Figure 10 (a) shows, the amplitude of the oscillations remains quite

small compared to the Re = 10000 regime (Figure 10 (b)), where the frequency of the shedding

appears through large oscillations. The figures show the high correlation between the time evolution

of the enstrophy and the number of particles. In addition one can observe a characteristic frequency,

roughly corresponding to 10 rotations of the blades, for which large vortices are shed outside

the computational domain. Further computations would be needed to confirm and understand this

phenomenon.

In the present cases the flow regime is characterized by unsteady separations generated by the

periodical interaction of the wake with the blades. For Re = 1000, we notice that the principal

vortex shedding frequency roughly corresponds to 2Ω, that is twice the angular velocity of the

two-bladed VAT. For Re = 10000, different shedding frequencies can be distinguished from the

rotational frequency of the blade. The investigation on the shedding frequencies is meaningful

because it allows to relate the interaction of the vortex wake with the structure of the turbine. If some

vortex shedding frequencies match the proper frequencies of the turbine, the structure can resonate

with a self-sustained motion and the turbine is liable to aeroelastic phenomena. To evaluate the

principal frequencies of vortex shedding we performed a discrete Fourier analysis of the enstrophy

signal. In Figures 11 (a) and 11 (b) the spectra of the enstrophy versus the frequency of the signal

are presented, where Aenstrophy is the amplitude of the enstrophy and ωi/Ω is the nondimensional

discrete frequency of the signal. The spectra does not report the mean value corresponding to the first
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coefficient i = 0 of the Fourier series. To avoid the effect of the initial transient stage, the Fourier

analysis was applied on the signals after the first three cycles of the turbine.

In Figure 11 (a) the shedding principal harmonic at 2 times the angular velocity of the turbine is

confirmed : the wake interacts with a blade two times for each cycle of the turbine. Further couplings

with the principal frequency can be identified at 4, 6, 8. Some high energy contributions are visible

at frequencies lower than 2. A reason may be that the flow is not fully developed and did not achieve

a statistical steady state yet.

In Figure 11 (b) the spectrum exhibits shedding frequencies at 2 and 4 times the angular velocity.

The enstrophy signal is noisy and is characterized by random peaks at low frequency (Figure 10

(b)).

Following [39], since the turbulent dissipation rate is equal to the turbulent kinetic energy

production, the ratios of the Kolmogorov scale to largest scales are determined readily by means

of the approximation ǫ ∼ U3

L and the results are : η ∼
(

ν3L
U3

) 1

4

, τη ∼
(
νL
U3

) 1

2 , uη = η
τη

. Finally the

Kolmogorov scales for the cases at Re=1000 and Re=10000 are respectively : η = 1.1 · 10−3m,

uη = 1.4 · 10−2m
s , τη = 7.8 · 10−2s and η = 2.0 · 10−4m, uη = 8.0 · 10−2m

s , τη = 2.5 · 10−3s.

Higher couplings with the principal rotational frequency are not visible in the spectrum, because

the energy is transferred from the large geometrical scale to the Kolmogorov scale. The large

energetic contribution occurring at frequencies lower than 2 probably means that the flow is not

yet fully developed.
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FIGURE 8. Iso-vorticity lines of the wake past the VAT at Re = 1000 (a) and at Re = 10000 (b). Snapshots

respectively at times T = 3.8s, 11.4s, 18.9s, 26.5s and T = 0.38s, 1.14s, 1.89s, 2.65s.
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(a) (b)

FIGURE 9. Averaged-in-time streamlines for the VAT at Re = 1000 (a) and at Re = 10000 (b). The isolines

of the absolute flow field are represented in the relative frame of reference.

(a) (b)

FIGURE 10. Time history of the dimensionless enstrophy Z (blue) and the number of vortex particles (red)

for Re = 1000 (a) and Re = 10000 (b). The axis of the abscissas represents the number of the cycles

performed by the turbine.
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FIGURE 11. Frequency spectrum of the enstrophy signal computed for Re = 1000 (a) and Re = 10000 (b).

The horizontal axis reports the discrete frequency ωi divided by the angular velocity Ω of the turbine.
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5. EXTENSION TO SOLID-POROUS-FLUID MEDIA AND FLOW CONTROL

This section is devoted to the study of flows in solid-porous-fluid media. It illustrates the

efficiency of the vortex penalization method to handle problems where the physical properties or

boundary conditions vary in the body.

5.1. Modeling and numerical setup

The penalization method has been used to model the porous-fluid-solid problems with primitive

pressure-velocity formulations [23, 20, 40]. This work is dedicated to the extension of this approach

to the vorticity equations and to different configurations. We consider a solid body surrounded by

a porous layer and immersed in an incompressible fluid. In such a system, on can identify five

different flow regimes corresponding to different regions in the fluid. A first region is the boundary

layer inside the porous medium, close to the solid wall. This region is very thin compared to the

second region which is characterized by the homogeneous porous flow with Darcy velocity (regions

numbered 1 and 2 in Figure 12 (left)). In the vicinity of the porous-fluid interface, two transient

layers can be recognized (numbered 3 and 4 in Figure 12 (left)). The first one corresponds to

the porous layer where the velocity increases to reach a value ui at the interface, and the second

one to the fluid boundary layer leading to the free external flow. The size of the fluid boundary

layer is determined by u0 − ui where u0 denotes the velocity of the main fluid flow (numbered 5

in Figure 12 (left)). The goal is thus to compute the flow simultaneously in the porous medium,

the fluid region and at the interface between the two media. Several approaches have already

been proposed to handle this problem. The first one, which is mainly used to model flows past

a solid with permeable walls [41, 42], avoids to solve the porous flow by enforcing appropriate

porous-fluid boundary conditions [43]. This method neglects the physics of the porous medium

and does not allow to have an overall view of the problem. A second approach considers that the

porous flow has to be accurately computed, and solves the governing equations in each region by

coupling the Darcy equations and the Navier-Stokes equations through an appropriate condition at

the interface [44, 45]. This approach is very delicate to handle especially because of the requirement
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of this appropriate boundary condition. The method presented here, based on the vortex-penalization

technique, considerably simplifies the task since a unique equation is used for the whole domain and

enables to accurately model each of the different regions by varying the value of the dimensionless

penalization factor λ. In 2 dimensions, the penalized vorticity equation reads :

∂ω

∂t
+ (u.∇)ω =

1

Re
∆ω +∇× [λ χS(us − u)]. (37)

We recall that λ essentially depends, in the inverse proportion, on the physical intrinsic

permeability of the medium k which directly derives from the Darcy law (equation (7)). Varying

the value of λ thus directly characterizes the different media.

Modeling the physics of three different regions enables one to deal with engineering problems

involving porous media. In the following, this approach is validated for a simple but informative

passive flow control problem : the solid-porous-fluid configuration is applied to cover a semi-circular

cylinder geometry with a porous coating. The porous coating is applied on the obstacle external

surface in order to modify the vorticity generation of the boundary layer and the vortex shedding.

The presence of a porous medium at the solid-fluid interface indeed imposes a kind of mixed

boundary condition intermediate between the no-slip and the slip one on the solid boundary [46]. As

a result, the shear forces are reduced and the flow dynamics is smoothed [20, 40, 23, 47]. This control

technique, which allows to keep the obstacle geometry unchanged, is expected to reduce drag forces

and vortex induced vibrations, thereby improving the aerodynamic properties of the obstacle. The

semi-circular cylinder can be considered as a simplified section of an outside rear-view mirror of a

vehicle. The mirrors, due to their spanwise location, indeed generate a non-negligible wake which

interferes with the vehicle sides. This provides a good motivation to perform flow control past such

obstacles. Moreover, as it was shown in [48, 49], a flow past a square back obstacle is not dominated

by longitudinal vortical structures, therefore a preliminary two-dimensional study can be useful to

supply information on general trends for a control.

In the following, the semi-circular cylinder has a total dimensionless diameter of d = 1 including

a porous layer of thickness τ . The backward face of the obstacle is centered at the point (0, 0) (see
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FIGURE 12. Velocity profile in the vicinity of a porous medium (left). Computational domain for flow control

past semi-circular cylinder (right)

Figure 12 (right)). In the sequel we will consider flows both at transitional (Re = 550) and highly

transitional (Re = 3000) regimes.

5.2. Validation and convergence studies for flow past a solid semi-circular cylinder

Compared to the circular cylinder considered in the previous section, the semi-circular cylinder

presents singular points which make its simulation more challenging. In order to verify the accuracy

of the method in the case of flow past a solid semi-circular cylinder, we proceed like in section 3.

We first compare the results obtained using the present method with the ones of the literature, for

different Reynolds numbers. Secondly we present the convergence of the method with respect to

the penalization parameter and the grid-size.

5.2.1. Validation

The benchmark of incompressible flow past a semi-circular cylinder is not a classical one and only

few references already exist on this subject. Nevertheless, we aim at least to compare our results to

numerical and experimental ones. To do so, we respectively consider the works of Farhadi et al. [50]

and Boisaubert and Texier [51]. The flow analysis presented hereafter are based on the near-wake
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FIGURE 13. (a) Drag and lift evolution for flow past a semi-circular cylinder at Re = 200. (b) Normalized

near-wake length L/d of a semi-circular cylinder at Re = 200 : comparison with numerical results [50]

(green triangles) and experimental data [51] (black squares).

length measurement, the Strouhal number and the drag and lift coefficients. The Reynolds number

ranges between 100 and 300 in this study.

As can be seen in Table 4, the results obtained at Re = 100 and Re = 300 show a good agreement

with the numerical values given by [50]. A more detailed comparison is performed at Re = 200

and the related results are reported in Figure 13. As regards drag and lift coefficients, one can

say according to Figure 13 (a) that our results coincide very well with those of [50] since we

achieve c̄D = 1.85± 0.15, c̄L = 0± 0.53 and St = 0.230 against c̄D = 1.85± 0.12, c̄L = 0± 0.50

and St = 0.215 in [50]. Figure 13 (b) gives a comparison of the normalized near-wake length Lwith

the numerical results of [50] and the experimental data of [51]. The near-wake length is defined as

the x-coordinate of the point located on the centreline in the x-direction where the streamwise

component of the velocity vanishes. As can be seen on the figure, the values obtained with the

present method greatly coincide with the numerical and experimental reference results.

5.2.2. Convergence studies

In this section we present convergence studies of the vortex-penalization method for the flow past
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a solid semi-circular cylinder at Re = 550 and Re = 3000. We first focus on the convergence of the

present method with respect to the penalization parameter λ. The way this convergence study is

carried out is exactly the same as presented in section 3.2. As Figure 14 shows, the semi-circular

cylinder reaches the solid state from λ = 105, where e(y) ≤ 10−4, for both regime. A permeable

area can thus be defined with λ-values lower than 104. In the oncoming control study, we will vary

the penalization parameter until 103 inside the added porous layer in order to model a permeable

medium.

We now turn to a grid convergence study. It is performed on three grid levels. For Re = 550

we consider three mesh sizes are : h = 0.01, h = 0.005 and h = 0.0025 in the computational

domain D = [−4, 8]× [−5, 5]. For Re = 3000 as the boundary layer is thiner, we perform the

convergence study with three finer mesh sizes, respectively h = 0.005, h = 0.0025 and h = 0.00125.

The simulations are carried out in a smaller domain D = [−2.5, 5]× [−3, 3] in order to reduce the

computational cost induced by the finest grid. The mean drag and enstrophy values are reported

in Table 5. At Re = 550, on the basis of these results, one can consider that the grid convergence

is achieved for h = 0.005 with ∆t = 0.0025. At Re = 3000 grid convergence is obtained with h =

0.0025 and h = 0.00125, which leads us to choose h = 0.0025 and ∆t = 0.002 for the oncoming

simulations. Let us emphasize the interest of the vortex methods which enables here to handle a

highly transitional regime using a relatively large time step compared to classical Eulerian methods.

5.3. Parametric study with respect to the penalization parameter λ

In this section we study the influence of the porous layer permeability on the flow behavior and the

efficiency of such a passive control. This parametric study is performed at Re = 550 and Re = 3000

with different values of the porous permeability inside the layer, ranging from λ = 0.125 (very high

permeability) to 103 (very low permeability). The results are compared to the one corresponding

to the solid (λ = 108) and fluid (λ = 0) cases. In a first place, the thickness of the coating is set

to ten percent of the diameter : τ = 0.1 (see Figure 15) for all the cases. According to the grid

convergence performed in the previous section (Table 5), the numerical simulations are performed
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FIGURE 14. λ-convergence study for flow past a semi-circular cylinder : the errors eL∞ , eL1 and eL2 are

plotted against λ values at Re = 550 (a) and Re = 3000 (b).

on a 2400× 2000 grid (corresponding to h = 0.005) for Re = 550 and on a 4800× 4000 grid

(corresponding to h = 0.0025) for Re = 3000 in a computational domain D = [−4, 8]× [−5, 5]

(see Figure 12 (right)).

In order to analyze the effects of our control approach we compare global flow quantities like the

drag force (Fx), computed according to the momentum equation (29), the enstrophy (Z) allowing

to measure the dissipation effects in the flow as well as the delay of transition to turbulence, and the

Strouhal number (St). Note that in this study we consider drag forces instead of drag coefficients

since the CD formula (32) involves the diameter d of the obstacle which is not clearly defined

because of the porous coating.

The results of the parametric study performed at Re = 550 are given in Table 6. Concerning the

Strouhal number St, one can notice that it continuously increases as the λ value decreases. The

presence of a permeable layer around the obstacle indeed enables to raise the shedding frequency,

and in the limit λ→ 0 one tends to the flow dynamics of the fluid case which is characterized by

smaller vortices swirling at higher frequency (Figure 17 (a)). Regarding F̄x, Table 6 shows that,

as expected, the drag reduces as the controlled case tends to the fluid case. Nevertheless, one can
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FIGURE 15. (left) Solid/uncontrolled case, (center) Porous case, (right) Fluid case.

observe a slight increase of the drag force for intermediate values of λ, namely λ = 100 and λ = 10.

In fact, this range of permeability values is responsible for a high resistance of the flow inside the

layer inducing higher friction forces at the interface, and thus a higher total drag. The quantitative

results reported in Table 6 are also highlighted in Figures 18 and 20 respectively depicting the mean

velocity and mean vorticity fields. As already emphasized in the literature [49, 47], the main source

of drag forces for bluff bodies with square back is the low pressure recirculation zone in the near

wake of the vertical wall. With λ = 1, the near wake structures are smaller and the back recirculation

zone is drastically reduced (Figure 20). Moreover, the mean velocity of the wake clearly diminishes

(Figure 18) and the structure of the global and near wake resembles the one of the fluid case. This

feature explains the important drag reduction observed in Table 6 for λ = 1 (-27%) and in general

for small values of λ. On the contrary, the flow behavior obtained with λ = 10 looks very similar

to the one of the uncontrolled case with an important transversal extent of the wake (Figure 20)

and high velocities in the flow compared to the uncontrolled case (Figure 18). This confirms the

results given in Table 6 and allows us to conclude that this value of λ is not suitable at this regime

to achieve drag reduction. However, with λ = 10 we obtain an important reduction of the enstrophy

which implies an efficient wake regularization and thus a delay in flow transition. This observation

leads us to the analysis of control efficiency in terms of enstrophy, for which we observe a more

complex behavior. Indeed, as can be read in Table 6, the enstrophy decreases with λ to reach an

optimal value, for λ = 2.5 (-41% compared to uncontrolled case). Below this λ value, the enstrophy
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increases again to finally reach the value corresponding the reduced obstacle (fluid case). Therefore,

when λ ≤ 10, then Z̄λ < Z̄fluid, which demonstrates the non-monotonic behavior of the enstrophy,

in the range of permeabilities taken into account in this parametric study (for all values of λ in

{0.125, 1000}, Z̄λ < Z̄solid). Figure 16 (a) summarizes these observations made from Table 6 and

shows the evolution of the mean drag force and the mean enstrophy with respect to the λ parameter.

At Re = 3000, the evolution of the Strouhal number as a function of λ is similar to the one

observed at Re = 550 : the more permeable the added layer is, the higher the shedding frequency

is. This behavior is represented by the vorticity fields of Figure 17 (b), where one can clearly see

the benefits of the porous coating which enables to go from a chaotic wake with large eddies of

strong intensity (uncontrolled case) to an axisymmetric Von Kármán street composed of numerous

small vortices, similar to the one of the fluid case (controlled case with λ = 1). On the other hand,

the results obtained in terms of mean drag force and mean enstrophy are also comparable to those

obtained at Re = 550, with a more pronounced behavior. Concerning the drag force, we indeed

notice on Table 7 and Figure 16 (b) that intermediate permeabilities (λ ≈ 10) completely deteriorate

the performances. On the contrary, below λ = 5, the drag reduction is enhanced. This assessment is

confirmed by Figures 19 and 21 showing in a case of a very permeable layer (λ = 1) a symmetric,

thin and regular wake as well as low velocity gradients and low vorticity values in the vicinity of

the detachment points and the recirculation zone. Regarding enstrophy, similarly as in the Re = 550

study, we identify an optimum λ value, still equal to 2.5, for which the enstrophy reaches a global

minimum value leading to a reduction of 44% (Table 7 and Figure 16 (b)). In a general way, this non-

monotonic behavior of the enstrophy proves that the regularization effects reported here are not due

to a change of the Reynolds number, since we have for instance Z̄λ=2.5 < Z̄λ=1 < Z̄fluid, whereas

Reλ=2.5 > Reλ=1 > Refluid. In fact, the introduction of a porous layer generates Kelvin-Helmoltz

instabilities at the solid-porous interface. These instabilities, depicted on Figure 22 at Re = 3000

for the λ = 1 test case for example, change the shear forces at the interface and therefore modify

the vortex shedding mechanism and the global flow dynamics. The presence of such instabilities

explains in particular the qualitative and quantitative differences between the fluid case and the very
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permeable cases.

Finally, the most important observation which emerges from this parametric study is the difference

of behavior between the enstrophy and the drag evolution. We indeed highlighted the systematic

enstrophy reduction in the presence of a porous coating, regardless of its permeability, whereas

some λ values were found to be responsible for a non negligible drag increase, especially at

Re = 3000. This is directly due to the way these two quantities are evaluated. The enstrophy

quantifies the energy dissipation of the whole system, it is therefore evaluated in the entire domain.

Thus, the laminar velocities caused by the presence of the permeable layer and appearing in the

vicinity of the detachment points, lead to a delay in transition to turbulence and directly impact

the transport of the vorticity which is regularized. On the contrary, the drag force is evaluated on

the walls of the obstacle or in the vicinity of the body (see section 2.3) and is directly linked to

the vorticity generation. Therefore, the high friction phenomenon caused by some permeabilities

(namely intermediate permeabilities) and implying a resistance of the flow in the front part of the

obstacle, is directly reported in the drag diagnostic and in the very near-wake analysis. The λ = 10

test case at Re = 3000 clearly illustrates these statements : one can indeed notice the beneficial

effects of the permeable coating on the wake, which becomes axisymmetric (Figure 17 (b) and does

not show high velocity gradients anymore (Figure 19). As a consequence, we achieve a reduction of

enstrophy (Table 7). On the opposite, the effects on the very near-wake and on the drag in particular

are clearly not beneficial (Table 7) as can be seen on Figure 21. The case λ = 10 shows important

recirculation zones in the rear back of the solid, responsible for a pressure decrease and thus for a

drag growth. Therefore, the drag forces are more sensitive to the permeability values.

To conclude this λ-parametric study, we can assert that the control should be implemented with

high permeability coefficients (λ ≤ 2.5) in order to combine both a significant drag reduction and a

regularization of the wake.
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FIGURE 16. Effects of various layer permeabilities on the mean drag force F̄x (red curves) and the mean

enstrophy Z̄ (blue curves) for flow past a semi-circular cylinder at Re = 550 (a) and Re = 3000 (b) with

τ = 0.1.

5.4. Influence of the layer thickness τ on the flow control efficiency

In the previous section, the effects of the control were studied for different permeabilities using

a constant layer thickness τ = 0.1. In this section, the effect of the thickness are investigated,

and a special focus is made on thin layers in order to reduce the use of porous materials and to

find out a compromise between practical engineering constraints and control efficiency. The same

cases (Fig. 15) are now considered with the thickness of the layer set to τ = 5%d = 0.05 and to

τ = 2.5%d = 0.025. Table 8 reports the control performances in terms of global flow quantities,

obtained for two controlled cases, λ = 10 and λ = 1, with τ = 0.05 and τ = 0.025. Generally, as

expected, for both regimes (Re = 550 and Re = 3000) a slight decrease of control efficiency is

observed when τ diminishes. Nevertheless, at Re = 3000, one can observe a change of trend. We

indeed achieve a drag increase for both controlled cases (λ = 1, λ = 10), even if the enstrophy

reduction is still maintained. Thus, to achieve a significant drag reduction it becomes necessary

to think about the position of the permeable areas around the obstacle in order to reduce the high

resistance currently experienced by the flow only in the front part of the layer. This question is the
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FIGURE 17. Instantaneous vorticity fields for flow past a semi-circular cylinder at Re = 550 (a) and Re =

3000 (b). The vortex shedding of the two controlled cases (λ = 10 and λ = 1, with τ = 0.1) are compared

to the one of the uncontrolled case and the fluid case (reduced obstacle).

purpose of a companion paper [52], where it is in particular shown that an efficient solution consists

in locating the permeable zones only on top and bottom of the body, in the vicinity of the flow

detachment points.
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FIGURE 18. Isolines of mean velocity magnitude for the flow past a semi-circular cylinder at Re = 550.
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FIGURE 19. Isolines of mean velocity magnitude for the flow past a semi-circular cylinder at Re = 3000.
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FIGURE 20. Zoom of the mean vorticity fields and isolines for the flow past a semi-circular cylinder at

Re = 550.
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FIGURE 21. Zoom of the mean vorticity fields and isolines for the flow past a semi-circular cylinder at

Re = 3000.
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FIGURE 22. Zoom of the instantaneous vorticity fields and isolines at T=80 in the vicinity of the solid

interface at Re = 3000 for the two following cases : the fluid case (left) and the controlled case with λ = 1

and τ = 0.1 (right).
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6. CONCLUSION

In this paper a method combining penalization, vorticity formulation and particle discretization

was described and applied to complex fluid-solid configurations. The penalization approach greatly

simplifies the implementation of vortex particle methods to handle the no-slip boundary conditions.

It enables to consider the governing equations in the whole computational domain and enables

the use of simple Cartesian grids and fast Poisson solvers to compute velocity fields. After a

detailed validation on the circular cylinder benchmark, a the first application to moderate and

high Reynolds flows around a moving vertical axis turbine was presented. The results showed the

efficiency of this method to realistically model flows past moving obstacles. The second application

illustrated the capability of the method to handle solid-fluid-porous media. The distinction between

the three different media is indeed performed by varying the value of the penalization parameter

without prescribing a boundary condition at the solid boundary or at the porous-fluid interface. An

application to passive flow control past a semi-circular cylinder was performed at transitional and

highly transitional regimes, consisting in adding a porous sheath on the obstacle surface in order to

smooth the flow dynamics. The presence of a porous layer at the solid-fluid interface is responsible

for a decrease of the shear forces and the vorticity generation of the boundary layer, leading to

significant wake stabilization and drag reduction.
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TABLE I. Comparison of drag coefficient, lift coefficient, and Strouhal number for flow past a circular

cylinder at Re = 100 and Re = 200.

Re=100 Re=200

Authors c̄D c̄L St c̄D c̄L St

Braza et al. [30] 1.36 ± 0.015 0 ± 0.25 0.160 1.40 ± 0.050 0 ± 0.75 0.190

Russel and Wang [29] 1.43 ± 0.009 0 ± 0.322 0.172 1.45 ± 0.036 0 ± 0.63 0.201

Present method 1.40 ± 0.010 0 ± 0.32 0.165 1.44 ± 0.05 0 ± 0.75 0.200

TABLE II. Comparison of mean drag coefficient, mean lift coefficient, and Strouhal number for flow past a

circular cylinder at Re = 1000.

Re=1000

Authors c̄D c̄L St

Apte et al. [31] 1.50 0 ± 1.36 0.238

Mittal et al. [32] 1.48 ± 0.21 0 ± 1.65 0.250

Present method 1.51 ± 0.23 0 ± 1.54 0.245

TABLE III. Justification of the choice of mesh size h based on the boundary layer thickness δ, for the circular

cylinder validation study.

Re Boundary layer thickness (δ) Chosen mesh size (h) Number of mesh cells in boundary layer

550 ∼ 0.043 0.005 8.6

1000 ∼ 0.032 0.0025 12.8

3000 ∼ 0.018 0.0025 7.2

9500 ∼ 0.010 0.00125 8

TABLE IV. Comparison of mean drag coefficient and Strouhal number for flow past a semi-circular cylinder

at Re = 100 and Re = 300.

Re = 100 Re = 300

Authors c̄D St c̄D St

Farhadi et al. [50] 1.73 0.180 1.955 0.22

Present method 1.70 0.192 1.90 0.24
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TABLE V. Convergence study for flow past a semi-circular cylinder at Re = 550 and Re = 3000. c̄D and Z̄

respectively denote the mean values of drag coefficient and enstrophy.

Re = 550 Re = 3000

Grid c̄D Z̄ c̄D Z̄

h = 0.01 1.49 122 - -

h = 0.005 1.91 158 1.89 313

h = 0.0025 1.98 161 1.94 292

h = 0.00125 - - 1.96 280

TABLE VI. Reduction effects in terms of mean drag force, mean enstrophy and Strouhal number brought by

the different layer permeabilities in comparison to the uncontrolled case at Re = 550.

Re = 550

Cases F̄x Z̄ St

uncontrolled case 0.957 158.4 0.248

porous case λ = 1000 0.957 (-0%) 154.0 (-3%) 0.248 (+0%)

porous case λ = 100 0.968 (+1.1%) 143.3 (-10%) 0.248 (+0%)

porous case λ = 10 0.970 (+1.4%) 114.4 (-28%) 0.252 (+1.6%)

porous case λ = 5 0.893 (-7%) 100.6 (-36%) 0.257 (+4%)

porous case λ = 2.5 0.788 (-19%) 93.7 (-41%) 0.268 (+8%)

porous case λ = 1 0.695 (-27%) 97.5 (-38%) 0.284 (+15%)

porous case λ = 0.5 0.664 (-31%) 101.9 (-36%) 0.291 (+17%)

porous case λ = 0.25 0.648 (-32%) 105.5 (-33%) 0.296 (+19%)

porous case λ = 0.125 0.643 (-33%) 107.7 (-32%) 0.298 (+20%)

fluid case 0.640 110.9 0.300
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TABLE VII. Reduction effects in terms of mean drag force, mean enstrophy and Strouhal number brought

by the different layer permeabilities in comparison to the uncontrolled case at Re = 3000.

Re = 3000

Cases F̄x Z̄ St

uncontrolled case 0.926 334.2 0.238

porous case λ = 1000 0.936 (+1%) 325.8 (-2.5%) 0.236 (-0.84%)

porous case λ = 100 0.873 (-6%) 270.0 (-19%) 0.211 (-11%)

porous case λ = 10 1.054 (+14%) 248.8 (-26%) 0.246 (+4%)

porous case λ = 5 1.048 (+13%) 211.9 (-37%) 0.282 (+19.5%)

porous case λ = 2.5 0.933 (+0.76%) 187.7 (-44%) 0.295 (+25%)

porous case λ = 1 0.870 (-6%) 236.7 (-29%) 0.313 (+33%)

porous case λ = 0.5 0.869 (-6%) 261.6 (-22%) 0.323 (+37%)

porous case λ = 0.25 0.838 (-9.5%) 302.3 (-9.5%) 0.321 (+36%)

porous case λ = 0.125 0.869 (-6%) 300.9 (-10%) 0.328 (+39%)

fluid case 0.880 319.3 0.331
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TABLE VIII. Effects of the porous layer thickness τ on the control efficiency at Re = 550 (top part) and

Re = 3000 (bottom part). The two controlled cases considered in this study are the porous case with λ = 10

and the one with λ = 1.

F̄x Z̄ St

Re = 550

uncontrolled case 0.957 158.4 0.248

τ = 0.1

porous case λ = 10 0.970 (+1.4%) 114.4 (-28%) 0.252 (+1.6%)

porous case λ = 1 0.695 (-27%) 97.5 (-38%) 0.284 (+15%)

τ = 0.05

porous case λ = 10 0.914 (-4.5%) 123.5 (-22%) 0.253 (+2%)

porous case λ = 1 0.774 (-19%) 123.7 (-22%) 0.269 (+8.5%)

τ = 0.025

porous case λ = 10 0.879 (-8%) 134.5 (-15%) 0.254 (+2.5%)

porous case λ = 1 0.821 (-14%) 139.3 (-12%) 0.260 (+5%)

Re = 3000

uncontrolled case 0.926 334.2 0.238

τ = 0.1

porous case λ = 10 1.054 (+14%) 248.8 (-26%) 0.246 (+4%)

porous case λ = 1 0.870 (-6%) 236.7 (-29%) 0.313 (+33%)

τ = 0.05

porous case λ = 10 0.979 (+6%) 253.7 (-24%) 0.225 (-5.5%)

porous case λ = 1 0.999 (+8%) 285.2 (-15%) 0.290 (+22%)

τ = 0.025

porous case λ = 10 1.018 (+10%) 283.7 (-15%) 0.251 (+6%)

porous case λ = 1 1.011 (+9%) 318.4 (-5%) 0.278 (+17%)
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