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Vortex Phase Diagram for Mesoscopic Superconducting Disks
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Solving numerically the 3D nonlinear Ginzburg-Landau (GL) equations, we study equilibrium
and nonequilibrium phase transitions between different superconducting states of mesoscopic disks
which are thinner than the coherence length and the penetration depth. We have found a smooth
transition from a multivortex superconducting state to a giant vortex state by increasing both the
disk thickness and the magnetic field. A vortex phase diagram is obtained which shows, as a
function of the magnetic field, a reentrant behavior between the multivortex and the giant vortex state.
[S0031-9007(98)07232-9]

PACS numbers: 74.25.Ha, 73.20.Dx, 74.60.Ec

Recently, mesoscopic superconductivity has attracted
much attention in view of phase transitions in confined sys-
tems with sizes comparable to the coherence (j) and pene-
tration (l) lengths. While the type of bulk superconductors
is determined only by the value of the Ginzburg-Landau
parameter k  lyj, the experimental observations [1] and
the numerical simulations [2,3] of magnetization of meso-
scopic thin disks have shown that the type and the order of
those transitions between different superconducting states
and between the superconducting and the normal state de-
pends crucially on the disk radius R and the thickness d.
By increasing the disk radius the second-order reversible
phase transition observed for small disk radii is replaced
by first-order transitions with jumps in the magnetization.
In previous theoretical investigations [2,3] only the giant
vortex states with fixed total angular momentum L were
considered. It is well known [4] that for type-II super-
conductors (k . 1y

p
2), the triangular Abrikosov vortex

lattice is energetically favorable in the range Hc1 , H ,
Hc2. Since the effective London penetration depth L 

l2yd increases considerably in thin disks and for d ø l
one would expect the appearance of the Abrikosov multi-
vortex state even in disks made from a material with k ,
1y
p

2, such as, e.g., the Al disks studied in Refs. [2,3].
By analogy with classical particles confined by an exter-
nal potential [5], the structure of a finite number of vor-
tices should differ from a simple triangular arrangement
and allow for different metastable states. Using the Lon-
don approximation Fetter [6] calculated the critical field
Hc1 for flux penetration into a disk. For a superconduct-
ing cylinder the multivortex clusters, containing up to four
vortices, were simulated by Bobel [7]. Using the method
of images and the London approximation, Buzdin and Bri-
son [8] have considered vortex structures in small R ø L
disks and found a classical particle ringlike arrangement
[5] of vortices. The reverse situation of a lattice of mi-
croholes was studied experimentally in Ref. [9] and the
configuration of vortices was found. In the present Letter
we study the transition from the giant vortex state to this
multivortex configuration for thin superconducting disks
within the nonlinear Ginzburg-Landau (GL) theory.

We consider a superconducting disk immersed in an
insulator media with a perpendicular uniform magnetic
field H0. For thin disks (d ø j, l) we found [2,3] that
it is allowed to average the GL equations over the disk
thickness. Using dimensionless variables and the London

gauge div $A  0 for the vector potential $A, we write the
system of GL equations in the following form:

s2i $=2D 2 $Ad2C  Cs1 2 jCj2d , (1)

2n3D
$A 

d

k2
dszd$j2D , (2)

$j2D 
1

2i
sCp $=2DC 2 C $=2DCpd 2 jCj2 $A , (3)

with the boundary condition s2i $=2D 2 $AdCjrR  0.

Here the distance is measured in units of the coherence
length j, the vector potential in ch̄y2ej, and the magnetic
field in Hc2  ch̄y2ej2  k

p
2 Hc. The disk is placed

in the plane (x, y), the external magnetic field is directed
along the z axis, the indices 2D and 3D refer to two- and

three-dimensional operators, and $j2D is the density of the
superconducting current. To solve the system of Eqs. (1)
and (2) we apply a finite-difference representation of the
order parameter and the vector potential on a uniform
Cartesian space grid sx, yd, with a typical grid spacing of
0.15j, and use the link variable approach [10]. To find
the steady-state solution of the GL equations we add to the
left-hand side of Eqs. (1) and (2) the time derivatives of
the order parameter and the vector potential, respectively,
and use an iteration procedure based on the Gauss-Seidel
technique to find C. The vector potential is obtained
with the fast Fourier transform technique where we set
$AjxjRs ,j yjRs

 H0sx, 2ydy2 at the boundary of a larger
space grid sRs  4Rd.

The giant vortex state is characterized by the total angu-
lar momentum L through C  cs rd expsiLfd, where r,
f are the cylindrical coordinates. An arbitrary supercon-
ducting state is generally a mixture of different angular
harmonics. Nevertheless, we can introduce an analog to
the total angular momentum which is still a good quan-
tum number. Choosing circular loops at the periphery
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of the disk we find that the effective angular momentum
L  Dfy2p does not depend on the loop radii rl when
it is in some range rl  s0.8 1dR. This allows us to
characterize unambiguously the different superconducting
states, where the effective angular momentum is in fact
nothing else then the number of vortices in the disk.

To find the different vortex configurations, which in-
clude the metastable states, we search for the steady-
state solutions of Eqs. (1) and (2) starting from different
randomly generated initial conditions. Then we slowly
increase and/or decrease the magnetic field and recalcu-
late each time the exact vortex structure. We do this
for each vortex configuration in a magnetic field range
where the number of vortices stays the same. By compar-
ing the dimensionless Gibbs free energies (of the differ-

ent vortex configurations) F  V21
R

f2s $A 2 $A0d$j2D 2
jCj4gd $r , where integration is performed over the disk vol-

ume V , and $A0 is the vector potential of the external uni-
form magnetic field, we found the ground state. If the
system has sufficient time to equilibrate, the system will
be in the ground state and we obtain phase transitions be-
tween different ground states. If the latter condition is
not satisfied the system can remain in a metastable state
until this state disappears or becomes unstable with re-
spect to small perturbations in the order parameter and/or
the magnetic field. Such nonequilibrium phase transitions
lead to hysteresis in the magnetization. The barriers sepa-
rating the metastable and the ground state are discussed
in Refs. [11,12]. Instead of finding the barrier heights,
which is a more cumbersome problem, we search for the
critical magnetic fields corresponding to the disappearance
of such barriers. Here, we started from the Meissner (nor-
mal) state and slowly increased (decreased) the magnetic
field (typically with steps of 0.01Hc2) from the zero (nu-
cleation) magnetic field.

The free energies of the different vortex configurations
are shown in Fig. 1 for zero disk thickness and for two
disk radii: (a) R  4j and (b) R  4.8j. For R  4j,
the vortex configuration can consist of up to six vortices
which are arranged on the edge of an ideal polygon.
The pentagon and hexagon vortex clusters are always
metastable states for R  4j. With increasing disk radius
the allowed number of vortices increases leading to the
appearance of polygons with a vortex inside it when
L . 7. But these structures have a larger energy as
compared to the ideal polygons. This result differs from
the London approximation of Ref. [8] where the closed
packed structures are more preferable even for L $ 6,
which clearly shows the limited validity of the approach
of Ref. [8]. Another unexpected feature is observed
when the magnetic field is further increased. While the
model of classical particles [8] predicts a decrease in
the intervortex distance followed by the appearance of a
new vortex, our simulations show, as a rule, a gradual
transition from a multivortex state to a giant vortex state

(Fig. 2). In principle, the latter may be a metastable
state. The positions of these transitions are indicated

FIG. 1. The free energy of configurations with different
number of vortices L for two disk radii R  4j (a) and
R  4.8j (b) for zero disk thickness and k  0.28. The open
circles indicate the transition from a multivortex to a giant
vortex state. The latter is located on the right side of the circle.
The dotted curves correspond to the free energy of metastable
configurations with a vortex inside a polygon for L  7, 8 (b).
The dashed curves are the results of our approximate analytical
calculations for the ground state. The insets show the possible
multivortex configurations.

by circles in Fig. 1. For a larger disk radius R  4.8j,
we also observe transitions between different multivortex
states. After performing a Fourier analysis of the order
parameter we find that a multivortex state corresponding
to an ideal polygon presents a mixture of harmonics
C ø c0s rd 1

P
k cks rd expsikLfd with a rather small

contribution of higher (k . 2) harmonics. This allows
us to find approximately the free energy of different
vortex configurations in thin disks R ø L where we
can neglect the distortion of the magnetic field. For this
purpose we take the order parameter as a superposition of

only two states C ø C
1y2

0 z0s rd 1 C
1y2

L zLs rd expsiLfd,
where z0, zL are the eigenfunctions of the linearized first
GL equation (1) for different angular momenta [3,13].
Substituting this expansion into Eq. (1) we obtain the
following set of nonlinear equations for the coefficients
C0 and CL:

l0C0  a11C2
0 1 a12C0CL ,

lLCL  a12C0CL 1 a22C2
L ,

(4)
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FIG. 2. Contour plot of the magnetic field distribution in
the disk plane (z  0) for the case of a three vortex state
and for different applied magnetic fields H0  0.525Hc2 (a),
H0  0.65Hc2 (b), H0  0.75Hc2 (c), and H0  0.8Hc2 (d).
We took R  4j and d  0.5jk2. For the lowest magnetic
field (a) the three vortex configuration is metastable and a small
decrease in the magnetic field leads to a transition to the two
vortex state due to the expulsion of a vortex through the disk
boundary indicated by the arrow in (a).

with a11  kz 2
0 j z 2

0 l, a12  2kz 2
0 j z 2

Ll, a22  kz 2
L j z 2

Ll,
where l0, lL are the eigenvalues of the linearized GL
equation [3], and k f0 j f1l 

R
f0f1d $ryV . Besides the

two trivial solutions CL  0, C0  l0ya11 and C0  0,
CL  lLya22 which correspond to the Meissner state
and the giant vortex state, respectively, it is possible to
have another solution with C0  sl0a22 2 lLa12dyD,
CL  slLa11 2 l0a12dyD, D  a11a22 2 a

2
12 corre-

sponding to a multivortex state. The free energy of the
ground state obtained using this approach is shown in
Fig. 1 by the dashed curve, which is in good agreement
with the results of our simulations (full curves). In order
to discuss the multivortex $ giant vortex transition,
we analyzed the stability of the obtained solutions with
respect to small perturbations of the coefficients C0, CL

(see Ref. [3]). The stability conditions for the multivortex
state and the giant vortex state are lL , l⋆  l0a22ya12

and lL . l⋆, respectively. Consequently, for fixed L,
there is a unique solution with a reversible transition from
the multivortex state to the giant vortex, which occurs
with an increasing magnetic field when lL  l⋆. At
this critical point the multivortex state coincides with the
giant vortex state and consequently there is no jump in
the magnetization. But the derivatives of the coefficients
C0, CL are discontinuous and correspondingly we expect
a discontinuity in the first derivative of the magnetization.
This is confirmed by our numerical simulations, where,

in Fig. 3(b), the region around the L  3 multivortex to
giant vortex transition is shown.

The magnetization of the disk M 
R

sH 2
H0dd $ry4pVHc2 with R  4.8j is shown in Fig. 4
for increasing (a) and decreasing (b) magnetic fields.
Jumps in the magnetization correspond to transitions
between states with a different number of vortices at
the magnetic fields where the states cease to exist (see
Fig. 1). With increasing disk thickness the demagne-
tization effect increases and as a result the transition
points shift to larger magnetic fields, but the number of
jumps remains the same. The average magnetic field
in the disk can be estimated as kHl ø H 2 4pM and
the relative magnetization Myd as a function of kHl
is “almost” a universal curve for all disk thicknesses
[Fig. 4(c)]. For increasing magnetic field and disk
thicknesses d  0.2, 0.4j all transitions occur between
giant vortex states. For the thinner disk d  0.1j
we observe the following sequence of transitions
0 ! 1 ! 2g ! 3m ! 3g ! 4m ! 4g ! 5g ! 6g . . . ,
where the lower index (g, m) corresponds to giant
and multivortex states, respectively. For a decreasing
magnetic field multivortex states appear with a larger
number of vortices. The sequence of transitions between
multivortex states starts from L  7 and L  8 for
d  0.2j and d  0.1j, respectively. For the thicker
disk (d  0.4j), a multivortex state appears only for
L  3, 2 just before the expulsion of a vortex from the
disk. As is evident from Fig. 4(b), the appearance of

FIG. 3. The free energy (1), the square of the order parameter
in the disk center (2), the magnetization (3), and its first
derivative (4) for a disk with R  4j, d  0.5jk2 which is
in the vortex state with L  3. The dashed vertical line shows
the transition from the multivortex state to the giant vortex
state. In (a) the solid circles indicate the points at which the
equilibrium phase transitions 2 ! 3 and 3 ! 4 occur.

2785



VOLUME 81, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 28 SEPTEMBER 1998

FIG. 4. Magnetization of a disk in increasing (a),(c) and
decreasing (b) magnetic fields for R  4.8j, k  0.28, and
different disk radii.

positive magnetization observed experimentally can also
be explained within the 3D GL approach without the
consideration of pinning effects. But the lowest energy
state, i.e., the equilibrium state, has always a negative
magnetization.

To distinguish quantitatively the giant vortex state from
the multivortex states for the same number of vortices
we consider the value of the order parameter jCj2 in the
center of the disk. We find that this parameter, which is
zero for a giant vortex state, goes almost linearly to zero
when the magnetic field approaches some critical value
[see Fig. 3(a), the thick curve]. Therefore, the magnetic
field obtained by linearly interpolating jCs0, 0dj2 to zero
defines the transition from a multivortex state to a giant
vortex state. Having the free energies of different vortex
configurations we construct an equilibrium vortex phase
diagram which is shown in Fig. 5 for two disk radii
R  4j and R  4.8j, respectively. The solid curves
separate the regions with a different number of vortices
and the dashed curves show the boundaries between the
multivortex and the giant vortex states. For L  1 the
single vortex state and the giant vortex state are identical.
The shaded regions correspond to the multivortex states.
The superconducting to normal transition occurs for
HyHc2 ø 1.9 which is outside the plotted region. Notice
that the multivortex area in the phase diagram reduces in

FIG. 5. The vortex phase diagram for two different disk radii
R  4j (a) and R  4.8j (b). The shaded area corresponds
to the multivortex state.

size with increasing disk thickness and it disappears in
the limit of thick disks where only the giant vortex state
survives. This behavior can be understood as follows:
with increasing radius the energy difference between
different L states decreases and consequently it becomes
possible to build a lower energy multivortex state out of a
linear combination of giant vortex states. For a decreasing
radius this is more difficult to do and there exists a
critical radius below which no multivortex states have
the lowest energy. To observe the multivortex $ giant
vortex transition one should investigate the derivative
of the magnetization or the vortex configuration itself.
Magnetization of individual disks has been measured
by ballistic Hall magnetometers [1] which work as flux
meters, while vortex configurations can be investigated
using, e.g., a magnetic force microscope.

This work is supported by the Flemish Science Foun-
dation (FWO-Vl) through Project No. G.0277.97, Project
No. INTAS-93-1495-ext, and IUAP-IV.

*Permanent address: Institute of Theoretical and Applied
Mechanics, Russian Academy of Sciences, Novosibirsk
630090, Russia.

†Electronic address: peeters@uia.ua.ac.be
[1] A. K. Geim et al., Nature (London) 390, 259 (1997).
[2] P. S. Deo et al., Phys. Rev. Lett. 79, 4653 (1997).
[3] V. A. Schweigert et al., Phys. Rev. B 57, 13 817 (1998).
[4] P. G. de Gennes, Superconductivity of Metals and Alloys

(Addison-Wesley, New York, 1989).
[5] V. M. Bedanov et al., Phys. Rev. B 49, 2667 (1994).
[6] A. L. Fetter, Phys. Rev. B 22, 1200 (1980).
[7] G. Bobel, Nuovo Cimento 38, 1741 (1966).
[8] A. I. Buzdin et al., Phys. Lett. A 196, 267 (1994).
[9] A. Bezryadin et al., J. Low Temp. Phys. 102, 73 (1996);

M. Baert et al., Europhys. Lett. 29, 157 (1995).
[10] R. Kato et al., Phys. Rev. B 44, 6916 (1991).
[11] C. P. Bean et al., Phys. Rev. Lett. 12, 14 (1964).
[12] X. Zhang and J. C. Price, Phys. Rev. B 55, 3128 (1997).
[13] V. V. Moshchalkov et al., Phys. Rev. B 55, 11 793 (1997).

2786




