Vortex ring formation at tube and orifice openings
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The formation, at tube and orifice openings, of vortex rings generated by a piston moving with velocity
proportional to time to some power m, is considered. The expansion of the axisymmetric generating flow
about the circular forming edge is used in conjunction with the similarity theory of edge vortex growth to
model the ring formation process. For large Reynolds numbers the ring diameter and circulation are not
strongly dependent on the piston velocity profile. However, the ring viscous subcore shows peaks in the
tangential velocity profile only if m < (w—6,)/(2m—8,), where 0, is the edge forming angle.

I. INTRODUCTION

In a recent paper, Saffman® discussed the process of
vortex ring formation at sharp-edged tube and orifice
openings utilizing a similarity theory of the formation
of a vortex at a sharp edge in an impulsively started
flow. He obtained estimates of the ring diameter and
circulation which were in fair agreement with the mea-
surements of Liess and Didden® and Maxworthy® even
though it was assumed that the flow generating the vor-
tex ring was two dimensional. It is the purpose of the
present paper to extend this model to properly account
for the axisymmetric geometry of the ring forming ap-
paratus, and also to include a class of generating flow
piston movements other than impulsive motion.

We consider vortex rings formed by the movement of
a piston of diameter D, in a cylinder with either a tube
or orifice type ring-forming opening of diameter D
as shown in Fig. 1. The piston moves through a short
distance or stroke

I- fo Y umat, )

Uy(t)=A,t™ , (2)

where £, is the piston movementor ring formation time,
U,(t) is the piston velocity profile, and m =0 and A, are
constants. The impulsive case is given by m =0 while
for all m the piston is assumed to stop impulsively at
t=t,, The average piston speed ﬁ, in (0,¢,) is given by

A,=(L+m)UL™L™ . (3)

The piston movement causes the boundary layer formed
on the inner cylinder wall to separate at the opening and
roll up into a toroidal vortex structure forming the vor-
tex ring. For ¢, small such that the scale of the forming
vortex ;<< D, the flow near the opening may be con-
sidered to be locally two dimensional so that similarity
theories of the vortex formation process*~ ¢ will provide a
good model of the core of the vortex ring.

Il. EFFECT OF GEOMETRY

The similarity theory vortex growth and circulation
shedding rates are governed by constants in the leading
order two-dimensional-like expansion of the attached
or outer ring-generating flow near the sharp edge.
Using polar coordinates », 6 near a two-dimensional
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sharp edge 6 =7, this expansion of the velocity potential
takes the form ¢ =at™»'/?sin(4/2) where the constant
a is given by

a=K1A’D1,a (4)

and K, is a dimensionless constant depending on the
geometry of the apparatus. For the orifice geometry,
a good model of the outer flow is the symmetrical
potential flow through an orifice in an infinite flat
plate. An exact solution for this problem is given
by Lamb (Ref. 9, p. 138) from which the value K;=0.5
(D,/D)* may be obtained. There appears to be no ana-
lytical solution for the tube geometry, but a numerical
solution obtained by the author (Appendix) gives, to a
good approximation, K, =(2n)"'/2 compared with (r)"}/2
for the corresponding two-dimensional channel.

ill. CORE CIRCULATION AND DIAMETER

Assuming that the circulation in the ring I' and the
core radius 7; are those appropriate to the two-dimen-
sional vortex shed in time ¢,, then the similarity theory
gives®

4|1/3
=K, [(()133:)] /DU (5)
0.75q |*/*? .
"'1=K3 [(1+m)] t;z/3)(1 m) , (6)

where K, and K, are dimensionless constants obtained
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FIG. 1. Tube and orifice geometry for generation of vortex
rings.
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TABLE I. Values of the

constant K.

m Tube Orifice
0 1.41 1.90

3 1.64 2.22

1 1.74 2,36

from similarity theory calculations.
the slug circulation® as

For I', defining

1 (L
Ty= EJ’ U,(L}dL (M
0
and using Eqs. (4) and (5), then
T D, \2/ L\?3
2 - Yy (L
T Ky(m, geometry)(D ) (D,) . (8)

Values of K, for different m and geometry, obtained
from the author’s® similarity calculations are given in
Table I. The comparison for m =0 with the tube data
of Maxworthy® in Fig. 2 is good for Z/D,= 1.6, but
worsens for higher Z/D,. In the orifice apparatus ex-
periments of Sallet' L/D, =4, D,/D=2, and m=0. For
the three piston velocities U, =1.41, 1.27, and 0.98
m/sec used by Sallet, Eq. (8) gives I'" =0.4497, 0.4047,
and 0. 3114 m®sec™!, respectively, compared with mea-
sured values of 0.6528, 0.5419, and 0.4322 m? sec™’,
so that the comparison is only qualitatively reasonable.

Putting the ring diameter D, =D + 27, for the tube
geometry and D, =D for the orifice (i.e., the center of
the shed vortex moves approximately normal to the
sharp edge), then Eq. (6) gives

D,/D=1+K{(L/D)?'*, (9

where K; =0 for the orifice and is a very weak function
of m for the tube geometry. The estimate K;=0.32
gives the curve which shows reasonable comparison
with the data of Maxworthy® in Fig. 3. Useful estimates
of values of /D for which the similarity theory may

be valid may be obtained by assuming »,<D/2, yielding
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FIG. 2. Predicted ring circulation T [Eq. (8)] for m =0 com-
pared with the tube data of Maxworthy.®
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FIG. 3. Predicted ring diameter D,/D [Eq. (9)] for m =0 com-
pared with tube data of Maxworthy. 3

L/D,<4.7,
L/D,<3.7/(D,/D)? ,

for the tube and orifice geometries, respectively.
These conditions are only approximately satisfied in
experiments, which might explain some of the dis-
crepancy between theory and measurement.

IV. CORE STRUCTURE

Here, we generalize the discussion to include a vor-
tex ring formed at an edge of angle 7/2=6,= 0 and de-
fine 5=n/(2r —6,). In treating the spiral roll up of the
plane vortex sheet shed by a rectangular wing, Moore
and Saffman!' show how the singular behavior of the
velocity field near the spiral center is resolved by vis-
cous action. The structure of the edge generated vor-
tex may be obtained from Moore and Saffman’s analysis
(here, of course, axial velocity effects are absent), and
results for 6 =0, m =0 were given by Saffman.! Results
for general 6, m follow by replacing Moore and Saff-
man’s parameter n by P =(2-56)/(1+m)-1. According
to their model, the vortex core forming at the edge may
be divided into three regions:

{(10a)
(10b)

(i). A tightly wound spiral-like thin shear layer from
the forming edge of radius 7,~ (y#)!/?*1)| y being a con-
stant.

(ii). A region in which the effects of decreasing
spacing between shear layer turns (due to vortex sheet
stretching) as »2*7¢! and layer thickening as (v¢)'/2 due
to viscous diffusion forms an essentially inviscid rota-
tional core of radius 7y, ~ (ev!/2/)1(* P The smoothed
out tangential velocity field in this region is®

v,=pr?, (11)
and € and B are dimensional constants.
(iii). A viscous subcore of radius ry;~ (vt)'/2.

The ordering 7> 11> 7111 1S preserved provided £ > ¢,
where t,=[v?78/y2(m)|1/(2me) g the time at which iner-
tial effects begin to dominate in region I of the vortex.
For 5=3(8, =0) estimates of £,/t;, may be obtained in
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terms of powers of R;! =v/UD[U=(D,/D)*U,] and
(L/D)* which are proportional to 1/(2m +6). For com-
mon experimental values of R,~10%, L/D~1, t,/t,«1
provided » is not much greater than unity. For larger
m (which would be unlikely, in practice) viscous effects
may be important for a longer portion of £, but the rapid
growth of »; as #1*™/(2® jgfinally telling. Putting 7y
=(4vt)t’2, the ratio v;/7yy at t=t, may be obtained as

v/ 7 =2.8RVA(L/D,)® (12a)
v/ 7= 2.4R;\2(D/D)¥ 2 (L/D,y"¢ (12b)

for the tube and orifice geometries, respectively (ac-

tually, the constants depend weakly on ) from which it

follows that in most experimental situations the vortex
ring is at least initially dominated by inertial effetts
for all m. After rupture from the edge, ¢=1{,, 7 will
continue to increase at (ut)” 2 while 7; should remain
roughly constant. Assuming that vortex stretching of
the shear layer ceases after rupture then 7;; will con-
tinue to increase as r;;~ (vt)!/2®* purely due to thick-
ening of the shear layer.

The tangential velocity field in regions II and III is
given by

Y = B2FrE -4p)
] (Vt)P/z

where 7 = 7% 4pt, r is the distance from the vortex
center, M is the hypergeometric function, and Eq. (13)
smoothly matches Eq. (11) for large ».. For m<1 -8,
which corresponds to the singular behavior of Eq. (11)
as r- 0, there is a maximum in the velocity field given
by Eq. (13). For m>1 ~§, there is no y, maximum in
region III so that (v,) ., will occur somewhere on the outer
turns of the thin shear-layer structure in region I. The
vorticity distribution which may be obtained from Eq.
(13) peaks at =0 for all m, § with maximum value

MG +3P,2,7), (13)

Woas =82 P TG ~2P) (i)~ F*D72

Unfortunately, comparison of vorticity profiles with the
measurements of Maxworthy?® is difficult since insuffi-
cient data are given.

APPENDIX: GENERATING FLOW FOR TUBE
GEOMETRY

For the tube geometry we use the model of axisym-
metric incompressible potential flow of a rate A,t"'nD2/4
from a semi-infinite circular tube of radius R =D/2,
x=0. This problem may be formulated by regarding the
tube as a fixed cylindrical vortex sheet of strength
¥{x}), x=0. Using standard results (Ref. 9, p. 237) for
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an axisymmetric vortex system, an integral equation
for ¥ may be then obtained as

7= jo Yu) Glug, u)du, u,=<0 (A1)

where
y=v/A,t", u=2x/D
Glug, u) = (py +pa) [KN) - EQN)],

py=[(u-ug?+41"2, p,=|us-ul,

- ( pL- Pa)z
Py +P2

and K(0) and E(A) are complete elliptic integrals of the
first and second kind, respectively. For large lul, a
source approximation leads to y~1+1/4u®+... while
for small {«| it may be shown that y~ V2 K lul /2
where K, is as in Eq. (4). Introducing v ={(-u)"/2,
f =vy in Eq. (Al) leads to an equation for f(v) with £(0)
=v2K, and fv)~v+v~3/4+... for large v.

For v greater than some value v, the large v solu-
tion was assumed valid while in (0, v,_.) a numerical solu-
tion to Eq. (Al) in f-v space was obtained by trans-
forming the integral equation into a set of 64 linear
equations using 64 point Gaussian quadrature in (0, v,)
together with appropriate treatment of the logarithmic
singularity in G near v =v,.

For vo=~/§ and 3, the method was tested by computing
the equivalent two-dimensional problem, and also the
orifice flow problem. In both cases the numerical so-
lutions agreed with the exact solutions to better than
1 in 10% at all points except very near v=v,. The val-
ues of K, were 0.564173 and 0. 4998 compared with the
exact values of 7°/2 and 0.5, respectively. For the
tube problem K, =0. 398939 compared with (27)"/2
=0, 398942... which perhaps indicates that this value is
exact!
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