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VORTEX RINGS: EXISTENCE AND ASYMPTOTIC ESTIMATES
BY

AVNER FRIEDMAN1 AND BRUCE TURKINGTON

Abstract. The existence of a family of steady vortex rings is established by a
variational principle. Further, the asymptotic behavior of the solutions is obtained
for limiting values of an appropriate parameter X; as A —» oo the vortex ring tends
to a torus whose cross-section is an infinitesimal disc.

0. Introduction. The study of steady vortex rings in an ideal fluid has been the
subject of many investigations (see, for example, [3], [19] and the references given
there). The classical examples are Helmholtz's rings of small cross-section [17] and
Hill's spherical vortex [18].

A general existence theorem for vortex rings was first established by Fraenkel
and Berger [13] (see also the very recent work [5], [20] with a similar approach); this
paper also contains an excellent survey of the subject. The approach in [13] is
based on a variational principle for the stream function.

More recently Benjamin [4] developed a new approach based on a variational
principle for the vorticity. This approach is more natural since (i) the vorticity has
compact support (whereas the stream function does not) and (ii) the quantities
involved in the variational principle have direct physical significance.

In this paper we establish the existence of vortex rings by a new method. As in
[4] we formulate the problem in a variational form for the kinetic energy as a
functional of the vorticity. We take the admissible functions to vary in the set S^ of
functions f(x) satisfying:

f (x) = f (r, z) = f (r, - z)   where x = (r, 0, z),
(0.1) i   , ,

- j r2$(x) dx = I,    j$(x)dx<l,       0 <?(*)< A,

i.e., an axisymmetric flow with prescribed impulse (= 1), circulation (< 1) and
vortex strength (< X); in [4] f is taken to vary over all rearrangements of a given
function f0(r, z). Our approach seems technically simpler; it has the further
advantage that it leads to vortex rings with, essentially, any given vorticity func-
tion, such as

(0.2) fit) = cl{l>0]       (c > 0),

(0.3) fit) = c(t + )p       (c>0,B>0).
The method of solving our variational problem is in some sense an adaptation of

the method of Auchmuty [1] and Auchmuty and Beals [2] (see also [14]-[16]) who
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2 AVNER FRIEDMAN AND BRUCE TURKINGTON

dealt with a variational problem for self-gravitating rotating fluids. There are,
however, several differences, the most serious one being the nature of the con-
straints in (0.1).

Another object of this paper is to derive asymptotic estimates on the solution,
which we shall denote by f = £A, as X —> oo. Denoting the support of fA(r, z) by Bx,
we prove

(0.4) E(Sx) = (1/8V2 7r2)log X + 0(1)    (E($x) = kinetic energy),

(0.5)        c/VX < diameter^) < C/VX        (0 < c < C < oo)
as X -» oo, and

(0.6)      Bx is asymptotically a disc about (V2 , 0) with radius 1/ (ttVIX ).
In §1 we give the physical background of the problem. In §2 we state the

existence theorems in variational form for the vorticity, in cases (0.2), (0.3). We also
give an account of the relevant existence theorems in the literature. The existence
of a vortex ring for the vorticity function (0.3) is obtained in §4. It is preceded by
various estimates and some crucial energy identities which are derived in §3.

In §5 we establish the existence of a vortex ring with the vorticity function (0.2)
by considering it as a limit case of (0.3) with B —> 0; we were unable to treat the
case (0.2) more directly because of the nature of the constraints in (0.1).

In §§6-8 asymptotic estimates are derived for A—»oo; we specialize here, for
simplicity, to the case (0.2). In §6 crude estimates are obtained on both E(^x) and
on the support of £A. The precise estimates (0.4), (0.5) are established in §7, using a
capacity method recently developed by Caffarelli and Friedman [10]. Finally, (0.6)
is proved in §8.

Capacity methods have been recently introduced also by Berger and Fraenkel
[6], [7]. Results of the form (0.4)-(0.6) have been proved by Fraenkel [11], [12] for
vortex ring solutions defined by solving an integral equation with parameter X. It is
not known whether our solution, which is obtained by a variational principle,
coincides with the solution of Fraenkel. In any case, the methods of Fraenkel and
ours are entirely different.

1. Physical background. In this section we describe the equations governing the
motion of a steady vortex ring in an ideal fluid and express the physical quantities
involved in the form needed for the variational principle of the subsequent section.

Throughout the sequel we shall use the following notations: x = (r, 9, z) denotes
the cylindrical coordinates of x G R3; {L, ie, iz) represents the associated standard
orthonormal frame; dx = r dr dO dz denotes the volume element. Also, we shall
write dx for the measure 2-rrr dr dz on the half-plane

H = {(r, z); 0 < r < oo, -oo < z < oo}.

The vortex ring is assumed to be steady, symmetric about the z-axis, and
propagating with constant speed W in the positive z-direction. With respect to axes
fixed in the ring, the velocity field \(x), x e R3, has the form
(1.1) y(x) = vr(r, z)L + v\r, z)\z,
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VORTEX RINGS 3

(1.2) v(x) -> - Wiz    as |jc| = (r2 + z2)x/2 -» oo.

The vorticity field to(x) = V X v, jc G R3, then takes the form
(1.3) co(x) = u(r, z)ig,        o>(r, z) = -t»/ + ©/.

The flow is governed by the (steady) Euler's equations for an ideal fluid of unit
density; namely,
(1.4) V-v = 0,
(1.5) v • Vv = -Vp
where the pressure p(x) is also to be determined.

The conservation of mass equation (1.4) (together with axisymmetry) is equiva-
lent to the existence of a stream function xp(r, z) satisfying

(1.6) vr = -xpz/r,       v* = xpr/r.

If we define

(1.7) xp = xp+{Wr2,

then condition (1.2) becomes

(1.8) \Vxp\/r=o(l)   as|x|^oo;
that is, \p(r, z) is the stream function for the associated flow which is at rest at
infinity. Recalling (1.3) we now have

(1.9) o, = -(hp)/r = -(Lxp)/r
where

The conservation of momentum equation (1.5) holds for some/7 provided

(1.11) Vx(vVv) = 0.
The well-known identity

v • Vv =jV|v|2 + to X v

yields
V X (v • Vv) = V X (ca X v) = v • Vto - w • Vv,

since also V • v = V •« = 0. Furthermore,

v • V<o = (v • Vw)i9,       « • Vv = u(vr/r)ie.

Therefore, if we let

(1-12) ?(r, z) = co(r, z)/r,
then (1.11) reduces to simply

(1.13) v-Vf = 0.
Recalling (1.6) we see that (1.13) can be written as

(1-14) d(xp,S)/d(r,z) = 0.
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4 AVNER FRIEDMAN AND BRUCE TURKINGTON

Equation (1.14) is, in turn, equivalent to the existence of a functional dependence 4>
(V$ =£ 0) such that

*(*, 0 = o.
In particular, we shall seek solutions for which

(i.i5) s-M-y)
for some (flux) constant y; the so-called vorticity function fit) is assumed to be a
nondecreasing function on (— oo, oo) with fit) = 0 for / < 0,/(r) > 0 for / > 0.

In summary, a solution of the problem (1.1), (1.2), (1.4) and (1.5) is obtained
whenever (1.15) holds for xp satisfying condition (1.8) and the equation

(1.16) - (I4)/r2 = f.
Introducing the (adjusted) stream function

(1.17) u(r, z) = xp - \ Wr2 - y,

equations (1.15) and (1.16) combine to give the semilinear elliptic equation

(1.18) Lu + rftu) = 0.
Also, the support of f (the vortex core) is characterized by

(1.19) supp f = fi,        fi={xG/?3; u(x) > 0}.
For the solutions we shall find 0 is always compact.

In order to pose the problem exclusively in terms of f we require the inverse of
the operator —L/r2.

Lemma 1.1. Let
(1.20) K(x, x') = rr' cos(9 - 9')/4tt\x - x'\
where x = (r, 0, z), x' = (/, 9', z').  For J(r, z) = f(x) any bounded, measurable
function with compact support in R3 let

(1.21) xp(r, z) = xp(x) = (   K(x, x')$(x') dx'.

Then

(1.16) -(Lxp)/r2=t    a.e.,

(1.22) xp/r = 0(\x\~2),    |V^|/r = 0(|x|-3),   as \x\ ^ oo.

Proof. Let to(x) = rf(r, z)\e. Then

(1.23) BW=it^^')^
satisfies
(1.24) -AB = to   a.e.
By direct calculation,
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VORTEX RINGS 5

Thus,

and hence, by virtue of (1.20) and (1.21),
(1.25) rB(x) = xp(r, z)ie.
Now we compute

(1.26) VxB = (-*,//■)!,+ (*,//■)!,.
Also, since V • B = 0, we have

- AB =VX (VxB) = -(Lxp)/rig.
Combining this with (1.24) yields the desired result (1.16).

To establish the estimates (1.22) we first note that
1       _   1       a(x, x') 1 1       A(x, x')

\*-*\      \A \x\2    ' x\x-x'\       x\x\ |X|3

for certain functions a, A = 0(1) as |x| -» oo, x' G supp f. Now using the cancella-
tion property

f   r'^(r',z%,dx'=0
J R1

we find that

B(x) = -—|jc|-2 (   a(x, x')u(x') dx',
4tT J Ri

VXB(x) = ^-\x\-3f   A(x, x') X <c(x') dx'.4m j p}

Recalling (1.25) and (1.26), the estimates (1.22) now follow.
The Green's function for the operator - L/r2 on the half-plane H with measure

r dr dz is clearly given by

G(r, z, r', z') - C  K(x, x') dO'        (9 = 0)
■' — ■n

(I-27) _rr/_r-" _cos 9' d.9'_
4-rr )-„ |"(z _ z/)2 + r2 + r,i _ lrr, CQS rji/2 '

since then (1.21) takes the form

(1.28) xp(r, z)= f f G(r, z, r', z')$(r', z')r' dr' dz'.
J J
H

Using Lemma 1.1 we have the following expressions for the total kinetic energy
of the flow:

E = U   \\Vxp\2dx=±[   xptdx

(1.29) i   .     ,
= TI     /    K(x,x')l(x)l(x')dxdx',

*■ JR3 JR3

where the second equality follows from integration by parts.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6 AVNER FRIEDMAN AND BRUCE TURKINGTON

The total impulse required to generate the flow from rest is defined by (see [3])

(1.30) P=jf   x Xic(x)dx.
ZJRi

This takes the form

(1.31) P = P\z,       P - \ {   r2$(x) dx

provided that

(1.32) f   rz$(x)dx = 0.
JRi

In the sequel we shall assume that f(r, z) = f(r, — z) holds;  hence, (1.32) is
assured.

In posing the steady vortex ring problem variationally we shall maximize the
energy E($) over a certain class of functions f subject to the constraint that the
impulse P be prescribed.

2. Existence theorems. Let 3^ denote the class of measurable functions f > 0 a.e.
on R3 satisfying the following conditions:

(2.1) fW = «r,z) = f(r, -z),

(2.2) \(   r2$(x)dx=\,ZJRi

(2.3) f   S(x) dx<\,
JRi

(2.4) ess sup f (x) < X,       0 < X < oo.

Let S,x denote the (larger) class for which condition (2.4) is removed.
The energy functional E($) is defined on the class x\ (0 < X < oo) by

(2.5) E(0=\f   [   K(x,x')$(x)$(x')dxdx',
Z  JRiJR3

where K(x, x') is given by (1.20). We consider the variational problem to determine
feSj such that

(2.6) E(S) = max £(f).

A solution of this problem is provided by the following theorem whose proof is
given in §5.

Theorem 2.1. There exists f G (^ such that (2.6) holds. Furthermore, there exist
constants W > 0, y > 0 such that

(2.7) £-A/0   a.e.

where

(2.8) 0- {x GR3;u(x)=xp(x)-\Wr2- y > 0}
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VORTEX rings 7

with xp defined by (1.21); £2 is a bounded, open subset of R3, and
Q- {x = (r, 9, z); \z\ < Z(r))

for some function Z(r) > 0.

For each value of the free parameter X the solution obtained represents a steady
vortex ring corresponding to the vorticity function

(2-9) fit) = A/{,>0}.
The normalizations taken in (2.2)-(2.4) can always be achieved by a similarity

transformation. Let &PiTyA denote the class of f > 0 satisfying (2.1) and the
constraints

1 r
(2.10) - /    r2$(x) dx = P   (total impulse),

2 JRi

(2.11) f   f(x) dx < T    (total circulation) X 2tt,
jri

(2.12) ess sup f(x) < A   (vortex strength)

for prescribed positive constants P, T, A. We consider the general problem to
determine f G &PtTtA such that

(2.13) E(£) =   max    E(Z).

Making the change of variables x = ax, f = fef, and choosing a = pl/2T~x/2,
b — P _3/2r5/2, the constraints (2.10) and (2.11) become, respectively,

i f   r2$(x) dx = \, f    §(*) dx < 1.
2. JRi JRi

Thus problem (2.13) is transformed into problem (2.6) with X = P3/2r-5/2A. Other
quantities involved transform as

E = p '/2r3/2£,    W = P - X<2T3'2W,   y = P 1/2r'/2y.

In the remainder of the paper we shall deal with the normalized problem (2.1)-
(2.6), since all results immediately transform to the general problem.

We note that unlike (2.4)-which becomes equality for any solution-the con-
straint (2.3) may be a strict inequality for some solutions. In the variational
conditions of Theorem 2.1 the constants W and y arise as Lagrange multipliers for
the constraints (2.2) and (2.3), respectively. Thus, if y > 0 (as is the case for
sufficiently large X) then equality holds in (2.3), while if y = 0 (as is the case for
Hill's spherical vortex) then inequality may hold; for more details, see Remark 2 at
the end of §5.

A related family of variational problems is derived from the penalized energy
functional

r   T f(x) V + l/P
(2.14) Ef}(n = E(^-BXjR3   ^f- dx
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8 AVNER FRIEDMAN AND BRUCE TURKINGTON

defined on the class
(2.15) 8,^ = &xn Lx + x/f*(R3)       (0<B< oo).

We consider the (penalized) problem to determine f G &M^ such that

(2.16) Efi(S) =   max   Efi($).

Theorem 2.2. There exists f G d^^ such that (2.16) holds for any prescribed
0 < X < oo, provided 0 < R < 5. Furthermore, there exist constants W > 0, y > 0
such that

(2.17) t = X(u +/ (1 + Brf   a.e.
where

(2.18) u(x) = xp(x) - \ Wr2 - y

with xp defined by (1.21); f has compact support in R3, and f(r, z) is nonincreasing as
a function of z for z > 0.

Clearly, these solutions of the vortex ring problem correspond to a vorticity
function of the form

(2.19) f{t)=[Hl/(l + f3))0,     t>0,
(0, t < 0.

It is evident that the variational equation (2.17) tends, as B -»0, to (2.7). In fact,
Theorem 2.1 is proved by first obtaining the solutions asserted by Theorem 2.2 and
then taking the limit of these solutions over some sequence Bj -» 0; the sequence of
solutions converges weakly in LP(R3) for every 1 <p < oo. Theorem 2.2 itself is
proved in §4.

Remark 1. There is a striking analogy between the steady vortex ring problem
and the problem to determine the axisymmetric equUibrium figures of a rotating,
self-gravitating fluid mass. Problem (2.6) is analogous to the case of an incom-
pressible fluid, as studied by Auchmuty [1], while problem (2.16) is analogous to
the corresponding compressible case, as studied by Auchmuty and Beals [2] and
Friedman and Turkington [16]. The variational approach developed for these
problems motivates the formulation of problems (2.6) and (2.16) given above. The
energy functional for the rotating fluid mass problem-although it involves an
additional term to the analog of E(£)-is, however, maximized over a class of
functions with fewer (and simpler) constraints. The presence of (2.4), in particular,
among the constraints for problem (2.6), causes technical difficulties; we overcome
the difficulties by obtaining the solution as limits of solutions of the penalized
problem (2.16), for which the variational conditions can be derived using standard
methods.

Remark 2. In the variational principle used by Benjamin [4] the energy E(£) is
maximized subject to the constraints (2.1) and (2.2) but with (2.3) and (2.4)
replaced by the condition that f be a rearrangement of a given function f0. By
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VORTEX RINGS 9

prescribing the distribution function of J in this manner the vorticity function
f(t)-a priori unknown-is determined along with the solution (and the Lagrange
multiplier W).

Remark 3. The approach of Fraenkel and Berger [13] is to pose a variational
problem for the function u defined in (1.17); the propagation speed W, the flux
constant y, and the vorticity function /(f) (suitably normalized) are prescribed in
this approach. The method is more complicated technically than a variational
principle based on f mainly due to the fact that u does not have compact support.
The approach of Fraenkel and Berger is used also in more recent works by
Berestycki [5] and Ni [20].

Remark 4. Using an analysis based on (1.18), Caffarelli and Friedman [9] have
proved that the number of components of Q is finite, and that the free boundary 3fl
(as given by z = Z(r)) is real analytic. Benjamin [13] asserts that there is just one
component, arguing that a positive second variation for E(£) is obtained for
(infinitesimal) relative displacements of two distinct components.

3. Preliminary identities and estimates. We shall often use the integration by parts
formula

r    \ r    \
(3.1) I   — (urvr 4- uzvz) dz = - I   —uLvdx

jh r jh r

for functions u(r, z), v(r, z) either of compact support or vanishing sufficiently fast
as r2 + z2-> oo; recall that L is defined in (1.10). In particular, the calculation
(1.29) expressing E in terms of f is justified using (3.1) and the estimates for the
corresponding \p given in Lemma 1.1, provided f has compact support.

We now give another formula for E.

Lemma 3.1. Let f be any bounded, measurable function on H for which

(3.2) E(V = U   \(tf + ti)dx<co.
z jh r*

Then

(3.3) E(S) = f  (npr + zxpz)S dx.
JH

Proof. Set a - \(r2 + z2), tj = \(xp2 + xp2). Since Lo = 1, we have

(3.4) E($) = f  —y1Lodx = -f  —(ort]r + ct2tjz) dx = - f   — (rqr + zt\z) dx,
JH r JH r JH r

where (3.1) has been used (the justification will be given below). Expanding the
integrand we find that

rqr + zi)z = xpr(npr + zxpz)r + xpz(npr + z^z)z - (xp2 + xpf).

Putting this into (3.4) we get

E(S) = -ju -jjWnltr + **X + 4>Mr + 4,),] <** + 2£(0,
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



10 AVNER FRIEDMAN AND BRUCE TURKTNGTON

SO

E(n=/ \[ur*r + wa + ̂ (Wr + wa]^(3.5) * r

= -f -7(^ + ^)14^,
which yields (3.3).

We must, however, rigorously justify the use of formula (3.1) in the derivations
(3.4) and (3.5) above. If the integration by parts is carried out instead on the finite
domain

(3.6) Da = {(r, z) G H; 0 < r < a, \z\ < a),
then it is easily seen that the boundary integrals arising (in both cases) tend to zero
as a —> 00 provided JdD r_17j ds = o(\/a) as a —> 00. The latter condition is as-
sured for some sequence a = a„ —> 00 by the hypothesis (3.2), since it means that

J ,.00       /.OO
I       —ri dr dz < 00.

0    ■>-<*>  r

This completes the proof.
Remark. An equivalent form of (3.3) is discussed in Batchelor [3, p. 520].
We now relate the energy E($) to a functional introduced by Fraenkel and

Berger [13].
For a given vorticity function fit) let

(3.7) F(t) = ['fit') dt';

then

_ ( Xt+ when (2.9) holds,
" \ X(t + / (1 + B))x+P    when (2.19) holds.

Let

(3.8) J(u) = f F(u) dx;
JH

recall that u(r, z) is defined in (1.17). Several other expressions for J(u) can be
given; namely,

(3.9) (1 + B)J(u) = f u£dx = -(  \uLudx= f \(u2 + u2) dx,
jh jh r Ja r

where fl = {x G R3; u(x) > 0). Thus, ^(1 + B)J(u) represents the kinetic energy
of the steady flow (with stream function u) confined to the vortex core Q.

We note that when (2.9) holds the above formulas are valid if formally we set
B = 0.

Lemma 3.2. Let f be a solution of either (2.6) or (2.16) with compact support. Then

(3.10) E($) = -3J(u) + 2W =\[(\ + B)J(u) + W + y].
The first identity is briefly mentioned in Fraenkel and Berger [13, p. 42].
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VORTEX RINGS 11

Proof. The assertion that E(£) equals the right-hand side of (3.10) is immediate
from

f u£ dx - f tf dx - -^ [ r2f dx - y [ f dx - 2E - W - y.
The first identity in (3.10) follows from (3.3); noting that ur = xpr — Wr, uz = xpz we
have

(3.11) E{£) = [ (rur + zuz)$ dx + f r(Wr)$ dx.
JH JH

Integrating by parts we find

f rur$ dx = ( rF(u)r dx = 2tt [ fr2F(u)r dr dzJH JH J J
H

= -4tt ( (rF(u) drdz =-2 f F(u) dx;
H J"

and, similarly,

I   zuz$ dx = - I   F(u) dx.
JH JH

Thus, (3.11) becomes

£(?) " -3 ( H») dx+ w[ r2£dx = -3J(u) + 2W.

Remark. It is important for later application that we observe that (3.10) remains
valid for solutions of (2.16) without the assumption of compact support. Indeed, if
the integration by parts in the proof of Lemma 3.2 is carried out on the finite
domain Da (defined in (3.6)) then the boundary integrals which arise are of the
form

f     r2F(u)dz, f        rzF(u)dr.
Jr = a •'z=±a

Noting that F(u) = X[^(x)/X]x + X^ we see that there is a sequence a = a„ —» oo for
which these integrals tend to zero since the condition

f f r$x + x/li drdz < oo
H

implies that

(X  Ax + x'^dz,     C' rzV + x/p dr = o(l)
•'-oo •'0

for r = an, \z\ = a„, respectively.
We now turn our attention to certain "potential-type" estimates for xp, as given

by (1.28).

Lemma 3.3. Lets = [(r - r')2 + (z - z')2]1/2. There holds

/, ,,>> n, ,    ,\*\ Crlog(r/s),    s < r/2,
(3-12) G(W'Z)<UV7*3,        s>r/2,
where C is a (sufficiently large) absolute positive constant.
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12 AVNER FRIEDMAN AND BRUCE TURKTNGTON

Proof. Recall that G is defined by (1.27). Letting

£2 =[(z - z')2 + (r - r')2]/4rr'        (£ > 0)

we first show that

(3.13) G(r, z, r', z') < C(rr')x/2 log(C/£)       if £< 1,

(3.14) G(r, z, r', z') < C(rr')x/2£ ~3       if £ > 1.

Estimate (3.13) is derived from the formula

(3.15) G(r, z, r', z') =[(rr')x/2/2-n]{(2/k - k)K(k) - (2/k)E(k)},
where K and E are the complete elliptic integrals of the first and second kind [8,
formulas 291.00 and 291.01] and

(3.16) k2-^--,   *"-<*-'^ + <r -'>'     k2 + k'2=l.
(z - z')2 + (r + r')2 (z - z')2 + (r + r')2

Since £ < I implies that k'2 < \ we apply the asymptotic formulas

(3.17) K(k) = log(4/A:') + o(\),   E(k) = 1 + o(\)   (as k' -h>0)
to (3.15); then (3.13) follows directly. Estimate (3.14) follows from the expansion

[(z - z')2 + r2 + r'2 - 2rr' cos 9']~l/1 = (4rr'yx/2{£ "' + B(£, 9')£'3}

where \B(£, 9')\ < C for £ > 1, -it < 9' < it. Applying this to (1.27) and noting
the cancellation of the term involving £~x, (3.14) follows. The required estimate
(3.12) follows from (3.13) and (3.14) in an entirely straightforward manner.

In the following lemmas we assume that f G &x p, and we let N = N(£) denote
the norm

r  r \ 0/<i+/»)
(3.18) N= If Sl + i/pdx\ (0<B<oo).

Lemma 3.4. Assume that f(r, z) is a nonincreasing function of z for z > 0. Then for
0 < B < B* there holds

(3.19) xp(r, z) < xp(r, 0) < C(N + l)min{r, r-x+e)        (0 < e < 1);

the constant C depends only on B*, e.

Proof. It is clear that xp(r, 0) = maxr xp(r, z). We write xp(r, 0) = xpx(r, 0) +
\p2(r, 0) where

xpx(r,0)=   fj   G(r,0,r',z')t(r',z')r' dr' dz'
(3.20) s<r/1

<Cr II   log-$(r',z')r' dr' dz',
s<r/2 S

Ur,0)=   II   G(r,0,r',z')$(r',z')r'dr' dz'
s>r/2

(3-21)
<Cr2 II    r—$(r',z')r'dr'dz'.

s>r/2    S
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VORTEX RINGS 13

Estimation of xp2(r, 0): we note that

r'2/s3 < C/r   whenever s > r/2.
Thus, recalling (2.3),

xP2(r, 0) < Cr2 II   — J(r', z')r' dr' dz' < Cr.
s>r/2    r

Also, recalling (2.2),
a

xp2(r, 0) < Cr2 II   --${r>, z')r' dr' dz' <Cr~x.
s>r/2  (r/2)3

Hence,

(3.22) xp2(r, 0) < C min{r, r~x}.

Estimation of xpx(r, 0): for any 0 < a < oo we have, by Holder's inequality,

r r r {    r r I       r\'+« W/0 + «)//   log -W, z')r' dr' dz' <      II (log -)     r' dr' dz'
s<r/2 S U<r/2V S ' )

•      //   V + l/ar'dr'dz'\
\s<r/2 )

But clearly

jj/2 (iog i)l+v * * < c^r/2 0og iF* * - c°r3-

Thus,

(3.23) *,(r, 0) < Carx+sU\\L,^(s<r/2)       (S = 3/ (1 + a)).

We now apply the standard interpolation inequality

(3.24) HJ||t,+I/. < HJIliTltJIrl,*,/,        (B < a < oo)
where a = (1 + B)/(\ + a) (0 < a < 1); each Lp norm is taken with respect to the
measure r dr dz on the set {(r, z) G H; s < r/2}. Since, by (2.2) and (2.3),

linL.(J<,/2)<Cmin{l,r-2},
we conclude from (3.24) that

U\\L^"(s<r/i) < CN" min{l, r-2<'-">}.

Thus,
xpx(r, 0) < CaNarx+s min{l, r^1^}.

For r < 1 we take simply a = B,so that

^,(r, 0) < C„.(A/ +1)/-       (0 < R < R*).
For r > 1 we take a sufficiently large (depending on B*, e) so that

xpx(r, 0) < C0.ie(N + l)r"1+<        (0 < /? < /?*);
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



14 AVNER FRIEDMAN AND BRUCE TURKINGTON

specifically we choose a so that (5 + 3/?*)/( 1 + a) < e. Together these estimates
yield

(3.25) xpx(r, 0) < Cfi.,e(N + l)min{r, r'1^}.

Now combining (3.22) and (3.25) we obtain the statement of the lemma.

Lemma 3.5. Assume that J(r, z) is a nonincreasing function of z for z > 0. Then for
0 < B < R* there holds

(3.26) xp(r, z) < C(N + \)A~x+t min{r, r~x+'} + Cr2(A/z)3

provided r/2 < z/A and A > 1; the constant C depends only on B*, e.

Proof. The monotoniaty of J(r, z) in z implies that, for any A > 1,

//       J(r', z')r' dr' dz' < 1 // ^(r', z')r' dr' dz',
\z'-z\<z/A A z'>0

//       r'2^(r', z')r' dr' dz' < 1 // r'2J(r', z')r' dr' dz'.
\z'-z\<z/A A  z'>0

Using these facts we can modify the proof of the previous lemma for large z. As in
the preceding proof we write xp(r, z) = xpx(r, z) + xp2(r, z). Estimation of xp2(r, z):

xp2(r, z) = xP'2(r, z) + xp'2\r, z),

xp'2(r, z) < Cr2      II       ^-W', z'V dr' dz' < -^ min{r, r~x}.
s>r/2 J A

\z-z'\<z/A

xP'2\r, z) < Cr2      II        '— l(r', z')r' dr' dz' < Cr2(-)\
sir/2 S3 V Z J

\z-z'\>z/A

Thus,
xp2(r,z) < (C/A)min{r, r~x] + Cr2(A/z)3.

Estimation of xpx(r, z): we follow the reasoning of the previous proof except that
now (noting that s < r/2 implies \z — z'\ < z/A) we have

U\\LKs<r/2) < (C/A)min{l,r-2}.

Thus, as before,

xpx(r,z) < CaNaA-x+'rx+smin{l, r-W-")},

with S = 3/(1 + a), a = (1 + B)/(l + a), B < a < oo.
Now the proof is completed just as in the preceding proof.

4. Proof of Theorem 2.2. Let &^fi denote the class of nonnegative functions
J G Lx + x/li(R3) satisfying (2.1), (2.3) and (rather than (2.2))

(4.1) \(   r2$(x)dx< 1;
Z JRi

clearly, &xj/8 C $4,/8- Consider the problem:

(2.16') £"/,(?)-   max   ^(j").
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VORTEX RINGS 15

In order to solve problem (2.16) we first obtain a solution of (2.16'); this is
necessary because the possible solutions are not known to have bounded support a
priori.

Lemma 4.1. There exists J G (J^,^ such that (2.16') holds for any prescribed
0 < X < oo; J(r, z) is a nonincreasing function of z for z > 0.

Proof. In what follows we shall assume that 0 < B < B* for some fixed B* (and
the dependence of any constants upon B* will not be specified). For any J G $^>/8,
estimate (3.19) implies that
(4.2) sup   xp(x) <C[JV(J) + 1],

and hence

(4.3) E(£) = ^f 3ttdx<C[N($)+\];

here we use the fact that the hypothesis of Lemma 3.4 is satisfied by J*(r, z), the
symmetrical rearrangement of J(r, z) in the z variable, and £(J*) > £(J) while
N(£*) = Af(J). Furthermore,

(4.4) ^PHlf <Ce + eB( U)l + i/fi dx       (e>0);
XX    L<*</I>(R3) JrAXJ

this follows from the elementary inequality

(4.5) X< Ce + eBXx + x/P       (e > 0),

valid for 0 < X < oo. Applying (4.4) to estimate the energy in (4.3) we get, fixing e
sufficiently small,

(4.6) ^)<^ + ft(x)' + l/^-
We now conclude (recall definition (2.14))

(4.7) Ep(0<Cx   for all J G &xji.
Let J, G d^,0 be a maximizing sequence for Ep; that is, Efi(Sj) < ^(Sy+i) and

lim  Ep($j) =   sup    ^(j).

It is easy to see that (4.4) and (4.6) imply

(4-8) N(Sj) <CX + |^(J,)|       (j > 1).
Thus we may assume, by extracting a subsequence (and reindexing), that

(4.9) £j^>£   weakly in LX + X^(R3).

The limit J is then an element of &'xp (although not necessarily &XtB)- ̂ so by
replacing each J7(r, z) by its symmetrical rearrangement in z (which cannot
decrease Ep(£j)) we may assume that each Jy(r, z), and hence also J(r, z), is a
nonincreasing function of z for z > 0.
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16 AVNER FRIEDMAN AND BRUCE TURKINGTON

We shall establish the claim
(4.10) lim  E(Sj) = E(S).

y^.00

From this, combined with the fact that

N(S) < lim N(£j),
j-*ao

we conclude that

Ep(S)=   sup    Ep(£),

as required.
To prove the claim (4.10) we first note that for arbitrary R > 1, A > 1,

M]n    f      xptdx <C[N«)+ l](      r~x+%dx <C[A/(J) + l]JR-3+e,
"       '     Jr>R Jr>R

( xp$dx <C[JV(J) + l]A-x+<[   $dx+CR-3[   r2ldx
J0<r<R JR3 JR3

(4.12)       W>AR
< C[N(£)+ \]A~x+e + CR'3,

for 0 < e < 1 fixed; (4.11) follows by Lemma 3.4 while (4.12) follows by Lemma
3.5. Clearly, estimates analogous to (4.11) and (4.12) hold with J replaced by J,.
Thus, as R and A may be taken arbitrarily large, it suffices to show that

j xpXj dx-* \ i/J dx   asj-> 00;
J0<r<R J0<r<R

\z\<AR \z\<AR

xpj being defined as usual corresponding to J,. Also, recalling Lemma 3.3, for
0 <r < R, \z\ <AR,

II G(r, z, r', z')J(r', z')r' dr' dz' < CR ~3r2,
s>R

and hence

//     // G(r> z> r'- z'Mr> z)f(r'- z'> dr dz r' dr' & < CR ~3'
0<r<R   s>R
\z\<AR

also the analogous estimate holds for Jy. In view of this it suffices to show that

//   // G(r, z, r', z%(r, z) J/r', z')r dr dz r' dr' dz'
D        D

-* //  // G(r> z> r'> z')f('> ZK(''> z')r dr & r' dr' dz'
D        D

where D = {(r, z) G H; 0 < r < 2R, \z\ < (A + 1)/?} is a bounded domain. But
now the result follows by standard arguments since G G Lx+fi(D X D) and
Jy(r, z)J//, z') -» J(r, z)J(r', z') weakly in L1 + 1/^(£> X £>) (in the product measure
r dr dz r' dr' dz'). This completes the proof of the claim and also the lemma.

The positivity of £g(J) is crucial for several of the subsequent steps.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Lemma 4.2. (I) IfO < B < 58 (0 < 8 < 1), then for all 0 < X < oo there holds
(4.13) ^(J) > c(X, 8) > 0.

(II) For arbitrary 0 < B < oo there exists Xp > 0 such that if X > Xp then
Ep(O>c'(B)>0.

The constant c(X, 8) of part (I) degenerates as 8 -> 1 and as X -» 0; we note that
(4.13) is uniformly valid as R —> 0. Part (II) is added here for completeness-we shall
need only part (I) in the sequel.

Proof. (I) Let J,(jc) = XI^<a] with a determined so that \fR* r2£x(x)dx = 1.
Consider the scaled functions

L(*) = °5U°x)       (0<o< 1).
Then

[   $„dx = o2[   £xdx,        \(   rXdx=\(   r2$xdx,J Ri JRi 1 J Ri 1 J Ri

and hence for sufficiently small o (depending only on X) we have J„ G ^oo^. An
easy calculation yields

Ep(U = o3E(t;x) - o2+WRXfR^ + l/l3 dx

= o3E(^x) - o2+5^fif 3 J, dx.

Thus, Ep($a) > c(X, 8) for 0 < R < 58 provided o is fixed small enough. Since
Ep(n > Ep(Q, result (I) follows.

(II) Fix J0 G &xS. Then

Wo) = E(S0) - BX-W I   Jo1*1/" dx>c(B)>0
jRi

ifX>Xp (taken large enough).
We now compute the variational conditions for the solution J.

Lemma 4.3. The solution asserted by Lemma 4.1 satisfies (2.17) and (2.18) for some
constants W > 0, y > 0 (uniquely determined by J).

Proof. The positivity of £]g(J) given by Lemma 4.2 implies that meas supp J >
0; therefore, we can find 80 > 0 such that meas{ J > 80) > 0. We choose bounded,
measurable functions hx,h2 such that

supp hx, supp h2 C {J > 80},

( hx dx = 1,    \ ( r\ dx = 0,        f h2 dx = 0,    ^  f r% dx = 1;JH 2 JH JH I JH

of course, hx, h2 can be assumed to be of the form (2.1). Let h be an arbitrary
bounded, measurable function (of the form (2.1)) subject to the restriction that
h > 0 a.e. on {J < 8} for some 8 > 0. Then J + en G &'x p for

17 = h - I j h dx\hx - [j j r2hdx\h2,
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18 AVNER FRIEDMAN AND BRUCE TURKINGTON

provided e > 0 is sufficiently small. Thus, by the maximality of J over &L, p we
have

0 > (d/de)Ep(t; + en)|e_0 = Efcftr,

= E'p($)h - [jji dx}Ep(t;)hx - [\jH^ «k)w)*2

with the Frechet differential

Ep(!)h=f  xphdx-(\ +0)/(f)     hdx.
Now by the arbitrariness of h (and 8) we obtain the variational conditions

(1 + R)(^/X)x/l} = xp-y-\Wr2   if J > 0,

0 > * - y ~ 5 rVr2   if J = 0,

with the Lagrange multipliers

y = Ep(^)hx,        W = E'p($)h2.

These conditions are equivalent to (2.17) and (2.18).
Finally we show that y, W > 0. Clearly there is a sequence of points (rn, zn) G H

such that rn —> 0, zn -» oo and J(rn, z„) -»0. Then the variational conditions imply
that

lim sup {xp(rn, z„) - y - \ Wr2} < 0.
n—»oo

Since xp > 0 everywhere we conclude that y > 0. Now take a sequence such that
r„-»oo, z„->0 and J(r„, z„)—>0. Then since xp(rn, z„)-»0 we conclude, analo-
gously, that W > 0.

To prove uniqueness of the Lagrange multipliers y, W suppose y*, W* is another
such pair, i.e., (2.17) and (2.18) hold for y*, W*. This is equivalent to

Ep($)h ~ Y*(/ hdx\- W*Uf r2h dx\ < 0

for any h subject to the restriction h > 0 a.e. on {J <8) for some 8 > 0. In
particular, we can take h = ± hx, ±h2 (recalling that supp/i, c (J > 80}) and
conclude that y* = E'hx, W* = E'h2.

Lemma 4.4. For the solution J there holds

(4.14) EU)-U   -M + ti)dx<n.

This lemma is necessary because J is not yet known to have compact support.
Proof. Recall that £(J) = -J^'^Lxp dx. Integrating by parts on the domain

Dc = {(r< z) G //; 0 < r < a, |z| < a)

we obtain

-  ff-xpLxpdrdz=  ((  -(xp2 + xp2)drdz- (    xp-^ds
Jd{   ' Jd{    ry ' V    r dv
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VORTEX RINGS 19

(v is the outer unit normal on dDn, and ds is arc length). Therefore, to prove (4.14)
it suffices to show that the boundary integral tends to zero as a -> oo.

We claim that for some e0 > 0,

(4.15) f    xp-\Vxp\ ds = 0(a~ea)   asa^oo.
jsd„    r

We know by Lemma 3.4 that

(4.16) xp(x) < C(l + r)~x+'       (0 < e < 1).
Also, by the calculations of Lemma 1.1 (specifically, combining the curl of (1.23)
with (1.26)), we have

(4.17) I|V+W|< i/,f^f.r 4tt JRi \x - x'\z

We write, for 0 < 8 < 1,

1, r'Ux')dx' yMlf tm&.
lK    '        4*J\X-X'\<a°   \X-X'\2 2V    '        4vJ\X-x-\>a<     \X - xf

we estimate these separately.
Using the fact that

jR^{x')dx' < [fjx')dx')l/2{fR/2UX')dx')i/2 <V2 ,

it is clear that V2(x) < Ca'28. Thus,

f       xpV2dz < C(l + ayx + ea-2S f" dz < Ca~2S+',
Jr=a •'-a

\z\<a

f xpv2 dr < Ca~2S f" (1 + r)~x+e dr < Ca'28^.
Jz=±a J0

0<r<a

Hence, fixing e < 28, we conclude

(    xpv2ds = 0(a~e°).
J9Da

We now estimate the corresponding expressions in Vx. It follows from the
axisymmetry of J(x) combined with the fact that J(r, z) is a nonincreasing function
of z for z > 0 that

(4.18) / r'j^V^cJl-r-^rYl+^J)   '
J\x-x'\<as V       as I    \       a" I

for all (r, z) G H. Indeed, since for r >2as,

meas{jc' G R3; \x - x'\ <as)

< (Cas/r)meas{x' G R3; \r - r'\ < as, \z - z'\ < a6},
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20 AVNER FRIEDMAN AND BRUCE TURKTNGTON

we find (using J(x') = J(r', z')) that

f r'J(x') dx' < —   f r'J(x') dx';
J\x-x'\<ae r      J\r-r'\<ae

\z-z'\<a>

in turn, for z > 2as (using J(r', z% as z'f, z' > 0)

f /-'J(jc') dx' <—( r'J(x') ,4c'.
•'Ir-r'^a* 2     .'|,._r'|<<,»

|z-z'|<as

Thus, (4.18) follows.
Also, since J = C(w+)^ < G//, we have

(4.19) sup      r'J(x') < C,a1-"    ifxGd£>a
\x-x'\<ae

where 0 < jit < 1 (depends on B). For /• = a, \z\ < a, consider the problem to
maximize Vx(x) as a functional of r'^(x') subject to (4.18) and (4.19). Clearly, the
maximum occurs when r'J(x') = Cxax'liI^x_x^<p) where p is determined so that
equality holds in (4.18). Computing Vx(x) in this case we obtain

VX(X)  < Ca»/3-2,/3 + «/3(l  + \z\/aSyX/3.

Thus,

f xpVxdz  < C(l  +  a)-1 + V/3-2"/3 + «/3 ['   U  +  \AY]/' dz
•'r-a •'-a \ a    )

\z\<a

< Ca~2>x/3+2S/3+e.

Similarly, for z = ± a, 0 < r < a, we find

K,(jc) < Ca'/3-2M/3+«/3(1 + r/a*)-'/3,

and thus

f ^K1t/r<Ca-2^3+55/3+<,-s)£.
J2—±a

0<r<a

Fixing e and 8 sufficiently small we find

f    xpVxds = O(a~'o).
J0Da

This proves the claim and, hence, the lemma.

Lemma 4.5. In the notation of Lemma 4.2(1), there holds

(4.20) W >\c(X, 8) >0;
as a consequence, J G &Xip.

In the sequel we shall assume that 0</?<5S(0<S< 1) and no longer specify
the dependence of any constants on 8 (fixed).
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Proof. By Lemma 4.4 (which assures the hypothesis of Lemma 3.1) and the
remark following Lemma 3.2, we may apply the identity (3.10) to the solution J and
obtain

(4.21) W>\E(S)
since J(u) > 0. The assertion (4.20) now follows immediately from (4.13), using
Ep($) < £(J).

Since W, the Lagrange multiplier for the constraint (4.1), must equal zero if strict
inequality holds in (4.1) we now conclude that the equality (2.2) always holds on a
solution; that is, J G &Xjp.

To complete the proof of Theorem 2.2 it remains to show that the solution
obtained has compact support.

Lemma 4.6. If (r, z) G supp J then

(4-22) i^zl <E(l)/mW2

Proof. Suppose z > 0; then for all 0 < z' < z, since (r, z') G supp J, we have

xp(r, z')>\Wr2 + y>\ Wr2.

Then, since xp(0, z') = 0,

Wr2      t'— < JT xp,(r', z') dr'.

Integrating in z' we get

-^< r fZ Mr',z')dr'dz'
Z J0  •'o

< {/„' /„'r'dr' "H XT ̂ z,) * dzT
< (r2z/2)1/2(E(J)/,r),/2;

so (4.22) follows.

Lemma 4.7. There is r*(X) < oo such that

(4.23) r < r*(X)   for all (r, z) G supp J.

Proof. By (4.20) we have

(4.24) xp(r, z)>x2Wr2 + y> cxr2;       cA > 0.

Combining this with the estimate (3.19) (recall that A/(J) < CA) we find

cxr2<xp(r,z)<CKer-x+<       (0 < e < 1).

Now fixing e we have r3~e < CA, as required.
In order to prove the analogous result in z we require a further lemma which is

stated in Fraenkel and Berger [13, p. 39]; for convenience we shall give the proof.
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22 AVNER FRIEDMAN AND BRUCE TURKINGTON

Lemma 4.8. For 0 < r < p there holds

(4.25) //       G(r, z, r', z')r' dr' dz' < Cr2p2;
0<r'<p

— oo <z'<oo

C is an absolute positive constant.

Proof. Writing s = [(r — r')2 + (z — z')2]1//2 we consider separately the contrib-
utions for s < r/2 and s > r/2 as in the estimates of §3. According to Lemma 3.3,

//   G(r, z, r', z')r' dr' dz' < Cr2 11   log- dr' dz' = Cr4 < Cr2p2.
s<r/2 s<r/2 S

r'3II    G(r, z, r', z')r' dr' dz' < Cr2   11    — dr' dz'.
s>r/2 s>r/2     S

0<r'<p 0<r'<p

It is easily verified that for .s > r/2 there holds

r'3/s3 < Cr'3/[(z - z')2 + (r + r')2]3/2.

Hence, it now suffices to estimate

f f-TT, dr' dz' = 2 f-—; dr' < Cp2.
0</<p [(z - z')2 + (r + rf]3/2 Jo  (r + r')2

Lemma 4.9. There is z*(X) < oo such that

(4.26) \z\ < z*(X)   for all (r, z) G supp J.

Proof. By Lemma 4.6 we have r2z < Cx (we take z > 0); thus, to prove (4.26)
we may assume that r < z, say. Let p be defined by p2z/2 = Cx. Then

xp(r, z) = II   G(r, z, r', z')J(r', z')r' dr' dz'
H

<    sup    J(r', z')   //    G(r,z,r',z')r'dr'dz'
0<r'<p 0<r'<p

+ //   G(r, z, r', z')J(r', z')r' dr' dz'.
r>p

Now (2.17), (2.18) and the fact that supH xp < CA imply supw J < CA. If r' > p
then, since

r'2|z'| <CX= p2z/2 < r'2z/2,

we find that \z'\ < z/2 whenever (r', z') G supp J. Thus, in the notation of Lemma
3.3, there holds j > z/2 > r/2 for all (/, z') G supp J with r' > p. Applying
estimate (3.12) in this case yields

//  G(r, z, r', z')J(r', z')r' dr' dz'
r'>p

< Cr2 II   "— l(r', z')r' dr' dz' < -^- /'/   r'2$(r', z')r' dr1 dz'.
r'>p     S Z       H
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Returning to the estimation of xp(r, z) we now have, using Lemma 4.8,

(4.27) xp(r, z) < Cxr2p2 + Cr2/z3 < Cxr2/z + Cr2/z3.

The required result follows upon combining (4.24) and (4.27).
Remark. The method of the above proof is adopted from [13].

5. Proof of Theorem 2.1. We shall give the proof in the form of two lemmas.

Lemma 5.1. There exists J G (5^ such that (2.6) holds, J has compact support, and
J(r, z) is a nonincreasing function of z for z > 0.

Proof. Let J^ denote the solution obtained in Theorem 2.2 for the penalized
problem with a prescribed A (and 0 < B < 1, say). We know from Lemmas 4.7 and
4.9 that
(5.1) supp $p c D = {(r, z)EH;0<r< r*(X), \z\ < z*(X)},
independent of B.

Applying (4.6) to J^ and recalling that Ep(£p) > 0 we find that

(5.2) fif^f) dx<Cx.
Using the notation introduced in (3.18) this becomes

N(^p)/X<(Cx/fi)^x^\
which in turn implies that

(5.3) N(Sfi) <X + o(l)   asR^O.
Now if B < a, for any fixed 0 < a < 1, then we can estimate

HfclU./. < UAvim^    («-0 + py (i +«))
(5.4)

<[a +o(l)]fl   asB->0.

Therefore, there exists a sequence Bj -> 0 (constructed by the usual diagonal
process) such that

(5.5) $p. -+ J weakly in Lx + x/a(D) for every 0 < a < 1.

Furthermore, by (5.4),

lUIU-v. < limMflJ^,,. < A'/0+«>;
now taking a^Owe conclude

(5.6) ess sup J = lim ||J||/,i+i/« < X.
a—»0

Also, by virtue of (5.1), it follows easily that

(5.7) f J dx < 1,        \ [ r2J dx = 1.
jh z jh

Thus, J G \\, supp J C D, and J(r, z) is a nonincreasing function of z for z > 0 (a
property inherited from the J^ solutions).
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Finally, we must show that (2.6) holds. In light of (5.1) it is immediate from
standard arguments that

lim E(^) = £(J).
J—*ao n

For any J G x\ we have

E(S) = lim E(U) > lim EJU) > lim £o(f) = E(j");
j—*oo ' 7—>oo       '      ' j—»oo      n

the last equality follows since

r t J~\1 + 1//Jlim BX I    | <& = 0.
/8->0 JH\ X }

This establishes (2.6) and completes the proof.
We now take the "limit" as B -»0 of the variational conditions for J^ to obtain

the analogous conditions for J:

Lemma 5.2. There exist constants W > 0, y > 0 such that (2.7) and (2.8) hold.

Proof. Let Wj, yp xpj, Uj denote the quantities in the statement of Theorem 2.2
associated with J^. Since Wj, yy. > 0, and as a consequence of (3.10), Wj + yy <
2£(J/S) < CA, we may assume (by taking a subsequence) that Wj—>W and y, -» y.
Then'y > 0 and, by (4.20), W > cx > 0.

In view of (5.1) and (5.5),

xp/x) = f   K(x, x')U(x') dx'
j Ry

converges pointwise on R3 to

xp(x) = f   K(x, x')$(x') dx'.
JRi

Hence, Uj(x) -h> u(x) pointwise on R3. Also, according to the variational condition

tpj(x)=X{u;(x)/(l + BJ)}l3\

we have
H»W*)-(i    lf"^>0'

;-.«   ^V  ;      \ 0     if u(x) < 0.
Furthermore, since uz = xpz < 0 for z > 0 (note that u(r, z) G C X(H)) we see that
meas{x G R3; u(x) = 0} = 0. Thus, the function XI.^x)>0^ is a pointwise limit of
£p.(x) for a.a. x G R3; hence (by a straightforward application of the bounded
convergence theorem), the function XI^x)>0X coincides with the weak limit J(x).
This completes the proof.

Remark 1. We shall later need the fact that

(5.8) if y > 0 then f  J(jc) dx = 1.
JRi

To prove it suppose f R, J(x) dx < 1. Then also

j    J^g (x) dx < 1    fory sufficiently large.
JRi   •
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But then we can take in the derivation of the variational condition, as given in the
proof of Lemma 4.3,

■n = h - l-xf  r2" dx\h2;

this leads to the (unique) choice of y- = 0. Hence also y = lim y • = 0.
Remark 2. We shall now show that

(5.9) I J dx < 1    if X is sufficiently small;

consequently y = 0 if X is small enough. Let J0(r, z) = XIn where fi0 is a disc with
center (2R, 0) and radius R, R = c/A1/5. Then for a suitable choice of c (indepen-
dent of A), J0 G (3^ and one can compute (cf. [14]) that
(5.10) £(J0) > CA3/5       (C> 0).

Next, by Lemma 4.6 and the inequality W > ^E(^),

r2|z| < c/E(S) < c/X3/5   (where (5.10) is used)
provided (r, z) G supp J. Thus

(5.11) |*| < (C/A3/5)(l/r2)    if (r, z) G supp J.
If we utilize the inequality J < A in the proof of Lemma 4.9, we obtain the

inequality (4.27)

xp(r, z) < (cX2/5/\z\ + C/|z|>2.

Since, on the other hand,

xp(r, z) > Wr2/2    if (r, z) G supp J,
we get

A2/5/|z| + l/|z|3 >cW > cA3/5    if (r, z) G supp J,

that is, setting
ZA = 2 + sup{|z|; (r, z) G supp J},

there holds
(5.12) ZA < C/Al/5.

We now compute, using (5.11),

(        $dx-2w\( rdrdz <cX(V2  -^-= CA2/5 log -
Jr<V2 Jr<yri K      X3^r2 £

?>o

where e2A3/5 = C/Zx. Hence

(5.13) f        J dx < cX2'5 log j.
Jr<V2 A

Suppose now that (5.9) is not true, that is, / J dx = 1. Since also |/ r2J dx = 1, we
must have fr>y/^ J dx < /r<v^ £ dx so that, by (5.13), / J dx < 1, a contradiction.
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6. Asymptotic results; preliminary estimates. The rest of the paper is devoted to
obtaining asymptotic estimates on the solution when A -» oo. We shall denote the
solution constructed in Theorem 1.1 by J = JA and set

B=BX= {(r, z); JA(r, z) = A}.

The constraint (2.2) gives

(6.1) \BX\ < 1/2ttA
where \A\ denotes the measure of a set A.

From a general theorem of Caffarelli and Friedman [9] it follows that Bx consists
of a finite number of components and the boundary z = ± Z(r) of each compo-
nent is analytic. As asserted by Benjamin [4],

(6.2) Bx is connected.
In fact, otherwise we can write Bx = Ax u A2 where each At consists of a finite
number of components, Ax n A2 = 0, and Ax lies to the left of A2. By moving Ax
and A2 toward each other (preserving the constraints (2.2), (2.3)) one obtains a
function J such that E(J) > E(JA), a contradiction.

Lemma 6.1. For all X sufficiently large,

(6.3) E = £(JA) > (log A)/ (8V2 tt2) - C,
where C is a constant independent of X.

Proof. We shall use formulas (3.15)—(3.17). Let

fo(r> z) = H>,(V2 , o)

where Dt(V2 , 0) is the disc (r - V2 )2 + z2 < e2. Then

j J0(jc) dx = 1    if 2<nV2 e2X = 1,
i.e., if

(6.4) e2A = 1/ (2 VI rr2).
We shall compute £(J0). For this purpose take first, in G(r, z, r', z'), (/■', z') =
(V2 , 0) and introduce new coordinates about (V2 ,0): r = V2 + es, z = et,
£ = Vs2 + t2 . Then 0 < £ < 1 if (r, z) G supp J0. In terms of the new variables,
we find (recall (3.15)-(3.17))

2.2    ,      2 2 2>2
k'2-£J-^^-- = ^-{l + 0(e)},

e2t2 + (2V2 + es)2        6

k2 = 1 + 0(e),       4/k' = (8V2 /e£){l + O(e)}.
Hence

(2/k - k)K(k) - 2E(k)/k = log(8V2 /e£) - 2 + 0(e log e -').
Using (rr'),/2 =V2 + O(e), we get

G(r, z, V2 , 0) = (V2 /27r)[log(8V2 /e|) - 2] + 0(e log e"1)

= (V2 /27r)log(l/e|) + O(l)    as e ^0.
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Let J° = delta function on the circle r = V2 , z = 0, -tt <9 <ir, and

xP°(r, z) = II G(r, z, r', z')J°(r', z')r' dr' dz' = (2nr)-xG{r, z, V2 , 0).
Since G(r, z, r', z') = G(r, z, V2 , 0) + 0(1) on supp J0, we find that

xp0(r, z) = II G(r, z, r', z')J0(r', z')r' dr' dz' = xp°(r, z) + 0(e).

Hence

E(£o) = ■*!! ^{r, z)Ur, z)r dr dz + O(l)

= "If T- ^ lo8 A &r> z> dr dz + °(0
J J    Ztt   Ztt e?

= ^ 11 log ± !;(r, z)r dr dz + 0(1).

Since r =V2 + O(e), dr dz = 2tte2£ d£, we get

E^o) = 77 ^2 2,re2Aj^ £ log ^ di + 0(1)

= e2AfI|2log4 + ̂ ri + 0(l)
.2 «4      2 J£_0

= ±e2A log - + 0(\) = —±— log - + 0(1)
2 £ 4V2w2 £

by (6.4). Since

fS0dx-l,        ± j r2$0 = I + 0(e),

there is an 0(e)-perturbation J, of J0 which belongs to oA. Hence

E(S) > E(J.) = £(Jo) + 0(1),
and (6.3) follows.

Lemma 6.2. There is a positive constant C independent of X such that

(6.5) xp(r, 0) < Cr[ 1 + log(l + Ar3)]        (0 < r < oo)

for any A > 0, where xp is the stream function corresponding to J = JA.

Proof. Write xp(r, 0) = xpx(r, 0) + xp2(r, 0) where

Hr, 0) = f K(x, x')J(x') dx'       (x = (r, 0, 0)),
J\x-x'\<r/2

xp2(r, 0) = f K(x, x')S(x') dx'.
J\x-x'\>r/2

To estimate xp2 notice that

K(x, x') < rr'/\x - x'\ < 3r   if \x - x'\ > r/2.
Thus xp2(r, 0) < 3r.
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To estimate xpx notice that

K(x, x') < Cr2/\x - x'\    if \x - x'\ < r/2
and hence

^O) <Cr2     //        f2'-—-7T,dr'dz'.
\r-W<r/2 Jo    \z'2 + r2 + r'2 - 2rr'cos 9]x/2

V\<r/2 J

By [14] we have

r_^_< dog_&_
Jo     [Z'2 + r2+ r'2 - 2rr'cos 0]1/2 [z'2 + (r - r')2]l/2

and then, as in [14],

xpx(r, 0) < Cr2r~' log Xr3   provided Ar3 > c

for some positive constant c. On the other hand, if Xr3 < c then we simply use

xpx(r, 0) < Cr2X ( dx'      < CAr4.
J\x-x'\<r/2   \X  — X |

The assertion (6.5) follows by putting together the estimates on xpx, xp2.
Define

R0 = inf{r; (r, 0) G supp J),    Rx = sup{r; (r, 0) G supp J}.
Note that (2.3) implies trivially

(6.6) R$/2 < 1 < R2/2.
Lemma 6.3. There holds

(6.7) Rx < C
where C is a constant independent of X, X > 1.

Proof. Since u = 0 on dBx,

WR2/2 + y = xp(Rx, 0).
Recalling that y > 0 and using Lemma 6.2, we get

(6.8) WR2/2 < CRx\og{2 + XR3).
From Lemmas 3.2 and 6.1 we have

(6.9) 2W= E + 3J(u) > E > Clog A
if A is sufficiently large. Substituting this estimate into (6.8) we get

Rx log A < C log(AR,3)
if A is sufficiently large (say A > A,,), and (6.7) follows. The proof for 1 < A < A„ is
similar, since £(JA) > c > 0, c independent of A.

Lemma 6.4. There holds
(6.10) J(u) < C
where J = J(u) is defined by (3.8) with F(t) = Xt+ and C is a constant independent of
X.
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Proof. By (3.9) (with B = 0),

J(u) = 2irx[f ur dr dz = 2tt//-(h2 + u2) dr dz.
B B     r

Since Rx < C we get

(6.11) Q <CJ   where Q= f f (uj + u2) dr dz.
B

We recall the Poincare inequality

f f u2 dr dz < ̂  f f (u2 + m2) dr dz    if u\dB = 0.
B B

We use it to derive

£ < Cjj u drdz < C\B\x^fJ u2 dr a)'"

< C\B\(fj (u2 + u2)drdz\

= C\B\QX/2 < C\B\JX'2,   by (6.11).

Recalling (6.1), assertion (6.10) now follows.
From Lemmas 3.2, 6.1 and 6.4 we deduce

Theorem 6.5. As X -» oo,

(6.12) W= E/2 + 0(1),
(6.13) y = 3£/2 + 0(1).

From (6.12) and Lemma 6.1 it follows that y > 0 if A is sufficiently large. Hence,
by Remark 1 at the end of §5:

Corollary 6.6. If X is sufficiently large then
(6-14) \Bx\ = \/(2rrX).

Lemma 6.7. If X is sufficiently large then
(6.15) Rq > c
where c is a positive constant independent of X.

Proof. We have

y < y + WRl/2 = xp(R0, 0) < cR0(l + log(l + A/?03))
where Lemma 6.2 was used. Since by (6.13) and (6.3),

(6.16) y>c0logA       (c0>0)

where A is sufficiently large and c0 is independent of A, and since Rq < 2, we
obtain

c0logA<cR0[l + log(l+23/2A)];

this gives (6.15).
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7. Precise estimates for A large. We shall denote various positive constants
independent of A by C

Lemma 7.1. IfX is sufficiently large then
(7.1) d(Bx)<C/log X;
in particular,

(7.2) Rx - *„ < C/log A.
Recalling (6.6) we conclude

Corollary 7.2. As X —> oo,

(7.3) RX^V2,       Ro^Vl.

Proof of Lemma 7.1. Consider the family of straight lines lr, R0 < r < Rx, each
forming an angle 2tt/3 with the r-axis; lr cuts the z-axis at z = r. By (6.2) lr
intersect B at the point (r, 0). Denote by (r*, z*) the first point of intersection of lr
with B, i.e., the segment /* from (0, r) to (r*, z*) lies outside B and (r*, z*) G 35.
Then

(7.4) xp(0,r)-xp(r*,z*)=f^-xpdl

and
<K0, r) = 0,    xp(r*, z*) = y + \ W(r*)2 > \ W(r*)2 > CW,

where Lemma 6.7 was used (a-* > R0 > C). Integrating (7.4) with respect to r,
R0< r < Rx, we get

CW(RX - R0) </*' f^dldr< C(RX - *0)1/2(// |V*|2 dr dzf*

<C(Rx-R0)x/2(fl -r\Vxp\2drdz^2

since Rx < C. Since the last integral is < CEX/2, we get
W(RX - RJ)X/2 < CE1/2.

Using finally (6.12) and (6.3), assertion (7.2) follows. Next we have to show that

(7.5) Z < C/log A   where Z = sup{z; (r, z) G Bx).

This follows by the same method of proof of (7.2), writing

^(0, z) - xp(f, z) = ff ^xp(r, z) dr

where the segment {(r, z); 0 < r < r} lies outside B and (r, z) G dB, 0 < z < Z.
Integrating with respect to z we can now proceed as before to derive (7.5).

Lemma 7.3. Denote by D the disc (r - V2 )2 + z2 < 1. Then for all X sufficiently
large

(7.6) ■mijj\i±drd2<iE±m
v  d\b      r * (y + W)2
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where v varies over the class of all functions in HX(D \ B) satisfying

(7.7) v = 1    on dB,       v = 0   on dD.
Proof. Using Rx > 2 and Lemmas 6.2 and 6.3, we have

2W < WR2 < Clog A,
so that
(7.8) W < C log A.

By Lemma 7.1, B is contained in a rectangle RQ<r <RX,  \z\ < Z, where
Rx - R0 + Z < C0/(log A). It follows that on dB,

(7.9) xp = y + Wr2/2 = y + W + g(r)
where | g(r)\ < C, \ g'(r)\ < C log A; we have used here (7.8). Set

R0= Ro- C0/log A,   Rx = Rx + C0/log A
and extend g(r) into Rq < r < R0 and into Rx < r < Rx in such a way that

(7.10) | g(r)\ < C,   g( Jf0) = g(^) = 0,    | g'(r)\ < C log A.
Let h(z) be a function satisfying

h(z) = 1    if \z\ < C0/log A,
h(z) = 0   if |z| >2C0/logA,

\h(z)\ < 1,       \h'(z)\ < C log A.
Consider the function g(r, z) = g(r)/i(z) in the set DQ\ B where £>0 is the rectangle
R0 < r < Rx, \z\ < 2C0/log A. We easily verify that

(7.11) f       -\Vg\2drdz<C;
JD0\B   r

further, g = 0 on dD0 and
(7.12) xp = y + W + g   on dB.
Next, in view of Lemma 7.1,

(7 13)    *(r' Z) ~ '^ /|X " JC°I       (Jc0 = (^0'z0)''-0 = vr2'z0 = 0)'

V^/~V(rV2/|x - jc°|)
as A -» oo. Consequently we can extend the function g(r, z) from D0\ B into D \ B
in such a way that the extended function g satisfies: g = xp on dD,

(7.14) f        -|Vg|2t/rtfe <C.
JD\D0   r

Now,

/   l|V^|2t/rtfe=|
JH r tt

and, consequently,

(7.15) f      i-IV/ft/rtfe <-.
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By the Dirichlet principle we then deduce that

inf   (      -\Vw\2drdz < —
w    JDXB   r TT

for all w G HX(D \ B) satisfying w = xp on dB and on dD. Writing w = g + w and
using (7.11), (7.12) and (7.14), we find that

inf   f      -\Vw\2drdz<E+°M
w   Jd\b r "■

for any w G HX(D \ B) satisfying w = y + W on dB, w = 0 on dD. Setting finally
v = w/(y + W), the assertion of the lemma follows.

Denote the right-hand side of (7.6) by T. Inequality (7.6) means that
(7.16) CapD B < T
where the left-hand side stands for the capacity of the set B with respect to D; the
capacity is taken with respect to the operator L (rather than the Laplacian).

We shall use the following result recently proved by CaffareUi and Friedman
[10]: If D0 is a fixed disc with center in B and if d(B) < C/log A, then for all A
sufficiently large,

1 2tt
(7'17) [V2 + 0(l/logA)] \og[2Tt/d(B)] < CaPo' B-

From Theorem 6.5 we deduce that

(7.18) T = \/tt(4E + 0(1))
so that, by Lemma 6.1,

T < 2V2 7r/[logA+ 0(1)].
Using this in (7.17) (recall (7.16)) we obtain
(7.19) \og(\/d(B)) > log CA'/2.
Thus:

Lemma 7.4. There holds
(7.20) d(B) < C/Xxl2

for all X sufficiently large.

Since 2m\B\ = 1/A, we then also have:

Corollary 7.5. There holds

(7.21) d(B) > c/Xx'2       (c > 0)
for all X sufficiently large.

If we use (7.18) in (7.17) (recalling (7.16)), we obtain

2 \og(2Tr/d(B)) > 8V2 tt2E + 0(1).
Comparing with (7.21), we find that

(7.22) E < (1/8V2 7r2)log A + C,
which complements (6.3).
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We summarize:

Theorem 7.6. For all X sufficiently large,
(7.23) c < d(Bx)/Xx/2 < C,

(7.24) E = (1/8 VI 7r2)log A + 0(1)
where c, C are positive constants; further,

(7.25) W= E/2 + 0(1),       y = 3E/2 + 0(1).

8. Asymptotic limit of J as A -» oo. For a solution J of (2.6), write

(8.1) Jc(/-, z) = e2J(VI + er, ez)   where e = 1/VX .
Similarly we write

(8.2) J>, z) = e2J~(Vl + er, ez)
for any function J satisfying (2.1)-(2.4). Recall that

(8.3) £(J) > £(J).
We shall now express £(J) in terms of Je. We begin with

_ (VI + er)(V2 + er')  /■-   cost?G(r,*./'.*0-L.7^     '
where

(8.4) r = VT + er,    z = ez,        r' = V~2 er',    z' = ez'

and

J = e2(z -z')2 + (VI + er)2 + (VI + er')2 - 2(VI + er")(VI + er')cos 9
= a — b cos 9,

a = 4 + 2 VI e(r + F') + e2((z -z')2 + F2 + F'2),

b = 4 + 2 VI e(r + F') + 2e2rF.
Now

rm        cos 9        j/j _     2w      a /•" </0
J-„ a - b cos 9 b       b J_T a - b cos 0

= -2tr/b + 2a7r(a2 - b2)~x/2/b

and
(a2 - *2)-1/2 = [(1 + 0(e))/ (2V2 e)][(z- -z-')2 + (F - r')2y1/2,

a = 4+ 0(e),       6 = 4+ 0(e).
It follows that

/■-       cosfl       rf<? = tt(1 + O(e))
J^a-b cos 9 V2 e[(z- -z")2 + (r -F')2]1/2 '

Setting

(8.5) G*(r, z, r', z') = 2VI [(r - r')2 + (z - z')2\~X/2
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we conclude that

(8.6) G(r, z, r', z') = e~xG*(r, z, F', z')(\ + 0(e))

uniformly when (F, z) and (F', z') vary in any disc DR: F2 + z2 < R2. In the sequel
we choose R so that

(8.7) supp J c (/?e)-neighborhood of (VI , 0);
notice that R can be taken to be independent of A (by Theorem 7.6).

From (8.4) we have

rdrdz = VT e2 dr dz(\ + 0(e)),

/ dr' dz' = VT e2 dF' dz'(\ + 0(e)).
Using this and (8.6), we get the following expression for £(J):

(8.8) e£(J) = 2tt[     f   G*(r, z, r', z')W, z)W', *') dr' dz' dr dz + 0(e).
JDR JDR

Further, by (2.2)-(2.4),

(8.9) f   Je(r, z) dr dz < 1 + 0(e),
jdr

(8.10) 0 < Je(r, z) < 1,       Je(r, z) = Je(r, -z).
We introduce the functional

(8.11) E*(r)) = 2tt(     f    G*(r, z, r', z')f)(r, z)rj(r', z') df dz' dr dz
jdr JDR

and the class % of functions -q(r, z) satisfying

(8.12) 0<v(r,z) < 1,
(8.13) suppT) c DR,
(8.14) T,(r,z) = T,(r, -z),

(8.15) 2^7 f   rf(r, z) dr dz < 1.
JDK

Let tj G %. By adding an 0(e) function to tj, we can write it as J, + 0(e) where
Je has the form (8.2) (with supp J in .Re-neighborhood of ("vT , 0)), and J is in S^.
Using (8.3) we deduce from (8.8) and the corresponding result for J,

(8.16) E*(Q > E*(V) + 0(e).
Now take any limit 17* of J£ (e = e' -> 0) in the weak star topology of L°°. Then

we find, taking e = e' ^0 in (8.16), that £*(n*) > £*(tj). From (8.9) and (8.10) it
follows that t(* G 95. Thus 17* is the solution of the variational problem
(8.17) tj* G <36,       £*(tj*) = max E*(v).

Recalling (8.5), it is clear that the only solution of (8.17) is

V*(F, z) = IDq
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where D0 is the disc D0: F2 + z2 < \/2tt2. We have thus proved

Theorem 8.1. As X -» oo the sets

(8.18) B* = {(VI + A'/2r, Xx/2z); (r, z) G Bx)
converge to the disc DQ with center at the origin and radius 1/(ttV2 ); the conver-
gence is in the sense that

(8.19) IB.-^ID in the L°° weak star topology.

The convergence in (8.19) does not yet show that dB£ is approximately the disc
D0.

Theorem 8.2. If we use polar coordinates (p, <J>) about the center of D0, then dB*
can be represented in the form p = Rx(<p) (0 < <£ < 2tt) and, as X—> oo,

(8.20) (d'/d4>')(Rx(4>) - 1/ (ttVI )) -» 0 uniformly in <b       (i = 0, 1).

Proof. Introduce

ue(r, z) = w(VI + er, ez).

Then

(8.21) A«e - [e/ (VI + er)](ue)r = - (VI + er)%(r, z),

(8.22) t/e=0   on dB£,       ue > 0   in B{*,       ue<0   in R2\B{*.

We claim that if r2 + z2 < A/ C0 (for a suitable C0 > 0) then

(8.23) \ue(r, z)\ < C(r2 + z2)l/2 + X~XC log A(r2 + z2)x/2 + C.

To prove it we write

uE(r, z) = u„(r, z) — ue(f, z)    for some (F, z) G dBf,

so that

K(r> z) = ['/'("vT + er, ez) - ^(VI + er, ez)]

+ \ \ W( VI + erf - \ W(V2 + eF)2]
= IX + I2.

From Lemma 2.3 or Lemma 3.3 in [15] (with obvious changes) we get

\Vxp\ < CXX/2 = C/e
where the argument of xp varies in the interval connecting (VI + ef, ez) to
(VI + er, ez). Hence

|/,| < C(r2 + z2)x/2 + C.

Next,

|/2| < C log A • er + C = A_1/2C log Ar + C;
thus (8.23) follows.
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Let U(R) (R = (r2 + z2)x/1) be the radial solution of
MJ=-2ID,       U = 0   ondDr,(8.24) Do *

U=-Alog(R/R0)   ifR>Ro,       R0=1/(ttV2);
A is uniquely determined by requiring that U be C' at R = Rq; notice that A > 0.

In view of (8.23) and (8.21), the standard elliptic theory shows that every
sequence ej|0 has a subsequence e,J,0 such that u —» W uniformly in compact sets,
together with the first derivatives, and, by Theorem 8.1,

(8-25) A W=-2IDo.
Also, by (8.23),

(8.26) | W(r, z)\ < C(r2 + z2)x/1 + C.

From Theorem 8.1 we also deduce that

/   IAu^J   lAW       (e, = (A,)-,/2)

for any characteristic function IA. Since ue > 0 in BT, we deduce that

(8.27) W > 0   in DQ.
Similarly

(8.28) W<0   in R2\D0.

Near infinity W is harmonic and thus has an expansion (we use here the estimate
(8.26))

W = aR cos(9 - 90) + b log R +_
In view of (8.28) it follows that a = 0, b < 0. Thus
(8.29) W = b log R + . . .    near R = oo.

The properties (8.25) and (8.27)-(8.29) determine W uniquely. Indeed, if IP is
another function satisfying all these properties then the function Z = W — W is
harmonic and its first derivatives are bounded harmonic functions in R2. Hence,
by Liouville's theorem, Z = const., i.e., W = W + c. But the properties (8.27) and
(8.28) for W then give c = 0, so that W = W.

The function W is clearly the same as the function U defined above in (8.24).
Thus we have proved that

ue(r, z) -* U(r, z),        Vue(r, z) ^V U(r, z)

uniformly in compact sets, where   U(r, z) = U(R).  Since dU(r, z)/dR =£■ 0 on
R = R0, it follows that

c < \Vue(r,z)\ < C   on dB*.

Further, if we represent 3D0 locally in the form, say, r = k(z), k'(z) ¥= 0, then we
can represent 3.8* locally in the form r = &A(z) where
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(Vwe,  VU are computed at the points r = kx(z), r = k(z), respectively). The
assertion of the theorem now readily follows. We have, incidentally, also proved:

Corollary 8.3. As X —> oo, «(Vl + er, ez) —» U(r, z) with the first derivatives
uniformly in compact subsets of R2, where U(r, z) = U(R) is the radial function given
in (8.24).

Remark. The asymptotic estimates of §§6-8 can be extended also to the solution
%b ~ W °^ Theorem 2.2 when B is fixed and A —* oo.
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