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We develop a reduced-order model for large-scale unsteadiness (vortex shedding) in
a two-dimensional diffuser and use the model to show how periodic mass injection
near the separation point reduces stagnation pressure loss. The model estimates the
characteristic frequency of vortex shedding and stagnation pressure loss by accounting
for the accumulated circulation due to the vorticity flux into the separated region.
The stagnation pressure loss consists of two parts: a steady part associated with
the time-averaged static pressure distribution on the wall, and an unsteady part
caused by vortex shedding. To validate the model, we perform numerical simulations
of compressible unsteady laminar diffuser flows in two dimensions. The model and
simulation show good agreement as we vary the Mach number and the area ratio of
the diffuser. To investigate the effects of periodic mass injection near the separation
point, we also perform simulations over a range of the injection frequencies. Periodic
mass injection causes vortices to be pinched off with a smaller size as observed
in experiments. Consequently, their convective velocity is increased, absorption of
circulation from the wall is enhanced, and the reattached point is shifted upstream.
Thus, in accordance with the model, the stagnation pressure loss, particularly the
unsteady part, is substantially reduced even though the separation point is nearly
unchanged. This study helps explain experimental results of separation control using
unsteady mass injection in diffusers and on airfoils.

1. Introduction

To achieve high performance in aircraft propulsion systems, it is crucial to minimize
the stagnation pressure loss across an inlet diffuser. In many situations the length of
the diffuser is restricted (for example, by low-observability constraints), and turning
as well as rapid area changes are required (cf. Hamstra et al. 2000; MacMartin et al.
2001). As a result, large adverse pressure gradients between the throat and compressor
cause flow separation. Previous experimental studies (e.g. Reneau, Johnston & Kline
1967) have been used to categorize stall regimes for a planar diffuser geometry. In
the so-called transitory stall regime, circulation is irregularly built up and washed
out; thus, the flow pattern has similar features to vortex shedding from a bluff
body, but sizes of the vortices are not uniform (see figure 1). Some experiments
(e.g. Salmon, Bogar & Sajben 1983) have visualized such a flow pattern. This
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Figure 1. Schematic of vortex shedding in a two-dimensional diffuser.

phenomenon substantially reduces stagnation pressure and distorts the flow delivered
to the compressor.

In the past, a number of studies have demonstrated that the pressure recovery can
be improved if the generation of large-scale vortical disturbances is disrupted. Early
experimental studies have accomplished this by using splitter vanes (Rao 1971), steady
mass injection (Nicoll & Ramaprian 1970; Back & Cuffel 1982; Nishi, Yoshida &
Morimitsu 1998), a star tail-pipe (Welsh 1976), and moving walls (Tennant 1973).
More recently, periodic mass injection (e.g. synthetic jets) near the separation point
has been shown to enhance pressure recovery more effectively than previous control
techniques (cf. Glezer & Amitay 2002). This technique was introduced for airfoil
separation (Seifert, Darabi & Wygnanski 1996) and has also been applied to internal
flows, such as diffusers (Amitay, Pitt & Glezer 2002; Narayanan & Banaszuk 2003).

The objective of this study is to investigate the large-scale vortex shedding intrinsic
to transitory stall, and to study the mechanisms whereby periodic mass injection
enhances performance. We develop a reduced-order model to predict the characteristic
frequency of vortex shedding by accounting for the accumulated circulation due to
the vorticity flux into the separated region. At low Mach numbers, the model also
estimates the stagnation pressure loss, which consists of steady and unsteady parts: the
former accounts for the time-averaged static pressure distribution in the separation
region, and the latter for the vortex shedding. To verify the theoretical analyses, we
perform direct numerical simulations (DNS) of two-dimensional unsteady laminar
diffuser flows at various inflow Mach numbers (M1 = 0.2 to 0.8) and area ratios
(h2/h1 = 1.4 to 2.6).

The numerical simulations are also used to investigate the effects of periodic mass
injection. This is modelled in a simplified way by locally forcing the flow inside the
boundary layer upstream of the separation point. Over a range of frequencies, it is
observed that periodic forcing causes frequency locking to occur (i.e. vortex shedding
becomes periodic) with substantial reductions in stagnation pressure loss. The optimal
forcing frequency is found to be about twice the natural vortex-shedding frequency,
and the stagnation pressure loss can be approximately halved relative to the natural
case (with an estimated forcing magnitude of Cµ ≡ (ρu2h)actuator/(ρu2h)inflow = 0.5%).

Furthermore, we apply the model of diffuser flows to study the mechanisms of
separation control. In fact, the model developed for transitory stall even more closely
represents flows controlled by periodic mass injection. By estimating parameters in
the model from the numerical simulation, we evaluate the contributions from the
steady and unsteady parts of stagnation pressure loss as a function of the forcing
frequency. In turn, this shows the mechanisms by which stagnation pressure loss is
reduced when the separated boundary layer is pinched off into smaller vortices, and
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Figure 2. Simple model for a two-dimensional diffuser.

may explain the frequency dependence of pressure recovery observed in experiments.
Although we carry out the analyses and simulations in two dimensions, we believe
that the implications are applicable to three-dimensional flows. Especially when mass
is injected uniformly across the spanwise direction, vortical structures downstream of
the separation point appear to become two-dimensional as observed in experiments
(cf. Amitay et al. 2002; Narayanan & Banaszuk 2003).

The remainder of the paper is organized as follows. In the next section, the
theoretical model is introduced. In § 3, the methodology of the numerical simulation
is briefly presented. The numerical results are compared with the model in § 4, and
the implications for separation control with periodic mass injection are discussed.
Conclusions and limitations of the present analysis are given in § 5.

2. Model of a two-dimensional diffuser

2.1. Mechanism of vortex shedding

To estimate the characteristic frequency of vortex shedding, we develop a reduced-
order model for a two-dimensional diffuser. To simplify the discussion, we explain
an incompressible model first and consider a compressible model in the following
section.

2.1.1. Incompressible flow model

We consider a simple two-dimensional symmetric diffuser geometry and assume
incompressible and inviscid flows. Taking a control volume and coordinate system as
shown in figure 2, we estimate the accumulated circulation per unit time due to the
vorticity flux through the inlet and exit. Of course, some vorticity flux is generated
or absorbed at the diffuser wall owing to the no-slip boundary condition, but this
mechanism is discussed in § 2.3.

We specify a transversely sheared velocity profile at the inflow by u1(y) and assume
the inflow pressure to be uniform (denoted by p1). Furthermore, we assume that in the
diffuser the separated boundary layer reattaches before it reaches the exit (station 2
in figure 2). The exit velocity profile is similarly specified as u2(y). Consequently, the
net circulation accumulated in the control volume, per unit time, may be calculated
as

dΓ

dt
≡

∫ h1

0

ω1(y)u1(y) dy −
∫ h2

0

ω2(y)u2(y) dy =
u2

1(0) − u2
2(0)

2
, (2.1)
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where the argument ‘(0)’ emphasizes that the quantity is evaluated at the centreline. It
is important to notice that the net vorticity flux is independent of the velocity profiles
of the boundary layer.

During one period of vortex shedding, we assume that the accumulated circulation
forms a single vortex in the hatched region in figure 2. In a viscous flow, some vorticity
flux is absorbed from the wall, and this fraction is expressed by λ (which will be
formulated in (2.28)). We also assume that the diameter of the vortex can be scaled
as (h2 − h1). Using Stokes’ theorem, the velocity at the outer radius of this vortex can
now be estimated as

uvor ≈ (1 − λ)
(

u2
1(0) − u2

2(0)
)

Tshed

2π(h2 − h1)
, (2.2)

where Tshed denotes the time period of vortex shedding. When this velocity exceeds
a threshold velocity scaled by the free-stream velocity (denoted by αu1(0)), we
hypothesize that the vortex is pinched off. Thus, the time period of vortex shedding
in the incompressible case can be estimated as

T M→0
shed ≈ α

1 − λ

2πh1(h2/h1)
2

u1(0)(1 + h2/h1)
. (2.3)

This equation shows that the shedding period becomes longer as the area ratio
increases.

We note in passing that several experimental studies (e.g. Smith & Kline 1974;
Smith 1978; Kwong & Dowling 1994) suggested that the proportionality of the stall
period in a two-dimensional diffuser can be expressed as

Tstall ∼ L sin 2θ

u1

, (2.4)

where L and θ are defined in figure 2. If the area ratio is sufficiently large (i.e.
h2/h1 ≫ 1) and the slope of the diffuser is small, namely, sin 2θ ∼ 2 sin θ , (2.3) yields
the same scaling as (2.4). Note that some of these previous papers studied much longer
time periods associated with the coupling between the diffuser and the dynamics of
the whole system (i.e. resonance). Bogar, Sajben & Kroutil (1983) discussed the
distinction of such time scales. We focus only on the time period of vortex shedding
in this study, which is thought to be more relevant to separation flow control.

2.1.2. Compressible flow model

We extend the discussion on vortex shedding above for compressible flows. To
estimate the accumulated circulation, it is appropriate to calculate the flux of ω/ρ (cf.
§ 1.5 of Saffman 1992), since Kelvin’s circulation theorem ensures that this quantity is
conserved in an inviscid barotropic fluid. Here, we additionally specify the transversely
sheared temperature profiles at the inflow and exit as T1(y) and T2(y), respectively;
accordingly, the density is given from the ideal gas law as ρ1(y). Thus, the equation
corresponding to (2.1) becomes

1

ρ̄

dΓ

dt
≡

∫ h1

0

ω1(y)

ρ1(y)
u1(y) dy −

∫ h2

0

ω2(y)

ρ2(y)
u2(y) dy

=
R

p1

∫ u1(0)

0

T1(u1)u1 du1 − R

p2

∫ u2(0)

0

T2(u2)u2 du2, (2.5)

where ρ̄ on the left-hand side denotes a characteristic density scale (which will be
specified in (2.8)), and R is the gas constant.
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To evaluate the temperature profile, we use the Crocco–Busemann relation (cf.
§ XV of Schlichting 1960). Assuming that the Prandtl number is unity and the flow
is parallel, the temperature profile above an iso-thermal wall may be calculated as a
function of velocity:

T (u)

T∞
=

Twall

T∞
+

(

1 − Twall

T∞
+

u2
∞

2cpT∞

)

u

u∞
− u2

∞
2cpT∞

(

u

u∞

)2

, (2.6)

where cp represents the specific heat at constant pressure. In addition, the subscript ∞
denotes quantities just outside the boundary layer, which we now approximate by the
corresponding centreline quantities (e.g. u∞ = u(0)). Twall denotes the wall temperature,
which is assumed constant everywhere. Substituting (2.6) into (2.5) yields

1

ρ̄

dΓ

dt
=

u2
1(0)

2ρ1(0)

[

2

3
+

1

3

Twall

T1(0)
+

(γ − 1)M2
1 (0)

12

]

− u2
2(0)

2ρ2(0)

[

2

3
+

1

3

Twall

T2(0)
+

(γ − 1)M2
2 (0)

12

]

. (2.7)

Here, Mj ≡ uj/
√

γRTj (j = 1 or 2) is the Mach number.
Following the same argument as in the preceding section and assuming the averaged

density of the vortex, ρ̄ in (2.5), to be ρ1(0) (in fact, it is still lower owing to
compressibility), the time period of vortex shedding for compressible flows can be
estimated as

Tshed ≈ α

1 − λ

2πh1 (h2/h1 − 1)

u1F
, (2.8)

where

F

(

M1,
h2

h1

,
u2

u1

,
T2

T1

,
Twall

T1

)

≡
[

1

2
+

1

3

Twall

T1

+
1

6

(

1 +
γ − 1

2
M2

1

)]

−
(

h2

h1

)(

u2

u1

)3 [

1

2
+

1

3

Twall

T1

T1

T2

+
1

6

(

1 +
γ − 1

2
M2

1

)

T1

T2

]

. (2.9)

In these equations, it is assumed that the boundary layer is sufficiently thin that the
centreline quantities, denoted by (0) in the discussion above, are now given by a
quasi-one-dimensional analysis:

ρ1u1h1 = ρ2u2h2, (2.10)

cpT1 + 1
2
u2

1 = cpT2 + 1
2
u2

2. (2.11)

Thus, we treat quantities with a subscript as a cross-sectional average in (2.8) and
(2.9) here. More precisely, we must take time averages of these quantities over a
period of vortex shedding as well. Using (2.10) and (2.11), we can specify u2/u1 and
T2/T1 in (2.9) as functions of h2/h1 and p2/p1.

Figure 3 plots the shedding time period as a function of the area ratio at various
inflow Mach numbers. Here, we calculate p2/p1 based on the ideal expansion
and assume Twall = T1 and no absorption of circulation from the wall (λ= 0). The
normalized shedding period decreases as the inflow Mach number increases. This
compressibility effect is appreciable when h2/h1 is small; however, it becomes small
at lower Mach numbers or in higher area ratios.



192 T. Suzuki, T. Colonius and S. Pirozzoli

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

4

8

12

16

20

h2/h1

T
sh

ed
u

1
/h

1

Figure 3. The vortex-shedding time period as a function of the area ratio for various inflow
Mach numbers: ——, incompressible limit; − − −, M1 = 0.2; −·−, M1 = 0.4; −··−, M1 =0.6;
· · ·, M1 = 0.8. α =1 and λ= 0 are assumed.

2.2. Stagnation pressure loss in a diffuser

In this section, we evaluate stagnation pressure loss due to flow separation and large-
scale flow unsteadiness in the incompressible limit. We start with Crocco’s equation:

∂ui

∂t
+

∂H

∂xi

− T
∂s

∂xi

= ǫijkujωk +
1

ρ

∂τij

∂xj

, (2.12)

where H is total enthalpy (≡ cpT + u2
k/2), s is entropy, and τij is the viscous stress

tensor. We define stagnation temperature to be Tt ≡ H/cp , and accordingly, stagnation
pressure and density to be pt ≡ (Tt/T )γ /(γ −1)p and ρt ≡ (Tt/T )1/(γ −1)ρ, respectively. As
a result, (2.12) can be rewritten as

∂pt

∂xi

= ρtǫijkujωk − ρt

∂ui

∂t
+ (T − Tt )ρt

∂s

∂xi

+
ρt

ρ

∂τij

∂xj

. (2.13)

Note that entropy is the same between static and stagnation quantities by definition.
Now, we evaluate the order of each term in (2.13). We assume that the compressibility
is weak and expand both static and stagnation thermodynamic quantities for small M2

(cf. Chu & Kovásznay 1958). For example, (p−p∞)/(ρ∞u2
1/2) ≡ p̃M0 +M2p̃M2 +O(M4),

etc. In addition, we assume that the time scale of the fluid motion is proportional
to ‘(length scale)/(velocity scale)’, namely (∂/∂t)/(∂/∂x) ∼ u1. The first two terms on
the right-hand side of (2.13) then yield O(1). The third term can be estimated as
O(M2/Re) referring to the entropy change along the material line (if the flow is not
initially homoentropic, its order is O(M2)). Likewise, the last term can be evaluated
as O(1/Re). Thus, assuming Re ≫ 1 and neglecting O(M2) and higher-order terms,



Vortex shedding in a diffuser and separation control 193

20 40 60 80 100 1200

0.4

0.8

1.2

tu1/h1

p
w

/p
1

Figure 4. Projected pressure on the upper wall in the x-direction (denoted by ——). Static
pressure on the wall was integrated over x/h1 ∈ [−2, 3] on the upper wall in simulation
(case A, see figure 11 for the flow field). The actual integrated area in simulation was
(h2 − h1)/h1 = 0.889, and it is taken into account. p2/p1 is denoted by − − −.

(2.13) can be approximated as

∂pt

∂xi

≈ ρtǫijkujωk − ρt

∂ui

∂t
. (2.14)

Next, we integrate (2.14) for i =1 (the x-direction) inside the control volume
defined in figure 2. Using Green’s theorem, the left-hand side yields the surface
integrals. Integrating it over the cross-section, the second term on the right-hand
side vanishes for a symmetric vortex, as discussed later. Alternatively, if we take a
time average and expand this term as (ρ∞ − ρt )(∂u/∂t) − ρ∞(∂u/∂t), it is evaluated
as O(M2). Consequently, the stagnation pressure loss averaged over the cross-section
can be approximated as

pt1 − pt2 ≈ (pt1 − pw)

(

1 − h1

h2

)

−

∫∫

ρtvω dx dy

h2

, (2.15)

where the averaged pressure projected on the wall is defined as pw ≡
∫ h2

h1
p dy/(h2−h1).

As mentioned in the previous section, quantities with a subscript denote the cross-
sectional average. This equation shows that stagnation pressure loss can be decreased
by increasing either pw or

∫∫

ρtvω dx dy, and these two terms are analysed in the
following.

2.2.1. Steady part of stagnation pressure loss

First, we consider the first term on the right-hand side of (2.15). In a rapidly
diverging diffuser, the boundary layer is fully separated. Figure 4 demonstrates
pw ≈ p1, although pressure on the wall is slightly underestimated (approximately
4.9%) because the free-stream pressure is actually greater than p1 at the separation
point. In fact, figure 5 shows that the error of (2.15) on average is about 2.1% of the
inlet stagnation pressure if we assume pw = p1. The slight underestimate of pressure
on the wall causes an overestimate of the stagnation pressure loss, but the error is very
small and stationary over time; hence, the neglected terms in (2.14) are considered
small.

Next, the steady part of
∫∫

ρtvω dx dy can also be readily evaluated in incom-
pressible flows. Imposing the no-slip boundary conditions on the wall, this term can
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be expanded as follows:
∫∫

ρtvω dx dy ≈
∫∫

ρ∞v

(

∂v

∂x
− ∂u

∂y

)

dx dy

= ρ∞

∫∫
(

∂(v2/2)

∂x
− ∂(uv)

∂y
+ u

∂v

∂y

)

dx dy

= − ρ∞

∫∫

∂(u2/2)

∂x
dx dy = ρ∞

u2
1h1 − u2

2h2

2
. (2.16)

Here, continuity is used, and v1 = v2 = 0 is assumed for the third equality. This relation
is nothing but a momentum balance in the control volume (cf. § 5.15 of Batchelor
1973). Thus, the steady part of the time-averaged stagnation pressure loss can be
expressed as

(pt1 − pt2)
M→0
steady ≈ (p1 − pw)(h2/h1 − 1)

h2/h1

+ 1
2
ρu2

1

(h2/h1 − 1)2

(h2/h1)2

= 1
2
ρu2

1

(h2/h1 − 1)2

(h2/h1)2
p∗

w − pw

p∗
w − p1

, (2.17)

where

p∗
w ≡ p1 + 1

2
ρu2

1

h2/h1 − 1

h2/h1

(2.18)

is the highest possible time-averaged pressure projected on the wall, assuming a steady,
irrotational and ideal flow. Therefore, this is only achieved if the flow is assumed
perfectly attached, in which case (pt1 − pt2)

M→0
steady =0.

2.2.2. Unsteady part of stagnation pressure loss

The unsteady part of the
∫∫

ρtvω dx dy term is considered to be the contribution
from vortex shedding. To analyse this effect, we use the Oseen vortex (Oseen 1912)
as a model. The Oseen vortex is a solution to the incompressible Navier–Stokes
equations in an otherwise quiescent flow. Again, we consider the leading terms of the
incompressible limit. The azimuthal velocity of the Oseen vortex is given by

uθ (t, x, y) =
Γ

2π

√

(x − x0)2 + (y − y0)2

(

1 − exp

[

− (x − x0)
2 + (y − y0)

2

4νt

])

, (2.19)
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is (x0/h1, y0/h1) = (0, 1). Contour level: minimum, −6.0; maximum, 6.0; and the interval of
0.5.

where (x0, y0) denotes the centre of the vortex, Γ is the total circulation, and ν is the
kinematic viscosity. Here, we assume that the time scale of dissipation is much slower
than that of vortex convection; accordingly, we assume the radius of the vortex,
Rv ≡

√
4νt , to be constant. Using this expression, we can derive

ρtvω =
ρtΓ

2

2π
2R2

v

x − x0

r2

(

exp

[

− r2

R2
v

]

− exp

[

−2r2

R2
v

])

, (2.20)

where r2 ≡ (x − x0)
2 + (y − y0)

2. Assuming that the effect of blockage due to the wall
is weak (which can be confirmed from a distribution of ρtvω in figure 6), we integrate
(2.20) in the vertical direction. After some algebra, we obtain

∫ ∞

−∞
ρtvω dy =

ρtΓ
2

2πR2
v

(

erf

[√
2(x − x0)

Rv

]

− erf

[

x − x0

Rv

]

)

, (2.21)

where erf(z) ≡ (2/
√

π)
∫ z

0
exp(−t2) dt . Notice that (2.21) is positive downstream of the

vortex centre (x − x0 > 0) and negative upstream of it (x − x0 < 0) (see figure 6).
Therefore, when the vortex leaves the control volume, a stagnation pressure drop
appears at the exit cross-section. According to the discussion in § 2.1, we estimate the
parameters as Γ =α2πRvu1 and Rv ≈ (h2 −h1)/2 and denote the convective velocity of
the vortex as uc. Thus, the stagnation pressure loss averaged over the exit cross-section
for each vortex shedding is given as a function of time,

(�pt2)shed(t) =
1

h2

∫ ∞

uc t

∫ ∞

−∞
ρtvω dy dx

≈ α2
πρ∞u2

1

h2 − h1

h2

∫ uc t/Rv

∞
(erf[

√
2χ] − erf[χ]) dχ. (2.22)

When the vortex is convected along y = h2/2, the convective velocity can be
approximated as uc = u2. In reality, the vortex is pinched off near the upper wall
and probably convected above y =h2/2 when h2/h1 < 2, and vice versa. Therefore,
the convective velocity is reduced owing to the induced velocity of the image vortex.
To be precise, the Oseen vortex is no longer a valid solution because the centre of
the vortex is convected slower than the bulk flow.
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Figure 7. Stagnation pressure profile estimated based on the inviscid and incompressible limit.
Parameters are chosen according to case A (M1 = 0.6 and h2/h1 = 2), and α = 1, β = 1, λ= 0,
pw = p1 and κ = 0.33 are assumed.

To estimate the induced velocity due to blockage, we assume an ideal fluid and consi-
der a conformal mapping represented by ζ = exp((π/2h2)z). This function maps an
infinitely long channel onto the first quadrant; hence, two pairs of counter-rotating
point vortices satisfy the non-penetration boundary condition in the ζ -plane. Accord-
ing to Pierrehumbert’s study (1980) on a pair of counter-rotating vortex ‘patches’,
the convective velocities of distributed vortices can be approximated well by those of
point vortices, even if the distance between them is of the same order as the vortex
size. The rate of induced velocity for point vortices can be calculated as (cf. § 7.2 of
Saffman 1992)

κ

(

h2

h1

,
h3

h1

)

≡ − uind

αu2

≈ − 1
4
π

(

h2

h1

− 1

)

1

tan(π(h3/h1)(h1/h2))
, (2.23)

where h3 is the distance from the centreline to the vortex centre, and the convective
velocity then becomes (1 − ακ)u2. For example, when h2/h1 =2 and h3/h1 = [(h1 +
h2)/2 + h1]/(2h1) = 5/4, κ becomes as high as 0.33 compared to zero in a free space
(for reference, if we simply calculate the infinite superposition of the Oseen vortices
under the conditions of figure 6, we obtain κ =0.32, which is sufficiently close to the
point-vortex solution). Thus, the effect of blockage on the convective velocity is not
negligible. On the other hand, the error of

∫∫

ρtvω dx dy associated with blockage is
less than 2%.

Now, we assume that each vortex-shedding process is sufficiently isolated in time
(which will be confirmed in figure 7). Subsequently, using (2.22) and knowing that
the time period of vortex shedding is estimated by (2.3), the time-averaged stagnation
pressure loss associated with vortex shedding can be estimated as

(�pt2)
M→0
shed =

∫ ∞

−∞
pt2(t) dt

T
(M→0)
shed

≈ − α(1 − λ)

1 − ακ

(h2/h1 + 1)(h2/h1 − 1)2

8(h2/h1)2
ρu2

1

2
. (2.24)

This equation shows that the stagnation pressure loss due to vortex shedding is
proportional to the dynamic pressure in the incompressible limit.
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Although we have derived (2.24) based on the Oseen vortex model, this dependence
remains valid for any radially symmetric vortex, provided we define a coefficient

β =
8π

Γ 2

∫ ∞

−∞

∫ τ

∞

∫ ∞

−∞
vω dy dx dτ, (2.25)

which relates the vorticity distribution to that of the Oseen vortex. In fact, β is found
to be close to unity in the numerical simulations (see table 3).

Accordingly, the total stagnation pressure loss is now expressed as

(pt1 − pt2)
M→0
total ≈ ρu2

1

2

(h2/h1 − 1)2

(h2/h1)2

[

p∗
w − pw

p∗
w − p1

+
αβ(1 − λ)

1 − ακ

h2/h1 + 1

8

]

. (2.26)

The first term in (2.26) corresponds to the steady loss, and the second term to the
unsteady loss. As discussed later, (2.26) indicates that the contribution from vortex
shedding becomes comparable to the steady part as the induced velocity from the
image vortex reduces the convective velocity. Figure 7 shows a predicted pattern of
the stagnation pressure profile for a fully separated case. The troughs correspond to
the unsteady loss superposed on the steady part. The stagnation pressure profile drops
when the centre of the vortex is passing through the exit cross-section (approximately
11% drop under the conditions corresponding to case A defined in table 1). These
theoretical predictions are examined using numerical simulation in § 4.2.

Although (2.26) is developed for natural vortex shedding, the formula can be
applied to actively controlled cases by varying the parameters. For example, by
periodically forcing the boundary layer, we can reduce the circulation of each vortex.
This corresponds in the model to reducing α, which, in turn, lessens stagnation
pressure loss, as discussed in § 4.3.

2.2.3. Absorption of vorticity flux from the wall

In a free space, the vorticity distribution is diffused, but the net circulation is
conserved. Therefore, the dominant part of viscous effects should be caused by the
vorticity flux on the wall. According to the discussion in § 2.1, the accumulated
circulation per unit time is equal to the net vorticity flux into the control volume.
This now includes the vorticity flux through the wall, which can be expressed as (e.g.
Koumoutsakos, Leonard & Pépin 1994)

∫

wall

(vorticity flux) ds =

∫

wall

ν
∂ω

∂n
ds = −

∫

wall

1

ρ

∂p

∂s
ds, (2.27)

where the positive sign is taken to be production. This expression is valid even in
compressible flows when the dynamic viscosity µ ( = ρν) is constant everywhere. This
term produces additional circulation in favourable pressure gradients, while in adverse
ones it absorbs circulation or creates negative (counter-rotating) vorticity.

In incompressible flows, (2.27) simply yields (p1 − p2)wall/ρ. Assuming (p1)wall = p1

and taking a time average, the rate of absorption introduced in (2.2) can be expressed
as

λ≡ − p1 − (p2)wall

ρ(dΓ /dt)
=

(p2)wall − p1

1
2
ρu2

1

(h2/h1)
2

(h2/h1)2 − 1
. (2.28)

From the discussion in § 2.1.1 and Bernoulli’s equation, the rate of accumulated
circulation per unit time in the control volume is dΓ /dt = (u2

1 − u2
2)/2 = (p2 − p1)/ρ;

therefore, if this amount is perfectly absorbed from the wall (i.e. λ=1), no vortex
shedding occurs and the pressure on the wall coincides with the free-stream pressure,
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Figure 8. A typical computational grid on the top and the strength of the sponge term on
the bottom. Every tenth grid point is shown for case A, and the thicker lines denote the
sections where the stagnation pressure profiles were recorded. �xmin/h1 = 8.29 × 10−3, �xmax/
h1 = 59.45 × 10−3, �ymin/h1 = 5.57 × 10−3 and �ymax/h1 = 25.15 × 10−3.

i.e. pw = p∗
w in (2.17). However, when the flow is fully separated, vorticity is absorbed

mainly near the reattachment point and the projection of recovered static pressure in
the x-direction is reduced.

3. Numerical procedures

3.1. Direct numerical simulation

To simulate unsteady laminar diffuser flows, we performed direct numerical simulation
(DNS) solving the compressible Navier–Stokes equations in two dimensions. The
governing equations in curvilinear coordinates are cast in the strong conservation
form (Vinokur 1974). The fourth-order Runge–Kutta scheme was used for time
marching. For spatial derivatives, the sixth-order Padé scheme (Lele 1992) was used
for the interior points with lower-order closures (third and fourth order) at the inflow,
exit and wall boundaries.

A two-dimensional diffuser shape was generated by conformal mapping. The
function

z =
(h2/h1) + 1

2
ζ̄ +

1

c

(h2/h1) − 1

2
log(cosh(cζ̄ )) (3.1)

maps the coordinates onto the physical domain (denoted by z = x +iy) from an inter-
mediate computational domain (ζ̄ = ξ̄ +iη̄). Furthermore, in the intermediate domain,
grid points were clustered near the separation point in the ξ̄ -direction and near the
wall in the η̄-direction using hyperbolic tangent mappings in order to afford greater
resolution in these regions. Consequently, spatial differentiation was performed in an
equally spaced rectangular grid. A typical computational grid is shown in figure 8.
Computational, geometrical and other parameters for each run are given in table 1.
A test case with twice as many grid points as case A (901 × 201) shows that the
error associated with the grid resolution in stagnation pressure loss is of the order of
|(�pt )901 × 201 − (�pt )601 × 151|/(�pt )901 × 201 = 0.8%, where �pt denotes the stagnation
pressure loss averaged in time and over the cross-section. Since the variation in
stagnation pressure loss between different runs is at least an order of magnitude
larger in most cases (even when the forcing frequency is varied for the actuation
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Case M1 h2/h1 θmax, c Re δbl/h1 (Nx, Ny) (�t a2/h2)

A 0.6 2.0 (1.843) 18.43◦, 0.7576 4000 0.10 601, 151 1.0 × 10−3

B 0.2 2.0 (1.843) 18.43◦, 0.7576 5000 0.10 601, 151 1.0 × 10−3

C 0.4 2.0 (1.843) 18.43◦, 0.7576 4000 0.10 601, 151 1.0 × 10−3

D 0.8 2.0 (1.843) 18.43◦, 0.7576 6000 0.10 801, 201 0.8 × 10−3

E 0.6 1.4 (1.346) 10.78◦, 0.8440 8000 0.07 721, 181 1.0 × 10−3

F 0.6 1.6 (1.514) 14.03◦, 0.8110 6670 0.08 601, 151 1.0 × 10−3

G 0.6 2.6 (2.320) 22.31◦, 0.6992 2900 0.13 721, 181 0.727 × 10−3

I–O 0.6 2.0 (1.843) 18.43◦, 0.7576 4000 0.10 601, 151 1.0 × 10−3

Table 1. Flow conditions and diffuser geometries for the numerical simulation. The values
in parentheses in the h2/h1 column denote the actual area ratio between the cross-sections
at which stagnation pressure profiles were recorded (see figure 8). The Reynolds number is
defined as Re ≡ u1h1/ν1. δbl denotes the inlet momentum thickness. Nx and Ny denote the
numbers of grid points in the x- and y-directions, respectively, and �t is the time step.

study as discussed in § 4.3), the grid resolution is sufficiently high for quantitative
comparisons.

Initial velocity fields were calculated based on the potential flow solution, and
thermodynamic quantities were found assuming that the flow is homoentropic. The
initial velocity and temperature profiles in the boundary layer were specified by
solving the Blasiuus boundary-layer equation (cf. § XV of Schlichting 1960) ignoring
the curvature of the wall and compressibility. The Prandtl number was set to be
Pr = 0.7.

We chose the Reynolds number sufficiently high so that vortex shedding occurs
(at low Reynolds numbers, the flow becomes a two-dimensional steady jet). Once the
Reynolds number exceeds the critical value, the flow pattern becomes fully unsteady
and the time-averaged stagnation pressure loss is nearly invariant. For example, a
test case with a Reynolds number 1.5 times as high as case A (Re =6000) only
decreases the stagnation pressure loss by ((�pt )4000 − (�pt )6000)/(�pt )4000 =8.5%. This
is sufficiently small compared with the changes in stagnation pressure loss as the
Mach number and the area ratio are varied in this study (refer to § 4.2). It should be
noted that although the Reynolds number is defined based on h1 for consistency, we
cannot uniquely define it to describe the whole flow field. For example, the Reynolds
number associated with vortex shedding may be (h2 − h1) or δbl .

No-slip and iso-thermal boundary conditions were imposed on the wall (the upper
boundary of the domain), and its temperature was set to be the stagnation temperature
of the inflow free stream. A symmetry condition was assumed at y = 0. Non-reflecting
boundary conditions were imposed at both inflow and exit together with a ‘sponge’
buffer zone (Freund 1997), in which the flow field is forced to relax toward the initial
solution. The relaxation coefficient σ corresponding to the strength of the sponge is
plotted in figure 8. To implement accurately both non-reflecting and wall-boundary
conditions in a non-Cartesian coordinate system, we followed the approach proposed
by Visbal & Gaitonde (1999): A characteristic splitting of the governing equations was
performed in the direction normal to the boundary, which is similar to the approach
taken by Poinsot & Lele (1992) for Cartesian coordinates.

3.2. Periodic mass injection

To study the effects of periodic mass injection, we artificially forced the right-hand
side of continuity, momentum and energy equations near the separation point in the
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Case I J K L M N O

ωh1/u1 0.5 0.75 1.0 1.25 1.5 2.0 2.5

Table 2. Frequency of mass flow injection in the numerical simulation. The base flow condi-
tions are the same as case A; namely, M1 = 0.6, h2/h1 =2.0, and Re = 4000 (refer to table 1).

x-direction:

∂ρ

∂t
+

∂(ρuj )

∂xj

= F (x1, x2) ρus(t), (3.2)

∂(ρui)

∂t
+

∂(ρuiuj + pδij + τij )

∂xj

= F (x1, x2) ρu2
s (t)δi1, (3.3)

∂
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2
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∂t
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2
u2

k
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+ p
}

uj + τjkuk + qj

]

∂xj

= F (x1, x2) ρ
(

e + 1
2
u2

s (t)
)

us(t), (3.4)

where

F (x, y) =
A0

2πσxσy

exp

[

− (x − xs)
2

2σ 2
x

− (y − ys)
2

2σ 2
y

]

, (3.5)

us(t) =
1

2

[

1 + tanh

(

t − t0

σt

)]

× 0.9a1

1 + cos(ωt)

2
, (3.6)

and (xs, ys) denotes the centre of injection and a1 is the speed of sound at the inlet.
We chose a non-negative mass flow (i.e. ∼ (1 + cosωt), cf. Seifert & Pack 1999) in
all cases. The maximum injection velocity was set to be 0.9a1, which is a typical
experimental condition such that choking is avoided at the injection slot. The forcing
terms were distributed in space using a compact but smooth function as shown in (3.5).
The injection was gradually activated to minimize spurious transient disturbances.
In the computations, xs/h1 = −1.60, ys/h1 = 1.04, σx/h1 = 0.08, σy/h1 =0.01,
A0 =6.0 × 10−3, σt a1/h1 = 0.24, and t0 a1/h1 = 0.6 were selected. Consequently, the

momentum coefficient can be calculated as Cµ ≡ (ρu2
shs)/(ρu2

1h1) ≈ 0.52%, hs being
the corresponding slot width. Seven different forcing frequencies, ω, were examined
(see table 2). The base flow conditions for these runs were the same as case A
(unforced).

Although this forcing method can simulate neither the detailed flow near the injector
slot nor the internal mechanisms of the actuator, it can capture the key characteristics
of periodic mass injection in a computationally efficient fashion. Aside from the
frequency dependence, we believe that the most relevant parameters of the actuator
are the rate of mass injection (which is characterized by the momentum coefficient,
Cµ, as used in most previous studies) and the injection velocity, us; accordingly,
in simulation we must match the slot width, hs , which is typically smaller than
hs/h1 ∼ 10−2 in experiments. For example, compared to simply forcing the flow at the
boundary by specifying a velocity profile, internal excitation allows more grid points
to be clustered in the direction transverse to the jet (see figure 9).

In the following, we evaluate the effects of forcing on the flow to validate this
method. Figure 10 shows the dependence of stagnation pressure on the momentum
coefficient and the location of the forcing point. The performance is monotonically
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Figure 9. Schematic near the forcing region of the simulation. The shaded ellipse denotes
the forcing points distributed in the present method, and the points transverse to the jet are
denoted by ◦. The points which can be used for the forcing on the wall are denoted by �.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.92

0.94

0.96

0.98

1.00

(×10–2)

Base line case

Unforced case

(a) Base line case

0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14
0.92

0.94

0.96

0.98

1.00

WallVelocity 

profile

Unforced case

(b)

p
t2

/p
t1

Cµ ys /h1

Figure 10. Averaged exit stagnation pressure as a function of (a) momentum coefficient and
(b) forcing position at ωh1/u1 = 1.25. Solid symbols, �, denote that frequency locking occurs.
The velocity profile at the forcing location (arbitrarily scaled) is overlaid in (b).

enhanced as Cµ is increased (via A0 in (3.5)) with a magnitude and trend with Cµ

similar to previous diffuser experiments (Amitay et al. 2002; Narayanan & Banaszuk
2003). Furthermore, as the forcing position approaches the wall, the averaged
stagnation pressure reaches a plateau (the forcing position cannot approach too
closely to the wall because of its finite width). Thus, we demonstrate that this forcing
method qualitatively captures the key characteristics of a synthetic-type jet embedded
in the upper wall without computing detailed flow configuration.

4. Results and discussion

4.1. Vortex-shedding frequency for unforced cases

Figure 11 displays vorticity contours from the simulation at several instants in time
for case A. Circulation is accumulated downstream of the separation point, in which a
large-scale vortex is formed. As this vortex is pinched off and convected downstream,
the next vortex is generated. Between these vortices, a counter-rotating (clockwise)
vortex is created near the wall. This vortex is convected together with the primary
(counter-clockwise) vortex. The flow over the curved part of the wall is almost entirely
separated during this process.
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Figure 11. Vorticity evolution for case A (unforced). Vorticity contours are shown at:
tu1/h1 = 57.6, 60.0, 62.4, 64.8, 67.2, 69.6, 72.0 and 74.4 from the top. Counterclockwise vorticity
contours are drawn by solid lines, and clockwise ones by dotted lines. Contour lines:
ωmin = −33.3, ωmax = 33.3, and the interval of �ω = 0.833.
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Figure 12. Time histories of stagnation pressure in case A. Stagnation pressure was averaged
over the cross-section: − − −, inlet stagnation pressure (x/h1 = −2); ——, exit stagnation
pressure (x/h1 = 3). pt0 ≡ (1 + (γ − 1)M2

1/2)γ /(γ −1)p1.

Figure 12 depicts the time histories of stagnation pressure averaged over the inlet
and the exit cross-sections. Although the flow pattern is only quasi-periodic, our model
(figure 7) captures features of the exit stagnation pressure profile. Referring to figure
11, we find that one period of vortex shedding roughly corresponds to an interval
between the troughs in the exit stagnation pressure: when the centre of the vortex
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Figure 13. Normalized time scale of vortex shedding: (a) Mach number dependence; (b) area
ratio dependence. Vortex-shedding time periods from numerical simulations are normalized by
the shedding time scale given by (2.8) with α =1 and λ= 0. � denotes the peak time period,
and the arrows denote the minimum and maximum time periods measured from intervals
between troughs. The results of cases B, C, A and D in (a), and cases E, F, A and G in (b),
are plotted from left to right.

passes through the exit cross-section, the stagnation pressure drops in a way that is
consistent with the analysis of § 2.2.

To validate the inviscid model for the vortex-shedding time period, a total of seven
cases was simulated at various Mach numbers and area ratios (cases A – G, refer to
table 1). The time history of stagnation pressure at the exit was Fourier transformed
in each case (a sample period is indicated by arrows in figure 12), and the local
peak corresponding to the shedding time period was determined in the frequency
domain. Figure 13 plots the ratios of the shedding time period from simulation to
the predicted time scale given by (2.8) at different Mach numbers and area ratios.
Since the flow is only quasi-periodic as shown in figure 12, the shedding frequency
cannot be precisely defined; in fact, it varies over a range as denoted in figure 13.
Nonetheless, the peak shedding time periods are within a factor of two of those given
by the model. It should be emphasized that without any normalization, the shedding
periods differ by nearly a factor of four in the ranges of M1 and h2/h1 shown in
(a) and (b), respectively. Therefore, it is fair to conclude that the shedding time-period
scales with the inflow velocity and the function of the area ratio given by the model.
We can also deduce that the shedding is less likely to be related to other instabilities,
such as local shear layer instability at the separation point or acoustic resonance,
which would scale differently with M1 and h2/h1.

Aside from the cycle-to-cycle variations, the consistent underestimate of the time
scale by the model is due in part to inaccurate estimates of the vortex density and
size, as well as the induced velocity, αu1, to pinch off vortices. For example, ρ̄ and
α are underestimated by factors of about 3% and 13% in case A, respectively.
Moreover, the induced velocity of the counter-rotating vortex near the wall probably
delays pinching off the primary vortex. As discussed later, although the absorption of
circulation from the wall, λ, is relatively small (∼11%) in the unforced cases, it can
also result in the underestimate of the time scale.

4.2. Stagnation pressure loss for unforced cases

Next, the averaged stagnation pressure loss obtained from simulation is compared
with the incompressible, inviscid (λ= 0) and fully separated (pw = p1) model described
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Figure 14. Comparison of stagnation pressure loss: (a) Mach number dependence; (b) area
ratio dependence. Time-averaged stagnation pressure loss calculated from simulation is
compared with the fully separated model in the incompressible limit: ——, total stagnation
pressure loss given by (2.26) (α =1, β = 1, λ= 0, pw = p1 and κ = 0.33 are assumed); − − −,
steady part given by (2.17); �, computational results (cases B, C, A and D in (a), and cases E,
F, A and G in (b), from left to right). The actual averaged inflow Mach numbers are plotted
from the simulations in (a), and the actual area ratios between the inlet and the exit stations
specified in table 1 are used for (b).

in § 2.2. The Mach number and area ratio dependence is shown in figure 14. Here,
we assume the vortex height to be h3 = ((h1 + h2)/2 + h1)/2 to evaluate κ . The
model captures the trends with the Mach number and the area ratio although the
stagnation pressure loss at low Mach numbers is somewhat overestimated (it should
be remembered, however, the absolute values of pt1 − pt2 between M1 =0.2 and 0.8
are more than one order of magnitude different). Note that the stagnation pressure
loss associated with viscous dissipation is found to be of the order of 10−3 or less in
all cases.

Although we regard the agreement between the model and DNS as satisfactory for
our validation purposes, we can observe some discrepancies, which we now discuss.
First, the depth of the stagnation pressure troughs in case A (4 to 10% in figure 12)
is somewhat smaller than that of the Oseen vortex model (≈11% in figure 7). On the
other hand, the convective velocity of the vortices in the simulation is nearly half of
u2 (detailed values of the model coefficients will be given in table 3 and discussed
later), while that estimated based on the model is 0.67u2 (using (2.23) with h2/h1 = 2
and h3/h1 = 5/4). As shown in figure 11, the convective velocity derived from a single-
vortex model is probably reduced by the counter-rotating vortex. Hence, the troughs
in the simulation are wider than those predicted by the model, and the unsteady part
of the stagnation pressure loss exceeds the prediction. We should also note that the
static pressure recovery on the wall provides a positive factor (i.e. pw > p1) in the
exit stagnation pressure, which is ignored in the fully separated model in figures 4
and 5. This factor is partially cancelled by the underestimate of the unsteady part
mentioned above.

Secondly, from figures 13 and 14 we can postulate that the stagnation pressure
loss increases as the flow becomes less periodic. In fact, for the least periodic vortex
shedding (when the range of the arrows in figure 13 is the largest), the stagnation
pressure loss tends to exceed the prediction by the model. In this case, we observed
that vortices tend to be pinched off farther downstream and the flow field in the
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Figure 15. Instantaneous vorticity flux from the wall. Vorticity flux from the upper wall is
calculated based on (2.27) at tu1/h1 = 67.2 for case A (see figure 11). Production is taken to
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Figure 16. Rate of the vorticity flux from the wall. Production is taken to be positive, and
absorption to be negative.

separated region includes many small vortices; consequently, the variation in size of
pinched-off vortices becomes larger.

Finally, to assess viscous effects at the wall, we plot the computed vorticity flux
on the upper wall for case A in figure 15 (at a time corresponding to the top-right
in figure 11). It shows that vorticity is absorbed mainly near the leading edge of the
vortex. Figure 16 plots the ratio of the net vorticity generation on the wall to the
rate of vortex accumulation given by ((ρ1/ρ̄)(dΓ /dt)) in (2.5). From figure 11, we can
deduce that some vorticity is absorbed on the wall as the vortex is formed downstream
of the separation point. When the vortex convects downstream, the pressure on the
wall (p2)wall decreases; hence, vorticity is produced at the wall as derived from (2.28).
The net rate of absorption in the time interval denoted in figure 16 is about 11%;
thus, the net viscous effect is relatively small in the unforced case.

4.3. Periodic mass injection

Figure 17 shows the evolution of the vorticity contours for a forced case (case L,
which corresponds to the optimal forcing frequency as shown later). Compared with
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Figure 17. Vorticity evolution at the optimal forcing frequency (ωh1/u1 = 1.25, case L).
Notation and the time series are the same as figure 11.
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Figure 18. Time-averaged pressure contour: (a) the unforced case (case A); (b) the forced
case (case L). Contour level: p̄min/p1 = 1.00, p̄max/p1 =1.16 with the interval of �p̄/p1 = 0.01.
Dividing streamlines are overlaid.

the unforced case (figure 11), the size of the vortices is smaller and their convective
velocity is higher. The size of the counter-rotating vortices becomes correspondingly
smaller. Near the separation point, the next vortex is continuously generated and
pinched off before it is developed to the size of the unforced case. Thus, the periodic
mass injection tends to reduce α and κ in (2.26) and suppresses the unsteady part of
the stagnation pressure loss.

Figure 18 compares the time-averaged static pressure field and the dividing
streamline for the unforced (case A) and forced (case L) cases. They demonstrate
that the reattachment point shifts upstream in the forced case although the apparent
separation point does not move. This helps static pressure recovery on the wall and
reduces the steady part of the stagnation pressure loss.

Figure 19 depicts the time histories of stagnation pressure at the inlet and exit for
case L. Compared with the unforced case (figure 12), the profile is clearly periodic at
the forcing frequency (i.e. frequency locking occurs). Moreover, the forced case shows
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Case A I J K L M N O

ωh1/u1 Unforced 0.5 0.75 1.0 1.25 1.5 2.0 2.5
pt2/pt1 0.933 0.955 0.970 0.973 0.973 0.968 0.960 0.955
pw/p1 1.049 1.055 1.065 1.070 1.074 1.075 1.071 1.065

λ 0.113 0.402 0.588 0.603 0.604 0.536 0.439 0.388
α 1.154 0.920 0.690 0.547 0.452 0.378 0.519 0.664
β 0.837 0.886 1.045 0.986 0.936 1.025 0.920 1.000

1 − ακ 0.531 0.578 0.678 0.771 0.782 0.746 0.663 0.557
h3/h1 1.325 1.180 1.097 1.163 1.237 1.271 1.301 1.252

Table 3. Frequency dependence of each parameter measured from simulation. pw and λ were
directly computed on the upper wall (using (2.27) for λ). α, β , and (1 − ακ) were calculated
from three samples of vortices passing through the exit cross-section (x1/h1 = 3) for each case.
A single vortex was defined as a simply supported region of the local vorticity up to 2% of
the peak vorticity.
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pt
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Figure 19. Time histories of stagnation pressure at the optimal forcing frequency (ωh1/
u1 =1.25, case L). The arrows indicate the period in which the stagnation pressure was
evaluated in figure 20. Notation is the same as figure 12.

sharper stagnation pressure drops and a higher offset; namely, the convective velocity
is increased and static pressure on the wall is partially restored.

Next, we study the frequency dependence of periodic mass injection. Figure 20 com-
pares the averaged stagnation pressure between the unforced and forced cases over a
range of frequencies. Periodic mass injection provides better stagnation pressure at the
exit to an appreciable degree (2 ∼ 4%) in all cases. Note that the direct increase of stag-
nation pressure owing to mass injection is insignificant (ρu2

shs/(2pt0h1) ≈ 2 × 10−3).
Frequency locking occurs over a range from the natural shedding frequency to roughly
twice that frequency and results in substantial improvement in stagnation pressure.
At higher frequencies, although vortices continue to be pinched off at the forcing
frequency, subsquent vortex pairing apparently causes the stagnation pressure loss to
increase (see figure 21 and also Narayanan & Banaszuk 2003).

The optimal frequency is nearly twice the natural shedding frequency in this flow
configuration. In fact, the order of this frequency agrees with the non-dimensional
frequency of F + ≡ f L/u∞ ∼ 1 (L is a characteristic length and u∞ the free-stream
velocity, which we take here as (h2 − h1) and u1, respectively). This frequency
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Figure 21. A snapshot of vortex pairing. Vorticity contours are drawn (case O). Notation is
the same as figure 11.

scale is used in various applications (e.g. Seifert et al. 1996). Even when frequency
locking occurs, the highest frequency injection does not necessarily lead to the best
performance.

Table 3 shows parameters associated with the model as computed from the
simulation results, and figure 22 plots four of these parameters. The correlation
between pt2/pt1 and λ demonstrates that the absorption of circulation helps improve
stagnation pressure loss. Even if no frequency locking occurs (case I), the rate of
absorption in the forced case is substantially higher than that in the unforced case;
similarly, the exit stagnation pressure is also higher in the forced cases. Recall that
the mass injection in this study always has a non-negative momentum flux. In the
optimal case (case L), the rate of absorption is as much as 60%. As seen in figures 15,
a small vortex generated near the separation point locally creates an adverse pressure
gradient and helps absorb vorticity from the wall, as deduced from (2.27).

Attention should be paid to the rate of absorption, λ, and the convective velocity,
(1 − ακ), which are lower in case M than case L. When a vortex is pinched off into
a smaller size by forcing, its centre stays closer to the wall. In fact, h3/h1 measured
in the simulation follows this trend. Hence, the convective velocity is reduced from
(2.23), and the pressure deficit on the wall at the exit is enhanced, i.e. the rate of
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Figure 22. Variation of the parameters computed from simulation. The thicker circles
denote the optimal value for each quantity.

absorption is decreased from (2.28). This effect seems to provide an upper limit on the
reduction of stagnation pressure loss with decreasing α. In the unforced case, vortices
tend to be pinched off further downstream, and, in turn, the vortex centre is again
close to the wall although the size of the vortex is rather large.

If we compare α for different cases in table 3, we find that periodic forcing is
effective when the circulation of each vortex is between about a third to a half of the
circulation in the unforced case. This agrees with the finding that periodic forcing is
most effective when the vortex size is reduced to as little as a third of the separated
region in the natural case (Seifert et al. 1996; Seifert & Pack 1999). However, counter
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Figure 23. Estimated stagnation pressure loss from different components. Parameters in
table 3 are substituted into (2.26). The actual total stagnation pressure directly computed from
simulation is denoted by ×.

to the interpretation given in previous studies (e.g. Asai & Kaneko 2000), the forcing
mechanism is not directly related to instabilities of the shear layer near the separation
point. As shown in figure 20, the most unstable frequency of the shear layer estimated
from linear stability analysis with inviscid and parallel mean flow assumptions (the
mean velocity profile was taken from x/h1 = −0.5 in case A) is found to be several
times higher than the optimal frequency. In experiments, the most unstable frequency
should be even higher as the boundary layer becomes thinner (for example, the
momentum thickness in an experiment by Narayanan & Banaszuk 2003 is one order
of magnitude thinner). The theoretical discussion in § 2 also implies that the local
shear-layer instability does not explicitly govern the forcing mechanism.

Finally, figure 23 depicts the estimated stagnation pressure loss from each compo-
nent in the model. It indicates that the unsteady part of the stagnation pressure loss
is most substantially reduced near the optimal frequency. As the forcing frequency is
further increased (at ωh1/u1 = 2.0 in case N), α is nearly doubled because of vortex
pairing. Likewise, at ωh1/u1 = 2.5 in case O, α is tripled or more because of multiple
vortex pairings. Static pressure pw/p1 is restored for smaller-circulation vortices, but
this contribution is weaker than the unsteady part. The underestimates of the net
stagnation pressure loss are presumably caused by inaccurate measurement of α

and (1 − ακ), particularly when vortex parings occur (cases N and O) or the flow
pattern becomes fully unsteady (cases A and I). In addition, the effects of counter-
rotating vortices, which are neglected in this chart, result in stagnation pressure losses
(stagnation pressure drops owing a vortex regardless of its sign as seen from (2.22)).
As mentioned in § 2.3, a negative vorticity flux from the wall generates these vortices
in an adverse pressure gradient. Therefore, in addition to increasing the stagnation
pressure loss, the counter-rotating vortices prevent absorption of the primary vortex
at the wall.
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5. Conclusions

We have developed a model that attempts to characterize two aspects of two-
dimensional vortex shedding in a diffuser. First, the model provides a scaling for
the vortex-shedding frequency by accounting for the net circulation accumulated in
the separated region. Secondly, in the incompressible limit, the model estimates the
stagnation pressure loss, which consists of steady and unsteady parts. Numerical
simulations confirm the dependence of these two quantities on the Mach number
and the area ratio. The peak shedding frequencies in DNS range from about 50%
to 100% of the predicted frequencies. Furthermore, the stagnation pressure loss is
predicted to within 30% in most cases, although the unsteady part of the loss tends
to be underestimated.

To suppress the stagnation pressure loss, periodic mass injection near the separation
point is introduced. Stagnation pressure loss is nearly halved relative to the unforced
case when frequency locking is induced. The range of frequency locking is approxi-
mately from the natural vortex-shedding frequency to about twice that frequency.
As frequency is increased beyond the optimal value, a more subtle degradation in
performance occurs owing to the decreases of absorption of circulation at the wall and
the convective velocity of the vortices. As the frequency is further increased, vortex
pairing occurs and stagnation pressure loss again increases significantly. These results
are consistent with the experiments using periodic mass injection (e.g. synthetic jet).

We apply the incompressible model to the study on stagnation pressure loss in the
forced cases; in fact, the model represents flow patterns at a fixed frequency even
better. The analyses imply that the key to reduce the stagnation pressure loss is to:
(i) absorb more circulation from the wall (increase λ); (ii) reduce circulation per vortex
(decrease α); (iii) increase the convective velocity of vortices (decrease κ); (iv) increase
the static pressure recovery on the wall (increase pw). In fact, the computational
results demonstrate that periodic injection pinches off the separated boundary layer
into small vortices immediately downstream of the separation point. Since the centres
of the pinched-off vortices become closer to the centreline, their convective velocities
are faster than those in the natural shedding case. These vortices locally create an
adverse pressure gradient near the separation point and enhance the absorption of
circulation from the wall.

Under the present flow conditions, the optimal frequency is approximately twice
the natural shedding frequency; however, this value depends on the flow geometry, in
particular, via conditions (i) and (iii) above. Hence, it is difficult to find the optimal
conditions for these parameters. On the other hand, we expect that conditions (ii) and
(iv) can be more easily satisfied if we reduce the size of vortices by increasing the
forcing frequency. Furthermore, although we have only simulated laminar diffuser
flows, the boundary layer becomes turbulent under practical conditions and this
possibly changes the dependence of some parameters. The model developed in this
study, however, assumes it to be independent of the Reynolds number and the
boundary-layer thickness, except that the rate of absorption can change. This is
consistent with the experimental results that the optimal frequency varies weakly with
Reynolds numbers (Seifert & Pack 1999).

Note that the four parameters discussed above are not independent; in fact, three
parameters, λ, α and pw , tend to simultaneously shift so that stagnation pressure
loss decreases by increasing the forcing frequency until frequency locking breaks.
Although the current model can give a crude estimate of α (and possibly κ), it
cannot predict λ and pw , especially for forced cases, as a function of the forcing
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frequency. Moreover, figure 10(a) implies that these two parameters are functions of
the momentum coefficient as well. Therefore, it is necessary to obtain the relation
between the forcing characteristics (i.e. momentum coefficient and frequency) and the
parameters (particularly λ and pw) to close the model. To actually estimate these
parameters, we may need to analyse vortex dynamics in each specific flow geometry.

It should be emphasized that this study focuses on cases in which the separation
point is not significantly altered by the forcing. For some applications, the adverse
pressure gradient is relatively gentle so that the mass injection can delay the separation
point and thereby provide better static pressure recovery. In fact, classical active flow
control techniques, such as steady tangential blowing or boundary-layer suction, try
to attach the boundary layer. In those studies, the slope angle of the diffuser θ is
considered to be an important parameter. However, the model developed in this
study implies that the area ratio governs the large-scale flow unsteadiness for rapidly
expanding diffusers. Moreover, the stagnation pressure loss is appreciably reduced
even though the boundary layer remains separated. As mentioned above, by pinching
off vortices more frequently, we can suppress a substantial part of the unsteady
stagnation pressure loss.

We recognize that the model and the simulation developed here lack several
features of real diffuser flows. The most obvious limitation is the two-dimensionality
although the results, particularly the forcing guidelines, should be applicable to three-
dimensional diffusers with spanwise coherent vortex shedding (see the discussion of
Kaltenbach et al. 1999). In general, we might expect better performance in three-
dimensional flows than that in two dimensions when the large-scale two-dimensional
flow structures are disrupted in the spanwise direction (e.g. Mittal & Balachandar
1995). However, separation control by periodic forcing still substantially enhances the
performance in three dimensions, as many experiments have demonstrated (Amitay
et al. 2002; Narayanan & Banaszuk 2003). We should also stress that our analysis
focuses on the transitory stall regime by assuming symmetry. As the area ratio (or
the diffuser slope) increases, the flow pattern shifts to ‘two-dimensional stall’ in a real
planar diffuser (Reneau et al. 1967). This is a regime in which the boundary layer
separates only on one side and the flow becomes nearly steady again without control.
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