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It is shown that a natural extension of the hydrodynamical formalism of quantum mechanics for a
Schrédinger particle to include vortical flows leads to the hydrodynamical formalism of quantum
mechanics for a spinning particle. This latter formalism is then analysed in regard to its characteristic
features, especially the subsidiary condition connecting the vorticity of flow with the inhomogeneity of spin
field and the existence of spin stress. Also the formalism is brought to completion by establishing the
global condition that quantizes circulation around a singular vortex line. The geometro-hydrodynamical
formalism which is equivalent to the above hydrodynamical formalism but introduces a triad structure
underlying the classical spin is reconstructed on its own footing. The geometrical property of the triad
implies the invariance of theory with respect to the rotation of each triad around its symmetry axis by an
arbitrary angle, and this necessitates the introduction of the electromagnetic potential, providing the
geometrical interpretation of local gauge invariance. Applications of theory to various special cases and
typical examples are deferred to Part II.

§1. Introduction and summary
1. 1.

Quantum mechanics of a non-relativistic particle without spin is represented usually
by the Schriodinger equation

ind=H¢, H=(p—ed)?/ Qu)+V, (1-1)

together with the prescriptions of statistical interpretation for the wave function ¢. In
(1:1) A and Ao=V/e are vector and scalar potentials which give the external
electromagnetic field by £=— 7 Ao— A/c and H =rot A. If there is non-electromagnetic
scalar potential V. also, V is to be understood as V =eA.+ V.. That this theory is
represented equivalently as a hydrodynamics was suggested early by Madelung for the
case without vector potential.” Later this was extended and completed as a self-
contained formalism by the author as follows.?*®

A state of flow is described by a density function P (or modulus R with R*=P) and
a velocity function v. Their time evolutions are governed by**

P+div(Pv)=0, (1-2)

Dv; 1 1 _oVh }_L OTin .
Dt _#{6<E+ C[UXH]>1‘ 0x: 0 0xx’ (1-3)

where D/Dt=3/dt+ v- ¥ is the substantial derivative. In (1-3) the first term on the right
side is the external force per unit mass, o =uxP is the mass density, and

* Paper prepared for the last lecture delivered at Nagoya University, March 16, 1983.
**) The dot denotes 6/6¢, and we usually understand summation convention for repeated indices.
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2 T. Takabayas:

_h2<1 oP oP

o= B e e 0wAP): a4

The above equations are the hydrodynamical equations for a compressible non-viscous
charged fluid under the usual external force (Lorentz force) and the internal stress 7:. and
thus the general concepts and theorems of the usual hydrodynamics are applicable to this
theory even though the pressure term pd:. in the usual hydrodynamics is supplanted here
by the peculiar 7 (“quantum stress”). Note that Eq.(1-3) is rewritten as

Dv _ (LZ 4 R) ( - e _ )

Dt—K+V 5% R ) K—eE+C[v><H] rw (1-5)

Besides the equations of motion our hydrodynamics is characterized by the presence

of subsidiary conditions which restrict vorticity and circulation; namely

rot v=—(e/uc)H , (1-6)

which holds except at nodal points (where P vanishes), and
F:ﬂf;v-der%(D:nh, (n=integer) (1-7)

where C is a closed contour and @ is the magnetic flux going through C. These
conditions are of course compatible with the equations of motion (see § 2). 1t is interest-
ing to note that Eq. (1-6) has analogy to London’s condition in his theory of supercon-
ductivity and Eq.(1-7) to the condition of fluxoid quantization for a superconducting ring.

All the above equations are gauge-independent, but the equivalent gauge-dependent
form which employs A, and the ‘canonical’ momentum

I =pv+(efc)A ’

is sometimes more convenient. Thus, corresponding to (1-5), (1-6) and (1:7) we have

DIl _e 0Ax_ 0 ([ _h 4R )

Dt Cvk ox: &h(v 20 R >’ (1-8)
rot IT=0, (1-9)
P:jill-ds:nh. | (1-10)

Owing to (1-9) I is derivable from a potential S as II=V S, where S is in general a
multivalued function because of (1-10). Then (1-8) can be integrated into the form

vy 1 e 4Y _h 4R _ )
S+E(VS—CA>+V 50 R =0 (1-11)

with an adjustment of arbitrary additive term of S. (This equation corresponds to
Bernouilli’s theorem.) Also the condition (1-10) is rewritten as

F:fcdsznh. (1-12)

The basic guantities in this formalism are related to the wave function ¢ in the
Schrédinger theory through
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Vortex, Spin and Triad for Quantum Mechanics 3

4
¢=Re™'", (1-13)
or in other words
P=¢*9, H=FA¢"7¢—(7§")9}/4"¢. (1-14)

Note that Eq. (1-11) can be obtained from the Schrédinger equation (1+1), by isolating the
continuity equation (1-2), as

{S+H(x, 7S)R—(h?*/21)4R=0, (1-15)

and is linearly homogeneous in K.

This hydrodynamical formalism has been restated later” and gradually been em-
ployed.®® The formalism is equivalent to the usual quantum mechanics but is represent-
ed in terms of classical quantities, which, however, should not be taken as literally real
and observable lest it would contradict the uncertainty principle, but this fact does not
prevent us from using it for the analysis of various problems with due precaution.” The
formalism brings to fore by its own characteristics associatéd with hydrodynamical
picture those aspects and relations which may be difficult to notice in the conventional
formalism, e.g., the effects of quantum stress, line vortex with quantized circulation, the
relation and analogy between vorticity and magnetic field, etc.

1.2.

By extending the theory stated in § 1.1 we can obtain hydrodynamical theory of a
classical spinning fluid, which just represents quantum mechanics of a non-relativistic
particle with + spin. This extension of the original hydrodynamics can be made by
various methods but they lead to the same theory, which is equivalent to the conventional
Schridinger-Pauli wave mechanics. We have the following three methods.

(A) To generalize the original hydrodynamics to include vortical flows.

(B) To generalize the original hydrodynamics by endowing the fluid with distribution of
intrinsic angular momentum.

(C) Geometro-hydrodynamical viewpoint in which each fluid element is regarded as a
‘triad’ having degrees of freedom of rotation.

The first method (A ) may be the most natural approach. Indeed this is considered in
itself as one of the most significant insights®® which the original hydrodynamical formula-
tion has suggested, and it shows most clearly that the hydrodynamical formalism gives the
intrinsic relation between vortex and spin. This method consists of simply dropping the
subsidiary condition (1-9). Thus the IT-field is now expressed as

H=7S+é&ry (1-16)
with the introduction of Clebsch potentials £ and n. We denote the II-field vorticity as
w=rot Il =prot v+{e/c)H , (1-17)
which is now given by

w=(V XVl (1-18)

* Hydrodynamical formalism and its applications to various problems in atomic, molecular and nuclear
physics are reviewed recently in Ref.7), which contains a lot of literature.
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4 T. Takabayasi

Next we assume that just as the gradient of the density P gives rise to internal stress
(1-4) the gradients of & and 7 also contribute to internal stress to be represented by its
energy density

Ws=—2—PJ{(VE)2/p+p(Vv)2}, (1-19)

where p is a certain weight function depending on & alone. This modifies the Euler
equation (1-3) by an additive term. We give details of this approach in § 3 but remark
here the following. The introduction of the above W, implies to fix the gauge of the
Clebsch potentials, € and 7, within a certain small subgroup, and as the result these
variables acquire the status of intrinsic degrees of freedom themselves, and in fact imply
the spin (intrinsic angular momentum of constant magnitude). It is then convenient to
substitute (&, 7) by the spin vector S, or the equivalent ‘polarization vector’ X, with

S=(n/2)x,  2?=1, (1-20)

and to reformulate the above theory in terms of them. Explicitly the relations above
mentioned are

E=—08;,, W:tan_1(52/51). (1-21)
’ This reformulation leads us just to the second method (B).

1. 3.

Now we shall summarize the method (B).* A state is described by the previous
variables, P (or R) and II (or v), and the additional variable S which is again a classical
quantity. The vorticity equation (1-18) is here reexpressed, through (1. 21), as

w=rot I=(n/2)T (1-22)
with
TiZ%eijkemnEzajZmaan . (1’23 )**)

Since ¥ is now regarded as proper internal degrees of freedom, the relation (1-22) appears
here as subsidiary condition which relates the vorticity of flow with the inhomogeneity of
the spin field, and is regarded as the counterpart of (1-6) in the spinless case. The vector
T, which plays a central role in this hydrodynamics, has various conspicuous properties,
besides div T'=0. We shall call it ‘spin-vorticity vector’.

The Euler equation (1-3) is now modified to

LU _€e. _ 1 9z .
ﬂDDt =Kt SudiHi—p % (1-24)
. (tot) 1 1 3(1 Sl) a(l Sl) hz ) p} .
rex ﬂ{P or;: OX & 4 Oixd ’ (1-25)

The total internal stress (1-25) is viewed as consisting of z;x of (1-4) and the additional

*) This was given in Ref. 8). Later it was restated by Janossy.” See also Refs. 10) and 11).
**) 8;-5 8/81:]
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Vortex, Spin and Triad for Quantum Mechanics 5

stress due to the spin field such that
Tz'k(mt): m+ﬂ‘1PaiSz8kSl . (1'26)
Besides, there is the equation of motion for S:

DS_ e

1
Dt = e [S><H]+715[S>< 0x(P3:S)). (1-27)

Again the subsidiary condition (1-22) is compatible with the equations of motion, (1.24)
and (1-27). (See §4.) ‘

The above hydrodynamical theory is equivalent to the usual wave mechanics for a
spinning particle. [Equations of motion (1-24) and (1-27) correspond to the case when
the quantum Hamiltonian is

1, 2 _eh
H= 2#(p eAY+V _ZﬂcdH’
where the spin-orbit coupling term is neglected for simplicity.] The correspondence
between both formulations is given by the former relations (1-14) (where, e.g., P=¢*¢ is

to be understood now as P=2¢=12¢c"¢a), and
2i=(¢*0:d)/P. (1-28)

Naturally the present hydrodynamics is more complicated and richer than the original
one stated in § 1. 1; it again exhibits various characteristic aspects which may be difficult
to notice in the usual formalism, and gives insights which are helpful to the actual
treatment of the problems. Some such examples are given in Part I

1.4.

In the third method® (C) we introduce internal configurational variables, the triad,
underlying the classical spin S, to reexpress the theory in terms of rotations of the triads.
Thus each fluid element is now represented by {a'(x, ¢)} satisfying

arar®="81rs. (r,s=1223) (1-29)

Characteristic dynamical property of this triad is that its motion is such that its
angular momentum of rotation, i.e., the spin S, is fixed to the body and has the constant
magnitude #/2. By taking this direction as the triad third axis, this is expressed as

Y=a*=[a'xa?]. (1-30)

This distinguishes the triad from a conventional symmetric top, though our triad has also
the symmetry around the third axis and (1-30) is consistent with this symmetry.
With the use of a' and a?, Eq.(1-23) is rewritten as

T,':é?ijkajazlakﬂzz. (1'31)

Then it is verified that the variable II satisfying (1-22) is realized as

H:_%dszdkl. (132)

*) This was formerly given in Ref. 12).
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6 T. Takabayast

Thus in this method a' and a® work as basic variables while both X and I7 are derived
therefrom by (1:30) and (1-32) in satisfying the subsidiary condition (1-22) automatically,
and in this way the triad is naturally incorporated into the hydrodynamical picture,
bringing about further novel insights to the theory.

The triad contains three independent variables represented by Euler angles (¢,8,x),
where @ and ¢ denote the polar angles of X

Yi=sinfcos ¢, Z.—sinfsin¢, Xi=cosb, (1-33)

while y describes the rotational orientation of the orthogonal a' and a® axes on the plane
normal to Y. In fact, the triad is regarded as the covariant method to represent x
together with 2. In terms of the Euler variables, (1-31) and (1-32) are expressed as

T =sin8[Vox v ¢], (1-34)
H=—(n/2)(Vx+tcos OV ), (1-35)

which show that —(#/2)cos §=—(#/2)%s and ¢=tan '(X:/X:) correspond to Clebsch
variables (cf. Egs.(1-18)and(1-16)) and in this way the present method is naturally unified
with the first method(A ) also. The variables (¢#,8,x) have the dual meanings, viz. Euler
angles for the triad and the velocity potentials describing irrotational and rotational
movements of the fluid.

An important feature of the geometro-hydrodynamical formalism is that it necessarily
introduces the invariance with respect to rotations of all triads around their respective
symmetry axes (directions of which vary from triad to triad) by a common angle A:

a‘] [cosxl sinA].[aI]
[az —sinA cos Ad L2t (1-36)
ie.,

x> x+A, 6 and ¢ =invariant. (1-37)

This is evident because 2" and II are invariant there.
The correspondence between this formalism and the conventional one is mediated by
the Nullvector
Ek:(ZO‘k(/’, where 42;5(9&2, _¢1), (1'38)
such that
Ek/P:“((lkl+idkz). (1'39)

Equivalently we can give the correspondence as the direct relation between the Euler
variables and the spinor wave function:

¢y Rcos—giexp[——zl;(x%ﬁ)]
= i ) (1-40)
& Rsingexp[—é—(xhqb)]

1.5.
In the following sections we analyse our methods stated heretofore further with
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Vortex, Spin and Triad for Quantum Mechanics 7

respect to their kinematical and dynamical aspects, and bring them to completion. In this
process we show in particular that our theory implies geometric interpretation of quantum
mechanics of a spinning particle.

We shall begin with the verification of the consistency of the subsidiary conditions for
the case of the original spinless hydrodynamics (§ 2) and then for the case of spinning
hydrodynamics (§ 4) based on the generalized Helmholtz and Kelvin theorems. In §§5
and 6 we take the geometro-hydrodynamical viewpoint. We elucidate the meaning of the
three angular variables (¢, 8, x) appearing in the relation (1-40) by the concept of ‘gener-
alized rotation’. Then we establish the circulation condition for the spinning
hydrodynamics, as ’

uj{v-der%(D—%dendo:%h, (1-41)

to complete our formalism. This global condition is just the counterpart of (1-7) for the
spinless case and is again responsible to the Aharonov-Bohm effect. In § 6 we derive the
basic set of equations of geometro-hydrodynamics from its own viewpoint, where the
invariance (1-36) is promoted to local one.

§ 2. Vorticity and cireulation for the spinless hydrodynamics

We begin with some further general analyses about vorticity and circulation for the
original spinless hydrodynamics stated in §1.1. In the usual hydrodynamics for non-
viscous fluid the equation of motion for the vorticity w=rot II is derived from the Euler
equation as

Duw;
Dt
and it is valid for our hydrodynamics owing to the fact that the internal stress can be
represented by a potential (see (1:5)). Equation (2-1) implies the generalized Helmholtz
theorem meaning that if w=0 initially then w=0 at any time; this ensures the
compatibility of the subsidiary condition (1-9) with the equations of motion.

Equation (2-1) implies that Dfswndo/Dt=$s(th—rot[vX w])rdo=0, and therefore
momentum circulation round a closed ‘fluid contour’ is conserved. This fact is also
verified as follows. First we have

=(0rt:)wa— (Osvn)w:, ie., .-a-=rotlvXw], (2-1a,b)

D(y{ﬂ-ds)/ptzfc(ﬂ-wr%’tl-ds) (2-2)
= e f(ean G g Jar.

Then we insert (1:8) here, to find that this vanishes. This is the generalized Kelvin
theorem and ensures the compatibility of (1-10) with the equation of motion.

Clearly the vorticity condition (1+6) and the circulation condition (1-7) are intimately
related. QOur hydrodynamics allows a flow with nodal line, which is usually a singular
vortex line, and the condition (1-7), i.e., (1-10), implies that the circulation around such a
vortex line is not only conserved but also quantized.¥ Now the condition (1-6), when

*) This fact was noticed first by Dirac."® As regards the properties of a line vortex see Refs. 5),6) and 14).
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8 T. Takabayasi

integrated over an arbitrary surface ¢ encircled by a closed contour C, gives
§(xot v)ndo+(e/uc)®=0. (2-3)

This is rewritten as f.v-ds+ (e/uc)® =0 if there is no singularity inside C. But if there
is a singular vortex line inside C, we have instead

]€II-ds:/zfcv-ds+(e/c)®:cdnst:F, (2-4)

where the value of I' does not depend on the detailed path of C in so far as it does not
pass through a singular line because rot IT =0 elsewhere. The condition (1:7) means that
this I of (2-4) must be restricted to the values

'=unh. (2:5)
§3. Generalization of hydrodynamies to include vortical flows

In this section we briefly explain the method (A) mentioned in § 1. The first step is
to generalize our original hydrodynamics by simply dropping the irrotationality condition
(1:9). Then the IT-field is expressed as (1-16), where the potentials (S, &, 7) are not
unique because (1-16) is invariant under the Clebsch transformation

_OF  _ OF o _ .
5_877’ & o S'=S+F. (3-1)
The velocity potentials allow the Lagrangian formalism. We assume the Lagrangian
density

_n (PP)

_p(t,._ DS Dy __ £ .. )
Ll—P< v th V—l—CvA 82 P

2 Dt ’ (3'2)

which is invariant under (3-1) because S+ &7 is so. This Lagrangian results in (1-2),
(1-16) and

(S M _n 4R X
(S+en)=Gv'+ V=555, (3-3)
0.

DéE/Dt=0, D7/Dt= (3-4a,b)

Then (1-5) follows from them. Equations (3+4a, b) mean the conservation of & and 7 and
result in (2:1), where the vorticity w is represented as (1-18). The theory given above is
exactly what we gave in Ref. 3) (see p. 216 thereof).

As stated in § 1. 2 we now make the second step. We introduce the internal stress
potential (1-19), to have the new Lagrangian density

L:Ll_Ws. (3'5)
This modifies the equations of motion (3:3) and (3-4) to

(S gy W AR | 1 [(FE)
(S+$77)4202+V 0% R +2#{

+o(r77), (3-6)
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Vortex, Spin and Triad for Quanium Mechanics 9

D¢

TP 3k(pPak77) 0, (3-7)
Dn 1 1 (VE)Z 2
2L ak( Pahé) a’E{ (7 )} (3-8)

Thus £ and 7 are no longer conserved so that (2:1) is modified. Also the Euler equation
resulting from (3:6)~(3-8) differs from (1:5) by an extra internal stress term. The
important point is that by the introduction of Ws the invariance under (3-1) is lost and the
‘gauge’ of the Clebsch potentials, & and 7, becomes essentially restricted. Thus they
acquire the property of intrinsic degrees of freedom although they continue to give the
vorticity by (1-18). In fact, they are identified with the spin vector S by (1-21), and the
weight function p is also fixed as

o(&)=1—(4/n*)&*=1—25". (3-9)

We can further confirm that with this identification the present theory completely
agrees with the hydrodynamics of spinning fluid stated in § 1. 3 (except that in the present
treatment we have been neglecting the Zeeman coupling term of the spin). Viewed from
a different angle the procedure above taken exhibits a rather striking situation. At first
we generalized wave mechanics itself by admitting vortical flows into the hydrodynamical
formulation of quantum mechanics, but it is found that the result is restored, by the
introduction of the internal potential (1-19), within the wave-mechanical framework
based on two-component spinor wave function.

§4. Some remarks for the spinning hydrodynamics

In this section we supplement the description of the spinning hydrodynamics (the
method (B)) stated in § 1. 3, by deriving some important relations.
(i) To reexpress the equations of motion (1-24) and (1-27), we define

H"=(c/e)o(Po.S)/P, H"=H+H", (4-1)

and call H™ ‘internal magnetic field’ (though it does not satisfy div H™=(), and H*"
‘effective magnetic field. Then (1-24) and (1-27) are rewritten as®

sz AT eff (E 4k 1, > .
wp =Kt SkaH +: B T3 IVS} (4-2)
DS _i eff .
Dt —ﬂC[SxH ], (4-3)
where |V SI?=0.5:0.S.. We also employ another form of (1-24):
DIl _ 3V e A, ,
DE = o +-£ O g TF (4-4)
(ii) The equation of motion(2-1)for w must be modified in the spinning hydrodynamics
to
D (50 wn— (350 w0+ 15405 100 H (4-5)
Dt kUi 3 Uk )W #CEka P IOrI1Y y
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10 T. Takabayasi

which is obtained from (4-4). Similarly from (4-3) we get

%:(akvi)Tk (8kvk)T + 511128 ZzakHze“. (4'6)

Thus, by defining
w=w—(h/2)T=prot v—(h/2)T—(e/c)H,
we have

Dl)u;i :(akvi)@k“(akﬂk)ﬁ/i » i.e.v aat _rOt[vX w] (47)

which represents the counterpart of Eqgs. (2-1a, b) for the spinless case.

Now in the present theory we introduce the subsidiary condition (1-22), i.e, w=0
except at nodal points. Equation (4+7) ensures that this condition is compatible with the
equations of motion.

(iii) We notice the interesting parallelism between the spinless hydrodynamics and the
spinning hydrodynamics. The mathematical analogy between (1:6) and (1:22) and that
between (2-1) and (4+7) indicate that the quantities #v and —(e/c)H in the spinless case
correspond, respectively, to II and (#/2) T in the spinning case, mathematically. Thus,
just as Eq. (1:6) led to Eq. (2-4) in the former case, Eq. (1-22) in the latter yields the
relation

f-ds—(n/2)§ Tudo=T. (4-8)

Note that 7 satisfies div T'=0 (like H satisfies div H =0) so that the flux s T»do is fixed
when the contour C encircling the surface ¢ is given. Moreover, I" of (4-8) does not
depend on the details of C in so far as it does not pass through a singular line. (See also
§5.) We have verified in § 2 that for the spinless hydrodynamics the circulation I" =§.I1
-ds is conserved. By the analogous procedure we can now verify that I” of (4-8) (where
C moves with the fluid) is conserved. On the other hand, for the spinless case I" was
actually quantized as (2:5). We explain in § 5 that the corresponding quantization for I”
of (4-8) is I'=(n/2)h, as already presented in Eq. (1-41).

(iv) In this hydrodynamical formalism the spin-vorticity vector T of (1- 23) and the
energy density of spin-stress Wa=(P/2u)|V S|?=(%2P/8u)|V X|* (which is the same as
(1-19)) play the central role. These quantities have the important property that they are
invariant under an orthogonal transformation of 2 (with coordinate frame left unchan-
ged)

2o =An. (AAT:D (4’9)
Indeed, |7 3'|2=|V X|?, and

Tf/:—%‘EiijLng[,ajZm,akzn,: Ti . (410)

Also we note that these quantities are expressed in terms of the wave function as

2 T_2

Sw e (047 u)— B0 93], (4-11)

220z Isnbny |z uo isenb Ag 66€£0061/1/1/0./5101e/did/W00 dnoolwapede//:sdiy Woly papeojumoq



Vortex, Spin and Triad for Quantum Mechanics 11

|7 2P =5{(0:0" 0u)— (048" )¢ 1)} (4-12)

§ 5. Euler variables and circulation condition

5. 1.

In this section we exploit the representation in Euler variables and establish the
quantization condition of circulation. We begin with the following derivation of Eq.
(1-40) which implies the relation between Euler angles and the spinor, both depending on
x. We are inserting this derivation because of its heuristic significance.”

We consider rotation in the active viewpoint, where we rotate the physical system in
keeping the coordinate axes fixed. Then by a rotation R specified by Euler angles
(a,8,7), ¢(x) changes to

5 (@)= Uushs(R-), 61
a —b a=cos ge’(“z)‘”‘“,

U:I: *:’3 (5.2)
b a bh=sin ge‘(”””‘“’,

This U is exactly the } representation D'? (a, 8, 7) of the rotation group.
Now we take the ‘standard’ spinor

¢=[R(0$)]. (5-3)

According to (1-39), the triad {a”} corresponding to it is

1

al=x%, a’=y, a*=%, (5:4)

so that this ‘standard’ state is pictured as the distribution with density R(x)* of triads
whose axes are everywhere parallel to the coordinate axes. On the other hand, (5-3) is
a superposition of the states

¢,,:[R((f')]a(xwx'>, (¢(2)= fowaz’), (55)

each of which is a state where triad (5-4) is localized at x. Now we apply to each ¢z
an active rotation (around x’) specified by Euler angles (¢(x’), 8(x"), x(x")) which vary
with &, then it changes to

*) Especially, its generalization to the relativistic case leads to a representation of Dirac wave function in
terms of the set of Euler angles (¢, 6, 1) and hyperbolic pseudoangles gz, 0, x2), together with the modulus R
and one more angle ©. This representation supplies a convenient basis for the geometro-hydrodynamical
representation of Dirac field,'® where the counterpart of Eq.(1-35)in the nonrelativistic spinning hydrodynamics is
bu=a,?0uay' = dpx1+cosh 02 cos 610u¢,+sinh @ sin §,0.¢., which implies two pairs of Clebsch parameters.
Details are given in a separate paper.
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12 T. Takabayasi

6 —Z/2(x+¢)
R ’ COS?@
se=U| ‘(f lo@@-zn=ra)| 5z—2) (56)
Sin7e—i/2(l—¢)

where use is made of (5-2). Let us suppose that we are applying such a local rotation at
every point; then as the result of this operation (which we call ‘generalized rotation’) the
original ¢ =/¢»-d*x’ is considered to change to ¢'=/¢ »d?x’. With (5-6) this gives the
expression (1-40) for ¢’

Alternatively we may consider the above process directly. Namely by the general-
ized rotation whose Euler angles (¢, 8, x) vary with x around which each local rotation
is applied, the original body axes (5-4) at x rotate to {a"(x)} which are clearly

o' a ast CoCoCyr—S9Sz  SpCoCx+ CoSy —$6Cx
a’® a® as®| =| —cCeCoSyi—SeCy —$pCeSx+ CoCy SeSx | » (5:7)
a® a’® aid CeSs S¢S Co

where cs=cos 6, ss=sin 4, etc. This expression (5-7) must agree with what we obtain by
inserting (1-40) into (1-38) and (1-39); this is actually confirmed.

5. 2.
The important point in the use of Euler variables is that for specification of a rotation
they have certain arbitrariness. Indeed the set of
' =d+2mny, 0 =0+21ne, x =x+2an, (5-8a)
or of
¢"=¢+2mns+n, 0"=—0+2ans, x"=x+2zantrm, (5-8b)

represents the same rotation as (¢, 4, x). In accord with this, the relation (1-40) does not
determine Euler variables uniquely for a given ¢; there remains the arbitrariness of (5-8a)
and (5-8b), each of which gives the same ¢ by (1-40) if #s+#ns+ ny=even. On the other
hand, if this is odd they give — ¢, but —¢ corresponds to the same physical state, so that
the odd case is equally allowed in our formalism.

Corresponding to the above arbitrariness the variables ¢, § and x can be multivalued
function of x such that

fax=2zn., fap=2an., fdo=21n,, (5-9a, b, ¢)

where ¢ denotes integral along any closed contour.
We remark that (1-40) is viewed as a factorization of ¢ into three factors as follows:

o .
u U cos e e
¢=R e—(zlz)z , — p , (5,10)
Us Us Sll’l 76(1/2”)

where R is the modulus and the factor « represents the polarization 2 through

Yi=u*oiu, ‘ (5-11)
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Vortex, Spin and Triad for Quantum Mechanics 13
reproducing (1-33), while the last factor e /®* represents the common phase (i.e., the
average phase) —x/ 2 of ¢: and ¢.. Therefore x corresponds to the phase function S for
the spinless case (see Eq. (1-13)) by

xo—(2/R)S, (5-12)

which is clear also from the comparison between (1:35) and (1-16). This suggests the
following points. Corresponding to the fact that y obeys the condition (5-9a), the S
function for the spinless case should obey fdS=(n/2)h, which is just the condition”
(1-12), i.e., (1+10). Thus this circulation condition is considered to have geometric origin
rather than it is an ad hoc assumption, in hydrodynamical formalism. Conversely, the
global condition (5-9a) on yx in the present case should also have the meaning of circula-
tion quantization. This we see below.

5.3.

In terms of Euler variables, IT is represented as (1-35), which implies that the velocity
field is determined by the gradient of the rotational ovientations of the continuously
distvibuted triads. We rewrite (1+35) as

I=I+(h/2)G, (5-13)
B=—(1/2)7 %, G=—cos 07 $=7=57( 57 5= 5:7 50), (5-14)
rot I1=0, rot G=T . (5-15a, b)
Now the condition (5-9a) is rewritten as
F:}fﬁ-ds:(n/Z)h. (n=integer) (5-16)

With the use of (5:13) and (5-15b) this is reexpressed as (1-41). We repeat that this
condition is not an ad hoc postulate but originates from geometrical nature of our theory.
We also note that this condition and Eq. (1:22) are put into a single equation

rotllngwL%h—fy(.r—x')dx’, (5-17)

L

where £=x'(1) denotes a singular vortex line L. We give some remarks about the
consistency of this quantization.

(i) The value of $.IT-ds does not depend on the detailed path of C in so far as it does
not pass through a singular line, since rot IT=0. That §II-ds is conserved with time has
been actually proved in § 4.

(ii) The separation of IT into its irrotational and rotational parts by (5-13) depends on
coordinate frame,** because ¢, ¢ and x are not scalars whence IT and G are not vectors.
However, rot & is vector and similarly $IT - ds is scalar.

(iii) By an orthogonal transformation (4-9) of X, G transforms to G’ =— %'+ (1—25"*)™"

*) In (1-12) # is usually integer but can be half-integer when we allow negative values for R. (See Ref.14).)

**) For frame-independent separation of IT into irrotational and rotational parts, IT=IT"+IT ™" (rot IT'"=0),

we should impose the further condition div I =0, but then such IT " is nonlocal with respect to 2" and is not
a convenient quantity for the present purpose.
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14 T. Takabayasi

-(ZLV 23), which satisfies rot G'=T'=T owing to (4-10). Therefore for the separa-
tion of I into its irrotational and rotational parts we could adopt this G’ as well, such
that IT=II'+(#/2)G’. This transformation is really induced by

xox=x+tn, (5-18)
such that
G=G+Vy, MI=—(H2)7(x+xn). (5-19)

For illustration, let us take an example where (X', %>, 23) is a circular permutation of
(21, X2, Xs), and therefore G'=—2X,-(1—2,%)" '+ (2.7 X3). Thisis actually induced by
(5-18) with X1:tan71(2123/22).

5. 4.

Coming back to the pure hydrodynamical formalism (the method (B))which repre-
sents a state by the set of variables (P, II, 2') under the subsidiary condition (1-22), we
pose the question how one can reconstruct therefrom the wave function in the usual
formalism. We proceed as follows. First we determine 8 and ¢ from 2, and then form
IT=II+(h/2)cos 8V ¢, which must be irrotational because of the condition (1-22). Thus
we can obtain x as its potential, where its possible multivalued character is adjusted in
accord with (5-16). This determines y apart from an additive constant (for each instant ).
Then the two-component wave function ¢, is fixed apart from a common constant phase.

Once the variable x, which was originally hidden in the hydrodynamical formalism
of the method (B), is constructed this way, it is possible to integrate the equation of motion
(1-24) once. The result is essentially the same as Eq. (3:6) in the method (A).

§6. Lagrangian and geometro-hydrodynamical formalism

In this section we reproduce geometro-hydrodynamics consistently based on its
Lagrangian. For this purpose we pay attention to the angular velocity w of the triad,
which is given, as in the usual rigid body, by

w1=—0 sin ¢+ x sin Hcos ¢, w2=6 cosp+ x sin & sin ¢,

ws=¢+ x cos 4. (6-1)

1 . .
Its body-frame components are w’ = ak’wk:7erszasat ie.,

w'=d*a*=0 sin y— ¢ sin 6 cos x,
2:

w*=a’a'=6 cos x+ ¢ sin O sin x, (6-2)

w*=ad'a’*=x+ ¢ cos 0.

These w: and @ are quantities viewed at each fixed position, while the co-moving angular
velocities are given by

Da®

1 rDax” n_1__Da’ .
s o —2€rst Di a . (6 3)

Qi:?&u’kaj Dt
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Vortex, Spin and Triad for Quantum Mechanics 15

Now our triad is distinct from a customary rigid body, such as a symmetric top, because
of its special property (1:30). This distinction shows up in the relation between angular
momentum S and angular velocity @ for our triad

51:%—(601+9sin¢), SzZSLT(wz—gcomﬁ), 53:%((1)3—(}5). (6-4)

To find out the Lagrangian we consider first the kinetic term for rotation of a triad.
This is considered to be 77°=88, which becomes, owing to (1-30),

1
Tmt:S.Q:%Q“’:?QD—%-azig<g—7§+cos %‘?) (6-5)
This 77 is distinct from that of a conventional symmetric top: 77%= § {I(Q®V )+ 1(Q®)
+(2®)?}. The latter has the degrees of freedom responsible for the isospin-like
degeneracy and the spin tower, whereas our 77" has not such degrees of freedom, being
linear in ¥ and ¢é and lacking 8 term. (This point is related to that 77" is S instead
of +82.)
The Lagrangian density for free case should be of the form

L= P(£02+L00) = W+ Pinla’a*=510), (6-6)
where W denotes the energy density due to the internal stress. We require also that the

theory is invariant under
R-aR. (P-a*P) (a=real const) (6-7)

This invariance is universal characteristics of our hydrodynamics representing quantum
mechanics. For this invariance W in (6-6) must be linear in P. Further it is natural
to assume that W originates from the inhomogeneity of the spin density P8, and is
nonnegative. Then its form is essentially determined. We have

K (vP)

1 P
W»ZﬂPIV(PS)l 8z P

Pipqre
3, |7 SI. (6-8)
Now from our viewpoint, the invariance of theory under rotation of each triad around
its symmetry axis is to be regarded as due to the geometric nature of the triad and
therefore this invariance must be a local one, namely the theory should be invariant when
each triad rotates at each point around its symmetry axis by an arbitrary angle A(x):

a'(x) cos Alae) sinA(x)fa'(x)
[az(x)]—)[*sin/i(x) cos A(x)][az(.r)]’ (6:9)
1e.,
x(x)=x(x)+A(x), 8, ¢=inv. (6-10)

But, under this transformation, L, is no longer invariant because (Da'/Dt)-a*= a'a?
+(v- V a:')as’® changes by

ita’~ a'a’+ A, (Fa)a*~>(Faa*+Va. (6-11)

Thus, to preserve the invariance of the Lagrangian we need to introduce a gauge field
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(A(x), Ao(x)) which transforms, simultaneously with (6-9), as
A->A—(he/2e)V A, Ac—Act+(h/2e)A, (6-12)
and to replace the kinetic term of rotation in L, as

h Da' 2_)ﬂDal
2 Dt 2 Dt

az—er—i-%vA ) (6-13)

Then with the identification of A, as electromagnetic potential the second and third terms
in (6-13) represent just the classical electromagnetic interaction. This provides a
geometrical interpretation of local gauge invariance. In fact we assume an additional
term (e/unc)HS, which expresses the direct magnetic moment coupling of the classical spin
by g-factor 2 and is itself invariant under (6-9). Thus we have the Lagrangian density

L=PN— W“‘%Pjrs(aras*ars),

N=h Da’ 2+“ 2 V+ vA+, eh

5 " Di oucHE (6-14)

which defines our geometro-hydrodynamics by 8/Ld*xdt=0.
First the variation of L with respect to v; gives the relation

Py a2 € g .
H:= zala a cA” (6-15)

except at nodal points. This is Eq. (1-32), and implies (1-22). Next the variation with
respect to P leads to ’
2
Ly=tpsy— —HS—%"—;+~|VSIZ (6-16)
which is essentially the same as (3:6). Further the equations resulting from variations
with respect to a.” give, after the elimination of A-s=Asr, Egs. (1+2) and (1-27). Finally
from the gradient of (6-16) we arrive at (1-24). Thus we have reproduced all the basic
equations of the spinning hydrodynamics (the method (B)), except the circulation condi-
tion (1-41). Because the Lagrangian (6-14) leaves v undetermined at nodal points (P(x)
=0) and also because L is singular at nodal points, we need to supplement the basic set
of equations following from this Lagrangian with a certain condition referring to nodal
points, and this is just the condition (1-41), i.e., the appearance of the J-function term in
(5-17).
In the Lagrangian (6-14) we could use the Euler variables; then

Trot:g{xdr ¢ cos @+ v (V x+cos 67 $)},

|7 SIP=(n?/ ){(7 6)*+sin*0(F )%}, (6-17)

and the term containing A-s is omitted. This Lagrangian, which is essentially the same as
(3-5), leads to the same consequences as above.
Finally we note that the angular velocities, (6+1) and (6-2), are connected to the wave

function ¢ as
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wi=i(P* o — §r o) (9*9), *=i(P*d—¢*¢)] ($*¢). (6-18)
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leXe!

Note added in proof :
Appendix

—— Different Representation of the Spinning Hydrodynamics —
From the Lagrangian (6-14) we obtain the total electric current j as
ji=cOL/SA:=ePv;+(e/n)ei;nd;( PSs), (A1)
which consists of the convection current ePv and the polarization current rot (ex 'PS). We define

(o d__, rot(PS) (A-2)

vEep? uP

which satisfies P+div(Pv’)=0 as well, and we can employ it in place of v. Then our geometro-hydrodynamics
is defined by the Lagrangian density

L'=PN'— W'+ Phr(a’a’~8) (A-3)

with
N’:%%,flti-a2+€-(v')2—V+%v’-A, (g,'t:a-atw’-v) (A-4)
W= 2;1, [div(PS))*+ PS-rot v/ . (A-5)

Indeed we can verify that the Lagrangian (6-14) is transformed to (A-3) (or vice versa) by the aid of Eq. (1-22)
and the following useful identities on the spin-vorticity vector T :

23 T:(djVZ)z‘akZzaIZk , (A'6)
[ZX T]i:*SzmnaiZLamZn. (A-7)

We see that this transformation, from (6-14) to (A-3), eliminates the direct magnetic-moment coupling term
(e/uc)H - S in the former. However, at the same time it induces dependence of the internal stress (7ix) on the
velocity gradient and also its asymmetry z/.% 7%, Thus, for our spinning hydrodynamics the original representa-
tion is much simpler and more adequate. .

On the other hand, we know that the Dirac equation is represented equivalently as relativistic geometro-
hydrodynamics,'® which contains electromagnetic coupling as minimum interaction alone, and we can verify that
when we take the non-relativistic approximation to the Lagrangian for this hydrodynamical representation of the
Dirac field we obtain at first just the form (A-3). This can then be transformed to the form (6-14) through (A-2)
as stated above.  (Details of these points are given in a separate paper.)
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