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We analyze theoretically and experimentally vortex configurations in mesoscopic superconducting squares.

Our theoretical approach is based on the analytical solution of the London equation using Green’s-function

method. The potential-energy landscape found for each vortex configuration is then used in Langevin-type

molecular-dynamics simulations to obtain stable vortex configurations. Metastable states and transitions be-

tween them and the ground state are analyzed. We present our results of the first direct visualization of vortex

patterns in micrometer-sized Nb squares, using the Bitter decoration technique. We show that the filling rules

for vortices in squares with increasing applied magnetic field can be formulated, although in a different manner

than in disks, in terms of formation of vortex “shells.”

DOI: 10.1103/PhysRevB.78.104517 PACS number�s�: 74.25.Qt, 74.25.Ha, 74.78.Na

I. INTRODUCTION

The growing interest in studying vortex matter in meso-

scopic and nanopatterned superconductors is closely related

to recent progress in nanofabrication and perspectives of

their use in nanodevices manipulating single flux quanta.

As distinct from bulk superconductors, vortex states in

nanoscopic and mesoscopic samples are determined by the

interplay between the intervortex interaction �which is

modified due to the presence of boundaries� and the con-

finement. In general, the shape of a mesoscopic sample is

incommensurate with the triangular Abrikosov lattice, and as

a consequence, the resulting vortex patterns display strong

features of the sample shape and may differ strongly from a

triangular lattice. Strong finite-size effects in conjunction

with strong shape effects determine the vortex configura-

tions. For example, in mesoscopic disks vortices, as shown

theoretically1–6,9 and experimentally,7 form circular symmet-

ric shells �similar to two-dimensional �2D� system of charged

classical particles8�. Moreover, due to strong confinement ef-

fects in small disks, vortices can even merge into a giant

vortex �GV�, i.e., a single vortex containing more than one

flux quantum,4 as was recently confirmed experimentally.10

Furthermore, it was recently demonstrated11 that vortices can

merge into a cluster or a GV in micrometer-sized mesoscopic

niobium disks which is induced by strong disorder in com-

bination with rather weak confinement, while neither of these

effects alone would lead to a GV/cluster formation. Simi-

larly, shape- and symmetry-induced vortex patterns can be

formed in mesoscopic superconducting triangles,12,14,15

squares,12,16–18 or, in general, in symmetric polygons.12,13

However, unlike disks where the vortex patterns result from

the interplay between the discrete symmetry of the �triangu-

lar� vortex lattice and the cylindrical �C�� symmetry of the

disk, mesoscopic polygons have discrete symmetry that can

coincide �triangles, C3 symmetry� or include as a subgroup

�e.g., hexagons with C6 symmetry� the symmetry of the vor-

tex lattice. In such cases highly stable vortex configurations

are possible for some values of magnetic field �providing

commensurate numbers of vortices� because the vortex-

vortex interaction is enhanced by the effect of boundaries.

Strikingly, strong boundary effects can even lead to

symmetry-induced vortex states with antivortices14–16 �i.e.,

the symmetry of the vortex configuration with antivortices

can be restored by the generation of a vortex-antivortex pair�.
In contrast to C3n-symmetric �where n is an integer� poly-

gons, squares are incommensurate with triangular vortex lat-

tice for any applied magnetic field. The vortex-vortex inter-

action and the effect of boundaries are always competing in

mesoscopic squares. Resulting from this interplay: �i� the

ground state of the vortex system always involves nonzero

elastic energy and, as a consequence, �ii� there are metastable

states with energies close to the ground state �or, in principle,

the ground state even could be degenerate�. Early studies on

vortices in mesoscopic squares were either limited to very

small samples with characteristic sizes of the order of �
�where � is the coherence length� which were able to accom-

modate only few vortices,12 or they focused on the possibil-

ity of generation and stability of vortex-antivortex patterns in

squares.16–18 Here we present a systematic theoretical analy-

sis of vortex configurations in mesoscopic squares and their

first direct observation in micrometer-sized niobium squares

using the Bitter decoration technique. To study the formation

of vortex patterns and transitions between the ground and

metastable states, we analytically solve the London equation

using Green’s-function method, and perform molecular-

dynamics simulations. To obtain the stable vortex configura-

tions, we analyze the filling of squares by vortices with in-

creasing applied magnetic field and the formation of vortex

“shells,” similarly to those observed in disks.

The paper is organized as follows. The theoretical formal-

ism and the solution of the London equation using Green’s-

PHYSICAL REVIEW B 78, 104517 �2008�

1098-0121/2008/78�10�/104517�11� ©2008 The American Physical Society104517-1

http://dx.doi.org/10.1103/PhysRevB.78.104517


function method, for a system of L vortices in a rectangle

sample, are described in Sec. II. In Sec. III, we discuss the

evolution of vortex configurations with magnetic field calcu-

lated using the solution of the London equation found in Sec.

II and the molecular-dynamics simulations �Sec. III A�. We

formulate the filling rules and discuss the formation of vortex

shells in mesoscopic superconducting squares in Sec. III B.

Metastable states and the transitions between them and the

ground state are analyzed in Sec. III C. In Sec. IV, we present

the results of our direct experimental observations of vortex

patterns in niobium squares using the Bitter decoration tech-

nique, and compare the calculated patterns with the experi-

mentally measured vortex configurations. The conclusions

are given in Sec. V.

II. THEORY: THE LONDON APPROACH

We consider a strong type-II superconductor �i.e., charac-

terized by the Ginzburg-Landau parameter �=� /��1,

where � is the London penetration depth and � is the coher-

ence length� with rectangular cross section in the x-y plane

and thickness d in the z direction. Note that the London

approach is applicable also for weak type II superconductors

in case of thin-film samples with thickness d�� where the

penetration depth is modified: �→ �=� /d2, or in case of

low vortex densities in rather large mesoscopic samples �i.e.,

with the lateral dimensions a, a��� where vortices are well

separated and the order parameter is �	�2=1 everywhere ex-

cept at the vortex cores. The latter case corresponds to our

experiments with micrometer-sized niobium squares as de-

scribed below. In our model the external magnetic field H is

applied normal to the x-y plane, i.e., along the z axis: h

=hz. We also assume that the vortex cores are straight lines

along the z direction. Then the local magnetic field can be

found by solving the London equation:

− �2
�

2h + h = 
0h�
i=1

L

��r − ri� , �1�

where 
0 is the flux quantum and �ri= �xi ,yi� , i=1, . . . ,L� are

the positions of L vortices. If we also neglect the distortion

of the external magnetic field due to the sample, i.e., assume

that the value of the magnetic field outside the sample near

its boundary is equal to the applied field, then the boundary

conditions for the magnetic field are:

h��a/2,y� = h�x,0� = h�x,b� = H . �2�

The geometry of the problem is shown in Fig. 1. Green’s-

function method for solving the London equation �Eq. �1��
with the boundary conditions �Eq. �2�� was previously used

by Sardella et al.19 However, they limited themselves to the

special case where one of the sides of the rectangle is much

larger than the other, i.e., a stripe. Such an approximation

considerably simplifies the problem but the resulting solution

missed the generality �the symmetry with respect to the per-

mutation x→y� and thus could not be used in our case of a

square: a=b. We seek a solution of Eq. �1� with the boundary

conditions �Eq. �2��, which is valid for a rectangle with arbi-

trary aspect ratio a /b. Green’s function associating with the

boundary problem defined by Eqs. �1� and �2� must satisfy

the following equation:

− �2
�

2G + G = ��x − x����y − y�� , �3�

and the boundary conditions

G��a/2,y� = G�x,0� = G�x,b� = 0. �4�

Multiplying Eq. �1� by G and Eq. �3� by h and subtract one

from another, we obtain

− �2�G�
2h − h�

2G� = G
0�
i=1

L

��r − ri� − h��x − x����y − y�� .

�5�

Integrating Eq. �5� over the sample area, we arrive at

− �2	
−a/2

a/2

dx	
0

b

dy�G�
2h − h�

2G�

= 	
−a/2

a/2

dx	
0

b

dy
G
0�
i=1

L

��r − ri� − h��x − x����y − y��� .

�6�

Further we use Gauss theorem,

− �2	
−a/2

a/2

dx	
0

b

dy�G�
2h − h�

2G�

= − �2�
boundary

dlG
�h

�n
− h

�G

�n
� ,

where � /�n is the derivative in the normal direction to the

boundary, and the boundary conditions �Eqs. �4� and �2��,
and we find the expression for the magnetic field,

h�x�,y�� = H
1 − 	
−a/2

a/2

dx	
0

b

dyG�x,y,x�,y���
+ 
0�

i=1

L

G�xi,yi,x�,y�� . �7�

Therefore, the problem of finding the solution for the local

magnetic field is reduced to the determination of Green’s

FIG. 1. The cross section of a rectangular superconductor with

sides a and b. The external magnetic field H is applied along the z

axis, and its value is assumed to be constant outside the sample.
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function G�x ,y ,x� ,y��. In order to find a solution to Eq. �3�
with the boundary condition Eq. �4�, we expand Green’s

function in a Fourier series,

G�x,y,x�,y�� =
2

b
�
m=1

�

sinmy�

b
�sinmy

b
�gm�x,x�� . �8�

Note that the boundary conditions �Eq. �4�� are satisfied at

y=0,b. Further we substitute this expansion into Eq. �3� and

obtain

− �2
2

b
�
m=1

� 
 �
2gm�x,x��

�x2
sinmy�

b
�sinmy

b
�

− m

b
�2

gm�x,x��sinmy�

b
�sinmy

b
�

+ sinmy�

b
�sinmy

b
�gm�x,x���

= ��x − x��
2

b
�
m=1

�

sinmy�

b
�sinmy

b
� , �9�

where we used the following �-function representation:

��y − y�� =
2

b
�
m=1

�

sinmy�

b
�sinmy

b
�

since ��2

b
sin� my

b
� , m=1,2 ,3. . .� forms a complete set of

orthonormal functions. As a result, we obtain the following

equation for the Fourier transform of Green’s function

gm�x ,x��,

− �2
�

2gm�x,x��

�x2
+ �m

2
gm�x,x�� = ��x − x�� , �10�

where

�m = 
1 + �2m

b
�2�1/2

. �11�

The functions gm�x ,x�� must satisfy the boundary conditions

gm��a /2,x��=0. In order to solve Eq. �10�, we first take its

Fourier transform,

− �2�i��2F��� + �m
2

F��� =
1

2
e−i�x�,

where

F��� =
e−i�x�

2��2�2 + �m
2 �

,

from which we obtain a particular solution to Eq. �10�

gm�a→� =
1

2�m�
e−�m�x−x��/�

=
1

2�m�
�cosh��m�x − x��/�� − sinh��m�x − x����� .

The general solution of Eq. �10� reads as

gm =
1

2�m�
�cosh��m�x − x��/�� − sinh��m�x − x�����

+ A�x��sinh��mx/�� + B�x��cosh��mx/��

=
1

2�m�
�− sinh��m�x − x���� + C�x��sinh��mx/��

+ D�x��cosh��mx/��� .

Using the boundary conditions �Eq. �4�� we find the coeffi-

cients C�x�� and D�x��,

C�x�� = − coth��ma/2��sinh�x��;

D�x�� = tanh��ma/2��cosh�x�� .

Then the solution for gm�x ,x�� is given by

gm�x,x�� =
1

2��m sinh��ma/��

��cosh��m��x − x�� − a�/�� − cosh��m�x + x��/��� .

�12�

Inserting this result into Eq. �8�, we obtain the following

expression for Green’s function:

G�x,y,x�,y��

=
2

b
�
m=1

�

sinmy�

b
�sinmy

b
� 1

2��m sinh��ma/��

��cosh��m��x − x�� − a�/�� − cosh��m�x + x��/��� .

�13�

From it we obtain the following expression for the local

magnetic field:

h�x,y� = 
0�
i=1

L

G�xi,yi,x,y� + H� cosh��y − b/2�/��

cosh�b/2��

+
4

b
�
m=0

�
b

�2m+1
2 �2m + 1�

sin
 �2m + 1�y

b
�

�
cosh��2m+1x/��

cosh��2m+1a/2��� . �14�

Note that this solution is valid for a rectangle with arbitrary

aspect ratio a /b and is a generalization of the earlier result

presented in Ref. 19.

Using the obtained solution or the London equation for

the local distribution of the magnetic field h�x ,y�, we obtain

the Gibbs free energy per unit length of an arbitrary vortex

configuration,
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G = �
i=1

L �i
shield + �

j=1

L

�ij
v� + �core + �field

=

0H

4A
�
i=1

L � cosh��yi − b/2�/��

cosh�b/2��
+

4

b
�
m=0

�

�2m+1
−2 b

�2m + 1�
sin
 �2m + 1�yi

b
� cosh��2m+1xi/��

cosh��2m+1a/2���
+


0
2

8A
�
i=1

L

�
j=1

L

G�xi,yi,x j,y j� −
H2

8
� tanh�b/2��

b/2�
−

8

2 �
m=0

�
tanh��2m+1a/2��

��2m + 1��2m+1�2��2m+1a/2��� − L

0H

4A
. �15�

Here, A=a�b is the area of the rectangle. The last two terms

are the energies associated with the external magnetic field

and the vortex cores, respectively. Green’s function in the

first term describes the interaction between vortices and also

the interaction between vortices and their images, which are

situated outside the sample. The second term represents the

interaction between the ith vortex and the shielding currents.

Note that in Ref. 19, the authors limited their consideration

to the case of a thin film such that �� /b�2�1 and the term

“1” in Eq. �11� can be neglected. The London theory has a

singularity for the interaction between a vortex and its own

image �self-interaction�. We notice that when i= j Green’s

function does not converge. To avoid divergency, we apply a

cutoff procedure �see, e.g., Refs 20–22�, which means a re-

placement of �ri−r j� by a� for i= j. It was shown in Ref. 23

that the results of the London theory agree with those of the

Ginzburg-Landau theory, the vortex size should be chosen as
�2�, and therefore we take a=�2. The confinement energy is

given by �c=�i
shield+�ii.

In Figs. 2�a� and 2�b�, we plot the distribution of the con-

finement energy for mesoscopic squares with a=3� and a

=15�, correspondingly. In the mesoscopic square with a

=3�, Fig. 2�a�, the screening current extends inside the

square and interacts with all the vortices. But in the large

mesoscopic square �we call it “macroscopic”� with a=15�,

only the vortices which are close to the boundary feel the

screening current. In the mesoscopic square, vortices

strongly overlap with each other �see Fig. 2�c��, while in the

macroscopic square, the interaction between vortices is

rather weak and only the closest neighbors are important �see

Fig. 2�d��. This difference between small �mesoscopic� and

large �macroscopic� squares leads, in general, to the size de-

pendence of the vortex patterns in mesoscopic samples as it

was recently demonstrated for disks �see Ref. 9�.

III. THE EVOLUTION OF VORTEX PATTERNS

WITH MAGNETIC FIELD

A. Molecular-dynamics simulations of vortex patterns

Within the London approach, vortices can be treated as

pointlike “particles,” and it is convenient to employ molecu-

lar dynamics �MD� for studying the vortex motion driven by

external forces �see, e.g., Refs. 9, 11, 24, and 25�, similarly

to a system of classical particles.8 In Sec. II we obtained the

analytic expression for the free energy of a system of L vor-

tices as a function of the applied magnetic field �Eq. �15��.
The force felt by the ith vortex can be obtained by taking the

derivative of the energy in the following:

Fi = − �iG , �16�

where �i=
�

�xi
ex+

�

�yi
ey is the two-dimensional derivative op-

erator.

The overdamped equation of vortex motion can be pre-

sented in the following form:

�vi = Fi = �
j�i

Fij + Fself
i + FM

i + FT
i , �17�

where the first three terms are as follows: Fij is the force due

to the repulsive vortex-vortex interaction of the ith vortex

with all other vortices, Fself
i is the interaction force with the

image, and FM
i is the force of interaction with the external

magnetic field which enters the sample through the bound-

aries; � is the viscosity, which is set here to unity. Note that

Eq. �16� contains these three terms �with the free energy

defined by Eq. �15��, and in Eq. �17� we added a thermal

stochastic term FT
i to simulate the process of annealing in the

experiment. The thermal stochastic term should obey the fol-

lowing conditions:

�Fi
T�t�� = 0 �18�

and

�Fi
T�t�Fi

T�t��� = 2�kBT�ij��t − t�� . �19�

It is convenient to express the lengths in units of �, the fields

in units of Hc2, the energies per unit length in units of g0

=
0
2
/8A ·1 /�2, and the force per unit length in units of f0

=
0
2
/8A ·1 /�3, where A is the sample’s area. In our calcu-

lations we use the value of the Ginzburg-Landau parameter

�=6 taken from the experiment with Nb �see below�.
In order to find the ground-state vortex configurations in

squares, we perform stimulated annealing simulations by nu-

merically integrating the overdamped equations of motion

Eq. �17�. The procedure is as follows. First we generate a

random vortex distribution and set a high value of tempera-

ture. Then we gradually decrease the temperature to zero,

i.e., simulating the annealing process in real experiments

�see, e.g., Ref. 26�. To find the minimum-energy configura-

tion, we perform many simulation runs with random initial

distributions and count the statistics of the appearance of

different vortex configurations for each L. This procedure
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simulates9 the statistical analysis of experimental data with

simultaneous measurements of vortex configurations in ar-

rays of many �up to 300� practically identical samples. It was

used in experiments with Nb disks in Refs. 7 and 11 and also

in experiments with Nb squares presented in this paper.

B. Filling rules for vortices in squares with increasing

magnetic field: Formation of vortex shells

The results for the vortex patterns for different vorticities

L are shown in Figs. 3 and 4. With increasing applied mag-

netic field, vortex configurations evolve as follows: Starting

from a Meissner state with no vortex, the first vortex appears

in the center �see Fig. 3�a��, for L=2 the two are located

symmetrically on the diagonal �see Fig. 3�b��. Further in-

crease of the magnetic field leads to the formation of a tri-

angular vortex pattern having a common symmetry axis with

the square, which is the diagonal �see Fig. 3�c��. For L=4

vortices arrange themselves in a perfect square, Fig. 3�d�,
whose symmetry is commensurate with the sample and

therefore it turns out that this is a highly stable vortex

FIG. 2. �Color online� The profiles of the confinement energy

�c=�i
shield+�ii �measured in units of g0=
0

2
/8A ·1 /�2, where A is

the area of the sample� for mesoscopic superconducting squares

with size �a� a=3� and �b� 15�. The Gibbs free-energy distributions

for squares with �c� a=3� and �d� 15� for the vortex state with

L=5.

FIG. 3. �Color online� The evolution of vortex configurations for

the states with vorticity increasing from L=1 to 12, in a supercon-

ducting square with a=3� �the same results found for larger

squares, e.g., with a=15��. The vortices in the outer shell are

shown by the blue �black� circles while the inner-shell vortices are

shown by the yellow �gray� circles. The formation of the second

shell starts when L=5.
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configuration.5,27 Note that even in the bulk the gain in the

elastic energy is very small during the transition from the

triangular vortex lattice to the square one, and consequently,

in the presence of a square boundary, it turns out that a

square vortex lattice can be easily stabilized �for commensu-

rate vortex numbers�. For vorticity L=5, vortices tend to

form either a pentagon, or a square with one vortex in the

center �see Fig. 3�e�; the transition between this configura-

tion and the pentagonlike pattern will be discussed below�.
The additional vortex appears in the center thus forming a

second shell in a similar way as in disks,6,7,9 but in the latter,

this occurred for a larger L-value �L=6�. To distinguish dif-

ferent shells and indicate the number of vortices in each

shell, we use the same notations as in Refs. 6, 7, and 9. For

example, the pentagonlike configuration and the pattern with

four vortices in the outer shell and one vortex in the center

are denoted as �5� and �1,4�, respectively. �It is clear that

vortex shells in squares are not as well defined as in disks

and sometimes it is a matter of choice how to define them.�
Compared with disks, which have C� symmetry, the C4 sym-

metry of squares induces a new element of symmetry in the

resulting vortex patterns. In other words, vortex patterns in

squares �tend to� acquire elements of the C4 symmetry even

if they are not arranged in a perfect square lattice. For ex-

ample, the calculated vortex patterns share one �L=6, Fig.

3�f�� or two �L=7 and 8, Figs. 3�g� and 3�h�, correspond-

ingly� symmetry axes of the square parallel to its side. This

tendency to share symmetry elements with the square bound-

ary remains also for larger vorticities as can be seen, e.g., in

Figs. 3�j�–3�l� for vorticities L=10, 11, and 12, respectively.

For the commensurate number of vortices L=9, a perfect

symmetric square-lattice pattern is formed.

Using the concept of vortex shells, we analyzed the filling

rules for mesoscopic superconducting squares with increas-

ing magnetic field. To summarize these rules, for L=1 to 4,

vortices are arranged in a single shell, the second shell ap-

pears when L=5, and then vortices fill the shells as follows:

As the vorticity L increases from L=5 to 9, the new vortices

fill the outer shell. Then the number of vortices in the inner

shell starts to increase for L�9 �see Figs. 3�j�–3�l��. This

occurs because the outer shell is formed by eight vortices

�i.e., three per each side� which turns out to be stable. Thus,

the new vortices fill the inner shell until L=12. Then, again,

the newly generated vortices start to fill the outermost shell

until L=16, when the number of vortices in the outermost

shell becomes 12, which is also stable �i.e., commensurate

with the square boundary�. The formation of the third shell

starts when the vorticity becomes L=17 �note that for L

=17 the vortices can arrange themselves either in a two-shell

configuration �5,12� or in a three-shell configuration �1,4,12�,
which occurs to have a slightly lower energy, see analysis

below�. In a similar way, the filling of shells occurs for larger

values of L �e.g., for 3-, 4-shell patterns, etc.�. As a general

rule, the outermost shells containing 4N vortices, where N is

an integer, are very stable. With increasing the density of

vortices, the average distance between them decreases. As a

result, the interaction between vortices becomes more and

more important leading to the formation of the triangular-

lattice phase away from the boundary. Therefore, the trian-

gular lattice is recovered for large vorticities being distorted

near the square boundaries. Note that for large enough L

vortices do not form a square lattice even for commensurate

vortex numbers �e.g., for L=25, 36, etc.� as it does for L

=4, 9, and 16. Some examples of two- and three-shell vortex

patterns are shown in Fig. 4.

C. The ground state and metastable states

The incommensurability of the square boundary with the

triangular vortex lattice creates metastable vortex configura-

tions. While in many cases metastable states are well sepa-

rated in energy from the ground state, in some cases, namely,

for borderline configurations having n and n+1 shells, the

lowest-energy metastable state can become almost indistin-

guishable from the ground state. In such cases, vortex states

with very close energies can have comparable probability to

be realized experimentally. An example of such a state is the

case L=5. The stable states for L=5 are shown in the insets

of Fig. 5. In order to examine which one is more stable, we

investigate the free energy as a function of the displacement

of one of the vortices while we allow the other vortices to

relax to their lowest-energy positions. We start with the pen-

tagonlike configuration �5� �the left inset� and we change the

position of this vortex moving it toward the center of the

square and let the other vortices adjust their positions accord-

ingly. At the end, we arrive at the square-symmetric state

�1,4�. We plot the free energy of the system as a function of

the displacement of this vortex from its equilibrium position,

and we repeat this procedure for all the vortices A, B, C, D,

and E �we always move only one vortex while all others

relax to minimize the free energy�. For any of the five vor-

FIG. 4. �Color online� The evolution of vortex configurations for

L=15–18 �a�–�d�, and for �e� L=25 to �f� 29, in a superconducting

square with a=3�. For vorticities ��a�–�d�� L=15–18, the outer-

most shell formed by 12 vortices is complete �commensurate with

the square boundary�, and with increasing magnetic-field vortices

fill inner shells. Note that when the inner shell also becomes com-

plete ��b� L=16, state �4,12��, the third shell starts to form for �c�
L=17. For states with larger vorticities, e.g., �e� L=25 and �f� L

=29, the vortex patterns are very close to a triangular lattice which

is distorted near the boundary.
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tices, this procedure leads to a barrier between the two states.

We notice that there are two possible pentagonlike configu-

rations �5� which share different symmetry axes with the

square, see Figs. 5�a� and 5�b�. The difference of their free

energy is less than 10−4. In Fig. 5�a� we see that the motion

of vortex C is accompanied with the lowest-energy barrier.

This is because vortices A, B, D, and E are already close to

their final positions in state �1,4�. Moving vortex B or D

leads to a higher energy barrier. Finally, moving vortex A or

E to the center is associated with the highest barrier and

passing over a saddle point �jump in G-G0�. Then we move

the central vortex of state �1,4� back to its initial positions in

state �5�. The highest-barrier transitions �i.e., curves A and E�
show a hysteretic behavior which is an indication of meta-

stable states.

In Fig. 5�b�, we show the results of the calculation of the

free energy as a function of displacement of a vortex, for a

different modification of the state �5�, i.e., when the vortex

configuration has the symmetry axis coinciding with the di-

agonal of the square �cf. Fig. 5�a��. Note that these two con-

figurations of state �5� have practically the same free energy

and thus equal probability to appear in experiment. Moving

vortex E, which is situated on the diagonal of the square �see

the left inset in Fig. 5�b��, is accompanied by the highest

energy barrier compared to moving other vortices. The re-

verse process �i.e., moving the central vortex to position E�
leads to a very high potential barrier, and the pentagonlike

state cannot be restored unless a random �thermal� force is

added to break the symmetry. Moving vortex B or C is ac-

companied by the lowest-energy barrier. State �1,4� has a

lower free energy than state �5�. According to our calcula-

tions, it is the ground state for L=5.

Similar transitions are found between two- and three-shell

vortex configurations for L=17 �see Fig. 6�. Twelve vortices

form the outermost shell and the other five can form either a

one-shell or two-shell configurations similarly as state L=5.

Again, we move one of the five vortices in the inner shell of

the state �5,12� to the center of the square. The analysis of

the free energy shows that the difference of the free energy

between the two states ���G��10−5� is much smaller com-

pared to the states for L=5 ���G��10−3�. The reason for this

is that for L=17, the twelve vortices in the outermost shell

can adjust themselves to lower the free energy, which create

FIG. 5. �Color online� The change of the free energy �G-G0�
versus the displacement R of one of the vortices in the initial

pentagon-shaped configuration from its initial position toward the

center �two different lines for each configuration correspond to in-

creasing and decreasing �R as shown by the arrows in �a��. G0 is

the free energy associated with external magnetic field and the vor-

tex cores �term “4” in Eq. �15��, which is independent of the posi-

tions of the vortices. The two stable states, the pentagonlike state

�5� and the square-symmetric state �1,4�, are shown in the insets.

The vortices are labeled by A, B, C, D, and E. Two different sym-

metry axes of the configuration �5� are shown by the dash-dotted

line in the insets of �a� and �b�, respectively. The side of the square

is a=3�. In both cases, the configuration with one vortex in the

center �1,4� has a lower energy than the pentagonlike pattern �5�.
Note that the curves for B and D �and for A and E� are slightly

different due to the fact that the configuration �5� is not perfectly

aligned with respect to the symmetry axes.

FIG. 6. �Color online� The change of the free energy �G-G0�
versus the displacement R of one of the vortex in the inner shell of

the state �5,12� from its initial position toward the center; G0 is

defined in the caption of Fig. 5. The change in the free energy due

to the movement of the vortices in the inner shells �i.e., �5,12� →

�1,4,12�� is damped by the movement of the vortices in the outer-

most shell which act as a “softer” wall than the boundary �in the

case of the transition �5� → �1,4�, see Fig. 5�. The movement of the

vortices in the outmost shell causes more saddle points. The two

states, �5,12� and �1,4,12�, have very close free energies.
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much “softer” walls for the five vortices in the inner shell

than the sample boundary. Thus, the change of the free en-

ergy due to the movement of the vortices in the inner shells

can be more or less compensated by the movement of the

vortices in the outermost shell.

IV. EXPERIMENTAL OBSERVATION OF VORTEX

CONFIGURATIONS IN MESOSCOPIC NB SQUARES

To visualize the corresponding vortex configurations ex-

perimentally we used the well-known Bitter decoration tech-

nique which is based on in situ evaporation of 10–20 nm Fe

particles that are attracted to regions of magnetic field cre-

ated by individual vortices and thus allow their visualization

�details of the technique are described elsewhere28�. The me-

soscopic samples for this study were made from a 150 nm

thick Nb film deposited on a Si substrate using magnetron

sputtering. The film’s superconducting parameters were:

transition temperature Tc=9.1 K; magnetic-field penetration

depth ��0��90 nm; coherence length ��0��15 nm; and

upper critical field Hc2�0��1.5 T. Using e-beam lithogra-

phy and dry etching with an Ar ion beam through a 250 nm

thick Al mask, the films were made into arrays of small

square “dots” of four different sizes, with the side of the

square, a, varying from 1 to 5 �m. Each array typically

contained 150–200 such dots. A whole array was decorated

in each experiment, allowing us to obtain a snapshot of up to

100 vortex configurations in dots of the same shape and size,

produced in identical conditions �same applied magnetic

field H and temperature T, same decoration conditions�. It

was therefore possible to simultaneously visualize vortex

configurations for several different vorticities L �in samples

of different sizes� and also to gain enough statistics for quan-

titative analysis of the observed vortex states in terms of

their stability, sensitivity to sample imperfections, and so on.

Below we present the results obtained after field cooling to

T�1.8 K in perpendicular external fields ranging from H

=20 to 60 Oe. We note that the above temperature �1.8 K�
represents the starting temperature for the experiments. Ther-

mal evaporation of Fe particles usually leads to a temporary

increase in temperature of the decorated samples but the in-

crease never exceeded 2 K in the present experiments, leav-

ing the studied Nb dots in the low-temperature limit, T

�0.5 Tc.

Figure 7 shows examples of vortex configurations ob-

served for vorticities L=2–13. The images shown in Fig. 7

were obtained in several different experiments and on

samples of different sizes �see figure caption�. We note that

the same vorticity L could be obtained for different combi-

nations of the applied field and the size of the square, e.g.,

L=6 was found for H=60 Oe, a=2 �m, and H=40 Oe, a

=2.5 �m—see images in Figs. 8�b� and 7�e�, respectively.

Sometimes two different vorticities were found in the same

experiment for nominally identical squares, e.g., both L=9

and L=10 were found for H=35 Oe and a=3.5 �m—see

images in Figs. 7�g�–7�i�. The latter finding can be explained

by slightly different shapes of individual squares or by an

extra vortex captured during field cooling; see Ref. 7 for a

more detailed discussion, where the same effect was found

for circular mesoscopic disks. Overall, the vorticity as a

function of the applied field H showed the same behavior as

that found earlier for circular disks,7 i.e., the square dots

showed strong diamagnetic response for small vorticities L

�10 �also observed earlier in disks with a strong disorder11�
while for larger vorticities the extra demagnetization per vor-

tex saturated at �
 /
�0.2, in excellent agreement with ear-

lier numerical studies.12

Most of the vortex configurations shown in Fig. 7 repre-

sent just one of several possible states for each vorticity

�with the exception of images �h� and �i� which both corre-

spond to L=10�. Indeed, for most vorticities we found more

than one well-defined vortex configuration and some of these

were found with almost the same probability, indicating that,

in agreement with theory described above, vortices in meso-

FIG. 7. Scanning electron microscope �SEM� images of vortex

configurations observed experimentally for vorticities L=2–13.

Vortex positions are indicated by clusters of small white �Fe� par-

ticles. �a� L=2; sample size �side of the square� a�2.5 �m, H

=20 Oe; �b� L=3; a�2 �m, H=35 Oe; �c� L=4; a�2.4 �m,

H=40 Oe; �d� L=5; a�2.4 �m, H=40 Oe; �e� L=6; a

�2.5 �m, H=40 Oe; �f� L=7; a�2 �m, H=60 Oe; �g� L=9;

a�3.5 �m, H=35 Oe; �h� L=10; a�3.5 �m, H=35 Oe; �i� L

=10; a�3.5 �m, H=35 Oe; �j� L=11; a�2.5 �m, H=60 Oe;

�k� L=12; a�2.6 �m, H=60 Oe; �l� L=13; a�5 �m, H

=20 Oe.
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scopic squares form not only the ground, but also metastable
states, and the energies of the latter are often very close to
the energy of the ground state. This conclusion follows from
our statistical analysis of all observed vortex configurations
which resulted in histograms such as those shown in Fig. 8
for L=2, 4, 5, and 6. For L=2 and 4, the most frequently
observed states agree with the ground states found theoreti-
cally �see Figs. 3�b� and 3�d�� and the metastable states ap-
pear to have similar energies, as they are found with similar
probabilities. As expected, both states for L=2 and two of
the states for L=4 have vortices sitting along the symmetry
axes of the square, with the diagonal axis being slightly pref-
erable. The third state for L=4 �on the right-hand side in Fig.
8�a�� is more unusual in that the vortices are sitting in the
apexes of a rhombus that is slightly rotated with respect to
the diagonal of the square. Although this particular state did
not come out in the numerical simulations,29 it was found
with a high probability in experiment and, moreover, the

rhombus-based vortex configurations were also found for

larger vorticities both in experiment �see, e.g., Fig. 7�l� for

L=13� and theory �see rhombic inner shells for L=12 and 16

in Figs. 3�l� and 4�b�, respectively�.

For L=6, one of the two most frequently observed states
�also shown in Fig. 7�e�� corresponds exactly to the ground
state found numerically �Fig. 3�f�� but the state found in
experiment with the highest probability is the more symmet-
ric two-shell configuration with the outer shell having the
same pentagon shape as that found for L=5. This L=6 state
can be viewed as a direct precursor of the two-shell states for
L=7 and 9, which were found as ground states both in theory
�Figs. 3�g� and 3�i�� and experiment �Figs. 7�f� and 7�g��. For
L=5, two possible states—a two-shell configuration with one
vortex in the center �1,4� and four vortices in the corners and
a pentagonlike configuration �5�—were found in experiment
and in numerical simulations. However, numerical simula-
tions found a slightly lower energy for the two-shell configu-
ration �1,4� �see Fig. 5�, while in experiment the pentagon-
shaped configuration was found to appear more frequently.
This discrepancy is unlikely to be related to the nonideal
character of the experimental squares: As we show below,

neither the roughness of the boundaries, nor the presence of

some pinning in the experimental samples have any notice-

able effect on the observed vortex configurations, due to

strong confinement �see, e.g., Fig. 2�. It is possible that, due

to the very small difference in free energies between the two

states �which becomes practically negligible for samples

with a���, the vortex configurations for L=5 are particu-

larly sensitive to the exact sample size �in experiment the

squares are almost ten times larger than in the analysis of

Fig. 5�. The sensitivity of vortex configurations to sample

size was studied in detail for circular disks �see Ref. 9� and

was indeed found to affect the stability of some �but not all�
vortex states. For higher vorticities, L=7–13, we found well-

defined two-shell configurations most of which correspond to

the stable configurations found numerically. The outer shell

in these configurations was either square �see Figs. 7�g�–7�k�
for L=9–12�, circular �L=7, Fig. 7�f�� or rhombic �L=13,

Fig. 7�l�� with vortices of the inner shell either sitting along

one of the symmetry axes of the square, as for L=2, or

forming a triangle, as for L=3. For certain matching vortici-

ties �L=9 and 12�, the observed two-shell configurations cor-

respond to a square vortex lattice.

We note that the irregularities of the sample shape and

uneven boundaries of some of our dots have, surprisingly, no

discernible effect on the observed configurations of vortices

�i.e., the vortices form regular, symmetric patterns�. For ex-

ample, the dots in Figs. 7�j� and 7�k� have especially rounded

corners and very rough boundaries but the vortex configura-

tions have square symmetries. Similarly, the same L=6 state

was found in dots with rounded corners, as in Fig. 7�e�, and

in almost perfect squares, as in the image shown in Fig. 8�b�.
Furthermore, we found that for a given value of L the ob-

served configurations did not depend on the sample size or

the applied field, at least within the studied field range—see

Fig. 9 for an example.

Finally, we compared the experimentally observed posi-

tions of vortices within the square dots with those found

numerically and found an excellent agreement, as demon-

strated by Fig. 9. Here we show a superposition of theoreti-

cal images from Fig. 3 and experimental images for the same

vortex configurations. Two of the images �Figs. 9�d� and

9�e�� compare the same theoretical configuration with experi-

FIG. 8. Histograms of different vortex states observed for vor-

tices L=2, 4 �for squares with a=2 �m� �a� and L=5 �for squares

with a=2 �m� and 6 �b� �a=2 �m and a=2.5 �m�. SEM images

of the corresponding vortex configurations are shown as insets.
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mental images obtained on dots of different sizes in different

applied fields �H=40 Oe, a=2.5 �m and H=60 Oe and a

=2 �m, respectively� illustrating the point made above that

the vortex configurations do not depend on the sample size

and/or applied field.

Overall, despite the inevitable presence of some disorder

in our samples, which was not taken into account in the

calculations, there is a very good agreement between the

observed vortex configurations and the calculated vortex pat-

terns. The main features of the vortex states revealed by

experiment is formation of vortex shells with predominantly

square symmetry for vorticities L�7 and vortex patterns fol-

lowing the main symmetry axes of the square for small vor-

ticities L�4. The two intermediate vorticities L=5 and 6

appear to be a special case: Here the mismatch between the

square shape of the dot and the natural symmetry of the

vortex lattice is more difficult to accommodate and the pre-

ferred vortex configurations turned out to be the pentagon-

shaped shell for L=5 and three different patterns for L=6,

none of which has the fourfold symmetry of the square.

V. CONCLUSIONS

We performed a systematic study of vortex configurations

in mesoscopic superconducting squares and compared the

results with vortex patterns observed experimentally in

micrometer-sized Nb squares using the Bitter decoration

technique.

In the theoretical analysis we relied upon the analytical

solution of the London equation in mesoscopic squares by

using Green’s-function method and the image technique. The

stable vortex configurations were calculated using the tech-

nique of molecular-dynamics simulations simulating the

stimulated annealing process in experiments.

We revealed the filling rules for squares with growing

number of vortices L when gradually increasing the applied

magnetic field. In particular, we found that for small L vor-

tices tend to form patterns that are commensurate with the

symmetry of the square boundaries of the sample. The filling

of “shells” �similar to mesoscopic disks� occurs by periodic

filling of the outermost and internal shells. With increasing

vorticity, the outermost shell is filled until it is complete �i.e.,

the number of vortices in it becomes 4N, where N is an

integer, i.e., commensurate with the square boundary�. Then

vortices fill internal shells until the number of vortices be-

comes large enough to create the outermost shell with 4�N
+1� vortices. Again, after that vortices fill internal shells.

With increasing vorticity, the shell structure becomes less

pronounced, and for large enough L the vortex patterns in

squares becomes a triangular lattice distorted near the bound-

aries.
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