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We consider the quasi-two-dimensional two-component Bose-Einstein condensates with Rashba spin-orbit

(SO) coupling in a rotating trap. The rotation angular velocity couples to the mechanical angular momentum,

which contains a noncanonical part arising from SO coupling. The effects of an external Zeeman term favoring

spin polarization along the radial direction is also considered, which has the same form as the noncanonical part

of the mechanical angular momentum. The rotating condensate exhibits a variety of rich structures by varying

the strengths of the trapping potential and interaction. With a strong trapping potential, the condensate exhibits

a half-quantum vortex-lattice configuration. Such a configuration is driven to the normal one by introducing the

external radial Zeeman field. In the case of a weak trap potential, the condensate exhibits a multidomain pattern

of plane-wave states under the external radial Zeeman field.
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I. INTRODUCTION

Spin-orbit (SO) coupling plays an important role in various

aspects in condensed-matter systems, including spintronics

[1] and topological insulators [2,3]. However, SO effects

in bosonic systems have not attracted much attention until

recently. For example, 4He atoms are spinless and ultracold

bosons with nonzero spin are too heavy to exhibit relativistic

SO coupling. This situation is significantly changed by the

recent experimental progress in both semiconductor exciton

systems and cold-atom systems with synthetic gauge fields.

Excitons are composite bosons of electrons and holes. Their

effective masses are light enough to exhibit relativistic SO

coupling. Exotic SO-coupled condensates with stripe- and

Skyrmion-type spin texture configurations were theoretically

predicted by Wu and Mondragon-Shem [4]. Excitingly, spin

textures have been observed in the SO coupled exciton

condensates by High et al. [5]. On the other hand, many

theoretical schemes have been proposed in ultracold atomic

systems to create artificial non-Abelian gauge fields by using

laser-atom interactions [6–17], which generate effective SO

coupling without special relativity.

It has been shown that bosons with SO coupling support

exotic ground states beyond the “no-node” theorem [18–21].

This theorem states that the ground-state wave functions of

bosons under very general conditions are positive definite,

which is essentially a direct result of the Perron-Frobenius

theorem of matrix analysis [22]. However, the linear coupling

to momentum in the SO coupling invalidates the proof of

the no-node theorem. For example, spontaneous time-reversal

symmetry-breaking states exhibiting spin-density wave or-

dering [4,19,23–26] and spontaneous half-quantum vortex

configuration [4,19] have been studied. Both of them exhibit

either nodal or complex-valued condensate wave functions,

and thus are beyond the no-node theorem. Especially, the

realization of SO-coupled Bose-Einstein condensates (BEC)

of 87Rb [27,28] provides a valuable opportunity to investigate

this type of exotic physics, experimentally. Another way to

bypass no-node theorem is to employ the metastable excited

states, in which no-node theorem does not apply either. For

example, cold alkali-metal bosons have been pumped into

the high orbitals in optical lattices [29,30]. It was shown that

interactions among p-orbital bosons obey an “orbital Hund’s

rule,” which generates a class of orbital superfluid states with

complex-valued wave functions breaking time-reversal (TR)

symmetry spontaneously [31–36].

On the other hand, vortex properties in rotating BECs are

a characteristic topological feature of superfluidity, including
4He and ultracold bosons, which have been studied extensively

both experimentally and theoretically [37]. For spinor BECs

and Cooper pairing superfluidity with nonzero spin (e.g.,

superfluid 3He A and B phases), exotic spin textures and

fractional quantized vortices can form under rotation [38].

However, to our knowledge, the vortex properties of rotation

SO-coupled BECs have not been thoroughly investigated

before.

In this paper, we investigate the rotating SO-coupled

condensate in a quasi-two-dimensional (2D) harmonic trap

with the angular velocity along the z axis. The angular

velocity couples to the mechanical angular momentum, whose

noncanonical part behaves like a Zeeman term polarizing spin

in the radial direction. We also consider the effect from an

external Zeeman term with the same form. The single-particle

ground states in the absence of interaction can have nonzero

vortex numbers, which differ by one in the spin-up and -down

components as a result of SO coupling. With many-body

interactions, the rotating condensate exhibits a variety of

configurations depending on the strengths of the trapping

potential and interaction. If the trapping potential is strong and

interaction is relatively weak, a half-quantum vortex lattice

is formed under rotation. Its spin configuration is a lattice

of Skyrmions. The condensate of the spin-up component

breaks into disconnected density peaks, which overlap the

vortex cores of the spin-down condensate. The presence of

the external Zeeman field drives the system from a half-

quantum vortex-lattice state to a normal quantum vortex-lattice

state. In the case of a weak trap potential, the condensate

favors a plane-wave state or a two-plane-wave state with

twist phase profiles under rotation. With the external Zeeman
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field, the condensate develops a multidomain configuration of

plane-wave states. The configuration of wave vectors can be

clockwise or counterclockwise depending on the direction of

the field.

The rest part of the paper is organized as follows. The

model Hamiltonian of the rotating Rashba coupled BEC is

introduced in Sec. II. The solution of the single-particle wave

function is presented in Sec. III. The rich structures of the

vortex configurations with spin textures are given in Sec. IV.

Conclusions are given in Sec. V.

II. MODEL HAMILTONIAN

We consider the quasi-2D two-component BECs with

Rashba SO coupling in the xy plane subject to a rotation

angular velocity �z along the z direction. The free part of the

Hamiltonian of Rashba SO coupling under rotation is defined

through the standard minimal coupling as

H0 =
∫

d3�r ψ†
μ(�r)

[

1

2M
(−ih̄ �∇ + Mλẑ × �σ − �A)2 − μ

+Vext(�r) − 1

2
M�2

z(x2 + y2)

]

μν

ψν(�r), (1)

where �σ = σx x̂ + σy ŷ + σzẑ with σx,y,z the usual Pauli ma-

trices; λ is the Rashba SO coupling strength with the unit of

velocity; μ,ν take values of ↑,↓ as pseudospin indices; �A =
(−M�zy,M�zx,0) is the vector potential from the Coriolis

force; Vext(�r) = 1
2
MωT (x2 + y2) is the external harmonic

trapping potential; the last term in Eq. (1) is the centrifugal

force. The interaction part Hint is defined as

Hint = gμν

2

∫

d3�r ψ†
μ(�r)ψ†

ν (�r)ψν(�r)ψμ(�r). (2)

We assume the equal intracomponent interactions as g↑↑ =
g↓↓ = g, and intercomponent interaction g↑↓ = gc with c a

constant coefficient.

Due to the presence of SO coupling, �z couples to

the mechanical angular momentum Lmech, rather than the

canonical one Lz. We extract this coupling from Eq. (1) as

Hrot = −�z

∫

d3�r ψ†
μ(�r)[Lmech]μνψν(�r), (3)

where

Lmech = Lz + Mλ(xσx + yσy). (4)

Therefore, rotation in the presence of SO coupling induces an

effective magnetic-field distribution �BR(�r) = �zMλ(x,y,0) in

the xy plane. As we will see below, this noncanonical part in

Lmech plays a crucial role during the understanding of the

single-particle ground-state properties.

For later convenience, we also introduce an external

spatially dependent Zeeman term as

HB = −
∫

d3r ψ†
μ(�r)(Bex,xσx + Bex,yσy)μνψν(�r), (5)

where �Bex(�r) = (B0x,B0y,0) varies linearly in the xy plane.

Such a term can tune the strength of the noncanonical part

of the mechanical momentum, which renders the model

adjustable in a wider range of the parameter space.

Many efforts have been made to implement the above

Hamiltonian in ultracold atomic gases. Several schemes have

been proposed to generate Rashba SO coupling [6,16,17]

with tunable SO-coupling strength. In particular, proposals in

Refs. [16,17] have the advantage to overcome the drawback of

the spontaneous emission in the tripod scheme. The spatially

dependent Zeeman term HB can be generated through coupling

two spin components using two standing waves in the x and y

directions with a phase difference of π/2. The resulting Rabi

coupling is written as

−�[sin(kLx) + i sin(kLy)]ψ
†
↓(�r)ψ↑(�r) + H.c. (6)

In the region of x,y ≪ 2π/kL, it reduces to the desired form

of Eq. (5) with B0 = �kL.

III. SINGLE-PARTICLE SPECTRA

We start with the noninteracting Hamiltonian H0 + HB to

gain some intuition. The confining trap is characterized by

the length scale l = √
h̄/Mω. We define another length scale

lso = h̄/(Mλ) from SO coupling. The ratio between them, α =
l/ lso, is a dimensionless parameter to describe the strength of

SO coupling. For the typical setup used in the NIST group

[28], α ∼ 10. Below, we vary the values of α from 0 to 10.

Experimentally, the regime of small α can be reached by using

a deeper trap potential.

Without the confining potential and rotation, the single-

particle eigenstates are of the form

ψ±,�k = ei�k·�r | ± ,�k〉, (7)

where | ± ,�k〉 = 1√
2
(1, ∓ eiθ�k )T and θ�k is the azimuthal an-

gle of �k. Since the condensate is uniform along the ẑ

direction, we always have kz = 0 for the ground state. The

corresponding dispersion relations come into two branches

ǫ± = h̄2(k2 ± 2k0k)/(2M), with k0 = 1/lso. Therefore, the

single-particle ground states are infinitely degenerate along

a ring in momentum space with radius k0.

The external harmonic potential has the important effect

of lifting the degeneracy along the Rashba ring, as pointed

out in Ref. [4]. In the momentum representation, the harmonic

potential becomes 1
2
Mω2(ih̄ �∇�k − �A′)2 in the lower branch and

couples different plane-wave states around the Rashba ring,

where �A′(�k) = i〈ψ−,�k| �∇�k|ψ−,�k〉 corresponding to a π flux at

the origin. Therefore, the motion along the Rashba ring is

quantized and maintains time-reversal (TR) invariance. The

single-particle spectra exhibit the fermion-type Kramer de-

generacy with T 2 = −1. The lowest single-particle eigenstates

carry jz = ± 1
2
. As shown in Ref. [4], the angular quantization

gives rise to the dispersion on jz as

1

α2
|jz|2h̄ωT . (8)

On the other hand, the radial quantization is the same as in the

ordinary harmonic trap, which is at the order of h̄ωT [4]. In the

strong SO-coupling limit, i.e., α ≫ 1, the dispersion over jz is

nearly flat. Thus the radial quantum number can be viewed as

a band index, and the quantum number jz marks each state in

the band.
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To be more precise, we define two independent annihilation

operators as âd = 1
2
(z̄ + 2∂z) and âg = 1

2
(z + 2∂z̄), where z =

(x ± iy)/l and z̄ is the complex conjugate of z [37,39]. The

single-particle Hamiltonian can be rewritten in the unit h̄ω as

H0 + HB = (1 − ρ)N̂d + (1 + ρ)N̂g + 1

+α{[(1 − κ)âd − (1 + κ)â†
g]σ+ + H.c.}, (9)

where

ρ = �z/ω, N̂d = â
†
d âd , N̂g = â†

g âg,

σ+ = 1
2
(σx + iσy), (10)

and κ = γ + ρ with γ = B0/(Mωλ). The corresponding

canonical angular momentum reads Lz = h̄lz = h̄(N̂d − N̂g).

The κ term represents the combined effect from the noncanon-

ical part of Hrot and the Zeeman term HB .

We diagonalize Eq. (9) to obtain the single-particle spectra,

and present the solutions in the coordinate representation, in

which the ground-state wave function reads as

eimφ

(

f (r)

g(r)eiφ

)

. (11)

The total canonical angular momentum jz = lz + 1
2
σz = m +

1
2

remains a conserved quantity; thus the canonical orbital

angular momenta in the two spin components differ by one due

to SO coupling. Figure 1 shows m as a function of the rotational

angular velocity ρ for different external magnetic field �Bex at

α = 4. In the absence of �Bex, the total angular momentum

jz = − 1
2

for small ρ and decreases when ρ → 1. Introducing

the field �Bex changes the ground state dramatically. If �Bex is

parallel to the induced magnetic field �BR , i.e., γ > 0, jz first

decreases then increases with the rotational angular velocity

ρ. However, for γ < 0, jz increases with ρ monotonically.

The above results can be understood as follows. In the case

of �z = 0, the two states φjz=± 1
2

are degenerated due to TR

symmetry. Since only one of the two spin components carries a

vortex, the ground state can be viewed as a half-quantum vortex

state with the density profiles of two spin components shown

in Fig. 2. The spin-density distributions exhibit Skyrmion-type

0.5 0.6 0.7 0.8 0.9

-4

-2

0

2

4

6

m

=0.15

=0.0

=-0.1

FIG. 1. (Color online) Canonical angular momenta m of the

single-particle ground states described in Eq. (11) vs ρ for γ = −0.1,

0.0, and 0.15, respectively.

FIG. 2. (Color online) Density profiles of spin-up and -down

components for the single-particle ground state φjz= 1
2

with the

parameter values of α = 4 and ρ = γ = 0. Only the spin-down

component carries a vortex. The corresponding density profile for

φjz=− 1
2

is obtained by interchanging the spin indices. Here we use the

length unit defined by the harmonic trap.

texture configurations, as depicted in Figs. 3(a) and 3(b).

Intuitively, one might expect that an infinitesimal �z selects

the φjz= 1
2

state, since it has lower rotational energy −�z〈Lz〉.
However, the presence of the induced magnetic field �BR

contributes another term to the total rotational energy of the

system as

〈Hrot〉 = −�z〈Lz〉 − �BR · 〈�σ 〉. (12)

The spin pattern 〈�σ 〉 for φjz= 1
2

in the xy plane is antiparallel to

�BR near the trap center [see Fig. 3(a)], which is energetically

unfavorable. Therefore, when − �BR · 〈�σ 〉 dominates, jz of the

ground state can be − 1
2

for a rotating trap. As �z increases,

the condensates expand, which also favors the magnetic energy

a

jz

1

2
Spin Density Vector

2 1 0 1 2

r l

jz

1

2
Spin Density Vector

2 1 0 1 2

r l

b

FIG. 3. (Color online) Spin-density vector distributions along the

x axis lie in the xz plane as shown in (a) jz = 1

2
and (b) jz = − 1

2
with

α = 4 and ρ = γ = 0. They are time-reversal counterparts to each

other, and both exhibit the Skyrmion-type texture configuration.
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term. The total angular momentum jz can decrease even when

ρ increases. Such a counterintuitive effect for the ground state

constitutes a characteristic feature of SO-coupled BECs in

a rotating trap. Introducing the external magnetic field �Bex

strengthens or weakens the effect induced by �BR depending

on its direction, which explains the different behaviors of m

with ρ for γ > 0 and γ < 0, as shown in Fig. 1.

IV. VORTEX CONFIGURATIONS OF ROTATING

SO-COUPLED BEC

Interaction effects in the absence of rotation have been

investigated extensively in the literature, and are summarized

below. In the case of a strong trapping potential and weak

interaction, the single-particle energy dominates. The conden-

sate maintains rotational symmetry but spontaneously breaks

TR symmetry [4,19]. One spin component carries one vortex

and the other is nonrotating; thus the condensate possesses

a half-quantum vortex. The total angular momentum of each

particle is |jz| = 1
2
. In momentum space, this kind of ground

state distributes uniformly around the Rashba ring. On the

contrary, if the trapping potential is weak and interaction

is strong, the condensate breaks rotational symmetry. The

condensate is approximately the superposition of plane-wave

states modified by the cylindrical boundary condition. Results

based on the Gross-Pitaevskii (GP) equation show that the

spin-spiral condensate with two counterpropagating plane

waves is favored at c > 1, while a single plane wave is

favored at c < 1 [23–26]. These two different condensates are

degenerate for the spin-independent interactions, i.e., c = 1.

However, calculations including quantum fluctuations of the

zero-point energy show that the spin-spiral state wins at c = 1,

and thus shifts the phase boundary to a smaller value of c [19].

In this section, we study the vortex configurations of SO-

coupled BECs in both cases. The results of strong trapping

potentials and weak interactions are presented in Sec. IV A,

and those of the opposite limit are presented in Sec. IV B.

A. Vortex-lattice configurations with a strong trapping potential

In this subsection, we turn on rotation and consider a strong

trapping potential with a small value of α. The ground-state

condensate is obtained by numerically solving the following

SO-coupled GP equation. We assume that the condensate is

uniform along the z axis, and define the normalized condensate

wave function (ψ̃↑,ψ̃↓)T satisfying
∫

d2�r(|ψ↑|2 + |ψ↓|2) = 1.

The dimensionless version of the GP equation can then be

written as

μ

h̄ω
ψ̃↑ = T̂↑νψ̃ν + β(|ψ̃↑|2 + c|ψ̃↓|2)ψ̃↑, (13a)

μ

h̄ω
ψ̃↓ = T̂↓νψ̃ν + β(|ψ̃↓|2 + c|ψ̃↑|2)ψ̃↓, (13b)

where

T̂ = −1

2
l2

(

∂2
x + ∂2

y

)

+ αl(−i∂yσx + i∂xσy) + 1

2l2
(x2 + y2)

− ρ(−ix∂y + iy∂x) − ακ

l
(xσx + yσy), (14)

5 0 5

5

5

0

MaxMin

y

x

(d)

(g)

(f)

(e)

(c)

(b)

(a)

FIG. 4. (Color online) From left to right: the density and phase

profiles of spin-up and -down components with parameter values of

α = 0.5, β = 10, ρ = 0.97, and c = 1. From (a) to (g), γ is taken

as 0.5, 0.25, 0.1, 0.0, −0.1, −0.25, and −0.5, respectively. At small

values of |γ | in (c)–(e), a half-quantum vortex lattice is formed near

the trap center. The spin-up component breaks into several density

peaks, and the low-density region is connected. By increasing the

magnitude of |γ | [(b) and (f)], the half-quantum vortex lattice evolves

to the normal vortex lattice. For the large value of |γ | = 0.5 [(a) and

(g)], the condensates show a lattice configuration around a ring. The

black circle with an arrow indicates the direction of the circulation

around the vortex core. The unit of length for the figures is l.

where μ is the chemical potential; the interaction parameter

β = gN/(h̄ωlz); N is the particle number in the condensate;

lz is the system size along the z direction.

The density and phase configurations at various parameters

are shown in Figs. 4(a)–4(g), which exhibit rich structures

of vortex lattice. We look at Fig. 7(d) in the absence of �Bex,

i.e., γ = 0. The density distribution of the spin-up component

is composed of several disconnected density peaks near the

trap center. On the other hand, the low-density region is

connected in contrast to the usual vortex-lattice structure, in
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FIG. 5. (Color online) Ground-state spin-density vector of

Fig. 7(d) with parameter values of α = 0.5, β = 10, ρ = 0.97, c = 1,

and γ = 0. The projection of 〈�σ 〉 in the xy plane is shown as black

vectors. A color map is used to illustrate the 〈σz〉 component. The

unit of length for the figure is l.

which the low-density region of vortex cores is disconnected.

Nevertheless, we identify the locations of the singular points

of the phase distribution pattern around which the phase winds

with an integer number. These singular points are squeezed out

to the edge of the condensate. On the other hand, the spin-down

component exhibits the regular vortex-lattice structure, whose

vortex cores overlap with the density peaks of the spin-up

component. Around each vortex core, the two spin components

show a half-quantum vortex configuration as those depicted in

Fig. 2. Therefore, the condensates of two components together

exhibit a lattice of half-quantum vortices. The corresponding

spin-density vector 〈�σ 〉 shows a Skyrmion-lattice structure, as

shown in Fig. 5.

Now we turn on the external Zeeman term, Eq. (5). For

both cases of γ > 0 and γ < 0, at small values of |γ |, the half-

quantum vortex lattice still forms, which is similar to that at

γ = 0 as depicted in Figs. 4(b), 4(c), and 4(e). As we increase

the strength of �Bex, i.e., |γ |, more vortices appear, as depicted in

Figs. 4(b) and 4(f). The condensates of the spin-up component

gradually evolve to the usual vortex-lattice configuration. The

high-density region becomes connected, while the density

minima become disconnected vortex cores. On the other hand,

the condensates of the spin-down component remain the usual

vortex-lattice configuration. For even larger values of |γ |, the

ring-shaped vortex lattice with a giant vortex core is observed

as shown in Figs. 4(a) and 4(g). This is because the combined

effect of the harmonic trap Vext(�r) and the additional Zeeman

term HB shifts the potential minimum to a ring in real space

with the radius of r = αγ l = |B0|/(Mω2). The condensates

of both spin-up and -down components distribute around this

ring and from a giant vortex configuration. Additionally, the

Zeeman term grows linearly as r increases and favors in-plane

polarization of �S. As a result, the vortex cores of the spin-up

and -down components overlap with each other.

We stress that, in all cases in Figs. 4(a)–4(g), the vortex

numbers in the spin-up and -down components differ by one,

which is a characteristic feature brought by SO coupling. As

shown in Eq. (11), for the eigenstate of the single-particle

Hamiltonian with jz = m + 1
2
, the two spin components carry

different canonical orbital angular momenta m and m + 1,

respectively. In the presence of interaction, the giant vortex

splits into a lattice of single-quantum vortices in each spin

component. Nevertheless, the total vortex number in each

component remains unchanged and differs by one.

B. Weak trapping potential

In this subsection, we study the rotating SO-coupled BEC

with a weak trapping potential and strong interactions.

Figure 6 shows the density and phase profiles of each

spin component in the absence of external magnetic field
�B, i.e., γ = 0. In Fig. 6(a) with c < 1, the condensate is a

twisted plane-wave state subject to the cylindrical boundary

condition. The spin polarization mainly lies in the xy plane. In

the representation eigenbasis of sz, the spin-up and -down

components show nearly the same distributions of density

and phase profiles. Nevertheless, the phase distribution is

distorted from the exact plane-wave state. On the other

hand, as depicted in Fig. 6(b), at c > 1 the spin-spiral-like

condensate with two counterpropagating plane waves is still

favored with twisted phase profiles. As shown in Fig. 6(c),

increasing the angular velocity ρ gives rise to an intermediate

configuration between the distorted spin-spiral and the single-

plane wave states. In all the patterns, vortices locate either

on the edge of the condensate or the density minima of each

component.

Next, we consider the case of γ �= 0. Introducing HB

significantly enriches the structures of the rotating SO-coupled

condensates. We only consider a small angular velocity at

ρ = 0.1 for the reason of numerical convergence, but vary the

(c)

(b)

(a)

4

4

0

y

4 0 x 4

FIG. 6. (Color online) From left to right: the density and phase

profiles of spin-up and -down components with the parameter values

of α = 2.5, β = 40, and γ = 0. (a) c = 0.6 and ρ = 0.2; a plane-

wave-like state is obtained with a distorted phase pattern; (b) c =
1.2 and ρ = 0.2; the spin-spiral condensate is favored; (c) c = 1.2

and ρ = 0.5; the condensate exhibits an intermediate configuration

between those of (a) and (b). The color scales for the density and

phase distributions are the same as those in Fig. 4. The unit of length

for the figures is l.

063624-5



XIANG-FA ZHOU, JING ZHOU, AND CONGJUN WU PHYSICAL REVIEW A 84, 063624 (2011)

4 0

4

4

0

y

x
4

(h)

(g)

(f)

(e)

(d)

(c)

(b)

(a)

FIG. 7. (Color online) From left to right: the density and phase

profiles of spin-up and -down components with parameter values of

α = 4, β = 20, c = 1, and ρ = 0.1. From (a) to (h), γ is taken as

0.5, 0.3, 0.1, −0.05, −0.25, −0.35, −0.6, and −0.7, respectively. The

black arrow in each domain represents the local wave-vector direction

of the corresponding plane-wave state, which shows a clockwise or

counter-clockwise configuration depending on the sign of γ . For

sufficiently large values of |γ |, condensates distribute around a ring

in space forming a giant vortex. The color scales for the density and

phase distributions are the same as that in Fig. 4. The black circle

with an arrow indicates the direction of the circulation around the

vortex core. The unit of length for the figures is l.

values of γ from 0.5 to −0.7, as presented in Figs. 7(a)–7(h),

respectively. With small and intermediate values of |γ | [e.g.,

Figs. 7(b)–3(a)], the condensate breaks into several domains.

Inside each domain, the condensate can be approximated as

a single plane-wave state. Vortices center around the local

density minima. The local wave vectors are configured such

that the local spin polarization 〈�S〉 aligns along the local

Zeeman field of �Bex(�r). If γ > 0, at which the external Zeeman

field enhances the rotation induced ones, we obtain a clockwise

configuration of wave vectors. There is one more vortex with

the negative phase winding in the spin-up component than in

the spin-down component, which reflects the “antiparamag-

netic” feature. On the contrary, if γ < 0, the counterclockwise

patterns of wave vectors are favored. Similarly, the spin-down

component also carries one more vortex than the spin-up

component.

At small values of |γ |, two domains are formed as depicted

in Figs. 7(c) and 3(d). The vortices organize into straight

lines between two domains. A variational wave function is

constructed as

ψ̃(�r) ∼
[

f−(x)e−i θ
2 ψ−,−�k0

+ f+(x)ei θ
2 ψ−,�k0

]e−r2/(2a2)

√
πσ

,

(15)

where, without loss of generality, we choose the wave vector
�k0 = k0�ey ; a is the radius of the condensate; θ is the relative

phase difference between the two plane wave domains;

|f−,+(x)|2 = (e±x/W + 1)−1 are smeared step functions with

W the width of the domain wall. We assume σ ≫ (W,1/k0).

Such a variational wave function has a negligible contribution

to the energy term 〈Hrot〉. This explains why the two-domain

pattern is absent by increasing the rotational angular velocity

ρ only, but appears immediately even at small values of |γ |.
With increasing |γ |, the condensate breaks into more and more

domains as in Figs. 7(b), 7(e), and 7(f).

As |γ | increases further, domains connect together as a giant

vortex as shown in Figs. 7(a), 7(g), and 7(h). The condensates

of both spin-up and -down components distribute around a ring

with the radius of α|γ |l and overlap each other. This is a giant

vortex configuration with a texture of spin aligned along the

radial direction. The phase winding numbers of the spin-up

and -down components differ by one due to the SO coupling.

V. CONCLUSION

To summarize, we have considered the vortex structures

of SO-coupled BECs in a rotating trap combined with an

external spatially dependent Zeeman field. In the case of strong

confining potentials and weak interactions, the condensate

exhibits vortex-lattice structures. By varying the magnitude

of the external Zeeman field, the configuration evolves from

a half-quantum vortex lattice to a normal one. In the opposite

limit, the condensate develops multidomain patterns with

the external Zeeman field. Each domain represents a local

plane-wave state, whose wave vector exhibits a clockwise or

counterclockwise configuration. Domain boundaries play the

role of like vortices.

Note added. Recently, we noticed a recent paper studying

the rotating Rashba SO coupled BEC, which considered a

special case in the presence of the extra term of Eq. (5)

with γ = −ρ [40]. Our work has studied the general cases,

including the pure rotation without the external fields, which

corresponds to γ = 0. We have also noticed a recent work

[41] by Radić et al., where the effective Hamiltonians under

different kinds of experimental situations have been discussed.

063624-6
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In that framework, the effective magnetic field �BR appears

when we rotate the entire experimental setup along the ẑ axis.
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