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Abstract

A theoretical investigation has been presented for the linear and nonlinear

properties of obliquely propagating coupled low-frequency electrostatic drift

and ion-acoustic (ED-IA) waves in a strongly magnetized nonuniform

electron–positron–ion plasma in the presence of sheared ion flow. A result

from our linear analysis is that the ED-IA waves can be unstable due to the ion

sheared flow. In addition, it is shown that the nonlinear equations governing

the dynamics of weakly interacting ED-IA waves admit vortex solutions of two

different classes viz. a vortex chain and a double vortex.

1. Introduction

An electron–positron plasma, a fully ionized gas composed
of electrons and positrons having equal masses and charges
with opposite polarity, is considered not only as a building
block of our early universe [1], but also as an omnipresent
ingredient of a number of astrophysical objects, such as
active galactic nuclei [2], pulsar magnetospheres [3], solar
flares [4], fireballs producing �-ray bursts [5], etc. Electron–
positron plasmas are also observed in laboratory experi-
ments in which the positrons can be used to probe the
particle transport in tokamak plasmas [6–8]. Processes of
electron–positron pair production can occur during intense
short laser pulse propagation in plasmas [10]. However,
because of the rather long lifetime of positrons, most of the
astrophysical [1,4,5] and laboratory [6–8] plasmas becomes
an admixture of electrons, positrons, and ions.
Recently, the wave propagation in such a three

component electron–positron–ion (e–p–i) plasma has
attracted much interest [9–14]. Rizzato [9] considered
weakly nonlinear circularly polarized electromagnetic
waves in a cold e–p–i plasma with stationary ions.
Berezhiani et al. [10,11] investigated the nonlinear propa-
gation of intense electromagnetic radiation in a magnetized
e–p–i plasma. Rizzato [9] and Berezhiani et al. [10,11]
found that such a three-component plasma supports
radiation driven humped electrostatic potentials, which
can be used to accelerate charged particles. Berezhiani and
Mahajan [12] described the formation of large amplitude
electromagnetic solitary structures associated with the
radiation driven compressional potentials in a cold e–p–i
plasma. However, in a warm e–p–i plasma one can obtain
acoustic-like waves [13] in which the inertia comes from the
ion mass and the restoring force comes from the thermal
pressures of the inertialess electrons and positrons. Very

recently, Shukla et al. [14] studied the nonlinear interaction
between intense electromagnetic waves and acoustic-
like waves [13] that are reinforced by the ponderomotive
force of electromagnetic waves in an unmagnetized e–p–i
plasma.

In this paper, we consider a magnetized nonuniform
e–p–i plasma with sheared ion flow, and investigate the
linear and weakly nonlinear properties of obliquely
propagating coupled low-frequency electrostatic drift and
ion-acoustic (ED-IA) waves. We shall show here that due
to the effect of sheared ion flow, the linear ED-IA waves
become unstable, and that weakly nonlinear ED-IA waves
can give rise to two different types of vortex structures, viz.
a vortex chain and a double vortex.

2. Governing equations and instability

We consider a strongly magnetized electron–positron–ion
plasma consisting of electrons, positrons, and ions. The
equilibrium magnetic field is assumed to be along the z-
direction, i.e., B0 ¼ ẑzB0; where ẑz is the unit vector along the
z-direction. We limit ourselves to the propagation of elec-
trostatic waves satisfying the conditions ! � !ce;
k2z!ce=kne;npky and !=kz � vte; vtp; where ! is the wave
frequency, !ce ¼ eB0=mec is the electron gyrofrequency,
me is the electron mass, e is the magnitude of the
electron charge, c is the speed of light in vacuum,
kne;np ¼ n�1

e0;p0@ne0;p0=@x; ne0ðnp0Þ is the equilibrium electron
(positron) number density, kyðkzÞ is the yðzÞ component of
the wave vector k, and vteðvtpÞ is the thermal speed of the
electron (positron). The almost inertialess electrons and
positrons can therefore establish an equilibrium in the
potential � of the electrostatic waves under consideration.
The pressure gradient of the electrons or positrons is
therefore balanced by an electrostatic force. This leads to
Boltzmann electron and positron number densities which
are, respectively,

Ne ¼ ne0 exp

�
e�

Te

�
; ð1Þ

Np ¼ np0 exp

�
�

e�

Tp

�
; ð2Þ

where TeðTpÞ is the electron (positron) temperature in units
of the Boltzmann constant. We assume that the perturba-
tion wave phase speed is much larger than the ion thermal
speed. The ion fluid dynamics in the presence of such
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perturbation waves is then governed by

@Ni

@t
þ r � ðNiUiÞ ¼ 0; ð3Þ

@Ui

@t
þUi � rUi ¼ �

e

mi
r�þUi � ẑz!ci; ð4Þ

r2� ¼ 4�eðNe �Np �NiÞ; ð5Þ

where Ni is the ion number density, Ui is the ion fluid
velocity, !ci ¼ eB0=mic is the ion gyrofrequency, and mi is
the ion mass.
We assume that (i) at equilibrium the ion flow velocity

u0ẑz and the ion number density ni0 are not constant, but
have gradients along the x-direction, (ii) the wave
frequency ! is much smaller than the ion gyrofrequency
!ci; i.e., ! � !ci; (iii) e�=Te;p � 1; and (iv) j@=@tj; ðc=B0Þjẑz�
r� � rj � Uzj@=@zj; where Uz is the z-component of the ion
fluid velocity Ui: Using these assumptions in (1)–(5) we
obtain

Dtð1� �2ar
2
?Þ þ V�n

@

@y

� �
�þ C2

a

mi

e

@uz
@z

¼ 0; ð6Þ

Dtuz ¼ �
e

mi

@

@z
� �

@

@y

� �
�; ð7Þ

where Dt ¼ @=@tþ ðc=B0Þẑz� r� � r; uz is the perturbation
of Uz; � ¼ !�1

ci ð@u0=@xÞ; �a ¼ Ca=!ci; Ca ¼ ½ni0Te=ne0mi

�ð1þ �Þ�1=2; �¼np0Te=ne0Tp;V
�
n¼�knC

2
a=!ci; kn¼n�1

i0 @ni0=
@x; and ni0 is the equilibrium ion number density. At equili-
brium, we have ni0 ¼ ne0 � np0: In deriving (6) we have
assumed that !2

pi � !2
ci; where !pi is the ion plasma

frequency.
We first analyze the dispersion properties of low-

frequency electrostatic waves by a normal mode analysis,
i.e., we neglect the nonlinear terms in (6) and (7), and
assume that � and uz are proportional to expð�i!t
þ ikyyþ ikzzÞ: Thus, from (6) and (7) we readily obtain

�k!
2 � kyV

�
n!� ðkz � �kyÞkzC

2
a ¼ 0; ð8Þ

where �k ¼ 1þ k2y�
2
a: It is obvious that for a uniform

plasma ðkn ¼ 0Þ; (8) gives modified ion-acoustic waves
defined by ! ¼ kzCað1� �ky=kzÞ

1=2=
ffiffiffiffiffiffi
�k

p
; and that for

! � kzCa; (8) represents drift waves defined by
! ¼ kyV

�
n=�k: However, for a finite value of kz from (8)

we have

! ¼
1

2
!d �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
d þ 4!2

a 1� �
ky

kz

� �s" #
; ð9Þ

where !d ¼ kyV
�
n=�k and !a ¼ kzCa=

ffiffiffiffiffiffi
�k

p
: Equation (9)

with þ sign represents an accelerated mode, whereas with
� sign it represents a retarded mode. Our interest is in the
accelerated mode which is stable for � < �c and unstable
for � > �c; where

�c ¼
kz
ky

�
1þ

k2yV
�2
n

4k2zC
2
a�k

�
: ð10Þ

It is obvious that for � � �c the growth rate reaches a
maximum value ð�mÞ which can be approximated as
�m=!a ’

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� cot �

p
; where � is the angle between the

directions of the external magnetic field and the wave
propagation vector. This means that the maximum growth
rate (normalized to !a) is directly proportional to the
square root of � and cot �:

3. Vortex solutions

We now focus on the long term steady state behavior of
weakly interacting EI-ED waves. We then suppose that �
and uz are functions of x and 	 ¼ yþ �zz� V0t; where �z

and V0 are constants. Thus, under this condition we can
rewrite (6) and (7) as

D	 1�
V�n
V0

� �2ar
2
?

� �
�� C2

a

mi�z

eV0

@uz
@	

¼ 0; ð11Þ

D	uz ¼
eð�z � �Þ

miV0

@�

@	
; ð12Þ

where

D	 ¼ @=@	 � ðc=V0B0Þ½ð@�=@xÞð@=@	Þ � ð@�=@	Þð@=@xÞ�:

It can be shown that (12) is exactly satisfied by uz ¼
eð�z � �Þ�=miV0: Substituting the latter into (11) we obtain

D	ðr
2
? � �Þ� ¼ 0; ð13Þ

where � ¼ ½1� V�n=V0 � C2
a�zð�z � �Þ=V2

0�=�
2
a: To find

analytical solutions of (13) we consider two special cases,
namely � ¼ 0 and � > 0:

3.1. Vortex chain

When � ¼ 0; we find that (13) is satisfied by the Ansatz

r2
?� ¼

4�0C
2
0

A2
0

exp �
2

�0
��

V0

c
B0x

� �� �
; ð14Þ

where �0;C0; and A0 are arbitrary constants. The solution
of (14) is

� ¼ �0 ln 2 coshðC0xÞ þ 2A1 cosðC0	Þ½ � þ
V0

c
B0x; ð15Þ

where A1 ¼ ð1� 1=A2
0Þ

1=2: We note that for A0 > 1 the
vortex profile (15) resembles the Kelvin–Stuart ‘‘cat’s eyes’’
that are chains of vortices in an electron–ion plasma
[15–18]. The vortex chain speed is V0 ¼

½V�n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V�2n þ 4C2

a�zð�z � �Þ�
q

=2:

3.2. Double vortex

We now present a double vortex [19] solution of (13) when
� 6¼ 0: The outer solution (r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 	2

p
> R; where R is

the radius of the vortex) of a double vortex is

� ¼ 
OK1ð�1rÞ cos �; ð16Þ

where 
O is a constant, K1 is the modified Bessel function
of order one, �1 ¼

ffiffiffiffi
�

p
; and � ¼ cos�1 ðx=rÞ: Since �1 ought

to be positive, the formation of a double vortex is ensured

296 P. K. Shukla, A. A. Mamun and L. Stenflo

Physica Scripta 68 # Physica Scripta 2003



provided that � > 0: On the other hand, the inner region
solution ðr < RÞ of a double vortex is

� ¼ 
I J1ð�2rÞ þ
CIr

�22

� �
cos �; ð17Þ

where 
I is a constant, J1 is the Bessel function of order
one, CI ¼ V0B0ð�

2
1 þ �22Þ=c: The constant �2 is determined

by the transcendental equation K2ð�1RÞ=�1K1ð�1RÞ ¼
� J2ð�2RÞ=�2J1ð�2RÞ; which comes from the matching of
the electric field at the vortex interface r ¼ R: The other
constants are given by 
O ¼ RCIð�

2
1 þ �22ÞK1ð�1RÞ and


I ¼ ��21RCIð�
2
1 þ �22ÞJ1ð�2RÞ: The rotational speed V0 of

the double vortex must satisfy V2
0 � V�nV0� C2

a�zð�z � �Þ
> 0:

4. Summary

To summarize, we have studied the linear and nonlinear
properties of obliquely propagating coupled low-frequency
electrostatic drift and ion-acoustic (ED-IA) waves in a
strongly magnetized nonuniform e–p–i plasma in the
presence of sheared ion flow. We first carried out a normal
mode analysis and showed from our general dispersion
[cf. (8)] that (i) in a plasma with uniform ion density
ðkn ¼ 0Þ we have the modified ion-acoustic waves
! ¼ kzCað1� �ky=kzÞ

1=2=
ffiffiffiffiffiffi
�k

p
; (ii) for ! � kzCa we have

the drift waves ! ¼ kyV
�
n=�k; (iii) for a finite value of kz we

have accelerated and retarded modes [cf. (9)], and iv) the
accelerated mode is unstable for � > �c: We have analyzed
the long-term behavior of the weakly interacting ED-IA
waves and have shown that the nonlinear equations
governing the dynamics of these waves admit vortex
solutions of two different classes, viz. a vortex chain and
a double vortex. The latter can be associated with coherent
nonlinear structures in a magnetized electron–positron–ion
plasma.
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