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Interactions by mutual excitation in neural populations in human and animal brains cre-
ate a mesoscopic order parameter that is recorded in brain waves (electroencephalogram,
EEG). Spatially and spectrally distributed oscillations are imposed on the background
activity by inhibitory feedback in the gamma range (30–80 Hz). Beats recur at theta
rates (3–7 Hz), at which the order parameter transiently approaches zero and micro-
scopic activity becomes disordered. After these null spikes, the order parameter resurges
and initiates a frame bearing a mesoscopic spatial pattern of gamma amplitude modu-
lation that governs the microscopic activity, and that is correlated with behavior. The
brain waves also reveal a spatial pattern of phase modulation in the form of a cone.
Using the formalism of the dissipative many-body model of brain, we describe the null
spike as a singularity, the following amplitude pattern as a ground state, and the phase
cone as the manifestation of a stabilizing vortex.

Keywords: Vortex; brain waves; dissipative many-body model of brain.

1. Introduction

The brain in human beings and other animals alike provides the agency for engage-

ment of the body with the environment. Success in guidance and control requires

constant search with the several senses, acquisition of information about the current

status of the body with respect to its surround, recall at each moment in condensed

form of relevant past experience, and rapid recognition of momentary changes to

which the body must be accommodated. These operations are not done with logic

and mathematics. As observed by von Neumann, “brains lack the arithmetic and

logical depth that characterize our computations. We require exquisite numerical

precision over many logical steps to achieve what brains accomplish in very few
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short steps”.1 The first such step in an act of perception is transduction at sensory

receptors of microscopic energies from the surround to represent their information

in nerve impulses (action potentials), the common currency of the brain. The sec-

ond step is transmission to the brain and refinement in the several sensory systems

of the requisite information by various well-known analog operations of informa-

tion pre-processing. The third step is abstraction and generalization to a category

of equivalent inputs. The fourth step is incorporation of the information with the

knowledge base (memory) in the brain that constructs the meaning for the subject.

These four operations are dynamical processes that begin the “few short steps”

of the action-perception cycle by which a brain accommodates itself and the body

to the ever-changing, not fully predictable environment.

The neural mechanisms of the first two steps are understood in terms of the con-

struction of microscopic neural networks and Hebbian neural assemblies by mecha-

nisms of growth and learning. The action potentials from arrays of sensory receptors

are delivered to cortex by axons organized in topographic maps, which preserve the

spatial relations among receptors.

The neural mechanisms of the third and fourth steps are mesoscopic, because

they require the formation of nonlocal, very large-scale statistical ensembles. The

problem was clearly stated over fifty years ago: “Generalization is one of the primi-

tive basic functions of organized nervous tissue. Here is the dilemma. Nerve impulses

are transmitted . . . from cell to cell through definite intercellular connections. Yet all

behavior seems to be determined by masses of excitation. . . . What sort of nervous

organization might be capable of responding to a pattern of excitation without

limited specialized paths of conduction? The problem is almost universal in the

activities of the nervous system”.2

The third and fourth of the “few short steps” occur in the sensory cortices after

they receive the information from receptors. In this report we take up the challenge

of describing the “sort of organization” that performs the mass actions and creates

the dynamic patterns by which cortices perform them.

It has been shown3,4 that the dissipative quantum field theory (many-body)

model of brain is able to predict two main features of neurophysiological data: the

coexistence of physically distinct amplitude modulated (AM) and phase modulated

(PM) neuronal patterns correlated with categories of conditioned stimuli and the

remarkably rapid onset of AM patterns into irreversible sequences that resemble

cinematographic frames. These features of the brain activity are observed in labo-

ratory by means of imaging of scalp potentials (electroencephalograms, EEGs) and

of cortical surface potentials (electrocorticograms, ECoGs) of animal and human

beings from high-density electrode arrays. The mesoscopic neural activity of neo-

cortex appears indeed consisting of the dynamical formation of spatially extended

neuronal domains in which widespread cooperation supports brief epochs of pat-

terned synchronized oscillations, which have been demonstrated to occur in the

12–80 Hz range (β and γ ranges). They re-synchronize in frames at frame rates in

the 3–12 Hz range (θ and α ranges).3,5–8 These patterns, or “packets of waves”,
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Fig. 1. Bursts of oscillation in olfactory ECoGs require inhalation (upward in middle trace)
at time windows determined by the limbic system. The precise time of onset of each frame is
determined by the emergence of a null spike.

appear often to extend over spatial domains covering much of the hemisphere in

rabbits and cats9,10 (Fig. 1), from Ref. 19 having linear dimensions up to 19 cm5

in human cortex with near zero phase dispersion.11,12 Synchronized oscillation of

large-scale neuronal assemblies in β and γ ranges have been detected also by magne-

toencephalographic (MEG) imaging in the resting state and in motor task-related

states of the human brain.13 The patterns of phase-locked oscillations are inter-

mittently present in resting, awake subjects as well as in the same subject actively

engaged in cognitive tasks requiring interaction with environment, so they are best

described as properties of the background activity of brains that is modulated upon

engagement with the surrounding.

The observed cortical collective activity cannot be accounted for neither by the

electric field of the extracellular dendritic current nor by the extracellular magnetic

field from the high-density electric current inside the dendritic shafts, which are

much too weak, nor by the chemical diffusion, which is much too slow.3,14 On the

contrary, it turns out that the dissipative many-body model15 is able to account for

the dynamical formation of synchronized neuronal oscillations.3,4 A brief summary

of the dissipative model is reported in the Appendix A (for a detailed discussion

see Refs. 3, 4 and 15). Here we only recall that each AM pattern is described

to be consequent to spontaneous breakdown of symmetry triggered by external

stimulus15–18 and is associated with one of the quantum field theory (QFT) unitarily

inequivalent ground states.3,15 Their sequencing is associated to the non-unitary

time evolution implied by dissipation.3,15

In this paper, we focus our attention on a crucial neural mechanism, that has

been deduced from experimental observations of a pattern called “Coordinated An-

alytic Phase Differences” (CAPD),6–10 consisting in the fact that the event that
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Fig. 2. Left: The burst of gamma oscillation illustrates the amplitude modulation of the shared
carrier wave. Right: AM patterns are compared with and without the CS present in the inhaled air.
The change between trial sets illustrates consolidation: “off-line” learning requiring participation
of the genome.

initiates the transition to a perceptual state is an abrupt decrease in the analytic

power of the background activity to near zero, depicted as a null spike,19 asso-

ciated with the concomitant increase of spatial variance of analytic phase and a

discontinuity in space and time of the analytic phase.

Experimental evidence of CAPD over large cortical areas indicates that the

neuronal correlation length would cover an entire cerebral hemisphere very quickly

(practically without delay in the gamma activity), if measured at the critical tran-

sition. Between the null spikes the cortical dynamics is (nearly) stationary for ∼60–

160 ms. This is called a frame. The transitions by which they form vary in duration

and sometimes are shorter by an order of magnitude.

In Sec. 2 we summarize the formation and the properties of imploding and ex-

ploding conical phase gradients and the occurrence of null spikes that have been

identified in multichannel records of ECoG signals.20 In Sec. 3 we discuss phase

transitions and vortex solutions in the model and show how energy dissipation in-

corporates the observed feature of null spikes. There we derive classical Maxwell

equations and current fields from the quantum dynamics.3 We stress that the emer-

gence of classicality out of the microscopic dynamics is a central feature of the

dissipative many-body model. We also discuss the size, number and time depen-

dence of the transient non-homogeneous patterns of percepts appearing during non-

instantaneous phase transitions, such as those observed in the brain. The formation

of imploding and exploding conical phase gradients in the ECoG is shown to be

allowed, as indeed deduced from observations. Energy dissipation as heat in the

disappearance and emergence of coherence is emphasized in Sec. 4. On the one



Vortices in Brain Waves 3273

hand, brains dissipate metabolic energy at rates 10-fold greater than rates in any

other organ, so indirect measures of the rates of dissipation (blood flow, oxygen

depletion) are a major resource in brain imaging.21 On the other hand, dissipation

enables brains to form an indefinite variety of differing ground states,4,15–18 which

is prerequisite for high memory capacity. Section 5 is devoted to final remarks and

conclusions. Mathematical details and a brief summary of the formalism of the

many-body model are presented for completeness in the Appendices A and B.

2. Observations of Patterns Comprising Percepts

The carrier wave has a spatial pattern of phase modulation (PM) pattern22 having

the shape of a cone on the cortical surface (Fig. 3, left, from Ref. 22). The location

and sign of the apex are fixed in a frame, but they vary randomly from each frame

to the next with no relation to categories of conditioned stimuli. The cone demar-

cates the abrupt onset and gradual ending of a wave packet. The phase gradient

in radians/m (slope of the cone) also varies randomly between frames. Within the

frame the phase velocity in m/s (given by the ratio of the carrier frequency, in

radians/s, to the phase gradient) is invariant and equals the conduction velocity

of the intracortical axons running parallel to the surface.22,23 The direction of the

gradient is either negative (outward from maximum lead at the apex, explosion) or

positive (inward from maximum lag at the apex, implosion). Cinematographic dis-

play of the amplitudes of the filtered ECoG24 often shows rotation either clockwise

or counterclockwise (Fig. 4, from Ref. 19), giving the appearance of a vortex such as

a hurricane seen from a satellite. This suggests that AM patterns are manifestations

of a continuous mesoscopic field of activity.22

Fig. 3. Left: Examples of phase cones fitted to gamma phase averaged over a frame, referenced to
the spatial mean phase after filtering and unwrapping. Right: Silhouette of the olfactory bulb with
square array window, with the near-spherical surface flattened to show the random distribution of

apices (◦ denote phase lead, explosion, negative gradient; • denote phase lag, implosion, positive
gradient).
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Fig. 4. A. Color-coded contour plot of analytic power (square of amplitude) showing a null spike.
B. Perspective view. C. Color-coded plot of analytic phase referenced to spatial average showing
phase discontinuity at the site of the null spike. D. Apex of a stable phase cone (sampled 12 ms
later) is near the site of the null spike; its negative phase gradient shows the residue of an explosion
that occurred in the first quarter cycle after the null spike.

During periods of high amplitude the spatial deviation of phase (SDX) is low

and the phase spatial mean tends to be constant within frames and to change

suddenly between frames, indicating coherence and CAPD. The reduction in the

amplitude of the spontaneous background activity induces a brief state of indeter-

minacy in which the power in a significant pass band of the ECoG is near zero and

the phase of ECoG is undefined.

Null spikes are observed by band pass filtering the ECoG, applying the Hilbert

transform to get the analytic power and taking the logarithm (Fig. 5). The spikes

form clusters in time but are not precisely synchronized. One of these null spikes

coincides with phase transitions leading to emergence of AM patterns. The analytic

frequency, ∆φ(t)/∆t in rad/sec (∆t = digitizing step), is undefined at and near

the cusp, giving high spatial and temporal variance. The null spikes tend to recur

aperiodically at rates in the theta (3–7 Hz) ranges, which exemplifies the widely

observed cross-spectral linkage of theta and gamma oscillations.6,25 The theoretical

constant of proportionality (0.64126) between the null spike repetition rate and
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Fig. 5. The temporal patterns of null spikes are illustrated; each spike initiates a spatial phase
cone. A. The logarithm of the analytic power (four ECoG signals superimposed from an 8×8 array)
in the gamma range (25–50 Hz) shows the downward null spikes demarcating onsets of cones at
irregular intervals. C. The spikes in analytic phase coincide with the null spikes in power; the
differences between signals reflect the high spatial variance contributed by the cones. B. The
statistical properties of null spikes are replicated by cumulatively summing Gaussian noise and
applying to the signal the same band pass filter (1/4 to 1/2 the Nyquist frequency, 100 Hz). D.
The spikes in analytic phase coincide with the null spikes in power.

the band width of the filter (as measured by the temporal minimum of the spatial

standard deviation SDX in each frame25) enables us to predict the bandwidth of

the resting gamma (25–50 Hz) in human ECoG with strong alpha waves (8–12 Hz)

to be ∼13–19 Hz. By use of the Hilbert transform, the local structure of CAPD is

visualized in the real and imaginary parts, a(x) and b(x), respectively, of the ECoG

sampled wave function ψ(x) in the selected spectral pass band

ψ(x) = A2(x)eiφ(x) , (1)

where x ≡ (x, y, t) in the two surface dimensions of cortex (3 dimensions for the

microscopic level of networks), and the analytic powerA2(x) and the analytic phase

φ(x) are

A2(x) =
√

a2(x) + b2(x) , φ(x) = arctan
b(x)

a(x)
, (2)

respectively. A2(x) forms a feature vector that describes the AM pattern and

therefore serves as our order parameter.3,4 It vanishes at r(x) = 0, with r2(x) =

a2(x) + b2(x), where, as the second relation in (2) shows, a singularity occurs and
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where the phase φ(x) is obviously undefined. The meaning of this is not purely geo-

metric, but, as we show below, it is intimately related to the microscopic dynamics

in the many-body model.

The cortex can be driven across such a “phase transition” to a new AM pattern

by the stimulus arriving just before the onset of a null spike (accounting for the

unpredictable variation in latency of AM patterns with respect to times of CS

onset). The observed velocity of spread of phase transition is finite, i.e., there is no

“instantaneous” phase transition; it is determined by the conduction velocities of

axons of intracortical neurons, not those of the input axons.

The extreme localization of the null spike in both time and space indicates the

existence of a singularity in the cortical dynamics, which was predicted by piecewise

linearization of the core set of nonlinear ordinary differential equations (summarized

in Chap. 6, Fig. 6.30, p. 388 in Ref. 23). The coincidence of the fixed location of

the apex of the following phase cone with the location of the preceding null spike

indicates that the null spike mediates or precipitates a phase transition, by which

a new wave packet forms with an AM pattern that is selected by the sustained

activity of a Hebbian assembly triggered by a CS.25

3. Phase Transitions, Vortex Solutions and Null Spikes

In this and in the following sections, we focus on describing, in the formalism of

the dissipative model, the observed dynamic formation of singularities and vortices

in brain waves and the occurrence of phase cones.

As already observed in Sec. 2, cinematographic display of the amplitudes of

the filtered ECoG24 often shows clockwise or counterclockwise rotation, giving the

appearance of a vortex. The vortex occupies the whole area of the phase-locked

neural activity of the cortex beginning at a point in time and space. Such a vortex

is of dynamical origin and may be comparable to the dynamic pattern that is

postulated27 to be the origin of the anatomical vortices of connections that are

observed in maps of orientation across visual cortex.

In the process of non-instantaneous phase transitions (as those observed in the

brain, indeed), the dissipative model predicts the existence of singularities associ-

ated (at the phase cone apex) with the abrupt decrease (null spike) of the order

parameter (the feature vector specifying the spatial AM pattern of the analytic

amplitude) and the concomitant increase of spatial variance of the phase field (the

analytic phase).

To see how singularities appear in the model, we recall that spontaneous break-

down of the global gauge symmetry (see Appendix A) related to the electrical

dipoles of water and other molecules15 implies the existence of collective fields (or

modes, or particles), which in QFT are called the Nambu–Goldstone (NG) boson

modes28–30,32–34 (see Appendix A), say P (x) and P †(x). The system ground state

is obtained as a coherent condensate of these NG boson modes.33,34 Let P = ρδ be

the non-vanishing polarization density, where ρ and δ are the charge density and
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the (average) dipole length. We then write the charge density wave function σ(x)

as

σ(x) =
√

ρ(x)eiθ(x) , (3)

with real ρ(x) and θ(x). The phase θ(x) is the NG boson field associated with

the breakdown of phase symmetry under the global gauge transformation, σ(x) →
eiλσ(x), Aµ(x) → Aµ(x), where Aµ(x) is the electromagnetic (e.m.) field and λ is

space-time independent. The condition which expresses the symmetry breakdown

is the non-vanishing expectation value of the charge density ρ(x) in the system

ground state (the vacuum) |0〉: 〈0|ρ(x)|0〉 = v 6= 0.

The system is also invariant under the local gauge transformation

σ(x) → eie0λ(x)σ(x) , Aµ(x) → Aµ(x) + ∂µλ(x) , (4)

where λ(x) → 0 for |x0| → ∞ and/or |x| → ∞ and the Lorentz gauge, ∂µA
µ(x) = 0,

is used. The field equations for Aµ is

− ∂2Aµ(x) = jµ(x)− ∂µθ(x) , (5)

with jµ(x) denoting the current. The crucial point is that a shift in the θ(x) phase

field describes the formation of coherent domains of finite size,35–37 or, stated in

different words, non-homogeneous boson condensation of the field θ(x) in the system

ground state. Such a condensation process is thus described by the shift or field

translation transformation

θ(x) → θ(x) − αf(x) , (6)

where α is a constant. f(x) is a function, called the boson condensation function,

satisfying the same equation satisfied by the θ(x) field, i.e., ∂2f(x) = 0. f(x) acts

as a “form factor” specific for the considered domain.37,39–41

On the one hand, in order for the condensation process to be physically de-

tectable, f(x) has to carry some topological singularity,35–37 i.e., f(x) has to be

path-dependent (see Appendix A). On the other hand, since observables may be

influenced by gradients in the boson condensate, ∂µf(x) is related with observ-

ables and therefore it has to be single-valued. Moreover, as a result of the single-

valuedness of σ(x), the topological singularity is characterized by the winding num-

ber n:
∮

∇f(x) · dl = 2πn, n = 0, ±1, ±2, . . . , when the integration is performed

along the closed circle (0, 2π) (flux quantization).

We thus reach the conclusion that the dissipative model describes the appear-

ance of singularities in the basic dynamical processes. Consistently with this sce-

nario, one can also show37,40,41 that phase transitions can only be induced by a

singular boson transformation function f(x). This is the reason why topologically

non-trivial extended objects, such as vortices, appear in the processes of phase tran-

sitions.37,40,41 This means that phase transitions driven by boson transformations

are always associated with some singularities in the field phase.
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In the following subsection we show, indeed, that a regular function f(x) pro-

duces a condensation that can be easily “gauged” away by a convenient field trans-

formation, namely gradients in the phase induced by a regular f(x) do not produce

any observable effect.

3.1. Singularities and emergence of classicality

A crucial feature of our approach consists in the possibility to derive meso-

scopic/macroscopic dynamical properties of the system from the many-body dy-

namics: classicality is thus not derived as the model “classical limit” approximation.

Rather, it appears that the system classical behavior cannot be explained without

recourse to the underlying many-body dynamics. The classical Maxwell equation

for a massive e.m. field, whose discussion in the frame of the dissipative model is

briefly summarized in the Appendix A, is33–36

(∂2 +m2
V )aµ(x) =

m2
V

e0
∂µf(x) . (7)

Here, aµ(x) denotes the massive classical e.m. vector potential. The classical ground

state current jµ,cl(x) turns out to be

jµ,cl(x) = m2
V

[

aµ(x) −
1

e0
∂µf(x)

]

, (8)

where m2
V ≡ Z3Z

−1(e0v)
2, with Z3 and Z wave function renormalization constants

and e0 the electron charge. We have ∂µjµ,cl(x) = 0. The term m2
V aµ(x) is called

the Meissner current, while (m2
V /e0)∂µf(x) is the boson current.

The mesoscopic field and current are thus given in terms of the boson transfor-

mation function. Note that the classical current is related with ∂µf(x), i.e., with

variations in the boson transformation function.

From (7) we obtain aµ(x) = (1/∂2 + m2
V )∂µf(x). When f(x) is regular, this

gives ∂2aµ(x) = 0 since ∂2f(x) = 0. Thus Eq. (7) implies aµ(x) = (1/e0)∂µf(x)

for regular f(x), which in turn implies zero classical field (Fµν (x) = ∂µaν(x) −
∂νaµ(x) = 0) and zero classical current (jµ,cl(x) = 0) since the Meissner and the

boson current cancel each other. It is indeed well-known42 that the gauge field

vanishes in the ordered domain region where the order parameter is non-zero. On

the contrary, the gauge field is non-zero in the regions where f(x) presents non-

trivial topological singularities such as line singularities, e.g., on the line r = 0 in

the core of a vortex: we have there the “normal” (disordered) state rather than

the ordered one and the non-vanishing massive gauge field there propagates (the

Anderson–Higgs–Kibble mechanism).42–44 On the boundaries between the normal

and the ordered regions the phase field gradients are non-zero. Instead they are

zero in the normal region, e.g., in the vortex core.

We observe that, consistently with observations, the initial site where non-

homogeneous condensation starts (the phase cone apex) is not conditioned by the

incoming stimulus, but is randomly determined by the concurrence of a number
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of local conditions, such as where the null spike is lowest and the background in-

put is highest, in which the cortex finds itself at the transition process time. The

apex is not initiated within frames, but between frames (during phase transitions).

The null spike height is randomly determined by interference in the endogenous

Rayleigh noise; the input is randomly determined by the environment. In the case

of phase symmetry summarized above, the stationary function f(x) solution of our

problem may carry a vortex singularity given by

f(x) = arctan

(

x2
x1

)

. (9)

Equation (9) shows that the phase is undefined on the line r = 0, with r2 = x21+x
2
2,

consistently with the observed phase indeterminacy in the process of transition be-

tween two AM pattern frames. For a detailed analysis of the vortex properties

associated to Eq. (9) see Refs. 35–37. We note that the dissipative model predicts

that vortices are initiated during the critical regime of phase transitions, as it is in-

deed observed, and are observed in the following frames as explosions or implosions

with or without rotation.

The null spike appears in the band pass filtered black noisea activity and can be

conceived as a shutter that blanks the intrinsic background ECoG. When the order

parameter goes to zero, the microscopic activity (of the background state) does

not decrease but, consistently with the model description, it becomes disordered,

unstructured (fully symmetric). In such a state of very low analytic amplitude, the

analytic phase is undefined, as it is indeed at the center line of the vortex core, and

the system, under the incoming weak sensory input, may re-set the background

activity in a new AM frame, if any, formed by reorganizing the existing activity,

not by the driving of the cortical activity by input (except for the small energy

provided by the stimulus that is required to selectively excite a Hebbian nerve cell

assembly that is needed to force the phase transition). The analytic amplitude de-

crease repeats in the theta or alpha range, independently of the repetitive sampling

of the environment by limbic input. Consistently with observations, in the dissipa-

tive model, the reduction in activity constitutes a singularity in the dynamics at

which the phase is undefined. The aperiodic shutter allows opportunities for phase

transitions.

Summarizing, singularities are introduced through the condensation function

f(x). The spatial gradient of f(x) in the condensate of the θ(x) phase field accounts

for the phase cone which is indeed a spatial phase gradient imposed on the carrier

wave of the wave packet. The vortex solution arises as an effect of non-homogeneous

condensation of the phase field θ(x), which spans (almost) the whole system since

it is a (quasi-)massless field (it is a collective mode). This explains the fact that

aThe refractory periods of axons stabilize the background activity by preventing run-away excita-
tion. Their effect is revealed by an increase in the exponent, α, of the power-law spectral density,
1/fα, above that of brown noise (α = 2) to values ranging as high 3 or even 4 giving black noise.
See Ref. 45.
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in its life-time the vortex is observed to occupy the whole area of the phase-locked

neural activity of the cortex.

3.2. Phase cones and critical regime in the dissipative model

Transition processes occurring in a finite span of time in which the formation of

vortex strings (or other “defects”) occurs, have been studied by numerical simula-

tions and theoretical modeling in a number of problems of physical interest.41,46–48

In these processes, a maximally stable new configuration is attained after a certain

lapse of time since the transition has started. The system is said to be in the critical

or Ginzburg regime during such a lapse of time. Enough reliable information on the

critical regime behavior is provided by using the harmonic approximation for the

evolution of the order parameter v, which is now assumed to be space-time depen-

dent (non-homogeneous condensate), v = v(x, t).40,41,46–48 In general, v depends

also on the temperature. However, we will omit the dependence on temperature

since this does not affect our discussion and in any case brains homeostatically

maintain their temperatures within a very narrow physiological range.

In the harmonic potential approximation of the Ginzburg–Landau formalism in

our present brain problem, we expand the v(x, t) field into partial waves, say uk(t)

(see the Appendix B). For each k-mode uk(t) (k ≡
√
k2), the frequency turns out

to be Mk(t) =
√

k2 −m2(t), with m(t) a parameter49 (see also Refs. 40, 41 and

50 and the Appendix B). Mk(t) is required to be real for each k at each t. Such a

constraint is satisfied during the critical regime time interval provided the relation

k2 ≥ m2(t) , (10)

is satisfied for each k-mode at each t. Equation (10) turns out to be a condition on

the k-mode propagation. Let t = 0 and t = τ denote the times at which the critical

regime starts and ends, respectively. For a given k, Eq. (10) holds up to a time

τk, provided m2(t), for t > τk, is larger than k2. The corresponding k-mode can

propagate in a span of time 0 ≤ t ≤ τk. Thus the “effective causal horizon”51–53

can happen to be inside the system (possible formation of more than a domain)

or outside (single domain formation) according to whether the time occurring to

the k-mode to reach the boundaries of the system is longer or shorter than the

allowed propagation time, respectively. This determines the dimensions to which

the domains can expand.

The value of τk is given when the explicit form of m2(t) is assigned. One may

then model the time dependence of m(t)41 in a way to allow vortex formation. One

possibility is to choose m2(t) to be:

m2(t) = m2
0e

2h(t) . (11)

The function h(t) is assumed to be monotonically growing in time from t = 0 to

t = τ . Equation (11) shows that the correlation propagation time is implicitly given



Vortices in Brain Waves 3281

by:

h(τk) = ln

(

k

m0

)

∝ ln

(

L

ξ

)

. (12)

Here ξ is the correlation length corresponding to the k-mode propagation and L ∝
m−1

0 . L acts as an intrinsic infrared cut-off. Small k values are indeed excluded, due

to Eq. (10), by the non-zero minimum value of m2. Correspondingly, long wave-

lengths are precluded, i.e., only domains of finite size can be obtained. At the end

of the critical regime the correlation may extend over domains of linear size of the

order of λk ∝ m−1(τ).

Our model is further specified by choosing an explicit analytic expression for

h(t). When the choice is the one shown in Eq. (B.3) in the Appendix B we have

(cf. Eq. (B.4))

h(t) ≈ ±Γ

2
t , (13)

for t2/τ2 ≈ 1, with Γ ≡ 1/λτQ and λ an arbitrary constant (see Appendix B for

the definition of τQ).

The number of vortices ndef possibly appearing during the critical regime is

given in the linear approximation by41,53:

ndef ∝ m2(τ) ≈ m2
0|τ/λτQ| . (14)

We observe that the size of the vortex core is given by (m(t))−1 and thus

Eqs. (11) and (13) show that such a size evolves in time as e∓Γt, t < τ (t < τk for

the k-mode). This means that we have both, converging (imploding) and diverg-

ing (exploding) regimes, as indeed found in laboratory observations of the phase

cone behaviors. Since the “normal” state is confined to the vortex core, the shrink-

ing of such a region (imploding regime) may signal that long range correlation,

i.e., ordering, is prevailing (the vortex is “squeezed out”); in the opposite case of

enlargement of the vortex core (exploding regime), local correlations (disorder) pre-

vail. This agrees with the conclusion reached on the basis of laboratory observations

according to which implosion or explosion is obtained if the long axon connections

or the local connections predominate, respectively.54

Many phase cones show little or no rotation but repetitive outward or inward

pulsations with each cycle. When they present rotational gradients (vortices) the

singularity is then associated to the vortex core singularity. The model explains all

four types of these observed spatiotemporal phase gradients.

We also observe that the negative gradient could be explained in conventional

neurodynamics (e.g., in terms of a pacemaker), but not the positive gradient. Also,

there is no explanation in the conventional framework of why both gradients, the

positive and the negative one, occur, one or the other at random.
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4. Heat Dissipation and Disappearence/Emergence of Coherence

We have already commented upon the remarkable interplay between the emergence

of the mesoscopic field and currents and the microscopic phenomenon of boson

condensation. We further observe that the neural mechanism of perception depends

on repeated transfer of mesoscopic energy to microscopic energy and vice-versa, as

the basis for the disintegration of a mesoscopic AM pattern and the formation of a

new one, respectively. In the dissipative model these energy transfers are controlled

by the time derivative of the number N of the NG field condensate3,15:

dE =
∑

k

Ek
dNk

dt
dt =

1

β
dS . (15)

Equation (15) holds provided changes in the inverse temperature β are slow, which

is what actually happens in mammalian brains which keep their temperature nearly

constant. It relates the changes in the energy E ≡ ∑

k EkNk and in the entropy S
implied by the minimization of the free energy F at any t, dF = dE− (1/β)dS = 0

(see Appendix A). In Eq. (15) Ek and Nk denote the energy and the number of

the NG excitations of momentum k. As usual, heat is defined as dQ = (1/β)dS.

We thus see how, through the variations in time of the NG field condensate, the

entropy changes and heat dissipation involved in the disappearance/emergence of

the coherence (ordering) associated to the AM patterns turns into energy changes.

Heat dissipation appears indeed to be a significant variable in laboratory observa-

tions. Brains require constant perfusion with arterial blood and venous removal to

dispose of substantial waste heat.

Also concerning the mesoscopic/microscopic interplay, it has to be remarked

that while the vortex solution in the dissipative model is dynamically generated

through the non-homogeneous boson condensation mechanism, which is a truly

quantum mechanism, the vortex manifests itself as a solution of non-linear classical

equations. This is a general feature of QFT, where many kinds of topologically

non-trivial solutions of classical field equations (soliton solutions) are described as

mesososcopic “envelopes” of microscopic boson condensates (for a detailed discus-

sion on the quantum/classical interplay in field theories with topologically non-

trivial solutions see Ref. 55; see also Refs. 35–37 and 56). The dissipative quantum

model of brain thus models classical mesoscopic phenomena originating from the

underlying quantum dynamics. In such a model the neurons, the glia cells and

their subcellular components are not quantum objects.3,4,15 The quantum degrees

of freedom are those associated to the dipole vibrational field and to other fields

such as the phase field.

5. Final Remarks and Conclusion

As a final comment we remark that Eq. (13) shows that the ± signs in Eq. (B.3)

amount to working with both elements of the basis (e+Γ/2t, e−Γ/2t), as indeed re-

quired by mathematical correctness. In this sense, the ± double sign cannot be
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avoided in the model choice of h(t). From a physical point of view, it is equivalent

to working with time evolution pointing in one given time direction (say the t > 0

arrow of time) and with its “time-reversed” copy or image. This is perfectly con-

sistent with one of the main features of the dissipative model where time-reversed

excitations are introduced, thus “doubling” the system degrees of freedom58,59 (see

Appendix A),b so that one is led to consider the time-reversed image of the system,

its “Double”. It is interesting that such a model feature finds a connection with

the laboratory observation of the exploding/imploding feature in the phase cone

behavior.

Our study, which has been based on the mechanism of the spontaneous break-

down of symmetry and on dissipation, has derived several specific predictions from

basic dynamical features and compared them directly with experiments. In order to

better clarify the theoretical claims and better represent how theory connects with

experiments, we list few of the experimentally confirmed predictions of the model.

As already mentioned in Sec. 1, in Refs. 3 and 4 we have shown that the model

accounts for the observed dynamical formation of spatially extended domains of

neuronal synchronized oscillations and of their rapid sequencing. The model ex-

plains indeed two main features of the ECoG data:

— the textured patterns of AM in distinct frequency bands correlated with cate-

gories of conditioned stimuli, i.e., coexistence of physically distinct AM patterns,

and

— the remarkably rapid onset of AM patterns into (irreversible) sequences that

resemble cinematographic frames.

Moreover, consistently with experimental observations5–8,25,60–62 the model predicts

that3,4,63,64

— very low energy is required to excite AM correlated neuronal patterns,

— AM patterns have large diameters, with respect to the small sizes of the com-

ponent neurons,

— duration, size and power of AM patterns are decreasing functions of their carrier

wave number k,

— there is lack of invariance of AM patterns with invariant stimuli, but constancy

with the unchanging meaning of the stimuli.

— there is self-similarity in brain background activity as suggested by power-law

distributions of power spectral densities derived from ECoGs data.60,63,64

In the present paper, in agreement with experimental observations, we have derived:

— that there is heat dissipation at (almost) constant in time temperature (see also

Refs. 3 and 4),

— the occurrence of near-zero down-spikes in phase transitions,

bThis is quite a general feature of QFT arising in many different contexts. See e.g., Ref. 57.
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— the whole phenomenology of occurrence of phase gradients and phase singular-

ities in the vortices formation,

— the constancy of the phase field within the frames,

— the insurgence of a phase singularity associated with the abrupt decrease of the

order parameter and the concomitant increase of spatial variance of the phase

field,

— the occurrence of phase cones and random variation of sign (implosive and

explosive) at the apex,

— that the phase cone apices occur at random spatial locations,

— that the apex is not initiated within frames, but between frames (during phase

transitions).

The model leads to the “classicality” (not derived as the classical limit, but as

a dynamical output) of functionally self-regulated and self-organized background

activity of the brain. Finally, the model may enable future investigators to predict

the number of vortices appearing in the critical regime [cf. Eq. (14)] and the size

of the vortex core. Those predictions must await comparisons with experiments

in future work, which will require much higher precision of measurement: larger

arrays than the present 8 × 8 = 64 (e.g., 16 × 16 = 256 channels) with the same

close spacing of 0.5–0.8 mm; faster digitizing rates that the present 500 Hz (e.g.,

2000 Hz with 0.5 msec time step); and clinical mode decomposition of the Hilbert

spectrum, together improving the spatial, temporal and spectral resolution of the

ECoG and EEG.

We can summarize the whole picture as follows. The foremost problem in

studies of perception is to explain how brains seek, presage, and amplify mi-

croscopic activity driven by sensory receptors, retrieve and mobilize the relevant

prior knowledge about the stimuli, and disseminate the selected knowledge in

preparing an appropriate intentional action. Experimental data show that cortex

maintains by mutual excitation robust spontaneous background activity that is

parsed by inhibitory feedback into oscillations that are both spatially and spec-

trally distributed. Summation over distributions of beta or gamma frequency ranges

gives beats of null spikes at intervals in the theta and alpha frequency ranges.

At the minima of these beats the cortex approaches a state of criticality, in

which a conditioned stimulus can trigger a micro-to-mesoscopic phase transition

in each of the primary sensory cortices, which is asynchronous in the first post-

stimulus frame, and which is synchronized globally in following frames. The first

phase transition is the gateway to a sequence of transitions toward a macroscopic

state of recognition which evolves into the action stage in the action-perception

cycle.

The fact that the dissipative many-body model naturally leads to equations de-

scribing mesoscopic fields and currents and to soliton-like “classical” solutions (the

vortex) (Sec. 3), and to microscopic/mesoscopic thermodynamic interplay (Sec. 4)

is certainly a remarkable offspring of the many-body model. The model appears to
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provide an efficient way for describing and organizing in a unified and consistent

framework a large body of brain function data.

Thus, our approach is not a description of the system in terms of some ad

hoc classical formalism; it is a direct attack on explaining the link between micro

dynamics of neural nets and mesoscopic dynamics of populations that produce

observable data structures and patterns.

Finally, we observe that the description of the singularities appearing in the

process of phase transitions turns out to be remarkably crucial in the understand-

ing of the nature of the engagement of the subject with the environment in the

action-perception cycle. By the continual updating of the meanings of the flows

of information exchanged in its relation with the environment, the brain proceeds

from information to knowledge in its own world as it is known by itself (Heidegger’s

Dasein65), that we describe as its Double.56

Acknowledgments

The authors thank Brian Burke and Bill Redfearn for technical assistance. Partial

financial support by INFN and MIUR is also acknowledged.

Appendix A. Basic Features of the Dissipative Many-body Model

of Brain

For completeness and for the reader convenience, we summarize here some of the

features of the formalism of the dissipative many-body model of brain. A more

detailed account of the formalism can be found in Refs. 4, 15, 39–41, 56, 66, 67 and

68.

A.1. The spontaneous breakdown of symmetry in QFT

We start by recalling the mechanism of spontaneous breakdown of symmetry in

QFT, which describes the occurrence of observable mesoscopic/macroscopic ordered

patterns (correlated elements) in physical systems.

Spontaneous breakdown of symmetry occurs when the system dynamics is in-

variant under a certain group of continuous symmetry, sayG, and the system ground

state (the vacuum) is not invariant under G, but under one of its subgroups, say

G′.32,37,69 Ordered patterns then appear in the ground state, corresponding to the

breakdown of G into G′. These patterns, namely the correlation among the system

elementary components, are generated by the coherent condensation in the ground

state of massless quanta called Nambu-Goldstone (NG) particles,30 or waves, or

modes, which are the carriers of the ordering information.37,42 The NG modes are

dynamically generated by the process of the breaking of the symmetry and, since

their propagation covers extended domains, or, in the infinite volume limit, the

whole system, they manifest themselves as collective modes. The degree of ordering
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is specified by a mesoscopic/macroscopic (classical) field, called the order parame-

ter, which thus acts as a mesoscopic/macroscopic variable for the system. Its value

is related with the density of condensed NG bosons in the vacuum. It may thus

be considered to be the code specifying the vacuum of the system among many

possible degenerate vacua existing in QFT.32,37,69

A.2. The dissipative quantum model of brain

In the original many-body model of the brain, formulated by Umezawa and col-

laborators in 1967–1979,16–18 the code of the ground state specifies its memory

content: the NG boson condensation in the brain ground state describes the pro-

cess of memory recording. The external input acts as the trigger of the breakdown

of the rotational symmetry of the electrical dipoles of the water molecules and other

biomolecules,28,29 with consequent appearance of non-vanishing polarization den-

sity (for the role played by electric polarization see, for example, the experimental

observations70,71 of slow fluctuations in neuronal membrane polarization, the so-

called up and down states). The corresponding NG modes are the vibrational dipole

wave quanta (DWQ).33,34 The recall of the memory occurs under the input of a

stimulus “similar” to the one responsible for the memory recording.

The original model does not consider the fact that the brain is a dissipative

system, namely an open system permanently coupled with environment. This is

considered in the dissipative quantum model where the dynamics of the original

model is extended so as to include dissipation.15

In the study of a dissipative system the flow of the energy exchanged between

the system and the environment has to be balanced (energy conservation). This is

achieved by “doubling” the degrees of freedom of the system,58 which also ensures

the possibility to perform the canonical quantization.

We denote by Ak (A†
k) the annihilation (creation) operators for the DWQ mode

and by Ãk (Ã†
k) its “doubled mode” (representing the environment or thermal bath

with which the energy is exchanged). k denotes the momentum and other quantum

numbers of the A operators.

Let N be the code imprinted in the vacuum at the initial time t0 = 0 by the

external input: it specifies the memory record of the input. The code N is the set

of the numbers NAk
of modes Ak, for any k, condensate in the vacuum state, which

we denote by |0〉N . This can be taken to be the memory state at t0 = 0.15,39 At

each t, NAk
(t) is given by:

NAk
(t) ≡ N 〈0(t)|A†

kAk|0(t)〉N = sinh2(Γkt− θk) , (A.1)

and similarly for the modes NÃk
(t). The state |0(t)〉N ≡ |0(θ, t)〉 is the time-evolved

of the state |0〉N . Γk is the damping constant (related to the memory life-time) and

θk fixes the code value at t0 = 0. |0〉N and |0(t)〉N are normalized to unity and in
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the infinite volume limit we have

N 〈0(t)|0〉N ′ −→
V→∞

0 ∀ t 6= t0 , ∀ N ,N ′ , (A.2)

N 〈0(t)|0(t′)〉N ′ −→
V→∞

0 , ∀ t, t′ with t 6= t′ , ∀ N ,N ′ , (A.3)

with |0(t)〉N ′ ≡ |0(θ′, t)〉. Equations (A.2) and (A.3) also hold forN 6= N ′ but t = t0
and t = t′, respectively. The meaning of Eqs. (A.2) and (A.3) is that the vacua of the

same codeN at different times t and t′, for any t and t′, and, similarly, at equal times

but different N ’s, are orthogonal states in the infinite volume limit, V → ∞, and

thus the corresponding Hilbert spaces {|0(t)〉N } are unitarily inequivalent spaces

in the same limit.

In order to ensure the balance of energy flow between the system and the envi-

ronment, the difference between the number of tilde and non-tilde modes must be

zero: NAk
−NÃk

= 0, for any k. We remark that the difference (NAk
−NÃk

) is a

constant of motion for any k and θ.

We now observe that the requirement NAk
− NÃk

= 0, for any k, does not

uniquely fix the set of NAk
numbers, i.e., the code N ≡ {NAk

, for any k}. Indeed,
|0〉′N with N ′ ≡ {N ′

Ak
;N ′

Ak
− N ′

Ãk

= 0, for any k} also ensures the energy flow

balance and therefore also |0〉′N is an available memory state corresponding to a

different information (of code N ′) than the one of code N . Thus, infinitely many

memory (vacuum) states may exist, each one corresponding to a different code N :

in the sequential recording process, a huge number of sequentially recorded inputs

may coexist without destructive interference since infinitely many vacua |0〉N , for all

N , are independently accessible. The “brain (ground) state” is the the superposition

of the states |0〉N , for all N . The collection of the Hilbert spaces {|0(t)〉N }, for all
N , for all t, is called the memory space.

Summarizing, the system Ã represents the sink (the environment or thermal

bath) where the energy dissipated by the A system flows. Due to dissipation, the

brain is described as a complex system with a huge number of mesoscopic states

(the memory states).

A.3. The free energy functional

In order to study the thermal properties of the system, let us consider the free

energy functional for the system A (we could consider similar functional for the

system Ã)

FA ≡ N 〈0(t)|
(

HA − 1

β
SA

)

|0(t)〉N . (A.4)

Here, β(t) = 1/kBT (t) is the time-dependent inverse temperature; SA is the entropy

operator and HA denotes the Hamiltonian at t = t0 for the A-modes only, HA =
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∑

k ~Ωk(t0)A
†
kAk. Let Θk ≡ Γkt−θk and Ek ≡ ~Ωk(t0). The stationarity condition

to be satisfied at each time t by the state |0(t)〉N is

∂FA

∂Θk
= 0 , ∀ k , (A.5)

which gives β(t)Ek = − ln tanh2(Θk), i.e.,

NAk
(θ, t) = sinh2(Γkt− θk) =

1

eβ(t)Ek − 1
. (A.6)

Equation (A.6) is the Bose distribution for Ak at time t.

The entropy SA(t) = 〈0(t)|SA|0(t)〉N appears to be a decreasing function of

time in the interval (t0 = 0, τ ≡ (θk/Γk)) (and similarly for the SÃ(t)): the state

|0(t)〉N , although evolving in time, is however “protected” from “going back” to the

“uncorrelated” vacuum state. Here, the exchange of energy with the environment is

crucial and we are also assuming finite volume effects. The entropy, for each of the

A and Ã systems separately, grows monotonically from zero to infinity as the time

goes from t = τ to t = ∞. For the complete system A− Ã, the difference (SA−SÃ)

is constant in time: [SA − SÃ,H′] = 0.

Moreover, provided variations in time of the inverse temperature are slow, i.e.,

(∂β/∂t) = −(1/kÃT
2)(∂T/∂t) ≈ 0, the variations of the energy EA ≡ ∑

k EkNAk

and of the entropy are related by Eq. (15) in Sec. 4, which expresses nothing but

the minimization of the free energy: dFA = dEA − (1/β)dSA = 0 at each time t.

A.4. The brain-environment entanglement and chaotic

trajectories in the memory space

The states |0(t)〉N , for each N at each time t, are generalized coherent states of

the SU(2) group.49,58 In these states the modes Ak and Ãk are entangled modes,

which means that the brain is permanently (and unavoidably) “linked” to its envi-

ronment.15,56

The degree of the coupling of the system A with the system Ã can be parame-

terized by an index, say n, in such a way that in the limit of n→ ∞ the possibilities

of the system A to couple to Ã are “saturated”.39 Thus n represents the number

of links between A and Ã. When n is not very large (infinity), the system A (the

brain) has not fulfilled its capability to establish links with the external world.

More are the links, i.e., more the system is “open” to the external world, better

its neuronal correlation can be realized.39 The realization of these correlations also

depend on other internal parameters which are characteristic of the system and

may parameterize subjective attitudes. However, the dissipative model is not able

to provide a dynamics for the variations of n. Thus we cannot predict if n increases

or decreases in time. In any case, n provides a measure of a higher or lower degree

of openness to the external world, producing, under different circumstances, e.g.,



Vortices in Brain Waves 3289

during the sleep or the awake states, the childhood or the older ages, a better or

worse ability in setting up neuronal correlates, respectively.

We thus see that in the dissipative model functional or effective connectivity

(as opposed to the structural or anatomical one, not considered here) is highly

dynamic. Once functional connections are established, they are not necessarily per-

sistent: they may quickly decay and new configurations of connections may be

formed among a larger or a smaller number of neurons. The finiteness of the size of

correlated neuronal domain implies a non-zero effective mass of the DWQ. These

therefore propagate through the domain with a greater inertia than in the case of

large (infinite) volume where they are (quasi-)massless. The domain correlations

are consequently established with a certain time-delay, which concurs in the delay

observed in the recruitment of neurons in a correlated assembly under the action

of an external stimulus.

In agreement with observations, we can show that the time derivative of the

frequency Ωk common to the A and Ãmodes, i.e., the power, is a decreasing function

of k. Also in agreement with observations, the inverse of Ωk (the “duration”) and the

domain size dΩ(t) = c(Ωk)
−1 are decreasing functions of k. Here c is the propagation

speed of the NG modes in the correlated domain.

Note that in the infinite volume limit time evolution of the state |0〉N is repre-

sented as the (continual) transition through the spaces {|0(t)〉N , ∀ N , ∀ t}, namely

as the “trajectory” in the memory space through the “points” {|0(t)〉N , ∀ N , ∀ t}
(each one minimizing the free energy functional (A.4)). The initial condition of the

trajectory at t0 = 0 is specified by the code N . These trajectories can be shown

to be classical49,66–68 chaotic66 trajectories. They satisfy indeed the requirements

characterizing the chaotic behavior:

(i) the trajectories are bounded and each trajectory does not intersect itself (tra-

jectories are not periodic).

(ii) there are no intersections between trajectories specified by different initial

conditions.

(iii) trajectories of different initial conditions are diverging trajectories.

The property (i) means that the “points” |0(t)〉N and |0(t′)〉N through which

the trajectory goes, for any t and t′, with t 6= t′, after the initial time t0 = 0, never

coincide.

Equation (A.3), which also holds for N 6= N ′ in the infinite volume limit for

any t and any t′, shows that trajectories specified by different initial conditions

(N 6= N ′) never cross each other, which is the meaning of (ii). The property (ii)

thus implies that no confusion (interference) arises among the codes of different

neuronal correlates, even as time evolves. We observe that states with different

codes may have non–zero overlap (the inner products Eqs. (A.2) and (A.3) are not

zero) in realistic situations of finite volume. Then, at a “crossing” point between

two, or more than two, trajectories, there can be “ambiguities” in the sense that
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one can switch from one of these trajectories to another one which there crosses.

This may be felt as an “association of memories”, switching from one information to

another one; it reminds us of the “mental switch” occurring during the perception

of ambiguous figures, or while performing some perceptual and motor tasks as well

as while resorting to free associations in memory tasks.

For the property (iii), we study the “distance” between trajectories as time

evolves. Consider two trajectories with different initial conditions. From Eq. (A.1)

we have at time t, for each component NAk
(t) of the code N ,

∆NAk
(t) ≡ N ′

Ak
(θ′, t)−NAk

(θ, t)

= sinh2(Γkt− θk + δθ)− sinh2(Γkt− θk) ≈ sinh(2(Γkt− θk))δθk , (A.7)

where δθk ≡ θk − θ′k (which, in full generality, is assumed to be greater than zero).

The last equality holds for small δθk, i.e., for a very small difference in the initial

conditions of the two initial states. The time-derivative then gives

∂

∂t
∆NAk

(t) = 2Γk cosh(2(Γkt− θk))δθk . (A.8)

thus showing that the difference between originally even slightly different NAk
’s

grows as time evolves. For large enough t, the modulus of the difference ∆NAk
(t)

and its time derivative diverge as exp(2Γkt), for all k’s. The quantity 2Γk, for each

k, appears thus to play a role similar to that of the Lyapunov exponent in chaos

theory. Summarizing, trajectories differing by a small variation δθ in the initial

conditions, diverge exponentially as time evolves. This may account for the high

perceptive resolution in the recognition of the perceptual inputs.

Suppose that the difference between k-components of the codes N and N ′ be-

comes zero at a given time tk = θk/Γk [cf. Eq. (A.7)]. Then, the difference between

the codes N and N ′ does not necessarily become zero. The codes are different even

if a finite number of their components are equal, since they are made up of a large

number of NAk
(θ, t) components (infinite in the continuum limit). On the other

hand, suppose that, for δθk ≡ θk−θ′k very small, the time interval ∆t = τmax−τmin,

with τmin and τmax the minimum and the maximum, respectively, of tk = θk/Γk,

for all k’s, be very small. Then the codes are recognized to be almost equal in such

a ∆t. Equation (A.7) then expresses the recognition (or recall) process and it shows

how it is possible that “slightly different” NAk
-patterns (or codes) are recognized

to be the same code even if corresponding to slightly different inputs. Roughly, ∆t

may be taken as a measure of the recognition time.

The rules (i), (ii) and (iii) are for deterministic chaos, which is low dimensional,

noise-free, autonomous and stationary. Such a chaotic motion in the abstract space

of the parameters labeling the system ground state must be projected in a more

realistic frame considering that brains are infinite dimensional, noisy, engaged and

time–varying.
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A.5. Classical behaviors emerging from microscopic dynamics

The spontaneous breakdown of the dipole rotational symmetry briefly discussed

above leads to a non-vanishing polarization density.33 This means that the sys-

tem vacuum has a residual cylindrical symmetry along the polarization direction.

It is then possible that the spontaneous breakdown of such a residual symmetry

(formally represented by the U (1) group of the global gauge transformation) may

occur, generating the correspondent NG boson modes.34 In Sec. 3, these NG modes

have been identified with the θ(x) phase field of the charge density wave function

σ(x) [cf. Eq. (3)]. The system possesses also the local gauge symmetry [Eq. (4)] and

the e.m. field Aµ has the field equation (5).

It is known35–37 that in the presence of spontaneous breakdown of the global

phase symmetry, a massless negative norm field (ghost) bin(x) and a massive vector

field Uµ(x) also exist in the theory and that the NG and the ghost modes do not

appear in the physical spectrum (the Anderson–Higgs–Kibble mechanism).42–44 We

denote by Uµ
in(x) the quasi-particle field associated to Uµ(x). The field equations

for θ(x), bin(x) and U
µ
in(x) are

∂2θ(x) = 0 , ∂2bin(x) = 0 , (A.9)

(∂2 +m2
V )U

µ
in(x) = 0 , ∂µU

µ
in(x) = 0 . (A.10)

In these equations m2
V ≡ Z3Z

−1(e0v)
2, where Z3 and Z are wave function renor-

malization constants, e0 and v are the electron charge and the constant entering

the symmetry breakdown condition 〈0|ρ(x)|0〉 = v 6= 0.33–37

Non-homogeneous boson condensation of the field θ(x) in the system ground

state produces coherent domains of finite size. The condensation process is for-

mally described by the transformation (6).37,39–41 The boson condensation function

f(x) carries some topological singularity in order for the condensation process to

be physically detectable, which means that it has to be path-dependent,35–37 i.e.,

[∂µ, ∂ν ]f(x) 6= 0, for certain µ, ν, x.

We now sketch the general strategy to obtain from the microscopic dynamics the

classical Maxwell (massive) field equation and the classical current. The customary

requirement that the current jµ(x) is the only source of the vector potential field

Aµ(x) in any observable process amounts to impose the so-called physical state

condition: p〈b|∂µθ(x)|a〉p = 0, i.e., from Eq. (5)

− ∂2p〈b|A0
µ(x)|a〉p = p〈b|jµ(x)|a〉p , (A.11)

where |a〉p and |b〉p denote two generic physical states. Equation (A.11) is the clas-

sical Maxwell equation. The physical state condition p〈b|∂µθ(x)|a〉p = 0 is violated

when the boson transformation (6) is induced and thus the classical Maxwell equa-

tion (A.11) is violated. One then can show35,36 that, in order to restore it, the shift

in θ(x), Eq. (6), must be compensated by means of the transformation of Uµ
in(x):

Uµ
in(x) → Uµ

in(x) + Z
− 1

2

3 aµ(x) , ∂µa
µ(x) = 0 , (A.12)
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provided the c-number function aµ(x) satisfies the equation (7), which is recognized

to be the classical Maxwell equation for the massive vector potential aµ(x).
33–36

The various field operators are not affected by (A.12) since they contain Uµ
in(x)

and θ(x) in a combination such that the changes of θ(x) and of Uµ
in(x) compensate

each other. The classical ground state current jµ,cl(x) turns out to be given by

Eq. (8). Remarkably, the classical equation (7) and the classical current (8) are

invariant under the classical gauge transformations

aµ(x) → aµ(x) + ∂µλ(x) , f(x) → f(x) + e0λ(x) , (A.13)

where λ(x) is the (non-singular) gauge function satisfying ∂2λ(x) = 0.

Appendix B. Ginzburg Regime and Phase Transitions

In the Subsec. 3.B we have considered the critical or Ginzburg regime during the

processes of phase transitions in the harmonic approximation formalism. The order

parameter classical field v, assumed to be space–time dependent (non-homogeneous

condensate), v = v(x, t), is expanded into partial waves:

v(x, t) =
∑

k

{uk(t)eik·x + u†
k
(t)e−ik·x} . (B.1)

The equations for the parametric oscillators uk(t)
49 (see also Refs. 40 and 41) for

each k-mode (k ≡
√
k2) are:

ük(t) + (k2 −m2)uk(t) = 0 . (B.2)

As remarked in the text, the oscillator frequency Mk(t) =
√

k2 −m2(t) is required

to be real for each k at each t, when m2 is assumed in the model to depend on time,

m2 = m2(t). The reality condition on Mk(t) for each k is then satisfied provided

at each t, during the critical regime time interval, Eq. (10) is satisfied for each

k-mode, which turns out to be a condition on the k-modes propagation. The model

is specified by assigning the time dependence of m(t), Eq. (11), and the explicit

analytic expression for h(t) which there appears. A possible choice for h(t) is41:

h(t) = ± at

bt2 + c
, (B.3)

where a, b, c are (positive) parameters chosen so as to guarantee the correct di-

mensions. We denote their ratios by c/aλ ≡ τQ, aλ/b ≡ τ0, with λ an arbitrary

constant. We note that h(τQ) = h(τ0). The time derivative of h(t), and thus of

m2(t), is zero at t = τ = ±√
τQτ0. τ thus plays the role of the equilibrium time

scale. With this choice Eq. (13) is then obtained

h(t) = ± 1

λτQ

1

1 + t2

τ2

t ≈ ±Γ

2
t , (B.4)

for t2/τ2 ≈ 1, with Γ ≡ 1/λτQ.
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