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We investigate the superfluid transition of 'He thin film adsorbed on porous materials with 
emphasis on the role of vortices. Considering the multi· connectivity of the film, we show that the 
interaction among the vortices excited in the film is essentially one dimensional due to the quantum 
behavior of the flow. As a result, it is generally shown that the vortices do not dissociate at TA where 
the long range order (LRO) vanishes in contrast to the two dimensional case. 

We also study the mechanism of dissipation for applied AC flow with the frequency (J), noting that 
a finite dimension of the film, the pore size a, plays an important role. The crossover phenomena 
between the Kosterlitz-Thouless transition and the I! transition are predicted: The superfiuid onset is 
accompanied with the disappearance of the free vortices in large a or high (J) cases, whereas with the 
appearance of the LRO in small a or low (J) cases. 

Our theory qualitatively explains various experimental results with the torsion pendulum. 

§ 1. Introduction 

After a stimulating work of Berezinskii/) the famous Kosterlitz-Thouless (KT) 

theory was presented where the importance of the correlation of topological excita

tions was pointed out and a sharp transition was predicted in purely 2D systems.2
),3) 

In the 4He thin film it was shown that the superfiuid density Ps suddenly vanishes at 

a finite temperature TKT where vortex pairs dissociate. Such a prediction was 

against a conventional understanding that a sharp transition never exists in 2D 

systems because of large fluctuations. Many experiments began to confirm it. 

In the first stage, because of the large surface area porous materials such as 

Vycor glass
4
) were introduced as good adsorbents for the purpose of investigating 

whether the adsorbed 4He thin film experi-

substrate 

...... -, /0\ f I 
I I 
, I 

,----/ C 

Fig. 1. 'He film adsorbed on a porous materi~l. 

ences the superfiuid transition or not. 

Many interesting properties of the adsorb

ed film in porous materials were fourid 

out about the superfiuid transition. How

ever, such a system is not a simple 2D film 

but a multiply-connected one composing a 

3D network as in Fig. 1. By those experi

ments, therefore, everybody was not 

convinced of the occurrence of the 

superfiuid transition in the purely 2D sys

tem. 

In 1978 Bishop and Reppy succeeded in 

observing the superfiuid transition in a 

purely 2D system, a few atomic layer of 
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398 T. Minoguchi and Y. Nagaoka 

4He on a Mylar sheee) by the torsion pendulum measurement. To compare the KT 

theory with this measurement, Ambegiwkaret al. extended it to include the dynamical 

perturbation6
) within the linear response theory. In this dynamical theory, the real 

part of the response coefficient to the external os<;illation corresponds to ps and the 

imaginary one to the energy dissipation of the pendulum. A peak of the energy 

dissipation at TKT was predicted in addition to the sharp drop of Ps due to the vortex 

pair dissociation. These predictions were completely realized in the experiment. 

N ow there remain interesting problems for the films on porous materials because 

they experience the superfiuid transition in apparently different ways from the purely 

2D case. Recently the experiments were extensively carried out mainly with the 

torsion pendulum technique7
)-9) and with the third sound propagation method.10

) The 

common features in these experimental results are that the superfiuid onset tempera

ture To is quite near to TKT and that ps continuously drops at To. There are, however, 

some differences in the critical behaviors of Ps as follows. 

Reppy and his co-workers employed Vycor glass whose pore size is about 

100 A. 7),8) They found that the critical exponentS-defined by Psocl T- Tol' is quite near 

to 2/3, the value in the pure bulk system. They concluded that the A transition takes 

place in the Vycor glass because the global structure IS 3D. The local structure, 

however, is 2D and then vortices will be excited in the film. They will play an 

important role in the superfiuid transition with increasing pore size because the film 

tends to the purely 2D system. Then it is interesting, if their explanation is correct, 

to investigate why vortices are irrelevant to the transition in 100 A Vycor case. 

Kotsubo and Williams proposed the other explanation: the KT transition with 

finite size broadening takes place. They measured the third sound propagation in 

4He film on the packed fine powder of AhOs by varying the grain size: about 1 fJ.m, 

3000 A and 500 A. Because of the attenuation of the sound one cannot observe the ' 

behavior of ps in the onset region. They found that the attenuation is lowered with 

decreasing grain size and in 500 A case they confirmed that the drop of ps is 

broadened.10
) Subsequently they calculated the stiffness of vortex-vortex interaction 

on a single sphere within the KT theory.ll) The drop of the stiffness between a couple 

of vortices on the opposite sides on the sphere, to be called the renormalized stiffness, 

becomes broader as the diameter of the sphere decreases because of the finite size 

effect. They pointed out that their experimental results are well explained by this 

sphere model whose diameter is taken to be the grain size, if the renormalized stiffness 

is identified with the observed quantity, Ps. 

Shirahama et al. observed the superfiuid transition of 4He films on the three kinds 

of packed Pt fine powders whose grain sizes are respectively about 500 A, 100 A and 

60 A. They employed the same technique as Reppy and his co-workers did~ Their 

results support the explanation of Kotsubo and Williams: They confirmed not only 

that the sharp transition, appeared in the 500 A case, becomes broader as the grain 

size decreases, but that the energy dissipation peak appears at To in all cases.9
) It· 

suggests that the superfiuid onset is accompanied with the disappearance of free 

vortices as is in the 2D case. 

Some questions arise. First, why are the experimental results so different 

between those of Reppy and his co-workers and of Kotsubo and Williams and 
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Superfluid Transition of 4He Film on Porous Materials 399 

Shirahama et al.? Three explanations will be possible: 

i) The adsorbed film experiences the A transition for small pore cases and the 

KT like one for large pore cases. 

ii) The KT like transition takes place for any pore sizes. If so, the drop of ps 

becomes broader with decreasing pore size and PsCX: IT - Tol2/3 is accidentally 

observed for 100 A case. 

iii) The behavior ofps is essentially different between on the Vycor glasses and 

on the pack fine powders. 

Second, why is the single sphere model so successful for the experiments that Kotsubo 

and Williams and subsequently Shirahama et al. carried out? Especially, 

a) why is vortex pair dissociation temperature estimated in such a model of only 

one grain, even though each film on the grains connect with each other to 

compose 3D network as in Fig. I? and 

b) why does the observed quantity, Ps, coincide with the renormalized stiffness in 

the vortex· vortex interaction on the scale of the grain? 

In this paper we investigate the superfiuid transition in the 4He thin film adsorbed 

on porous materials, considering both the multi-connectivity and the three dimen

sionality of the film. We study the behavior of vortices assuming that they are 

excited in the film, and will show that the explanation i) is reasonable. 

We calculate the temperature Te where vortex pairs dissociate. In our previous 

papee2
) we showed that vortices are strongly coupled with each other as if they are 

one dimensional Coulomb charges. As a result, we will explain a): Te is determined 

as the temperature at which the order of the phase appears on the short length scale, 

the pore size, not on the long length one in contrastto the purely 2D system, and then 

the vortex 'pair dissociation is not accompanied 'with the thermodynamic phase 

transition. We will conclude that the thermodynamic transition results from the long 

wavelength excitations as is in the pure bulk system. In this sense the ther

modynamic transition temperature TJ., where the long range order (LRO) appears, 

should be determined independently of Te. 

We study the mechanism of the dissipation of the applied flow with the frequency 

(f), because ps is dynamically observed in the experiments. As a result, for sufficiently 

large pore cases or high (f) cases we obtain essentially the same results as Kotsubo and 

Williams proposed: To= Te. We will give reasonable explanations to the question b). 

For small pore or low (f) cases we will show that the A transition should take place: 

To= TJ. as Reppy and his co-workers assert. 

In the next section, we calculate the temperature Te by using the KT theory. In 

§ 2.1, a brief review of the KT theory is given. In § 2.2, we evaluate the interaction 

between vortices excited in the multiply-connected film. By considering explicitly 

the multi-connectivity of the film, we show that vortices interact one dimensionally 

with each other due to the quantum behavior of flows, which was briefly shown in 

Ref. 12) . The calculation of Te is given in § 2.3. We there emphasize that the KT theory 

is merely a mean field theory and then is inapplicable to the present case in the vicinity 

of Te. TJ. is estimated in § 3. We investigate the dynamical properties in § 4 focus

ing the torsion pendulum experiment. There the crossover phenomena are predicted 

between the KT transition and the A transition by varying the pore diameter a or the 
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400 T. Minoguchi and Y.. Nagaoka 

• 
frequency (j). We give a summary and discussion in § 5. 

§ 2. Vortex pair dissociation in multiply-connected film 

2.1. Kosterlitz-Thouless theory in 2D systems 

Before discussing the multiply-connected film, we give a brief review of the KT 

renormalization theory in purely 2D system, which will be applied to the present 

problem in § 2.3. According to this theory the superfiuid transition temperature TKT 

and critical behaviors of the superfiuid density ps are determined by the correlation 

of excited vortices .. As the reduction of ps due to long wavelength excitations is 

sufficiently small compared with that due to vortices, one has only to take vortices 

into account to calculate ps. 

If 2N vortices are excited in the superfiuid film, the Hamiltonian is given by 

~ = -~ L: 6i6j In rij + 2NEc , 
co i>j ro 

(2·1) 

where rij is the distance between i-th and j-th vortices, 6i the vorticity of the i-th 

vortex (l6il=1), ro the diameter of vortex core and 

l=mrpo (IC= m1i ) 
co .' 

(2·2) 

is a 10ca1 stiffness with m and Po being the atomic mass and the local superfiuid 

density respectively. Ec is the vortex core energy. As is well known, this system is 

equivalent to the 2D Coulomb gas with the dielectric constant co if vortices are 

regarded as charges.13
) 

At sufficiently low temperatures T4:.Ec, a plus-vortex combines with a minus-one 

to compose a vortex pair. Then as the low temperature approximation of (2·1), we 

have the following Hamiltonian of vortex pairs: 

2 N r· 
~~-L: In-' +2NEc+~p_p, 

co i=1 ro 
(2·3) 

where ri is the length of the i-th pair and ~P_P is the interaction among the pairs. 

This system behaves as a dielectric medium. If a couple.of test charges with opposite 

sign are located with separation r, the smaller pairs with ri~ r are polarized and the 

larger pairs with ri ~ r are not. So we can regard this system as a dielectric medium 

in a mean-field sense with the scale-dependent dielectric constant c(r) due to the 

polarization of pairs with ri ~ r. We want to calculate c( 00) which corresponds to 

ps: 

1 
c(oo) =7rtCPs (2·4) 

in analogy with (2·2). 

To calculate c( 00) we shall apply the mean field approximation as follows. 

Instead of considering ~ p_p explicitly, we treat non-interacting vortex pairs in which 

a plus-vortex interacts with a minus-one in the effective medium wi~h c(r) to be 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/8

0
/3

/3
9
7
/1

9
0
3
4
1
1
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Superfluid Transition of 4He Film on Porous Materials 

self-consistently determined. The Hamiltonian (2·3) is thus reduced to 

N1 T
; 1 

3{~2~ dr-(-)+2NEc. 
i=1 TO rE r 

The dielectric constant E( 00) is given by 

E(OO) = Eo+47W, 

where 

is the pol ariz ability with 

1
'" , 
dr re-PE(T) 

To 

I
T 2dr 

E(r)= -( -) +2Ec , 
TO rE r 

and n is the vortex pair density 

11'" n=-4 dr 27rre-PE
(T) • 

ro TO 

By substituting Eqs. (2·6·1)~(2·6·4) into Eq. (2·6), we have 

E(OO) = Eo+47r 1~ dr 27rr n(r) ~r2, 

where 

401 

(2·5) 

(2·6) 

(2·6·1) 

(2·6·2) 

(2·6·3) 

(2·6·4) 

(2·7) 

(2·8) 

is the density of the pairs with the length r. Taking the derivatives of E( r) and n( r) 

in Eqs. (2·7) and (2·8), we obtain the following recursion relations: 

E(r+dr)=E(r)+47r·27rrdr n(r) ~r2, 

n(r+dr)=n(r)exp{ - fJ ;E1~)}· (2·9) 

These are the well-known Kosterlitz recursion relations.3
),13) With an initial condi

tion 

E(ro) = Eo , 

(2·10) 

we can obtain E( 00) or ps by iteration. The results are consistent with experiments 
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402 T. Minoguchi and Y. Nagaoka 

including a well-known drastic change of ps at TKT. 5
) 

2.2. Vortex-vortex interaction in multiply-connected films 

Before discussing the correlation of vortices in the multiply-connected films, we 

should bear in mind some features of the superfluid flow occurring in the film. That 

is, the superfiuid circulation along any closed path on the film should be quantized. 

For instance, the circulation along a dashed loop in Fig. 1 is quantized. The quant

ization in a simply connected region (like A in Fig. 1) leads to the quantized vorticity 

of vortices. The quantization around a channel (like B) leads to the non-trivial 

interaction among vortices as described'later. It is also to be noted that the circula

tion is quantized along a closed path (like C) which cannot be shrunk to a point. The 

. quantum number of the circulations along Band C are respectively result from the 

times of the passages of a vortex through the channel and the drifts around it. 

N ow we evaluate the interaction among vortices excited in the multiply

connected film. As remarked above, the quantization of the superfiuid circulation 

around a channel is important, Let us suppose a couple of unit vortices excited in the 

film. If one is in the flow induced by the other, one is attracted or repelled by the 

Magnus force, resulting in the vortex-vortex interaction. We first show how a unit 

vortex induces superfiuid current in the multiply-connected films, and next evaluate 

the vortex-vortex interaction. 

For convenience, we introduce the XY-spin representation where the magnitude 

and the phase of the spin respectively represent those of the condensate wave function. 

If the fluid is assumed to be incompressible, the gradient of phases in the spin system 

represents the superfiuid flow with velocity 

Vs= d7 ¢(r) , (2-11) 

where ¢ is a phase at a point r. 

In the purely 2D case such a spin configuration as in Fig. 2(a) represents a unit 

vortex. As the superfluid velocity Vs is represented by (2 -11), the superfiuid circula

tion occurs symmetrically around the center of vortex. If we impose a periodic 

boundary condition, however, we have unusual, asymmetric circulation. As shown in 

Fig. 2(b), directions of spins located on the upper boundary must coincide with those 

on the lower boundary. To make 27r gradient of the phase along a closed path 

surrounding the vortex core, only two kinds of configurations are possible such as to 

make the gradient along only half part of the path, right~hand side or left-hand side 

as in Fig. 2(b). Such a configuration represents the circulation induced only in the 

half side of the unit vortex. In other words, in the superfiuid film on a cylinder the 

induced circulation by a unit vortex takes place asymmetrically because of the 

quantization of circulation around the cylinder. The up.it vortex produces the unit 

circulatIon around the cylinder at large distances, which obviously cannot be divided 

into any fractional ones due to the quantum effect. This is the reason why the 

circulation takes place asymmetrically. 

This leads to the following important fact: Even if the cylinder has branches, 

this circulation does not divide or spread out but goes into only one of branches 

keeping its magnitude unity as shown in Fig. 2(c). So, in general, if a unit vortex is 
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Superfluid Transition of 4He Film on Porous Materials 403 
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Fig. 2. (a) A unit vortex in a flat film. 

(b) A unit vortex in a cylindrical film. 

Periodic boundary 

_______ ~ ___ ~ _____ ~ ___ ~_L ___ 

- - \. \. \. \ 

-+ - ....... ,/ ,/ ,/ 

E9 - ? ! 
, 

'\ 
, 

-+ -+ ! \ I 

------ -""«-- -.,...-----------------

(b) 

(d) 

(c) Schematic description of the induced flow by a unit vortex on the branching cylinder. The 

quantization of circulation around one branch yields an image charge on the root coupling to the 

original vortex, which results in the charge· neutrality or the zero·circulation around the other. 

(d) A string, which mediates the vortex·vortex interaction. 

excited in the multiply-connected film with the pore diameter a, the velocity of the 

induced current reduces two dimensionally as I vsl ~ hi (mr) at r ~ a, where r is the 

distance from the vortex core, and remains constant Ivsl~hl(ma) at r~a in spite of 

the presence of many branches. Thus the vortex-vortex interaction is essentially 

one-dimensional at large distances r~a, whereas two-dimensional at small distances 

r<f;..a. At low temperatures, then charge confinement takes place so as to form a 

vortex-antivortex pair with a string of circulation connecting the two. (See Fig. 2(d).) 

It is interesting that vortices in the present geometry behave similarly to quarks in 

high energy physics. We note that Machta and Guyer also investigated this multiply

connected system and found the charge confinement independently of US.
14

) 
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404 T. Minoguchi and Y. Nagaoka 

~ ..... -~.-- -------+ X 

rra 

2.3. Vortex pair dissociation 

In this subsection we calculate the 

temperature Tc where vortex pairs dis

sociate in the multiply-connected film. 

The reduction of the stiffness of the 

vortex-vortex interaction is assumed to 

be due to the interaction among pairs as 

in the 2D case. In the present system, 

as described at the end of the preceding 

subsection, the induced current due to a 

Fig. 3. pair is bunched to make a string connect-

ing a couple of vortices. So the interac

tion among pairs will be a very short range one. In other words pairs will hardly 

interact with each other except when one is in the string of the other. So the present 

system is essentially equivalent to the following model system so far as the vortex 

correlation is concerned: the 4He film on a cylinder with diameter a and infinite length. 

Within the KT renormalization theory, we calculate the stiffness or the dielectric 

constant and consequently Tc in the cylindrical model described above. We take the 

x-axis perpendicularly to the axis of cylinder as in Fig. 3. The interaction between 

a couple of unit vortices with opposite sign takes the following form: 12
) 

Uo(r, e)=~ ~ In' Jr+ nRJ , 
co n=O,±l,±2·.. J r02 + n2 R2 

(2'12) 

where r is the vector separating a vortex pair and R == lrai with i being the unit vector 

of the x-axis. We put r==JrJ, R==JRJ and e~cos-l(r' R/(rR». At small distances 

r4;.R, we expand (2'12) with a small parameter r/R to obtain 

(2'13) 

At large distances r ~ R, on the other hand, we can replace the summation with the 

integration: 

and have 

( ) 2lr r 
Uo r, e ~-R' 

co 

(2'14) 

(2 '15) 

That is, the interaction is one dimensional at large distances and two dimensional at 

small distances. 

Employing Uo(r, e), we obtain the extended Kosterlitz recursion relations for the 

cylindrical system via the same procedure as in § 2.1:*) 

*) Note that the dielectric constant c(r, B) and the vortex pair density n(r, B) depend on two parameters 

rand B because of the anisotrophy of the interaction Uo(r, B). 

i 
I 
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where 

and*) 

Superfluid Transition of 4 He Film on Porous Materials 

£(r+dr, B)=£(r, B)+47rjdB'rdr n(r, B')'a(r, B, B'), 

{

12K 

j= ~K-ee + 12K-ee ' 
JOe n+Oc 

(r<R/2) 

(r> R/2) 

with the cutoff angle 

B - -l( R) 
e=COS 2r' 

We put 

U(r, B)= (r dr £0 oUo(r, B) , 
)ro £(r, B) or 

405 

(2'16) 

(2'16'1) 

(2·16·2) 

(2'16·3) 

(2·16'4) 

which is the renormalized potential of a vortex pair with the separation r and the 

angle B. The initial condition is given by 

E(ro, B)=£o, 

n(ro, 8) = exp( -2!3Ee)/r04 • (2'17) 

Before calculating the renormalized dielectric constant £n=E(oo, Be), we give a 

note connected with the inapplicability of the recursion relations to the 1p regime 

r ~ R. To see this, we first calculate En for the 1D limit R ~ Yo in Eqs. (2 ·16). In the 

case R~r, the cutoff angle is 

7r R 
B~---
e- 2 2r' 

which results in 

(2·18) 

(2'19) 

By substituting (2'19) and (2'15) into (2'16), we obtain the recursion relations for the 

1D Coulomb gas as 

El(r+dr)=£1(r)+47r'2dr nl(r)!3r2 
, 

*) In Ref. 12) the definition of t should be replaced as in (2 '16·2). 
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406 T. Minoguchi and Y. Nagaoka 

nl(r + dr)= nl(r )exp{ -!3 e~(~) dr} , (2·20) 

where we set R=ro and put Cl=roe(r) and nl=ro2n(r). With the starting values 

(2·21) 

it is resulted that eR(mf) (hereafter we use the superscript '(m!)' for eR calculated by 

the recursion relations) diverges at some finite temperature ~ Ec (see the Appendix 

for the detail). 

This result must be considered as an artificial one because it is inconsistent with 

the rigorous theory of Edwards and Lenard where the possibility of a thermodynamic 

phase transition is excluded in the 1D Coulomb gas.15) This inconsistency comes 

from the inapplicability of the Kosterlitz recursion relations where, as was pointed 

out in § 2.1, the mean field approximation is employed. 

In Ref. 15), the reduced density function !(f,(f,(r) is given for the two particles of 

charge (5 and (5' with the separation r in Eq. (114). With this function, we can obtain 

eR-eo~47r!3 ("" dr r 2A_l(r). 
Jro (2·22) 

It is shown that A-l(r) is a monotone decreasing function of r, and that the system 

falls into the plasma state in the high temperature limit. As the thermodynamic 

phase transition is excluded, we then conclude that eR increases continuously as the 

temperature T increases and diverges only when T ~ co, or that pairs never dissociate 

at finite temperatures. 

As for the cylindrical case, and equivalently for the multiply-connected case, we 

obtain eR in a good approximation by replacing eo in (2·22) with e(R/2, 0): 

eR-e( f, 0 )~47r!31:dr r2!1,_1(r), (2·23) 

where !l,-l(r) is given by replacing eo in A-l(r) with e(R/2,0), and e(R/2,0) is 

obtained by the iteration up to the scale r = R/2 in the recursion formula (2 ·16). The 

right-hand side of (2·23) is due to the screening of pairs with r'd> R/2, which cannot be 

calculated by (2·16). From the results in the 1D case, we can conclude that eR 

diverges at the temperature Tc where e(R/2, 0) does and then Tc is given by 

1 
O. (2·24) 

At T= Tc, e(r, 0) diverges at r=R/2, whereas remains finite at r<R/2. In other 

words, the interaction is present only when the separation between a couple of 

vortices is smaller than R/2. The mean distance of the free vortices at Tc is then 

R/2. 
In the purely 2D case,13) it is established that the mean distance of the free vortices 

is comparable to the phase correlation length ~, which is given in T;;:: TKT by 
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Superfluid Transition of 4He Film on Porous Materials 407 

(2·25) 

where b is a constant which depends on the details of the system. We believe that the 

periodic boundary condition has little effect on the correlation of vortices on the short 

length scales r~R/2 and that (2·25) still holds in the present problem. Then (2·24) 

is replaced by 

(2·26) 

The vortex pair dissociation is then not accompanied with the thermodynamic phase 

transition in general because thermodynamic singularities appear when ~ diverges. 

Such a situation is obviously different from the 2D case. 

By substituting (2·25) into (2·26), we obtain 

1 
Te ~ TKT + ( R )2 . 

bln-
. ,2ro 

(2·27) 

This result coincides with that in the single sphere model/6
) although the intercon

nectivity of the film is taken into account. Near Te we have shown that vortices 

compose large pairs with long strings. Below Te, however, the density of pairs with 

r ~ R/ 2 becomes considerably small due to the one dimensionality of the interaction. 

Such a situation will underlie the single sphere mbdel. . 

If we put 

1 
ps= JrK-ER (2·28) 

in analogy with the 2D case, we regard ps as the local superfiuid density on the scale 

of a, because Ps appears at Te determined by (2·26). As will be seen later, in the 

dynamical measurement this Ps is observed at high frequencies, for instance as the 

0.5 

1.0 

~ = 10 
ro 

_---100 

_~----oo 

1.1 

Fig. 4. CO/CR or Ps/Po as a function of T. The solid and the dash-dotted lines respectively show 

co/c(R/2,0) and CO/cR(mfl. We set Ec/(iC"Po)=2.2. 
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408 T. Minoguchi and Y. Nagaoka 

period shift in the torsion measurement. 

By employing (2'23), one can calculate CR in a good approximation. As fl,-l(r), 

however, is difficult to treat, here we represent CR by the following inequalities: 

(2'29) 

At T= T c , CR coincides with c(R/2,0). We give in Fig. 4 both c(R/2,0) and CR(mf) 

calculated by (2 '16) with (2 ·17) as a function of T. When a'P ro, ps suddenly van

ishes at Tc, whereas continuously does when a;(: roo 

It is here noted again that Ps calculated above is merely a stiffness in the 

vortex-vortex interaction and that it Qoes not necessarily coincide with that measured 

in the torsion or the third sound experiments. As will be seen in § 4, they coincide 

with each other only in the case of high frequency measurements or large a cases. 

§ 3. Estimation of TA 

In this section we estimate the thermodynamic transition temperature TA• We 

show that TA is determined independently of Tc where the vortex pair dissociation 

takes place. To confirm this, let us first consider the cylindrical 4He film introduced 

in the preceding section. Using the XY spin representation, the spin-spin correlation 

function in the direction of the axis is given within the spin wave approximation 
by l7) 

g(r )=(cos¢(O)cos¢(r» 

"-'e-TI21C](Tla+ln TITo) , (3'1) 

where r points along the direction of the axis, J is the coupling constant, a the 

Fig. 5. Idealized geometry of the multiply· 

corinected film. 

diameter of the cylinder, and ¢ and ro 

are again the phase of the XY spin and 

the healing length respectively. From 

(3 '1), it is readily seen that there is no 

ordering state at any temperatures, or 

that T;.=O. On the other hand, we have 

already shown that Tc is finite as in 

(2'27). Then the vortex pair dissocia

tion takes place independently of the 

disappearance of LRO (or quasi-LRO) in 

contrast to the 2D case. 

Such a situation still holds in the 3D 

multiply-connected case. To make our 

problem clear, we shall consider such an 

idealized geometry as in Fig. 5 where the 

channel length 1 is much larger than the 

diameter a. With decreasing tempera

ture, it is expected that three dimen-
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sional properties appear when the phase correlation length ~ ~ I and then the ther

modynamic transition can take place.IS
) When ~< I, each cylindrical part composing 

the multiply-connected film may behave independently. Then the spin-spin correla

tion function may take the same form as (3'1). For large distances r'2>a, (3'1) 

reduces to 

g(r)~e-TrI27CJa , 

which shows 

c= 27fja 
<; T' 

Then if we determine TJ. as 

we have 

a 
~lTKT. (l'2>a) 

(3'2) 

(3'3) 

(3'4) 

(3·5) 

In such substrates as Vycor glass and packed fine powder, I is comparable to a. 

So as soon as ~ grows to a, where the vortex confinement takes place, ~ will diverge 

and the thermodynamic transition will appear. That is TJ. will be just below Te. 

§ 4. Phase slip mechanism and crossover phenomena 

As is noted in § 2.3, the superfluid density ps in the renormalized stiffness of the 

vortex-vortex interaction does not necessarily coincide with Ps observed in the 

experiments. We show in this section that Ps of the stiffness coincides with the 

observed value in the high frequency measurements, whereas it does not coincide with 

that in the low frequency ones. 

In the experiments with the torsion pendulum we note that Ps is observed as a 

finite quantity unless the superfiuid flow, which is driven by the mechanical oscillation, 

is completely dissipated during a period. Then we investigate how the flow is 

dissipated in such a multiply-connected film as in Fig. 5 by applying the Iordanskii

Langer-Fisher (ILF) theory19),20) to the present problem. 

In experiments substrates such as I ~ a ~ 100 A are employed. By taking wand 

A respectively as the frequency and the typical amplitude of oscillation, the driven 

flow has the velocity 

h 
Vs ~ Aw<-- , 

ma 
(4'1) 

. where we put A~10-1om and w~lKHz. (4'1) means that the flow is driven only 

towards the axis of each channel and no flow around channels. Therefore we have 

only to investigate the dissipation mechanism for the axis flow with the velocity (4 '1). 
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410 T. Minoguchi and Y. Nagaoka 

In usual systems ILF proposed the mechanism of the phase slippage due to 

vortices in the vicinity of the phase transition. In purely 2D film, for instance, ILF 

theory gives a critical size of vortex pair as21) 

h 
r=-

e mvs ' 
(4·2) 

where the free energy takes the maximum value LlF( T, re). That is, if the pair with 

size r > re is thermally activated, the driven flow is dissipated by expansion of the pair 

as r-HX). Smaller pairs with r< re shrink and disappear, which yields no dissipation 

of the flow. 

Before discussing the multiply-connected film, we first study the film on a long 

cylinder with diameter a again; On the cylinder the axis flow is dissipated by the 

activation of vortex pairs so as to expand along a circumference of the cross section 

of the cylinder and to shrink to a point on the other side. In the case of small velocity 

(4·1), re is larger than a and then a plays the same role as re: The free energy takes 

its maximum when two vortices locate on the opposite sides of the cylinder. In this 

case, LlF becomes a function of a instead of re and is given by 

. (7ra ) LlF(T, a)= U 2,0 , (4·3) 

where U(r, 8) is the renormalized potential of a vortex pair given in (2·16·4). The 

time for the activation is given by 

r= roePdF(T,a) , (4·4) 

where ro -1 is the attempt frequency.21) 

If (Or»l, such an activation cannot take place in a period, which results in Ps>O. 

Such a superfiuid density is to be called "apparent" one because there is no LRO in the 

cylindrical film as described in § 3. In this case superfiuidity is observed unless the 

free vortices exist. In other words, the apparent superfiuid density appears at Te 

where the vortex confinement occurs. Thus we regard this apparent superfiuid 

density as ps of the stiffness given in (2·28) at least at T e• 

If (Or<::l, typically for the DC flow, phase slippage by the vortex pair activation 

can occur during a period. It results in Ps=O in the measurement, which is consistent 

with the fact that there is no LRO on the cylinder. 

The multiply-connected film, such as in Fig. 5, is constructed by connecting the 

cylindrical films so as to compose a three dimensional network. Hereafter we shall 

consider the case I» a. Suppose the homogeneous DC flow driven with the small 

velocityvs<::h/(ml). When T> T., each cylinder composing the multiply-connected 

network may be regarded as independent. Then the phase slippage will take place 

via the same mechanism as in a cylinder. Therefore Ps=O is measured in the DC flow 

measurement. 

When T < T., on the other hand, LRO appears and the phases at the junctions 

effectively couple with each other with the coupling energy, J. Then the phase 

slippage does not take place in the same way as in the simple cylindrical case. In this 

case superfluidity undergoes a qualitative change: Phase slippage no more takes 

, 
! 
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Superfluid Transition of 4He Film on Porous Materials 

(a) 

(c) 

D 
W 
CJ 

(b) 

I 

(d) 

411 

Fig. 6. The phase slip mechanism in the presence of LRO. The spins S(r) are illustrated by the white 

arrow marks. For simplicity, the spins between the junctions are omitted except when they are 

especially needed. 

(a) The spin configuration representing the uniform flow applied from right to left. A vortex pair 

is thermally activated. 

(b) Wave lines illustrate the misfits between the spins on the junctions. See the text for the detail. 

(c) The favorable configuration resulting from the activation in (a). The local kink represents a 

back flow inside an imaginative "vortex ring" drawn by dashed curves. 

(d) A large vortex ring can be created by the cooperative activation of the pairs. When the ring 

crosses the adsorbed film the cross sections correspond to the vortex pairs. The back flow, 

denoted by the bold arrow marks, is generated so as to reduce the applied flow. 

place by the vortex pair activation as follows. 

For convenience, we here again introduce the XY spin representation. Taking 

a spatial average over a local region a X a around a point r, we have the averaged 

spin S(r). When ~>a, since all phases in the region a X a are arranged to the same 

direction, we may consider only the phase of S(r) neglecting fluctuation of the 
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412 T. Minoguchi and Y. Nagaoka 

magnitude. In Fig. 6, we show various dynamical behaviors of S(r) in the presence 

of applied flow. 

Suppose the uniform flow again, which is represented by such a spin configuration 

as in Fig. 6(a). When a vortex pair is thermally activated as shown there, the phase 

slippage no more takes place in the direction of the axis of the cylinder in contrast to 

the case T> T;.. Because if it does, it generates the misfits among the spins on the 

junctions as shown in Fig. 6(b) which costs the excess energy ~ fL/l, which diverges 

as the system size L increases. 

Such a configuration as in Fig. 6(c) is more favorable where the kink generated 

by the activation is not released but confined around the place where the activation 

has taken place. Such excitations are quite analogous to those in the bulk superfiuid 

4He: This local kink corresponds to a small "vortex ring", to be dissipated in a short 

time via the inverse process of the activation. 

Then if the applied flow is dissipated, we assert that it is due to the bulk-like 

phase slip mechanism. That is, the phase slippage is possible only when some vortex 

pairs are cooperatively activated to form the sufficiently large ring, as shown in 

Fig. 6(d). The time for the phase slippage in this case is then enhanced as 

~r, (4·5) 

where LlF is a macroscopic free energy barrier to be determined in the three dimen

sionalordering. Here r-1 given by Eq. (4·4) plays a role as the new attempt frequen-. 

cy in this system. So the DC flow is stable, as is in the true bulk system, and then 

Ps>O will be measured in DC flow measurements when T< T;.. In AC flow measure

ments also, Ps will behave as in the true bulk system when T < T;.. 

When vs~h/(ml), there is a kink more than 27r in the spin configuration between 

the junctions of the film. One vortex pair activation generates a phase slip by 27r. 

Therefore the axis flow will be strongly dissipated to become Vs~ h/(ml) via the 

vortex pair activation even though LRO exists because such a phase slippage is 

possible with spins on the junctions being fixed, which yields no misfits among the 

spins. That is, the critical velocity in the multiply-connected system will be given by 

h 
Vse~ ml (4·6) 

in T< T;.. 

In essence, we assert that the 3D superfiuid density is measured at any frequencies 

when T< T;., whereas the apparent one or the stiffness of the vortex-vortex interac

tion is also observed in high-frequency AC flow measurements when T;.< T< Te. 

This apparent superfluidity tends to disappear around (J)r~ 1, where the superfiuid 

onset temperature changes from Te into T;.. In this sense a crossover from the KT 

transition to the A transition will take place with decreasing a or (J). We note that our 

results in the high (J) case explain the experiments. For instance, the qualitative 

behaviors of ps,rounding or drastic change in the vicinity of the onset temperature 

are consistent with the apparent superfiuid density or the stiffness of the interaction 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/8

0
/3

/3
9
7
/1

9
0
3
4
1
1
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



J 

Superfluid Transition 0/4He Film on Porous Materials 413 

shown in Fig. 4. 

§ 5_ Summary and discussion 

In this paper we have theoretically investigated the superfiuid transition of the 

4He film adsorbed on porous materials considering both the three dimensionality and 

the multi-connectivity of the film. 

We have calculated the temperature Te where the vortex pair dissociation takes 

place in the film. Considering the multi-connectivity, we have shown that the vortex

vortex interaction is essentially one dimensional or that vortex confinement takes 

place because of the quantization of circulation occurring in the film. As a result, Te 

is given by (2-26) or (2-27), where a=R/Jr is the pore diameter of a substrate. We 

note that Te is independent of the dimensionality of the connectivity. 

If the connectivity is 3D, the thermodynamic phase transition temperature T. 

exists below Te, where the phase correlation length ~ diverges. In other words, 

vortex pairs do not dissociate when LRO vanishes in contrast to the 2D case. If the 

channel length I is sufficiently large compared with the diameter a, as in Fig. 5, we 

obtain Te'P T •. 

We have investigated the dissipation mechanism of the superfiuid flow occurring 

in the present multiply-connected film. We note that the measured ps in the torsion 

experiments does not necessarily coincide with Ps determined in the stiffness of the 

vortex-vortex interaction. We have predicted the crossover phenomena between the 

KT transition and the /I transition as follows. Because of the finite dimension of the 

film, the pore size a, vortex pairs can activate along the circumference of the cross 

section of the pore, which results in the dissipation of the applied flow. Through this 

process vortex pairs play the same role as free vortices as to the dissipation of flows. 

So the superfiuid onset in the present system is not accompanied with the vortex 

binding, but the appearance of LRO, for the long time (low w) observations. 

For the short time (high w) observations, however, the vortex pair activation does 

not take place during the period and then the superfiuidity is observed unless free 

vortices appear. Ps in T. < T < Te experiences the universal jump as in 2D case for 

the large a limit, whereas continuously drops for small a cases as in Fig. 4. 

In other words, there is a crossover frequency We of the pendulum: 

(5-1) 

where r is a characteristic time for the vortex pair activation and is a monotone 

increasing function of a -given in (4-4) with (4-3). That is, the superfiuid onset 

temperature To coincide~ with Te if wr'P1, whereas with T. if wr~1. 

In recent measurements employing the torsion pendulum, various kinds of critical 

behaviors of Ps ,have been observed. In the experiments by Berthold et al.7) and 

subsequently by Crooker et al.,S) the overall curves of ps are 3D like and ps 

oc I T - Tol2/3 in the critical region except for sm?ll rounding at the onset. We note that 

such behaviors are consistent with our theory if the rounding behavior is identIfied 

with Ps of the stiffness to be observed in T. < T < Te andto disappear with decreasing 
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414 T. Minoguchi and Y. Nagaoka 

frequency of pendulum, (J). 

The energy dissipation will be also predicted at Te in our theory. In T;:S Te,_ 

various sizes of vortex pairs are excited. Machta and Guyer pointed out14
) that long 

pairs with sizes r>a do not contribute to the energy dissipation as follows. The free 

energy barrier in activation becomes smaller with increasing r and they respond as 

if they are free vortices for the axis flow. As free vortices hardly contribute to the 

energy dissipation,6) it should be concluded that one has only to take small pairs r;:S a 

into account to estimate the dissipation. It will yield essentially the same result as 

Wang and Yu20
) derived in the single sphere model,ll) where the weak dissipation, 

about 1/10 in magnitude compared with 2D case, is predicted. 

In the experiment by Shirahama et al.,9) this weak dissipation is found out at To, 

which suggests that the onset takes place at Te. So what they measured, T-linear 

like behavior of ps, is to be Ps of the stiffness. In fact their results quite resemble ps 

shown in Fig. 4 and the quantities and the qualitative behaviors of To are consistent 

with those of Te given in (2°27). 

In essence, the various experimental results that 

i) To~ TKT , 

ii) To slightly increases with decreasing a, 

iii) there appears the energy dissipation peak at To, 

iv) ps experiences the finite jump at To in large a cases, whereas continuously 

disappears in small a cases, 

v) the overall curve of Ps is three dimensional, 

can be explained in our theory of the case (J)r> 1. 

Unfortunately, in the current substrates such as Vycor glass and packed fine 

powder I is comparable to a. It results in T).;:S Te and then To may hardly be 

distinguished from the temperature where a peak of specific heat appears. System-., 
atic torsion measurements with varying a or (J) are especially interesting and desired. ' 

After the completion of our work we received another preprint from Machta, 

where the thermodynamic phase transition is studied on the same line.23
) 
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Appendix 

We here show that the recursion relations (2 ° 20) for the ID . Coulombic system 

lead to a fictitious criticality. Introducing the dimensionless parameters 

{ 
27rr }-l 1 

X= /3 Cl(r) -2' (Aol) 
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y 

starting 

values 

----~~~~--~----------------- X 
o 

Fig. 7. Flow diagram for the recursion relations 

(A·4) and (A·5). E S
: y=-1/4x+1/8 and E U

:· 

y=1/2x + 1/8 are respectively the local stable 

and unstable eigenspaces. 

(A'2) 

l-=ln~ 
ro ' 

(A'3) 

we have from (2'20) 

dx 1 
dl =4y-x-Z ' (A'4) 

(A'5) 

With the starting values (2' 21) or 

xU =0)={/3 27rro }-l _l, 
Cl(rO) 2 

(A'6) 

(A'7) 

there are a couple of fixed points where the tight-hand si.des of (A '4) and (A' 5) are 

simultaneously zero. One is the sink point (x, y)=( -1/2,0) and the other is the 

saddle one (O,l/S). As shown in Fig. 7, all lines fall into the sink point if the 

temperature is sufficiently low compared with Ec or 27rrO/Cl(rO). There we find 

cl(L) 0 
!JL~ , 

Vnl(L)~O 

(A'S) 

(A'9) 

as the system size L increases. (A 'S) means that cl(L) does not diverge, or diverges 

more slowly than L. The latter, however, is to be excluded because (A .g) guarantees 

the lack of the long pairs or the free charges. Then the sink point corresponds to the 

insulating state. 

At sufficiently high temperatures, every flow line diverges: x, .Y~oo with y/x=3/4. 

That is, 

cl(L) ~oo 
/3L 

Vnl(L)~oo . 

(A'10) 

(A ·n) 

(A'10) means that cl(L) surely diverges, or that the system falls into the metallic 

state. 

Then the saddle point corresponds to the criticality, the existence of which is 

inconsistent with the rigorous theory.l5) At the point, we find 

(A'12) 
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416 T. Minoguchi and Y. Nagaoka 

(A-13) 

where Te is the (fictitious) critical temperature. We verify that Te is the order of Ee 

via numerical computation. (A -12) means that the continuous transition takes place, 

that is l/cl(L) disappears continuously around Te. This fictitious criticality gener

ates the T -linear like critical behaviors of CO/CR(mfl in Fig. 4. 
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