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The vortex clusters in the turbulent outer region of rough- and smooth-walled
channels, and their associated velocity structures, are compared using data from
numerical experiments at friction Reynolds numbers Re, < 674. The results indicate
that the roughness of the wall does not affect their properties, particularly the existence
of wall-detached and wall-attached populations, and the self-similar size distribution
of the latter. The average flow field conditioned to the attached clusters reveals
similar conical structures of low streamwise velocity for the rough- and smooth-
walled cases, which eventually grow into the global modes previously identified from
spectral analysis. We conclude that the vortex clusters of the turbulent outer region
either originate away from the wall, or quickly forget their origin, in agreement with
Townsend’s similarity hypothesis.

1. Introduction

Turbulent wall flows are a challenging research subject with applications ranging
from drag reduction to atmospheric dispersion. The analysis of how their outer layers
may be influenced by the structures of the near-wall region is particularly useful,
because the latter are altered by the hydraulically rough surfaces often found in
engineering and geophysical flows, and because flow control strategies are usually
implemented through actuators located at the wall.

It has long been proposed that the inner—outer interactions are due to vortex
loops connecting the two layers (see the review by Robinson 1991a). The best-known
theoretical models are variations of the vortex hierarchies proposed by Perry & Chong
(1982) and Perry, Henbest & Chong 1986, loosely based on Townsend’s (1976, pp. 150—
162) attached-eddy hypothesis. Although those models were initially constructed from
abstract eddies, with larger elements emerging from smaller ones through unspecified
processes, they eventually evolved into collections of lambda-vortices growing from the
wall. Such objects have been observed in low-Reynolds-number numerical simulations
(Robinson 1991b; Blackburn, Mansour & Cantwell 1996; Chong et al. 1998), and in
experiments with relatively coarse resolutions (Adrian, Meinhart & Tomkins 2000;
Ganapathisubramani, Longmire & Marusic 2003). The resulting picture is of packets
of hairpin vortices growing from the wall into the outer region through self-induction,
regeneration and mergers, generating long ramps of low streamwise velocity.

A less organized model was proposed by del Alamo et al. (2006) (hereafter AJZMO06)
after analysing vortex clusters in numerical channels at friction Reynolds numbers
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Re. <1900. Those clusters share many of the properties of the large-scale eddies
of the theoretical models of vortex forests, but they are ‘bags’ of vortices in which
individual hairpins are difficult to identify. The clusters separate naturally into wall-
attached and wall-detached families, and the attached ones have sizes and dimensions
similar to the hairpin packets in Ganapathisubramani et al. (2003) and Tomkins &
Adrian (2003). The average velocity field conditioned to an attached cluster contains
a lambda-vortex with a wall-normal velocity ejection between its legs. Tanahashi et al.
(2004) also observed that the large scales in a channel at Re, =800 were formed by
vortex tangles, although they noted that the dominant vortex orientation is consistent
with hairpin legs (but with fewer heads) even far from the wall.

The origin and evolution of the vortex packets, whether organized or not, remains
elusive, specially regarding how they move away from the wall. Zhou et al. (1999)
described how a hairpin packet could be created from an initial lambda-vortex in
a laminar channel with a turbulent mean profile, but neglected the background
fluctuations of real turbulent flows, which might alter significantly the process by
shortening the lifetimes and lowering the intensities of the vortices. Moreover, their
hairpins moved only moderately far from the wall. AJZMO06, showed that the lifetimes
of the attached clusters are too short to have grown from the wall to their observed
heights, and suggested that they originate at all heights, sizes and wall distances.

The origin of the vortex packets of the outer layer has implications for flows over
rough walls. The classical theory states that the outer region is independent of the wall
roughness and of the fluid viscosity v, as long as the Reynolds number is high enough,
and the roughness height, k, is much smaller than the flow thickness 4 (Townsend
1976, pp. 139—-143). This approximation has been the subject of controversy in recent
decades (see the review by Jiménez 2004) but the evidence is now in its favour. Recent
experiments and numerical simulations of rough-walled turbulent boundary layers
and channels with k/h <0.04 and Re, € [400-5000] agree well with smooth-wall data
(Keirsbulck et al. 2002; Ashafarian, Andersson & Manhart 2004; Flack, Schultz, &
Shapiro 2005; Bakken et al. 2005; Flores & Jiménez 2006).

This evidence is hard to reconcile with a model in which the important flow
structures are born near the wall. One would then expect that the organization of
the outer layer would be altered by the roughness. It favours AJZMO06’s view that
vortex clusters/packets are born at different wall-normal positions, or that clusters
form at the wall, but quickly forget their origin and reach some local equilibrium with
the outer layer. Either way, the importance of the wall is diminished. In this paper,
we present new evidence for wall independence by comparing the vortex clusters in
numerically simulated turbulent channels with smooth and rough walls.

2. Numerical experiments and cluster identification

We use data from direct numerical simulations of plane turbulent channels at
Re, =u.h/v~600, where u, is the friction velocity, and & is the channel half-width.
The experiments are summarized in table 1, and documented comprehensively by del
Alamo et al. (2004) and Flores & Jiménez (2006). We denote variables in wall units
with a * superscript. The streamwise, wall-normal and spanwise coordinates are x, y
and z, and the corresponding velocity components are u, v and w. The case labelled
S has smooth walls, while the cases labelled R have harmonic velocity disturbances
prescribed at the walls, which successfully mimic the effect of wall roughness by
destroying the near-wall energy cycle (Flores & Jiménez 2006). The wall disturbances
in R1 only have streamwise and wall-normal components, whereas those in R2
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Case Re, L./h L;/h Axt Azt Ayt kf h} o, N¢ N

S 547 8n 4n 134 6.7 6.7 - - 00024 19x10° 14x10°
R1 632 8n 4n 11.6 58 80 129 93  0.0046 23x10° 1.7 x10°
R2 674 4n 2n 124 6.2 86 207 146 0.0034 1.0x10° 0.8 x10°

TaBLE 1. Parameters of our experiments. L, and L, are the streamwise and spanwise dimensions
of the domain and 4 is the channel half-height. Ax and Az are the streamwise and spanwise
collocation resolutions. Ay is the wall-normal resolution at the centreline. In cases R1 and
R2, ky is the equivalent sand roughness height and &y is the height of the roughness sublayer,
as defined by Flores & Jiménez (2006). o, is the threshold of percolation of the vortex
population, N¢ is the number of extracted clusters, and N, is the number of those classified
as wall-attached.
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FIGURE 1. (a) Isolines of the relative volume V, occupied by the points satisfying the
relation (2.1) as a function of the threshold « and of the wall distance. From left to right,
V,=0.2,0.04,0.008. The grey strip covers the range of variability of «. for the present
experiments. (b) Volume distribution py of the clusters as a function of their minimum and
maximum wall distances, ymin and ymax. The levels contain 60 % and 85 % of the data. The
vertical dotted line is yrim =50 and the diagonal one iS ymin = Ymax- ——> S. O, R1. B, R2.

are three-dimensional. In addition, the streamwise wavelength of the forcing in R1
(A} =220) is shorter than in R2 (A} =529). As a consequence, the equivalent sand
roughness height and the thickness A4z of the roughness sublayer are larger in R2
than in R1. The spanwise wavelength of the forcing is A, = A, /2 in both cases.

We employ the method described by AJZMO6 to extract O(10°) vortex clusters from
instantaneous flow realizations (see table 1). They are defined as sets of connected
points where the discriminant D of the velocity gradient tensor is larger than a certain
fraction of its standard deviation o in the wall-parallel plane,

D > aop(y). (2.1)

Figure 1(a) shows the relative volume V, occupied by the clusters as a function
of the threshold «, and of the wall distance. The three flows agree fairly well
above the roughness sublayer, y* > 100 ~ h}, but differ appreciably below that level,
especially for y*<50. These discrepancies lead to different connectivities in the
roughness sublayer which affect all the wall-attached objects, including the interesting
ones reaching into the logarithmic and outer layers. We therefore apply our cluster
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identification algorithm to the truncated domain 50 < y* < 2Re, — 50 for the three
flows in table 1, which allows us to compare consistently the clusters from the rough-
and the smooth-walled cases. The results obtained from full channels, and from
channels truncated at other wall distances, agree qualitatively with those presented
below.
In our analysis, we use @ = 0.0055 =~ o, where «. is the critical threshold below which
a cluster percolates throughout the truncated channel (see table 1). The percolation
thresholds from cases S, R1 and R2 differ little from one another, taking into account
that « multiplies a sixth power of the vorticity. This is emphasized by the narrowness
of the grey bar representing the range of variability of «. in figure 1(a). Our value
of « is closer to the percolation threshold than those used by AJZMO06, because only
when a ~ «, does the vortex distribution become independent of Re, in the outer
region. This allows us to compare the results from S, R1 and R2 despite their different
Reynolds numbers. The results for other values of « are very similar (Flores 2007).
Figure 1(b) shows isocontours of the distribution of volume occupied by the
clusters as a function of the minimum and maximum wall distances of these objects,
Pv(Ymin» Ymax)- Similar to the smooth-wall cases reported by AJZMO06, the shape
of py suggests that the population of clusters in rough-walled channels may be
divided into wall-detached and wall-attached families. The wall-detached family is the
wide inclined strip where the volume distribution is approximately homogeneous,
Pv = Py(Ymax — Ymin)> and is formed by clusters that reside away from the wall. The
wall-attached family is the thin vertical strip formed by clusters whose minimum wall
distance coincides with the boundary of the truncated-height channel, y. = 50.
Because our definition of an attached cluster is slightly different from that in
AJZMO06 (y!. <20), we classify as attached some objects that they would have
classified as detached. However, the differences are small, especially for large clusters
reaching the outer region. The analysis of py(Vmin, Ymax) 10 full channels (plotted in
AJZMO06) shows that 25 % of the clusters in S with y,. =100, and 10 % of those with
v =200, switch families between the two definitions. These figures only represent
6 % of the total cluster population. Similar results are obtained for cases R1 and R2.
In the rest of this paper, we analyse the wall-attached clusters to evaluate the
possibility of inner—outer interactions caused by vortex loops emanating from the
buffer layer. We focus on them because they are important for the dynamics of the
outer region (AJZMO06), and because they could be argued to depend on the details of
the wall, due to their wall-attached nature. The detached clusters are just dissipative
eddies and, as expected, are not affected by the wall (for more details see AJZMO06
and Flores 2007).

3. The geometry and distribution of the attached clusters

Figure 2(a) shows joint p.d.f.s of the streamwise and wall-normal sizes of the
attached clusters (A,, A,), defined as those of the Cartesian boxes that circumscribe
them. In AJZMO6, the attached clusters had y:n’in <20, and Ay = ymax — Ymin and
Ymax Were roughly equal. In our case, the minimum wall distance of the attached
clusters very likely lies below the truncation level, y!. =350. Since this cutoff can be
an appreciable fraction of the cluster height, yy,., seems a better measure of that
height than A,. However, we use A, in figure 2(a) because the length of the cluster
A, is only measured above y!. =50.

In the preparation of the figure, clusters with vortex volumes smaller than 30 wall
units have not been considered because their sizes are of the order of the simulation
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FIGURE 2. (a) Isolines of the joint p.d.f.s of the logarithms of the length and the height of the
attached clusters p(Af, AY), containing 40 % and 94 % of the data. The shaded patches are

contours of the premultiplied spectral density ¢yy(Ac, ¥ — Ymin) of v> from case S, while the
dashed lines correspond ¢,, from case R1. We have plotted the levels 1/4 and 1/2 times the
maximum of ¢,,, using the correspondence 1 ~ A. The straight solid line is (3.1). (b) P.d.f. of
the relative positions of the vortex cores in the circumscribing boxes of the attached clusters
with y > 100. The contours contain 20 %, 50 % and 80 % of the data. ,S. O, R1. m,
R2.

grid. The results show that the distributions of sizes of the attached clusters do not
depend on the wall forcing, with the exception of the clusters that are fully contained
in the roughness sublayer of channels R1 and R2 (A <50). Even in that case, the
size of the clusters is not set by the wavelength of the forcing. Similar results are
obtained for p(A7, AY) and p(A7, A7), not shown here. In all of these distributions,
the clusters from our three flows show the self-similar scalings reported by AJZMO06,

Ay =34, A, =2A,. (3.1)

Figure 2(a) also includes the spectral energy densities of v for S (shaded) and R1
(dashed lines), as functions of y — ymin, showing the good agreement between the
rough- and the smooth-walled cases. Furthermore, the most energetic scales coincide
reasonably well with the cluster sizes, consistent with the idea that the attached
clusters are markers for wall-normal velocity structures. Notice that this conclusion is
not invalidated by the imperfect agreement in figure 2(a), because the correspondence
between wall distance and cluster height is only approximate, and because sizes are
proportional but not equal to spectral wavelengths (Jiménez, del Alamo & Flores
2004).

The average shape of the tall attached clusters is shown in figure 2(b), which presents
p.d.f:s of the coordinates of the points belonging to each cluster, with respect to the
centre, x., Z., and y. = ymax/2, of its circumscribing box. The scaled position vector
in that reference frame is defined as r =(x — x.)/y.. The results show that the p.d.f:s
of (ry,ry) depend little on the nature of the wall. The slight discrepancy observed
for the outer contour at |r,|~1 shows that the attached clusters are slightly more
elongated in the smooth- than in the rough-walled channel. The observed differences
disappear when larger clusters are considered, or when the channel is truncated at
yi+. =100, which suggests that these differences are caused by the lower mean shear
near the rough walls, rather than by the direct effect of the wall disturbances. This is
confirmed because the transverse p.d.f:s of (r,,r;) and (r,, ry), which are not affected
by the shear, agree perfectly for the smooth- and rough-walled cases (not shown).
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FiGURE 3. Quiver plot of the average fluctuating velocity field ((u’), (v')) conditioned to the
presence of tall attached clusters (y;,, >200). The data are taken at the plane r, =0. The
contour lines are (u')™ = —0.05, —0.1. The shaded contours contain 33 % and 66 % of the
p.d.f. of the positions of points inside the conditioning clusters. The dashed lines have a slope
of 8°. (a) S, longest arrow 0.93u.. (b) R1, longest arrow 0.81u..

The results presented in figure 2 indicate that the sizes and shapes of the attached
clusters are not affected by the nature of the wall. Flores (2007) shows that this is also
true for other cluster properties, such as the fraction of Reynolds stresses contained
in their circumscribing boxes, or their volume density per unit wall distance. These
results suggest that the attached clusters are either generated away from the wall, or
that they forget their origin soon after they are born. Note that the two possibilities
do not exclude each other: the lifetimes of the wall-normal velocity reported by
AJZMO06 support the first, while the analysis by Flores & Jiménez (2007) of the linear
evolution of concentrated perturbations in a logarithmic layer supports the second.

4. The average velocity field conditioned to the tall attached clusters

We mentioned in the introduction that the conditionally averaged flow field in the
neighbourhood of the attached clusters contains a lambda-vortex and a v-ejection.
AJZMO06 showed that, in smooth channels, it also anchors a conical low-u structure
that was too long to be contained within their averaging box, but that was at least 10
times longer than the conditioning cluster. In this section, we analyse the effect of wall
roughness on those structures. We have excluded data from R2, whose box length is
marginally too short for that purpose, even though its conditionally averaged fields
are in qualitative agreement with those below.

We define the average velocity fluctuations conditioned to a cluster set as

N N
W)r) = 3w e + veirhls /> v (4.1)

where the prime denotes fluctuations with respect to the mean velocity profile, and
the subindex i refers of the ith cluster of the set. As in AJZMO6, the weight factor y?,
ensures that (4.1) is an unbiased ensemble average, since the probability of sampling
a given structure is proportional to its volume. Figure 3 shows (u')(r, =0) for tall
attached clusters, defined here as those with y;7,, > 200. The results from the two cases
are nearly identical, and similar to the conical wakes obtained by AJZMO06 at higher
Reynolds numbers. The main difference is that the upstream (left) part of the wake
is shorter for R1, probably due to the lower mean shear of this flow below y* = 100.
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FIGURE 4. Snapshots of the surface u'* = —2 in cases S (a) and R1 (b). The flow goes from
left to right. The size of the plotted boxes is 8nh X nh x h. Two large structures similar to the
1’ <0 cones in figure 3 have been manually highlighted in black.

The slope of the u-structures in figures 3(a) and 3(b) is approximately equal to
8° for —2 <r, < 5. It decreases beyond r, &5, and the low-speed cones level off to
ry~1.5, and to a width r, & £ 1 for r, 2 8. We can estimate the size of a typical, tall
attached cluster as the mean of the distribution py(y. = 50, y} . > 200), which is
yihax & 400. For this typical cluster, the saturation height and width of the low-u wake
in figure 3 would be approximately 500v/u.. Cross-flow visualizations (see Flores
2007, or AJZMO06) show that the low-u wake is flanked by weaker high-speed regions,
resulting in a spanwise wavelength 1} ~ 900.

This saturation is probably due to the limited Reynolds number of our simulations,
and it was not observed by AJZMO06. They used a somewhat higher threshold to
identify vortices, a lower near-wall cutoff, and a higher Reynolds number. As a conse-
quence, their cluster population was dominated by smaller objects with respect to the
channel height, and the levelling-off was not observed within their averaging box. Note
that the coordinates in figure 3 are scaled with the size of the conditioning cluster.

In the present case, the levelling-off occurs at cross-stream dimensions of the order
of the channel half-width, which agree well with the spectral wavelengths of the global
modes identified by Bullock, Cooper & Abernathy (1978) and del Alamo & Jiménez
(2003) over smooth walls, and by Flores & Jiménez (2006) and Metzger, McKeon &
Holmes (2007) over rough ones. The length of the cylindrical sections in figure 3 is
about x/h~3-7, which corresponds to the shorter end of these global modes. Del
Alamo et al. (2004) had already concluded that the widest modes in the spectra of u
were determined by the saturation in the growth of the u-structures when they reach
diameters comparable to the channel height.

The connection between figure 3 and the global modes is confirmed by instantaneous
flow visualizations. Figure 4 shows three-dimensional representations of the surface
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FIGURE 5. Mean velocity fluctuations inside the cone, U, and V, (see (4.2)), for attached
clusters with y,. > 200. (a) Velocities in wall units, solid lines correspond to —U, and dashed
lines to V,}. (b) Ratio —U,,/V,,, the horizontal line is —U,,/V,, =6. —, S. O, R1.

't =—2 in sub-domains of S and R1. A large conical structure, reminiscent of the
averaged velocity fields in figure 3, has been highlighted near the centre of each plot.
Although the details of the highlighting are arbitrary in that both structures could
be continued into much longer roughly cylindrical streaks, the identification of the
initial conical part is in each case essentially unambiguous. The longer downstream
structures attached to these regions have lengths of the same order as the simulation
box, and recall the very long u-structures identified over smooth (Kim & Adrian 1999;
del Alamo et al. 2004; Hutchins & Marusic 2007) and rough (Flores & Jiménez 2006)
walls. Note that the near-wall streaks are clearly visible in case S, but in R1 they
have been substituted by a regular array of spots generated by the wall disturbances.
Similar structures are found in all the instantaneous realizations that were inspected.
The only manipulation in the figure has been to centre them in the display box.

It was shown by Flores & Jiménez (2006) that the global modes are very efficient
in generating Reynolds stresses, because their wall-normal and spanwise velocity
components are highly correlated. The same happens with the saturated part of the
cones shown in figure 3. We define the mean velocity fluctuations inside the cones as

Uy(re) = AY' /

2(ry)

WA, Va(r) = Ag / (W) dA. 42)

2(ry)

where £2(r,) is the region where (u')* < — 0.05 at each streamwise location. These
velocities are shown in figure 5(a) for clusters with y > 200. Both U/ and V
peak at the centre of the cluster but the mean fluctuating velocities from case R1 are
somewhat weaker than those from case S. This agrees with Flores & Jiménez (2006),
who found that the global modes were slightly stronger over smooth than over rough
walls, and attributed that difference to the lower centreline velocity of the latter.
Figure 5(b) shows that the ratio U,/ V,, which is a measure of the efficiency of v in
creating u-perturbations from the mean velocity profile, is reasonably constant in the
range 5 <r, < 15. The level of the plateau is higher than the overall ratio of the r.m.s.
turbulent intensity in the outer layer (u2)/(v'?) =~ 1.5-2 (the overline denotes time and
wall-parallel averaging). The level in figure 5(b) is of the same order as the structure
parameter for the Reynolds stresses —(u’2)"/?/(u'v')!/?> ~ 4.5-5, which measures only
the part of v correlated with u. It is also of the order of the ratio between the energy
spectrum of the streamwise velocity and the Reynolds-stress cospectrum, which is
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—Puu/Puv = 3-7 for wavelengths of the order of 54 x h, outside the buffer layer. These
figures are consistent with the interpretation of the saturated parts of the structures
in figure 3 as global modes. Other values of the threshold in the definition of £2(r,),
and any reasonable range of sizes for the attached clusters with yf > 100, lead to
the same plateau as in figure 5(b).

5. Conclusions

We have investigated the vortex clusters found in turbulent channels with rough
walls at moderate Reynolds numbers. As in the smooth-walled case, they separate into
wall-attached and wall-detached families. We have payed special attention to those
attached clusters that reach above the roughness sublayer and into the outer region
of the flow. They play an important role in the dynamics of the turbulent outer layer
(AJZMO06), and have many characteristics in common with the constitutive elements
of a number of models that represent that part of the flow by hierarchies of vortex
loops emanating from the wall (Perry & Chong 1982; Perry & Marusic 1995).

Our results indicate that the geometry and spatial distribution of the attached
clusters are independent of the details of the wall. These clusters are associated with
cones of negative streamwise velocity fluctuations both over smooth and over rough
walls. The only appreciable effects of the wall details are restricted to the roughness
sublayer, where the lower mean shear of the rough-walled flows leads to shorter cones.

These observations, together with the lifetimes obtained by AJZMO06 for the
structures in channels at higher Re., suggest that either the clusters are generated
at all heights, or that they quickly become self-similar and forget their origin. The
present results help to reconcile the attached-eddy models with Townsend’s hypothesis
that the outer layer is independent of the wall details, which is receiving increased
support (Keirsbulck et al. 2002; Flack et al. 2005; Bakken et al. 2005; Flores &
Jiménez 2006).

Finally, we have shown that the cones level off when their widths and heights
become of the order of the channel half-height. These parts of the structures are the
global modes identified by del Alamo et al. (2004), and the analysis of their mean
streamwise and wall-normal velocity fluctuations shows that their wall-normal and
streamwise velocity components are highly correlated, in agreement with del Alamo &
Jiménez (2003) and Flores & Jiménez (2006).
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