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VORTICITY-VELOCITY-PRESSURE FORMULATION
FOR STOKES PROBLEM

M. AMARA, E. CHACÓN VERA, AND D. TRUJILLO

Abstract. We propose a three-field formulation for efficiently solving a two-
dimensional Stokes problem in the case of nonstandard boundary conditions.
More specifically, we consider the case where the pressure and either normal or
tangential components of the velocity are prescribed at some given parts of the
boundary. The proposed computational methodology consists in reformulating
the considered boundary value problem via a mixed-type formulation where
the pressure and the vorticity are the principal unknowns while the velocity
is the Lagrange multiplier. The obtained formulation is then discretized and
a convergence analysis is performed. A priori error estimates are established,
and some numerical results are presented to highlight the perfomance of the
proposed computational methodology.

1. Introduction

We consider in this work the stationary Stokes equations with nonstandard
boundary conditions in a bounded domain Ω ⊂ R2, with a polygonal boundary
Γ = ∂Ω. Ω is assumed to be on one side of the boundary Γ. The velocity field
u = (u1, u2)t and the pressure p satisfy

−ν∆u +∇p = f in Ω,
div u = 0 in Ω,

where ν > 0 is the kinematic viscosity of the fluid and f is the density of external
forces. Our aim is to adopt a three-field formulation involving the velocity, the
pressure and the vorticity. This approach is based on a mixed formulation where the
principal unknowns are the pressure and the vorticity and the Lagrange multiplier
is the velocity. A discrete model associated to this formulation by conforming finite
elements is not appropriate due to the lake of coercivity of the discrete formulation.
Specifically, the pressure is not well defined if we do not use compatible discrete
spaces for the pressure and the velocity. We propose to add a stabilization term in
the discrete mixed formulation to restore the coercivity of the form and therefore the
well posedness of the discrete problem. This stabilization form consists of the jumps
of the discrete vorticity and pressure on the internal edges of the triangulation. This
idea has already been used in [12], among other works. We prove that the method is
unconditionally convergent in the sense that it does not require additional regularity
assumptions. We present in this paper the case where finite elements of degree 1
are used. The description of the general case of finite elements of degree k can be
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found in [3]. We prove that the method is optimal in terms of finite elements, i.e.,
we obtain an O(hk) error estimate when we use finite elements of degree k.

The numerical results presented in this paper demonstrate the efficiency of the
method by using only simple finite elements (continuous, piecewise of degree 1 for
the velocity and constant discontinuous for the pressure and the vorticity). This
method can be easily extended to the three-dimensional case. The extension to the
Navier-Stokes case is still under investigation.

Throughout this paper, we adopt the following nomenclature and assumptions:
For any 2D vector field v = (v1, v2)t, we use the divergence and scalar rotational
operators div v = ∂1v1 + ∂2v2 and curl v = ∂1v2 − ∂2v1, and the vector rotational
of any scalar field φ, curlφ = (∂2φ,−∂1φ)t.

Finally, we recall that for any 2D vector field v, the identity∇ div v−curl curl v
= ∆v is satisfied.

We suppose that Γ is formed by three open and disjoint subsets Γ1,Γ2,Γ3 such
that Γ = Γ1 ∪ Γ2 ∪ Γ3. Each of the Γi itself might be formed by a set of linear
segments, and we denote by {ci} the vertices of Ω and by {αi} the openings of the
angles of Ω at each of the ci. We assume αi < 2 π for each i, and we denote by
aj , for j = 1, . . . , l, the nonconvex corners of Ω, i.e., the corners where αj > π. We
also assume that there are no nonconvex corners at the intersection of Γ1 ∪ Γ2 and
Γ3.

Introduce the scalar vorticity ω = curl u, the outward normal vector n and the
tangent vector t to the boundary Γ. Given vector data u0,a,b and scalar data p0,
ω0, we consider the following boundary conditions:

u · n = u0 · n, u · t = u0 · t on Γ1,
u · t = a · t, p = p0 on Γ2,
u · n = b · n, ω = ω0 on Γ3,

together with a compatibility condition for these boundary data, that is, there exists
at least one incompressible velocity field which satisfies them, i.e., there exists a
function U0 ∈ L2(Ω) with curl U0 ∈ L2(Ω) such that

div U0 = 0 in Ω and

 U0 = u0 on Γ1,
U0 · t = a · t on Γ2,
U0 · n = b · n on Γ3.

Therefore, we will work with homogeneous boundary conditions, i.e., u0 =
0 on Γ1, a = 0 on Γ2 and b = 0 on Γ3.

To illustrate the above boundary conditions we can consider a pipe flow problem
where we impose simultaneously this family of boundary conditions (see [7]):

Boundary Conditions Duct flow application
Γ1 u = 0 or u = u0 No-slip or injection velocity

Γ2 u · t = a · t, p = p0
Pressure condition at tube exit with
an unknown velocity distribution

Γ3 u · n = b · n, ω = ω0 Jet

Since a Dirichlet boundary condition for the vorticity is imposed, we formulate
the problem in terms of the velocity field u, the vorticity ω and the pressure p. We
use a modified pressure p ' 1

ν p and a modified body force f ' 1
ν f . We are now
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ready to state the following three-field problem:

(1.1)

 curlω +∇p = f in Ω,
ω = curl u in Ω,
div u = 0 in Ω,

(1.2)

 u · n = 0, u · t = 0 on Γ1,
u · t = 0, p = p0 on Γ2,
u · n = 0, ω = ω0 on Γ3.

The remainder of this paper is organized as follows: In Section 2, we introduce the
function spaces and derive the variational formulation corresponding to the above
problem. In Section 3 we discretize the problem using finite elements of degree
1. Section 4 is devoted to the analysis of the discrete problem. The convergence
analysis is performed and error estimates are established. Finally, in Section 5,
numerical simulations are presented to illustrate the performance of the proposed
approach.

2. Functional framework and variational formulation

First, we introduce the following space [13]:

Definition 1. Let Γa,Γb be a partition of the boundary Γ = ∂Ω, i.e., Γa ∩ Γb = ∅
and Γa ∪ Γb = Γ. Let γ0 : H1(Ω) → H1/2(Γ) be the trace operator. We define
H

1/2
00 (Γa), the set of traces on Γ that are equal to 0 on Γb, i.e.,

H
1/2
00 (Γa) = {γ0ϕ, ϕ ∈ H1(Ω); γ0ϕ = 0 on Γb}.

We denote by H−1/2
00 (Γa) the dual space of H1/2

00 (Γa).

We denote by ∂n = n · ∇ the normal derivative and by ∂t = t · ∇ the tangential
derivative along the boundary Γ.

We consider the following Hilbert spaces:

(2.1)
L2(Ω) = L2(Ω)× L2(Ω),
X = L2(Ω)× L2

0(Ω) when |Γ2| = 0,
X = L2(Ω) when |Γ2| > 0,

where L2
0(Ω) = {q ∈ L2(Ω);

∫
Ω
q dΩ = 0}. We denote by ‖ · ‖0,Ω the L2-norm in Ω

and endow X with the following norm:

‖τ‖X = (‖θ‖20,Ω + ‖q‖20,Ω)1/2

for τ = (θ, q) ∈ X. We also consider the Hilbert space H(div, curl; Ω) of square inte-
grable vector fields on Ω whose divergence and rotation are also square integrable:

H(div, curl; Ω) = {v ∈ L2(Ω); div v ∈ L2(Ω), curl v ∈ L2(Ω)}.
Let M be the closed subspace of H(div, curl; Ω) defined by

(2.2) M = {v ∈ H(div, curl; Ω); v · n|Γ1∪Γ3 = v · t|Γ1∪Γ2 = 0}.
The boundary condition v · n|Γ1∪Γ3 = 0 is to be understood in the weak sense,

i.e.,

v · n ∈ H− 1
2 (Γ) and 〈v · n, µ〉 = 0 ∀µ ∈ H

1
2
00(Γ1 ∪ Γ3).

A similar weak sense is given for the boundary condition v · t|Γ1∪Γ2 = 0.
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The spaces H(div, curl; Ω) and M are both equipped with the norm

‖v‖M = (‖v‖20,Ω + ‖ div v‖20,Ω + ‖ curl v‖20,Ω)1/2,

and we also consider the semi-norm

|v|M = (‖ div v‖20,Ω + ‖ curlv‖20,Ω)1/2.

The following results will be useful:

Lemma 1. There exists s ∈ ]1/2, 1] such that M is continuously imbedded in Hs(Ω).

Proof. We have M ⊂M1, where

M1 = {v ∈ H(div, curl; Ω); v · n = 0 on Γ1 ∪ Γ3 , v · t = 0 on Γ2}.
For v ∈ M1 fixed, let ϕ be the solution of the problem −∆ϕ = div v in Ω,

ϕ = 0 on Γ1 ∪ Γ2,
∂nϕ = 0 on Γ3.

For each of the nonconvex corners aj of Ω, we can introduce a fixed neighborhood
Uj (as small as needed) of aj such that Uj ∩ Uj′ = ∅ for each j 6= j′, with j, j′ =
1, . . . , l. Moreover, as we do not have any of the nonconvex corners in (Γ2 ∪ Γ1)∩Γ3,
then, following [11], the solution ϕ can be written as the sum of a regular part
ϕr ∈ H2(Ω) and a linear combination

∑k
j=1 λj Sj , where the λj are real constants,

Sj ∈ H1+sj (Ω) with compact support in Uj , and the sj are real numbers such that
1/2 < sj < π/αj . Therefore, we find that ϕ ∈ H1+sdiv(Ω) for some positive number
sdiv ∈ ]1/2, 1]. In addition, there is a constant C such that

‖ϕ‖1+sdiv,Ω ≤ C‖ div v‖0,Ω.

Next, we set w = v + ∇ϕ. Since div w = 0, there exists a function ξ ∈ H1(Ω)
such that w = curlξ. Moreover, using the fact that ϕ is constant on Γ1 ∪ Γ2 and
assuming now v ∈M, we have

curlξ · t = ∂nξ = v · t +∇ϕ · t = 0, on Γ1 ∪ Γ2.

Then, ξ satisfies the following problem for the Laplace operator: −∆ξ = curl v in Ω,
∂nξ = 0 on Γ1 ∪ Γ2,
∂tξ = 0 on Γ3.

Again, using the regularity results for the Laplacian operator, we find that ξ ∈
H1+srot(Ω) for some positive number srot ∈ ]1/2, 1], and

‖ξ‖1+srot,Ω ≤ C‖ curl v‖0,Ω.
Hence, we obtain

v = −∇ϕ+ curlξ,

and then v ∈ Hs(Ω) for s = min{sdiv, srot} ∈ ]1/2, 1] with

‖v‖s,Ω ≤ ‖∇ϕ‖s,Ω + ‖curlξ‖s,Ω ≤ C |v|M ≤ C ‖v‖M.
�

Corollary 2. Any v ∈ M satisfies v · n ∈ L2(Γ) and v · t ∈ L2(Γ).
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Hypothesis. We assume throughout this paper that the set

(2.3) K = {v ∈M; div v = curl v = 0 a.e. in Ω}

satisfies

(2.4) K = {0}.

Remark 1. If v ∈ K, then there is a function ψ ∈ H1(Ω)/R such that v = curlψ
and ∆ψ = 0 a.e. in Ω. Furthermore, ∂nψ = ∂tψ = 0 on Γ1, ∂tψ = 0 on Γ3 and
∂nψ = 0 on Γ2. If |Γ1| > 0, then Holmgrem’s uniqueness theorem insures that
ψ = 0, and then v = 0. If |Γ1| = 0 and Γ3 has only one connected component, we
have also ψ = 0, and then v = 0. In these two cases, assumption (2.4) is verified.
In the other cases, i.e., when |Γ1| = 0 and Γ3 has m + 1 components with m ≥ 1,
the set K has a finite dimension equal to m and we can characterize a basis of K.
We can work in this framework but with the space M/K.

Lemma 3. Under assumption (2.4), the semi-norm | · |M is equivalent to the norm
‖ · ‖M in M.

Proof. The proof uses a compactness argument. We suppose that the semi-norm
| · |M is not equivalent to the norm ‖ · ‖M in M. Then, for each integer n ∈ N∗ there
exists a sequence (vn)n of elements of M such that

‖vn‖0,Ω = 1 and |vn|M <
1
n
.

We then have ‖vn‖M < 2. Using Lemma 1, we deduce that the sequence (vn)n
is bounded in Hs(Ω) with s ∈ ]1/2, 1]. Therefore, there exists a subsequence of
(vn)n, still denoted the same, weakly convergent in Hs(Ω) and strongly convergent
in L2(Ω) to some v. Moreover, v ∈ M and div v = curl v = 0 a.e. in Ω. From hy-
pothesis (2.4), we deduce that v = 0. On the other hand, as the sequence converges
strongly in L2(Ω) to v, then ‖v‖0,Ω = 1. The latter result contradicts v = 0. �

In order to define the trace of the elements of the space H = {θ ∈ L2(Ω); ∆θ ∈
H−1(Ω)}, we prove the following lemma.

Lemma 4. Set Q = H1
0 (Ω) ∩H2(Ω) and consider the space Y defined by

Y = {µ ∈ L2(Γ); ∃ϕ ∈ Q, µ = ∂nϕ a.e. in Γ}.

For all functions θ ∈ H, the trace γ0(θ) is defined on the dual space Y ′.

Proof. The space Y is normed by

‖µ‖Y = Infϕ∈Q, ∂nϕ=µ |ϕ|2,Ω.

Using [11], we can define a continuous linear operator γ0 from H to Y ′ such that

∀θ ∈ D(Ω), γ0(θ) = θ|Γ

and

∀θ ∈ H, ∀ϕ ∈ Q,
∫

Ω

θ∆ϕdx − 〈∆θ, ϕ〉−1,1,Ω = 〈γ0(θ), ∂nϕ〉Y ′,Y .

�
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Throughout this section, we will denote by (·, ·) the scalar product in L2(Ω),
by 〈·, ·〉 the duality in the space M and by 〈·, ·〉Γi the scalar product in L2(Γi) for
i = 2, 3. We assume that f belongs to L2(Ω) and, for the sake of simplicity, we take
p0 ∈ L2(Γ) and ω0 ∈ L2(Γ). We can take, of course, weaker conditions for p0 and
ω0. Using integration by parts, one can derive the following variational formulation
for problem (1.1)-(1.2):

(2.5)


Find σ = (ω, p) ∈ X and u ∈M such that
(ω, curl v)− (p, div v) = F (v), ∀v ∈M,
(ω, θ)− (θ, curl u) = 0, ∀θ ∈ L2(Ω),
(q, div u) = 0, ∀q ∈ L2(Ω),

where F ∈M′ is given by

F (v) = (f ,v) + 〈ω0,v · t〉Γ3 − 〈p0,v · n〉Γ2 , ∀v ∈ M.
By adding the second equation of (2.5) to the third one, we obtain

(ω, θ)− (θ, curl u) + (q, div u) = 0, ∀τ = (θ, q) ∈ X,
(ω, curl v)− (p, div v) = F (v), ∀v ∈M.

Now we consider the bilinear forms a : X × X → R and b : X ×M → R defined
for all σ = (ω, p), τ = (θ, q) ∈ X and v ∈ M by

(2.6) a(σ, τ) = (ω, θ) and b(τ,v) = −(θ, curl v) + (q, div v).

We then obtain the following saddle point formulation associated to problem (1.1)-
(1.2):

(2.7)

 Find (σ,u) ∈ X×M such that
a(σ, τ) + b(τ,u) = 0, ∀τ ∈ X,
b(σ,v) = −F (v), ∀v ∈M.

We denote by V the kernel of b, i.e.,

V = {τ ∈ X; b(τ,v) = 0, ∀v ∈ M}.
We remark that if τ = (θ, q) ∈ V, then we have curlθ +∇q = 0. So, we deduce

that ∆θ = ∆q = 0 a.e. in Ω. Hence, using Lemma 4, we can define the traces of θ
and q on the boundary Γ as elements of Y ′. We take µ ∈ Y with µ = 0 on Γ1 ∪ Γ2

and consider a function ϕ ∈ Q such that ∂nϕ = µ on Γ. Then, for v = curlϕ, we
have v · n = 0 a.e. on Γ, v · t = −µ a.e. on Γ, v ∈ M and div v = 0. From the
definition of V, we deduce that∫

Ω

θ curl vdx = −
∫

Ω

θ∆ϕdx = −〈γ0(θ), µ〉 = 0.

Since µ = 0 on Γ1 ∪ Γ2, the previous equality can be written as follows:

γ0(θ) = 0 on Γ3 in the sense of Y ′.

Similarly, we establish that γ0(q) = 0 on Γ2 (in the sense of Y ′). Then, we have
the following characterization:

V = {τ = (θ, q) ∈ X; curlθ +∇q = 0 a.e. in Ω, “q = 0 on Γ2”, “θ = 0 on Γ3”}.
Therefore, when τ = (θ, q) ∈ V, then q ∈ Z, where Z is given by

Z = {q ∈ L2
0(Ω); ∆q = 0 a.e. in Ω} if |Γ2| = 0,

Z = {q ∈ L2(Ω); ∆q = 0 a.e. in Ω, q = 0 on Γ2} if |Γ2| > 0.
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We recall that there exists a positive constant C, depending only on Ω, such
that,

(2.8) ‖q‖0,Ω ≤ C‖∇q‖−1,Ω, ∀q ∈ L2
0(Ω),

where ‖.‖−1,Ω denotes the norm of H−1(Ω), the dual space of H1
0 (Ω). When |Γ2| =

0, the inequality (2.8) is true for every q ∈ Z. This result remains valid when
|Γ2| > 0. This property is stated by the following lemma:

Lemma 5. There is a positive constant C, depending only on Ω, such that

(2.9) ‖q‖0,Ω ≤ C‖∇q‖−1,Ω, ∀q ∈ Z.

Proof. Suppose that, when |Γ2| > 0, (2.9) does not hold. Then, there is a sequence
(qn)n of elements of Z such that

‖qn‖0,Ω > n‖∇qn‖−1,Ω

for all n ∈ N. Let qn =
1

‖qn‖0,Ω
qn; then ‖qn‖0,Ω = 1 and

1
n
> ‖∇qn‖−1,Ω.

This inequality implies that (∇qn)n goes to 0 in H−1(Ω). Hence, there exists a
subsequence of (qn)n, still denoted the same, weakly convergent in L2(Ω) to some
q̄ ∈ Z. We introduce q̃n ∈ L2

0(Ω) by q̃n = qn− 1
|Ω|
∫

Ω
qndΩ. This sequence converges

weakly in L2(Ω) to q̃ ∈ L2
0(Ω) given by q̃ = q − 1

|Ω|
∫

Ω qdΩ. Moreover, there is a
constant C > 0 such that

‖q̃n‖0,Ω ≤ C‖∇q̃n‖−1,Ω = C‖∇qn‖−1,Ω ≤
C

n
.

Therefore, (q̃n)n tends strongly to 0 in L2(Ω). Moreover, since (qn)n converges
weakly to q̄ in L2(Ω), we obtain that (qn)n tends to q̄ = 1

|Ω|
∫

Ω qdΩ strongly in
L2(Ω). Finally, using the fact that q̄ ∈ Z and |Γ2| > 0, we have necessarily q̄ = 0.
On the other hand, we have ‖qn‖0,Ω = 1 for every n. Then ‖q‖0,Ω = 1, which
contradicts q̄ = 0. �

Corollary 6. We have

(2.10) ‖τ‖X ≤ (1 + C2)
1
2 ‖θ‖0,Ω, ∀τ = (θ, q) ∈ V,

where the constant C is given by Lemma 5.

Proof. For all τ = (θ, q) ∈ V we have curlθ +∇q = 0. Therefore, it follows from
Lemma 5 that

‖q‖0,Ω ≤ C‖∇q‖−1,Ω = C‖curlθ‖−1,Ω ≤ C‖θ‖0,Ω.

Hence,
‖τ‖2X = ‖θ‖20,Ω + ‖q‖20,Ω ≤ (1 + C2)‖θ‖20,Ω.

�

Theorem 7. Let f ∈ L2(Ω), p0 ∈ L2(Γ) and ω0 ∈ L2(Γ). Then, the saddle point
problem (2.7) admits a unique solution σ = (ω, p) ∈ X and u ∈M satisfying

(2.11)

 curlω +∇p = f in L2(Ω),
ω = curl u in L2(Ω),
div u = 0 in L2(Ω),
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and

(2.12)

 u · n = 0 a.e. on Γ1, u · t = 0 a.e. on Γ1,
p = p0 a.e. on Γ2, u · t = 0 a.e. on Γ2,
u · n = 0 a.e. on Γ3, ω = ω0 a.e. on Γ3.

Proof. First, one can easily verify that the forms a and b (see (2.6)) are bilinear and
continuous. Second, the existence and uniqueness of the solution of problem (2.7)
is then established once we prove that a is V-elliptic and b satisfies the “inf-sup”
condition [10]. The coercivity of a on V is a consequence of Corollary 6. Next, we
check the “inf-sup” condition on b. For a given v ∈ M, we set τ = (− curl v, div v) ∈
X. Then,

b(τ,v) = ‖τ‖2X = ‖ curl v‖20,Ω + ‖ div v‖20,Ω
and

sup
τ∈X

b(τ,v)
‖τ‖X

≥ b(τ ,v)
‖τ‖X

= ‖τ‖X = |v|M.

Hence, the “inf-sup” condition is satisfied. Therefore, we conclude the existence
and uniqueness of a pair (σ,u) ∈ X×M, with σ = (ω, p), that is a solution of (2.7).
In addition, one can easily verify that (ω, p,u) satisfies (2.11) by simply using in
(2.7) τ = (θ, η) ∈ D2(Ω) and v ∈ D2(Ω). The normal and tangential boundary
conditions for the solution u are satisfied because u ∈ M. We only have to check
the boundary data for the pressure on Γ2 and vorticity on Γ3. Since f ∈ L2(Ω),
by applying the differential operators curl and div to the first equation of (2.11),
we obtain that both ∆ω and ∆p belong to H−1(Ω). Therefore, using Lemma 4,
the traces of ω and p are defined in Y ′. Let µ be an element of Y such that µ = 0
on Γ1 ∪ Γ2. Taking ϕ in Q with ∂nϕ = µ on Γ, the function v = curlϕ satisfies
v · n = 0 a.e. on Γ and v · t = −µ a.e. on Γ. Consequently, v ∈ M and div v = 0.
Choosing v as test function in (2.7), we obtain∫

Ω

ω curl v dx =
∫

Ω

f · v dx +
∫

Γ3

ω0 v · t dσ.

On the other hand, we also have∫
Ω

f · curlϕdx = 〈curl f , ϕ〉−1,1,Ω

and curl f = −∆ω. Therefore, we obtain

〈γ0ω, µ〉Y ′,Y =
∫

Γ3

ω0µdσ,

i.e., γ0ω = ω0 on Γ3 in the sense of Y ′. Similarly, one can also prove that γ0p = p0

on Γ2 in the sense of Y ′. �

3. The discrete problem

Let (Th)h be a regular family of triangulations of Ω. For each triangle K, we
denote by hK its diameter, and by |K| its area. We associate to each triangulation
Th the following sets:

• Eh is the set of the internal edges.
• F ih is the set of the edges which belong to the part Γi of the boundary

(i = 1, 2, 3).
• Ch = Eh ∪ F1

h ∪ F2
h ∪ F3

h. Ch is the set of all the edges of Th.
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We assume that if an edge e belongs to Γ, then it belongs entirely to one of the
F ih, i.e., e ⊂ Γi. For each edge e ∈ Eh, there exist two triangles K and K ′ in Th
such that e = ∂K ∩ ∂K ′. We denote by he the length of each edge e and we set
h = max

K∈Th
hK . Moreover, since (Th)h is a regular family of triangulations, there is a

constant ĉ > 0, independent of h, such that

(3.1) ∀h > 0, ∀K ∈ Th , ∀e ⊂ ∂K hK ≤ ĉhe.
For every l ∈ N and K ∈ Th we denote by Pl(K) the space of the polynomial

functions defined on K of degree less than or equal to l, and by Pl(K) the space
Pl(K)× Pl(K). We introduce the following discrete spaces:

Lh = {qh ∈ L2(Ω); qh|K ∈ P0(K) ∀K ∈ Th},
Xh = Lh × Lh ∩ X,
Mh = {vh ∈ (C0(Ω))2; vh|K ∈ P1(K) ∀K ∈ Th} ∩M,

= {vh ∈M; vh|K ∈ P1(K) ∀K ∈ Th}.

(3.2)

The discrete formulation for the saddle point problem (2.7) is given by

(3.3)


Find (σh,uh) ∈ Xh×Mh such that
a(σh, τh) + b(τh,uh) = 0 ∀τh ∈ Xh,
b(σh,vh) = −F (vh) ∀vh ∈Mh,

with σh = (ωh, ph). We recall that the bilinear forms a and b and the linear form
F are given by

(3.4)
a(σh, τh) = (ωh, θh),
b(τh,vh) = −(θh, curl vh) + (qh, div vh),
F (vh) = (f ,vh) + 〈ω0,vh · t〉Γ3 − 〈p0,vh · n〉Γ2 ,

where σh = (ωh, ph) ∈ Xh, τh = (θh, qh) ∈ Xh and vh ∈Mh.
The choice of the spaces Xh and Mh allows the bilinear form b to inherit the

inf-sup condition satisfied in the continuous case. Indeed, for vh ∈ Mh and τh =
(− curl vh, div vh) ∈ Xh, we have

b(τh,vh) = ‖τh‖2X = ‖ curl vh‖20,Ω + ‖ div vh‖20,Ω = |vh|2M.
Hence,

sup
τh∈Xh

b(τh,vh)
‖τh‖X

≥ b(τh,vh)
‖τh‖X

= ‖τh‖X = |vh|M.

This shows that the discrete “inf-sup” condition holds.
In order to follow the standard analysis (see for example [10]), we need to obtain

the coercivity of a on the discrete kernel

Vh = {τh ∈ Xh; b(τh,vh) = 0 ∀vh ∈Mh}.
It is clear that we do not have Vh ⊂ V. Hence, the coercivity of the form

a on Vh is not a consequence of Corollary 6. In fact, one can prove that a is
not coercive on Vh. Indeed, analyzing the uniqueness of the solution of problem
(3.3) leads to a solution for F = 0. In this case, we have b(σh,uh) = 0. Thus,
a(σh, σh) = 0. Due to the expression of a, it follows that a(σh, τh) = 0, ∀τh ∈ Xh.
Hence, using the inf-sup condition, we deduce that uh = 0. Moreover, we have
(ph, div vh) = 0, ∀vh ∈ Mh. Unfortunately, this does not imply that ph = 0.
Therefore, the homogeneous problem (3.3) admits nontrivial solutions, and so a is
not coercive on Vh. To restore the coercivity, one needs to modify the bilinear form
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and not the spaces in order to preserve the uniform “inf-sup” condition satisfied
by the bilinear form b. To do this, we adopt the approach developed in [1] and [2]
and tailor it to our problem. First, we observe that the proof of Lemma 5 leans
essentially on the fact that curl θ + ∇q = 0. This crucial property is no longer
valid at the discrete level. One can only estimate the norm ‖curl θ +∇q‖−1,Ω in
terms of the jumps across the edges of the elements. However, we will see that this
property is enough for our objective.

For a given edge e ∈ Eh, we have e = ∂K ∩ ∂K ′ for some K 6= K ′ ∈ Th. Let nKe
and tKe be the outward normal and tangent vectors to the edge e with respect to
the triangle K. Then nKe + nK

′

e = tKe + tK
′

e = 0 on e. Also, for any edge e ∈ F ih
with i = 1, 2, 3, we have e ⊂ ∂K for some K ∈ Th. To simplify the notation, we let
ne = nKe and te = tKe be the outward normal and tangent vectors to the edge e
with respect to the triangle K.

Definition 2. For τh = (θh, qh) ∈ Xh, we define the jump [τh]e across an edge e of
Th as follows:

(3.5)

• e ∈ Eh and e = ∂K ∩ ∂K ′, [τh]e = (θKh − θK
′

h ) tKe − (qKh − qK
′

h ) nKe ,
• e ∈ F1

h and e ⊂ ∂K, [τh]e = 0,
• e ∈ F2

h and e ⊂ ∂K, [τh]e = −qKh ne,
• e ∈ F3

h and e ⊂ ∂K, [τh]e = θK te.

We also define the jumps [θh]e and [qh]e across any edge e of Th as follows:

(3.6)

• e ∈ Eh and e = ∂K ∩ ∂K ′, [θh]e = (θKh − θK
′

h ), [qh]e = (qK
′

h − qKh ),
• e ∈ F1

h and e ⊂ ∂K, [θh]e = 0, [qh]e = 0,
• e ∈ F2

h and e ⊂ ∂K, [θh]e = 0, [qh]e = −qKh ,
• e ∈ F3

h and e ⊂ ∂K, [θh]e = θK , [qh]e = 0,

For every e ∈ Ch, we have

(3.7) [τh]e = [θh]e tKe + [qh]e nKe .

We consider the symmetric bilinear form Ah : Xh × Xh → R given by

(3.8) Ah(δh, τh) =
∑
e∈Ch

he ([δh]e, [τh]e)e, ∀δh, τh ∈ Xh

and the associated semi-norm on Xh defined by

(3.9) |τh|h =
√
Ah(τh, τh) = (

∑
e∈Ch

he ‖[τh]e‖20, e)
1
2 , ∀τh ∈ Xh.

Using the Cauchy-Schwarz inequality, we have

|Ah(δh, τh)| ≤ |δh|h |τh|h, ∀δh, τh ∈ Xh.
Moreover,

Ah(τh, τh) = |τh|2h , ∀τh ∈ Xh.
We also observe that
(3.10)
([δh]e, [τh]e)e = ([ρh]e, [θh]e)e + ([rh]e, [qh]e)e, ∀δh = (ρh, rh), τh = (θh, qh) ∈ Xh.

Next, we consider the linear form Gh : Xh → R given by

Gh(τh) = −
∑
e∈F2

h

he (p0 ne, [τh]e)e +
∑
e∈F3

h

he (ω0 te, [τh]e)e, ∀τh = (θh, qh) ∈ Xh,
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which also satisfies

(3.11) Gh(τh) = −
∑
e∈F2

h

he (p0 , [qh]e)e +
∑
e∈F3

h

he (ω0 , [θh]e)e.

Remark 2. The jumps are constant on the edges.

For a positive fixed parameter βh > 0, we define the stabilized bilinear form
ah : Xh × Xh → R given by

ah(δh, τh) = a(δh, τh) + βhAh(δh, τh) ∀δh, τh ∈ Xh.

The discrete problem (3.3) is then modified as follows:

(3.12)

 Find (σh,uh) ∈ Xh×Mh with σh = (ωh, ph) such that
ah(σh, τh) + b(τh,uh) = βhGh(τh), ∀τh ∈ Xh,
b(σh,vh) = −F (vh), ∀vh ∈ Mh.

We note that for βh = 0, problem (3.12) is reduced to problem (3.3). Moreover, we
have

Theorem 8. For any βh > 0, problem (3.12) admits a unique solution.

Proof. To establish the uniqueness of the solution, we consider problem (3.12) with
F = 0 and Gh = 0. It follows that b(σh,uh) = 0. Then, ah(σh, σh) = 0, which
gives ωh = 0 and Ah(σh, σh) = |σh|2h = 0.

Then for e ∈ Ch, ‖[σh]e‖0, e = 0, i.e., for all e ∈ Eh ‖[σh]e‖0, e = ‖[ph]e‖0, e = 0
and for all e ∈ F2

h ‖[σh]e‖0, e = ‖ph‖0, e = 0. We deduce then that ph = 0.
We get from b(τh,uh) = 0 ∀τh ∈ Xh and the “inf-sup” condition that uh = 0.

This proves the uniqueness. Moreover, because of the linearity of problem (3.12),
we deduce the existence of the solution. �

The bilinear form Ah gives the Vh coercivity of the new form ah. This coercivity
is not a priori uniform, i.e., the constant of ellipticity can depend on h. We study
this coercivity and also the continuity of Ah in the following results. The form Gh
is introduced to preserve the consistency. We first focus on the coercivity of ah.
With this purpose we first exhibit a useful representation for b and some bounds.
From now on, we denote by C, C′ positive constants that do not depend on h.

Proposition 9. For τh ∈ Xh and v ∈M, we have

(3.13) b(τh,v) = −
∑
e∈Ch

([τh]e,v)e.

Proof. For any τh = (θh, qh) ∈ Xh and v ∈ M, we have

b(τh,v) = −(θh, curl v) + (qh, div v)

= −
∑

K∈Th
{(θh, curl v)K − (qh, div v)K}

=
∑

K∈Th
(θh tKe − qh nKe ,v)∂K

= −
∑

e∈Ch
([τh]e,v)e.

�
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Corollary 10. There is a positive constant C, independent of h, such that:

(3.14)

• |b(τh,v)| ≤ C|τh|h{
∑
e∈Ch

h−1
e ‖v‖

2
0,e}

1
2 , ∀τh ∈ Xh,v ∈ M,

• |b(τh,v)| ≤ C|τh|h|v|1,Ω, ∀τh ∈ Vh,v ∈ M ∩H1(Ω),
• ‖curl θh +∇qh‖−1 ≤ C|τh|h, ∀τh = (θh, qh) ∈ Vh.

Proof. The first estimate is an immediate consequence of Proposition 9. Consider
now τh = (θh, qh) ∈ Vh and v ∈M∩H1(Ω). For any vh ∈Mh, we have b(τh,vh) = 0.
Then, using Proposition 9, we deduce that

|b(τh,v − vh)| =

∣∣∣∣∣∑
e∈Ch

([τh]e,v − vh)e

∣∣∣∣∣
≤
∑
e∈Ch

‖[τh]e‖0,e ‖v − vh‖0,e

≤ |τh|h

{∑
e∈Ch

1
he
‖v − vh‖20,e

} 1
2

.

Now, for v ∈ M ∩H1(Ω) and vh ∈ Mh (see for example [4] among others), we
have {∑

e∈Ch

1
he
‖v − vh‖20,e

} 1
2

≤ C|v|1,Ω

and the second relation of (3.14) is satisfied. In addition, by definition

‖curl θh +∇qh‖−1,Ω = sup
v∈H1

0(Ω)

|b(τh,v)|
|v|1,Ω

≤ C|τh|h.

�

The following corollary ensures the coercivity of the bilinear form ah.

Corollary 11. There is a positive constant C, independent of h, such that

(3.15) ‖qh‖0,Ω ≤ C (|τh|h + ‖θh‖0,Ω), ∀τh = (θh, qh) ∈ Vh.

Proof. Consider τh = (θh, qh) ∈ Vh and q̃h = qh − 1
|Ω|
∫

Ω qhdΩ. Then, q̃h ∈ L2
0(Ω).

Moreover, using (2.8), we deduce that

C ‖q̃h‖0,Ω ≤ ‖∇q̃h‖−1,Ω = ‖∇qh‖−1,Ω ≤ ‖curlθh‖−1,Ω .

Hence, it follows that

C ‖q̃h‖0,Ω ≤ ‖θh‖0,Ω ≤ C′ (|τh|h + ‖θh‖0,Ω).

In the case where |Γ2| = 0 we have q̃h = qh, and therefore the proof is achieved.
In the case where |Γ2| > 0, we consider a function w ∈ M ∩ H1(Ω) such that∫

Ω div wdΩ = 1. Then, we have

1
|Ω|

∣∣∣∣∫
Ω

qhdΩ
∣∣∣∣ =

∣∣∣∣∫
Ω

(qh − q̃h) div wdΩ
∣∣∣∣

=
∣∣∣∣b(τh,w) +

∫
Ω

θh curl wdΩ−
∫

Ω

q̃h div wdΩ
∣∣∣∣

≤ |b(τh,w)|+
{
‖θh‖20,Ω + ‖q̃h‖20,Ω

} 1
2 |w|M .
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Moreover, using (3.14), we obtain

|b(τh,w)| ≤ C|τh|h|w|1,Ω.

It follows that

1
|Ω|

∣∣∣∣∫
Ω

qhdΩ
∣∣∣∣ ≤ C {‖θh‖20,Ω + ‖q̃h‖20,Ω + |τh|2h

} 1
2 |w|1,Ω

≤ C
{
‖θh‖20,Ω + |τh|2h

} 1
2 |w|1,Ω.

The proof is then achieved using

‖qh‖0,Ω ≤ ‖q̃h‖0,Ω +
1√
|Ω|

∣∣∣∣∫
Ω

qhdΩ
∣∣∣∣ .

�

Remark 3. Corollary 11 states the coercivity of the bilinear form ah on the discrete
kernel Vh. Indeed, for τh = (θh, qh) ∈ Vh, we have

ah(τh, τh) = ‖θh‖20,Ω + βh|τh|2h
≥ 1

2 ‖θh‖
2
0,Ω + min{ 1

2 , βh}
{
‖θh‖20,Ω + |τh|2h

}
≥ 1

2 ‖θh‖
2
0,Ω + min{ 1

2C ,
βh
C }‖qh‖20,Ω.

We note that the constant of coercivity depends on βh, since we have

(3.16) ah(τh, τh) ≥ min{1
2
,

1
2C

,
βh
C
}‖τh‖2X ∀τh ∈ Vh.

Next, we prove the continuity of the form Ah on Xh×Xh in order to deduce the
continuity of the form ah. This property will be used later in order to prove the
consistency of the new terms added to the formulation.

Proposition 12. For µ ∈ Π
e∈Ch

L2(e) such that:

• µ = 0 on e, if e ⊂ Γ1,
• µ.t =0 on e, if e ⊂ Γ2,
• µ.n =0 on e, if e ⊂ Γ3,

there is a function Φh ∈ M ∩H1(Ω) such that

(3.17)

• b(τh,Φh) = −
∑
e∈Ch

([τh]e, µ)e,

• |Φh|1,Ω ≤ C
{∑
e∈Ch

1
he
‖µ‖20,e

} 1
2

,

for all τh = (θh, qh) ∈ Xh.

Proof. We consider the function Φh satisfying

• Φh |K∈ P2(K), ∀K ∈ Th,
• Φh(S) = 0, ∀S vertex of Th,
•
∫
e

Φhdσ =
∫
e

µdσ, ∀e edge of Th.
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Similarly to the proof of Proposition 9, we have

b(τh,Φh) = −(θh, curl Φh) + (qh, div Φh)
= −

∑
e∈Ch

([τh]e,Φh)e

= −
∑
e∈Ch

([τh]e, µ)e,

for τh = (θh, qh) ∈ Xh. Then, it follows that

|b(τh,Φh)| ≤ |τh|h

{∑
e∈Ch

1
he
‖µ‖20,e

} 1
2

.

Finally, from the classical inverse inequalities, we have the existence of two positive
constants ĉ0 and ĉ1, independent of h, such that

ĉ0 |Φh|1,K ≤
{ ∑
e⊂∂K

1
he
‖µ‖20,e

} 1
2

≤ ĉ1 |Φh|1,K , ∀K ∈ Th.

Therefore, we conclude the proof by setting τh = Φh. �

Corollary 13. For τh ∈ Xh, there is a function Φh ∈M ∩H1(Ω) satisfying

b(δh,Φh) = Ah(δh, τh) ∀δh ∈ Xh and |Φh|1,Ω ≤ C|τh|h.
In addition, if we write τh = (θh, qh), we have

(3.18) |τh|h ≤ C
{
‖θh‖20,Ω + ‖qh‖20,Ω

} 1
2

= C ‖τh‖X .

Proof. We apply Proposition 12 for µ ∈ Π
e∈Ch

L2(e) given by

µ |e= −he[τh]e.

It follows that for δh ∈ Xh, we have

Ah(δh, τh) =
∑
e∈Ch

he([δh]e, [τh]e)e

= −
∑
e∈Ch

([δh]e, µ)e

= b(δh,Φh).

Then,

|τh|2h = b(τh,Φh) = −(θh, curl Φh) + (qh, div Φh)

≤
{
‖θh‖20,Ω + ‖qh‖20,Ω

} 1
2 |Φh|M ≤ C ‖τh‖X |Φh|1,Ω ≤ C ‖τh‖X |τh|h.

The a priori estimate (3.18) is then established. Consequently, the bilinear form
Ah is continuous on Xh × Xh. �

Next, we define the L2-projections of the functions p0 and ω0 as follows:{
p0h ∈ L2(Γ2) and ∀e ∈ F2

h,
p0h |e ∈ P0(e), (p0 − p0h , yh)K = 0, ∀yh ∈ P0(e)m,(3.19) {
ω0h ∈ L2(Γ3) and ∀e ∈ F3

h,
ω0h |e ∈ P0(e), (ω0 − ω0h , yh)K = 0, ∀yh ∈ P0(e).(3.20)
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We are now ready to establish the consistency of the additional terms in the for-
mulation. We have

Proposition 14. Let σ = (ω, p) be the solution of the continuous problem (2.7).
There is a constant C > 0, independent of h, such that for a given τh ∈ Xh and
δh ∈ Xh we have
(3.21)

|Ah(δh, τh)−Gh(τh)| ≤ C|τh|h
{ ‖σ − δh‖X + h ‖f‖0,Ω

+
√
h ‖p0 − p0h‖0,Γ2

+
√
h ‖ω0 − ω0h‖0,Γ3

}
.

Proof. Similarly to Corollary 13, for given τh = (θh, qh) ∈ Xh and δh = (ρh, rh) ∈
Xh , we consider the function Φh associated to τh. Then, we have

Ah(δh, τh) = b(δh,Φh) and |Φh|1,Ω ≤ C|τh|h.

Furthermore, we have

Ah(δh, τh)−Gh(τh) = b(δh − σ,Φh)− F (Φh)−Gh(τh)

with F (vh) = (f ,vh) + 〈ω0,vh · t〉Γ3 − 〈p0,vh · n〉Γ2 and

Gh(τh) = −
∑
e∈F2

h

he (p0 , [qh]e)e +
∑
e∈F3

h

he (ω0 , [θh]e)e

= −
∑
e∈F2

h

he (p0h , [qh]e)e +
∑
e∈F3

h

he (ω0h , [θh]e)e

= −
∑
e∈F2

h

(p0h ,Φh.ne)e +
∑
e∈F3

h

(ω0h ,Φh.te)e

= −〈p0h ,Φh · n〉Γ2 + 〈ω0h ,Φh · t〉Γ3 .

It follows that

|F (Φh) +Gh(τh)| = |(f ,Φh)− 〈p0 − p0h ,Φh · n〉Γ2 + 〈ω0 − ω0h ,Φh · t〉Γ3 |
≤ ‖f‖0,Ω ‖Φh‖0,Ω + ‖p0 − p0h‖0,Γ2

‖Φh‖0,Γ2

+ ‖ω0 − ω0h‖0,Γ3
‖Φh‖0,Γ3

.

Using classical inverse inequalities and the fact that the function Φh vanishes at
each vertex of Th, we deduce that

‖Φh‖0,Ω ≤ Ch |Φh|1,Ω ≤ C′h|τh|h and ‖Φh‖0,Γ ≤ C
√
h |Φh|1,Ω ≤ C′

√
h|τh|h.

Moreover, we have

|b(δh − σ,Φh)| ≤ C ‖Φh‖M ‖σ − δh‖X
≤ C|τh|h ‖σ − δh‖X ,

which achieves the proof of this proposition. �

Remark 4. We note that if δh is a good approximation of σ, the added terms
introduce an error which is of the same order as the one expected when using finite
element methods.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1688 M. AMARA, E. CHACÓN VERA, AND D. TRUJILLO

4. Error estimates

Our aim here is to estimate the error ‖σ−σh‖X+‖u−uh‖M when (σ = (ω, p),u) is
the solution of the continuous problem (2.7) and (σh = ((ωh, ph),uh) is the solution
of the discrete one (3.12). We point out that, from the standard analysis, one can
establish these error estimates directly. Our objective here is to derive more precise
estimates. To do this, we introduce

(4.1)
σ̄h = (ωh, ph) ∈ Xh such that, ∀K ∈ Th,{
ph |K∈ P0(K), (p− ph, qh)K = 0, ∀qh ∈ P0(K),
ωh |K∈ P0(K), (ω − ωh, θh)K = 0, ∀θh ∈ P0(K),

i.e., σ̄h is the L2(Ω) projection of σ on Xh. Moreover, we have

(4.2)
{
a(σ − σh, τh) = 0, ∀τh ∈ Xh,
b(σ − σh,vh) = 0, ∀vh ∈Mh.

From problem (2.7), we deduce that{
a(σ, τh) + b(τh,u) = 0, ∀τh ∈ Xh,
b(σ,vh) = −F (vh), ∀vh ∈Mh.

Then {
a(σh, τh) + b(τh,u) = 0, ∀τh ∈ Xh,
b(σh,vh) = −F (vh), ∀vh ∈Mh.

Using problem (3.12), we obtain{
a(σh − σh, τh)− βhAh(σh, τh) + b(τh,u− uh) = −βhGh(τh), ∀τh ∈ Xh,
b(σh − σh,vh) = 0, ∀vh ∈Mh.

We set

(4.3) δh = σh − σh = (ωh − ωh, ph − ph).

Hence, we have

(4.4)
{
ah(δh, τh) + b(τh,u− uh) = βh {Ah(σh, τh)−Gh(τh)}, ∀τh ∈ Xh,
b(δh,vh) = 0, ∀vh ∈Mh,

with ah(δh, τh) = a(δh, τh) + βhAh(δh, τh). We remark that δh ∈ Vh. We have

Proposition 15. For vh ∈Mh

(4.5) ‖ωh − ωh‖20,Ω + βh |δh|2h = b(δh,vh − u) + βh {Ah(σh, δh)−Gh(δh)}.

Proof. We apply (4.4) for τh = δh given by (4.3). Then, for vh ∈ Mh, we have

ah(δh, δh) = b(δh,uh − u) + βh (Ah(σh, δh)−Gh(δh))

= b(δh,vh − u) + βh (Ah(σh, δh)−Gh(δh)).

The proof is then achieved by using

ah(δh, δh) = ‖ωh − ωh‖20,Ω + βh |δh|2h .
�

We denote by Ec the error of consistency, defined as follows:

(4.6) Ec =
{ ‖σ − σh‖X + h ‖f‖0,Ω

+
√
h ‖p0 − p0h‖0,Γ2

+
√
h ‖ω0 − ω0h‖0,Γ3

}
.
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Then, from Lemma 14, we have the existence of a constant C > 0, independent of
h, such that

|Ah(σh, δh)−Gh(δh)| ≤ CEc|δh|h .
We also have from definition (2.6) that

|b(δh,vh − u)| ≤ |u− vh|M ‖δh‖X .
Hence we deduce from Proposition 15 and these two previous estimates the following
first error estimate:

Lemma 16. We set βh = min(1, βh) and denote the error on σ by

(4.7) Eh(σ) = ‖ωh − ωh‖0,Ω +
√
βh ‖ph − ph‖0,Ω +

√
βh |δh|h .

Then, there is a constant C > 0, independent of h, such that for vh ∈Mh, we have

(4.8) Eh(σ) ≤ C√
βh

|u− vh|M + C
√
βhEc.

Proof. Relation (3.15) gives the following inequality:

‖ph − ph‖0,Ω ≤ C (|δh|h + ‖ωh − ωh‖0,Ω).

Then, we have

‖ωh − ωh‖0,Ω +
√
βh |δh|h ≥

√
βh {‖ωh − ωh‖0,Ω + |δh|h}

≥ C
√
βh ‖δh‖X .

Using (4.5), we deduce that

‖ωh − ωh‖20,Ω + βh |δh|2h + βh ‖δh‖
2
X

≤ C |b(δh,vh − u)|+ Cβh |Ah(σh, δh)−Gh(δh)| .
�

Proposition 17. There is a constant C > 0, independent of h, such that for
vh ∈Mh we have the following error estimate:

(4.9) |u− uh|M ≤ C{Ec + max(1,
√
βh)Eh(σ) + |u− vh|M}.

Proof. For vh ∈ Mh we define

τh = (− curl(uh − vh), div (uh − vh)) ∈ Xh.
Hence, we have

b(τh,uh − vh) = |uh−vh|2M = ‖τh‖2X
and

b(τh,uh − vh) = b(τh,uh − u) + b(τh,u− vh).
Using (4.4), we deduce that

b(τh,u− uh) = βh {Ah(σh, τh)−Gh(τh)} − ah(δh, τh),

which implies that

|b(τh,u− uh)| ≤ βh |Ah(σh, τh)−Gh(τh)|
+‖ωh − ωh‖0,Ω‖ curl(uh − vh)‖0,Ω + βh |δh|h |τh|h .

Moreover, since (3.18) states that

|τh|h ≤ C‖τh‖X
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and since
|b(τh,u− vh)| ≤ |uh−vh|M|u− vh|M,

it follows that

|u− uh|M

≤ C{βh |Ah(σh, τh)−Gh(τh)|
|τh|h

+ ‖ωh − ωh‖0,Ω + βh |δh|h + |u− vh|M}.

Therefore, (4.9) is an immediate consequence. �
We conclude this section with the following global error estimates:

Theorem 18. Let Eh be the global error defined by

(4.10) Eh = ‖ω − ωh‖0,Ω +
√
βh ‖p− ph‖0,Ω + |u− uh|M.

Then there is a constant C > 0, independent of h, such that for vh ∈ Mh we have

(4.11) Eh ≤ C


max(1, βh)Ec + max(

1√
βh
,
√
βh)|u− vh|M

+‖ω − ωh‖0,Ω +
√
βh ‖p− ph‖0,Ω

 .

The following result is an immediate consequence:

Theorem 19. We assume that βh = β is independent of h. Then, there is a
constant C > 0, dependent on β and independent of h, such that for vh ∈ Mh we
have

(4.12) ‖σ − σh‖X + |u− uh|M ≤ C {Ec + ‖σ − σh‖X + |u− vh|M} .
Corollary 20. Under the assumption of Theorem 19, we have

• lim
h→0

Eh = 0, i.e., the method is unconditionally convergent, and

• if u ∈ H2(Ω), ω ∈ H1(Ω) and p ∈ H1(Ω), then Eh = O(h), i.e., the method
is optimal in terms of finite elements.

5. Numerical results

We present in this section numerical results to illustrate the computational effi-
ciency of the proposed formulation. We recall that we solve the following problem:

Find (σh,uh) ∈ Xh×Mh with σh = (ωh, ph) such that
ah(σh, τh) + b(τh,uh) = β Gh(τh), ∀τh = (θh, qh) ∈ Xh,
b(σh,vh) = −F (vh), ∀vh ∈Mh.

where

ah(σh, τh) = a(σh, τh) + β Ah(σh, τh) = (ωh, θh) + β
∑

e∈Ch
he ([σh]e, [τh]e)e

= (ωh, θh) + β
∑

e∈Ch
he( ([ωh]e, [θh]e)e + ([ph]e, [qh]e)e)

and
Gh(τh) =

∑
e∈F2

h

he (p0, [qh]e)e +
∑
e∈F3

h

he (ω0, [θh]e)e.

Test 1: An analytical test. First, we consider the Bercovier-Engelman test,
since we are able to compute the solution analytically. Recall that when the exact
solution satisfies u ∈ H2(Ω), ω ∈ H1(Ω) and p ∈ H1(Ω), then Eh = O(h). For
this test, we have Ω = ]0, 1[2 and the following boundary conditions: p and u2 are
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Table 1.

mesh 5× 5 10× 10 20× 20 40× 40 80× 80
error on ω in L2-norm 2.24 0.97 0.44 0.21 0.10
error on p in L2-norm 3.26 1.81 0.93 0.47 0.23

error on u1 in norm |.|1,Ω 2.12 1.12 0.57 0.28 0.14
error on u2 in norm |.|1,Ω 2.04 1.03 0.51 0.25 0.13

Table 2.

β = 1 β = 0.1 β = 0.05 β = 0.01
error on ω in L2-norm 0.57 0.2 0.2 0.32
error on p in L2-norm 1.78 0.55 1.07 4.97

error on u1 in norm |.|1,Ω 1.06 0.24 0.23 0.27
error on u2 in norm |.|1,Ω 1.06 0.24 0.23 0.29

prescribed on the right-hand side boundary, ω and u1 are prescribed on the left-
hand side boundary, and u = 0 on the upper and lower boundary. The right-hand
sides f1 and f2 of the equations are chosen so that the exact solution is

ω(x, y) = 256(y2(y − 1)2(6x2 − 6x+ 1) + x2(x− 1)2(6y2 − 6y + 1)),
u1(x, y) = −256y(y− 1)(2y − 1)x2(x− 1)2,

u2(x, y) = −u1(y, x),
p(x, y) = (x− 0.5)(y − 0.5).

We report in Table 1 the results obtained on the absolute error in the L2−norm
for the unknowns ω and p and in the H1−norm for (u1, u2). These errors are
computed for β = 0.1. Note that these errors are calculated between the numerical
approximation and an interpolate of the exact solution (P0-interpolation for ω and
p, and P1-interpolation for u). In this example, we have meshed the domain Ω
using different structured triangulations.

We notice that the O(h) behavior of the error is in agreement with the theoretical
error bounds: the error is divided by 2 when the mesh size h is divided by 2. A
comparison between the exact solution and the computed one is depicted in Figures
1, 2 and 3. This comparison is performed with an unstructured mesh using 1992
elements and 1022 nodes.

Next, we investigate the behavior of the error for different values of the parameter
β using the previous mesh. Table 2 tends to indicate that β should be chosen neither
too large nor too small. Indeed, an optimal value for β seems to be around 0.1.
Tests 3 and 4: Pipe flow with an obstacle and T-shape. In the following two
numerical experiments we consider more general domains and boundary conditions.
In the first one, we simulate a pipe flow with an obstacle. In the second experiment
we consider the problem of a T-shape bifurcation. In both simulations, the pressure
is imposed on the inlet and outlet boundaries of the domain together with u · t.
We choose u = 0 on the other boundaries. In the pipe flow example the difference
between the pressures on the inlet and outlet boundaries is equal to 4. In the T-
shape test, the difference between the pressures on the inlet and on the right-hand
side outlet is equal to 4, while the pressure difference on the inlet and on the left-
hand side outlet is equal to 2. As in the previous example, we present in Figures
6–11 the velocity field, the vorticity ω and the pressure.
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Velocity Velocity

Figure 1. Exact and calculated velocities

Figure 2. Exact vorticity and pressure

Test 2: The cavity test. Now we consider more realistic examples. The first one
is the cavity test. The domain Ω and the mesh are the same as in the preceding
example. The right-hand sides are equal to zero, u = (1, 0) on the upper boundary,
and u = 0 on the three other sides of Ω. Figures 4 and 5 depict the numerical
results and demonstrate the good behavior of the method.
Test 5: The step. The last numerical results we present in this paper are obtained
for the so-called step test. We impose a Poiseuille flow (u 6= 0 is given) on the inlet
and the outlet boundaries, and we take ω = 0 together with u ·n = 0 on the upper
boundary. The results are presented in Figures 12–14.
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Vorticity Pressure

Figure 3. Calculated vorticity and pressure

Velocity

Figure 4. Calculated velocity for the cavity test

Figure 5. Vorticity and pressure for the cavity test
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mesh : 1506 triangles and 819 nodes

Velocity

Figure 6. Calculated velocity for the pipe flow test

Vorticity

Figure 7. Calculated vorticity for the pipe flow test

Pressure

Figure 8. Calculated pressure for the pipe flow test
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mesh: 3150 triangles and 1696 nodes

Velocity

Figure 9. Calculated velocity for the T-shape test

Vorticity

Figure 10. Calculated vorticity for the T-shape test

Pressure

Figure 11. Calculated pressure for the T-shape test
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Velocity

Figure 12. Calculated velocity for the step test

Vorticity

Figure 13. Calculated vorticity for the step test

Pressure

Figure 14. Calculated pressure for the step test
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