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Abstract

Molecular recognition plays a fundamental role in all biological processes, and that is why great 

efforts have been made to understand and predict protein–ligand interactions. Finding a molecule 

that can potentially bind to a target protein is particularly essential in drug discovery and still 

remains an expensive and time-consuming task. In silico, tools are frequently used to screen 

molecular libraries to identify new lead compounds, and if protein structure is known, various 

protein–ligand docking programs can be used. The aim of docking procedure is to predict correct 

poses of ligand in the binding site of the protein as well as to score them according to the strength 

of interaction in a reasonable time frame. The purpose of our studies was to present the novel 

consensus approach to predict both protein–ligand complex structure and its corresponding 

binding affinity. Our method used as the input the results from seven docking programs (Surflex, 

LigandFit, Glide, GOLD, FlexX, eHiTS, and AutoDock) that are widely used for docking of 

ligands. We evaluated it on the extensive benchmark dataset of 1300 protein–ligands pairs from 

refined PDBbind database for which the structural and affinity data was available. We compared 

independently its ability of proper scoring and posing to the previously proposed methods. In most 

cases, our method is able to dock properly approximately 20% of pairs more than docking 

methods on average, and over 10% of pairs more than the best single program. The RMSD value 

of the predicted complex conformation versus its native one is reduced by a factor of 0.5 Å. 

Finally, we were able to increase the Pearson correlation of the predicted binding affinity in 

comparison with the experimental value up to 0.5.
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Introduction

A typical drug design campaign requires substantial costs and is time consuming due to the 

fact that for thousands of chemical compounds biochemical screening has to be performed 

before proceeding to a more refined analysis. The in silico methods promise to shorten the 

time and decrease the amount of work needed when searching for a new inhibitor. One of 

the most important methods used here is the molecular docking that predicts a preferable 

conformation of a ligand when bound to a receptor molecule. Docking is used frequently in 

a high-throughput virtual screening where large libraries of commercially available 

compounds are searched to find the most active compound for a selected protein target. The 

aim of docking procedure is to predict the correct pose of a ligand in the binding site of the 

protein as well as to score it according to the strength of interaction in a reasonable time 

frame. As all programs exploit empirically based scoring functions and algorithms, docking 

results are sometimes far from reality.

Among the most frequently reported is the docking accuracy of small organic compounds to 

a given protein,1–6 yet the nucleic acids can also be considered as a target for ligand 

molecules.7,8 In the protein–protein docking,8–10 the interactions between two identical or 

different proteins are studied. In the case of protein– ligand docking, various algorithms 

address different representations of a ligand and a receptor, their intrinsic chemical 

properties, and detailed characteristics of intramolecular interactions between their atoms. 

As in recent years, the crystallography and multidimensional NMR provided a wealth of 

structural information about various biological targets, several protein–ligand docking 

programs have been proposed.11,12 Usually, the receptor is treated as a rigid molecule 

because of high computational costs, whereas conformational flexibility of ligands is taken 

into account leading to different placement algorithms.13 The scoring procedure of such 

docked conformers is still regarded as one of the most difficult tasks in molecular docking 

because of their empirical nature. In our work, we used only software that considers 

flexibility of ligands, not proteins, and thus structure of protein before docking was not 

changed in comparison with original pdb file, assuring that protein is already in bounded 

state.

There are three major goals of docking simulations: (1) the native conformation of ligand in 

the active site should be predicted; (2) the binding energy should be estimated allowing for 

arrangement of the tested set of ligands according to their affinity toward the protein target; 

(3) in addition, it should be fast enough to screen large collections of small chemical 

molecules. The typical docking procedure is performed in two steps. The first step is 

focused on placing a small molecule into the binding site of the protein using mostly 

geometrical features and searching for its best three-dimensional (3D) conformation inside 

the cavity. The second step is performed using different scoring functions and it leads to the 

estimation of the binding affinity between the protein and the ligand.

During the last two decades, a set of different docking programs has become available both 

for commercial and academic use, such as DOCK,14 AutoDock,15 FlexX,16 Surflex,17 

GOLD,18 ICM,19 Glide,20 CDocker,21 LigandFit,22 MCDock,23 and many others. They are 

based on different algorithms and can be grouped into four general categories: stochastic 
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Monte Carlo, fragment-based, genetic algorithms, and, finally, shape complementary 

methods. None of those programs uses systematic search to fully explore all degrees of 

freedom in both receptor and ligand molecules because of enormous computational cost of 

such a procedure.2 That is why docking programs avoid systematic search and perform only 

guided search in conformational space. Our consensus algorithm attempts to combine those 

independent docking approaches into a single and powerful prediction method. We select a 

set of representative conformations from each docking algorithm to efficiently inspect 

different guided search algorithms for correct conformation of a protein–ligand complex.

The binding affinity of generated output protein–ligand conformations is calculated here by 

using different scoring functions. More than 30 different scoring functions were published 

until 20092,24–40 and they can be classified into three major categories. The first group 

applies force fields functions to calculate the energy of a complex as the sum of the ligand 

and the receptor internal interaction energies and also the energy of intermolecular 

interactions between those two molecules. Typically, the force fields such as Assisted Model 

Building With Energy Refinement (AMBER)41 or Tripos42 are employed, considering two 

energy terms, i.e., van der Waals and electrostatic interactions between molecules. 

Additionally, to improve the accuracy of those functions, sometimes the solvation energy 

term is also included, usually using a distance-dependent dielectric function.43 Most of the 

docking programs do not support ligand binding to protein via covalent bond. However, 

when applied to protein–ligand complexes, the force fields are often found to overestimate 

the binding affinity,2 even when using very precise and time-consuming procedures. 

Therefore, the scaling coefficients multiplying both terms are used to resolve this problem. 

The second group, i.e., the empirical scoring functions, describes interactions between a 

protein and a ligand as scalable parameters. Almost all of the proposed parameters exploit 

hydrogen bonds, hydrophobic interaction, metal bonds energy, typical force fields energies, 

and finally, the solvation energy term. The scaling parameters together with the empirical 

functions are trained on the selected dataset of complexes with known binding affinity for 

which scaling factors for each energy term can be optimized. Empirical scoring functions 

are often able to recreate binding affinities of original training dataset with very high 

accuracy,24 yet the results on previously unconsidered protein– ligand complexes are not 

always successful. The third group, namely knowledge-based scoring functions, is 

developed from the statistical analysis of X-ray and NMR structures of protein– ligand 

complexes. The distribution of different pairs of atom types is gathered using a set of pairs 

of atoms, one from a protein and the other from a ligand, and then converted into pair-wise 

atom–atom statistical potentials. The final interaction energy is calculated as the sum of all 

pairwise interactions between atoms from a ligand and a protein lying within the sphere of 

the given cutoff (usually from 6 Å up to 12 Å).

The consensus is a novel technique recently used in various applications, mostly in 

bioinformatics. The main rationale behind is that although individual approaches can 

generate some misleading results, yet the distribution of those errors is random.32 That is 

why even a simple majority voting of a set of programs providing different results can be in 

principle much closer to the correct answer, than even the best single program. In the 

context of docking problem, several attempts to transfer that approach have been made. 

However, as the general opinion is that posing is not the main drawback of docking 
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programs, typically consensus approach is applied in prediction of ligands activities. 

Nevertheless, some cases where authors applied this technique to poses selection were also 

reported. For example, Wolf et al.44 merged two docking algorithms, namely genetic-and 

fragment-based method into single AutoxX protocol. The software used FlexX and 

AutoDock algorithms for choosing optimal ligand conformation, and it was able to decrease 

the mean root mean square distance (RMSD) of top score conformations by 0.3 Å in 

comparison with best individual program from those two. This approach allowed to predict 

correct conformation of ligand for 126 pairs of the 206 tested (RMSD below 2 Å), more than 

six for AutoDock alone. However, no consensus scoring was proposed there, thus, scoring 

functions were omitted and reported separately from those two programs.

Up to now, the research community focused mostly on improving scoring predictions, 

because in common opinion, calculating a ligand in vitro activity is very difficult task. 

Therefore, typical strategy is to gather data from diverse set of scoring functions 

representing different approaches to create new function using simple linear regression 

technique. Typically, this procedure allows for development of the function working for 

specific protein families; therefore, it cannot be transferred from one family to another. 

Similar approach was used by Teramoto et al.28 where authors used the support vector 

regression performed on three protein families, acetylcholine esterase, thrombin, 

phosphodiesterrase 5, and proliferator-activated receptor gamma. New functions were used 

as an input scoring results obtained from F-score, D-score, Potential of Mean Force (PMF), 

G-score, and ChemScore. Those authors in 2007 used “rank-by-vote” approach, where 

instead of the absolute scores values, each ligand was given the rank based on its position in 

ligand list ordered by particular scoring function. Ligand with lowest average rank from the 

set of scoring functions was then chosen in this method as the most active one. Similar 

approach is also used in Sybyl’s Consensus Score (CS) model. The successful modification 

of “rank-by-vote” approach was implemented in SeleX-CS algorithm developed by Bar-

Haim.32 Here, the Monte Carlo simulated annealing is used to choose functions that can vote 

for a particular ligand. Two types of votes are allowed: “primary” rank-by-vote value, and 

“secondary” rank-by-number value. Authors reported three times increase in enrichment 

factor value obtained for studied small set of proteins. Summarizing, according to our 

knowledge, no single workflow that combines consensus both in pose prediction and score 

prediction has been introduced up to now.

Here we propose the consensus docking protocol that allows for massive docking of ligands 

into their corresponding protein targets using several independent docking algorithms and 

scoring functions running in parallel. Our approach combines the results from various 

programs into a single consensus prediction of the 3D protein–ligand complex structure. The 

clustering of results from those several docking algorithms is performed to select the poses 

that are close to the corresponding native conformation, and then the consensus scoring is 

performed using the multivariate linear regression to select the strongly binding 

conformations. The consensus docking method is evaluated here in terms of both posing and 

scoring abilities on the large dataset of protein–ligand complexes with known 3D structures 

and binding affinities.
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Materials and Methods

Here, we present a novel docking method for selecting potent inhibitors using the results of 

docking performed by several programs. Seven docking software packages were used to 

perform the consensus procedure (AutoDock 4.2.1, Glide 4.5, GOLD 3.2, Surflex 2.2, FlexX 

2.2.1, eHiTS 9.0, and LigandFit2.3). This selection covers a variety of types of docking 

algorithms, thus representing a rich data source for optimizing the consensus between the 

most popular docking programs. The method is optimized on a large benchmarking dataset 

of 1300 protein– ligand pairs to provide the accurate posing (RMSD value for each 

predicted conformation versus the corresponding native one and the percentage of 

successfully docked pairs in the whole collection of inhibitors) and the scoring ability 

(correlation of the obtained score with experimental pKd or pKi value). The predicted 

consensus pose for a given ligand on the protein target has on an average lower RMSD 

value in comparison with that obtained by any individual program. Furthermore, compounds 

predicted by us as the active ones, on an average have higher correlation coefficient 

calculated using the experimental binding value than scores predicted by any particular 

scoring functions.

Benchmark Dataset

To benchmark our method, we selected the PDBbind 2007 data-base45–47 containing 3124 

protein–ligand complexes with known 3D structure and the corresponding ligand-binding 

affinity. The dataset is selected as the richest and diverse dataset used in various evaluation 

studies.30,48 From it, authors of PDBbind extracted a subset of 1300 protein–ligand pairs 

creating its “refined” set that was used in this work (see Supporting Information Table S1). 

The requirements for a given complex from the Protein Data Bank (PDB) database 45,46 to 

be included in refined, and in consequence, in our benchmark dataset were as follows.

The experimental resolution of a crystal structure has to be lower than 2.5 Å. Other studies 

performed previously on the GOLD original benchmark set by Jones et al.18 confirm that 

selecting structures with poor resolution may produce false predicted conformations. Both a 

ligand and a protein structure have to be complete without any chain breaks or unsolved 

regions. No NMR-solved structures are involved in creating the refined data-set. In addition, 

only complexes with known binding affinity are considered for the refined set. The activity 

should be given as either pKi (an inhibition constant), or pKd (a dissociation constant). The 

results given as IC50 are rejected as such values depend on the design of a binding assay. 

However, recently, the accuracy of this data was questioned49 as for 36% of the complexes 

the calculations of binding affinities were affected by crystal artifacts such as water 

molecules. We excluded complexes with ligands containing other than standard atom types 

(like Be or Si). Ligands that are not covalently bound with protein were discarded. Ligand 

mass should not be larger than 1000 amu. A complex is rejected if the distance between its 

ligand and the protein heavy atoms is closer than 2 Å. Finally, only complexes with a single 

ligand in the active site were chosen for docking simulations.

The native conformation of each ligand was extracted from the protein–ligand complex; 

similarly, the corresponding protein target’s 3D structure was prepared. Each ligand was 

then converted into a two-dimensional representation; later the Simplified Molecular Input 
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Line Entry Specification (SMILES)50 chemical name of each inhibitor was created by using 

OpenBabel (http://openbabel.sourceforge.net/) and Marvin software (http://

www.chemaxon.com). Then, the 3D input ligands structures were generated ab initio from 

their SMILES names using two typically used programs, namely the Corina51 and 

Omega252. Therefore, four different datasets were created. First, as a starting point, a single 

low-energy conformation for each ligand was generated using the Corina program. The 

second dataset consists of 10 conformers for each ligand generated by Corina. The third 

dataset contains only a single low-energy conformation for each ligand generated using 

Omega2 software. Finally, the fourth input dataset for docking was created using 10 of the 

conformers generated by Omega2 for each ligand of the PDBbind 2007 database. In addition 

to performing the optimization and evaluation of our docking procedure, we tested whether 

the docking results depend on the ligand size, type, and structure, such as the number of 

rotatable bonds in a molecule or its chemical properties such as hydrophobic and hydrophilic 

features given by the ligand partition coefficient between water and octanol:

(1)

Proteins extracted from crystal structures undergo the following preparation steps. First, 

hydrogen atoms are added with the protonation state simulated to pH = 7. Therefore, 

aspartate and glutamate amino acids were negatively charged, histidine was neutral, and 

arginine and lysine amino acids were positively charged. The terminal carboxyl groups were 

deprotonated, whereas amine groups were protonated. Atoms and bonds types were 

inspected by using Sybyl software, yet no geometry optimization was performed. In 

addition, we decided to remove all water molecules and metal atoms from the protein pdb 

files, as no significant changes in docking accuracy of our method were observed (for more 

details see Supporting Information Table S2).

Docking Software

The prepared dataset of 1300 proteins and ligands was then redocked by seven independent 

docking programs. Here the protein active site was defined as a collection of residues in the 

vicinity of the bound ligand (in most cases, within the surrounding box of 12 Å size). This 

strategy, although seems to be different than real-life drug discovery process, was employed 

by us because of two reasons. The first goal of our work was to evaluate the ability to place 

ligand in an active site, when the active site is known, not the quality of searching for an 

active site by each docking program. Moreover, the most of the programs, when ligand’s 

initial position is not known, can propose the large number of possible active sites, yet user 

has to make final decision and select by hand the most promising one. Our work was 

performed in the context of virtual high-throughput screening (vHTS), where all steps have 

to be automated without human intervention. Therefore, the selection of the active site was 

not evaluated here. The second reason is that presently the knowledge about protein 

structures is increasing rapidly (currently more than fifty thousands different structures is 

deposited in the PDB database); therefore, the comparative homology techniques could be 

employed to precisely locate an active site for a selected protein target. BLAST/PSI-BLAST 

tools, or more advanced homology search engines, such as MetaServer,53,54 allow to find 
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typically a set of close homologues that are likely to share both the same protein fold, as 

well as the active site position. The impact of staring conformation on the final docking 

result was also analyzed. Four different ensembles of starting conformations for a given 

ligand were used. Either two single low-energy conformations from Corina or Omega2 or 

two sets of 10 low-energy conformers from Corina and Omega2 programs were docked 

separately. Each docking program predicts 10 highest scoring poses for each of those input 

ligands structures. We used the following docking algorithms:

• Fragment-based incremental methods: Surflex (Jain, A.N. et al.), eHiTS 

(SimBioSys Inc.) and FlexX (BioSolveIt) that splits ligand into pieces which are 

docked in an incremental way;

• Evolutionary methods: GOLD (CCDC) and AutoDock (The Scripps Research 

Institute) that use genetic algorithms;

• Force field-based method: Glide (Schrodinger Inc.), which has implemented Monte 

Carlo based engine;

• Shape complementary-based method: LigandFit (Accelrys Software Inc.), which 

exploits grids to fit the shape of the ligand to the target.

Therefore, in the case of the single input structure, in total, 70 different poses were 

generated, and in the case of 10 different input conformations of a given ligand, 700 poses 

were prepared; as from one input structure, 10 output conformations are usually generated. 

Those poses predicted by seven docking programs were compared with the 3D native 

structure of each ligand extracted from the corresponding protein–ligand complex. In 

addition, the docking scores of the top conformation returned by each docking program were 

compared with the experimental value of the binding affinity.

All docking programs were tested using their default parameters (see Supporting 

Information Table S3 for more details), although we are aware that proper selection of the 

scoring function and docking algorithm parameters can impact the obtained results. 

However, in the case of our diverse and highly populated benchmark dataset, the additional 

computational time used for such testing and further optimization of those parameters would 

make it impossible to perform using our limited hardware resources.

Docking Accuracy

The ability of docking software to predict the correct ligand poses close to the native one 

(found in X-ray complexes) is crucial in achieving success in docking experiment. 

Typically, two approaches are used for evaluating the success. The first one describes how 

many specific contacts between the ligand molecule and the protein are recreated (for 

example, hydrogen bonds or hydrophobic interactions) rather than focusing on exact 

placement of all ligands atoms. In our studies, millions of poses are generated; therefore, it 

is impossible to follow such a detailed protocol. Instead, we decided to use the second 

approach, i.e., calculation of the RMSD value for heavy atoms between the predicted pose 

and the corresponding native conformation of the cocrystallized ligand. Such a measure is 

well known and accepted as a reliable structural quality parameter by the whole docking 

community. The RMSD value between two poses is given by the equation:
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(2)

where N is the number of atoms and di is the distance between the corresponding atoms.

Of all poses that are predicted by a given docking program, one can select two poses of 

crucial importance. The first one is the conformation returned with the highest score by the 

corresponding scoring function. Here, such a pose is called the top score pose and its RMSD 

value to the native ligand conformation is calculated for each docking program and all 

analyzed protein–ligand complexes. In our approach, each program was run to predict 10 

different poses for each input molecule. Therefore, for each program, we select the best pose 

conformation of all predicted ones, which has the lowest RMSD value to the native 

conformation. Those two RMSD values are very useful for benchmarking purposes, yet the 

best pose cannot be used in real-life experiments, where the native structure of the protein–

ligand complex is not known. Usually, the best pose conformation is not returned with the 

highest score by a program, so it is not the top score pose.

The second useful quality parameter is the percentage of protein–ligand complexes for 

which the RMSD value of the top score pose is lower than 2 Å, a threshold commonly 

assumed as the acceptable accuracy by the docking community. In this work, we use two 

values of this measure, one calculated using the top score poses, and the other using the best 

pose conformation. Contrary to previously described RMSD values, the percentage of 

successfully docked complexes does not depend much on the results obtained for wrongly 

predicted complexes, which can significantly change the mean RMSD value averaged over 

the whole benchmarking dataset.

Initial Ligand Conformations Ensembles

The number of selected initial conformers for docking evaluation study may impact the 

docking results, and, in fact, many previous benchmarks reported that docking the native 

structure of a ligand extracted from X-ray crystallographic structure provides better results. 

Therefore, we decided to find out what is the optimal number of the prepared conformers 

that should be used in docking procedure and further in the consensus approach. Typically, 

two programs are used in research community: Corina and Omega2 to recreate 

crystallographic structure of molecule. Therefore, we have used them both to generate the 

predefined number of conformers for each input 2D ligand chemical representation. We 

tested the quality of those predicted 3D structures by comparing them to the known 3D 

structure. We have compared three ensembles of initial ligand conformations: a single most 

optimal structure, 10 low-energy conformers, and, finally, the 100 of predicted conformers. 

We have noticed that 10 conformers ensemble seems to be the optimal number, because for 

almost all ligands, we were able to find at least one conformer within those predicted that 

was almost identical to the native 3D ligand structure (RMSD below 1 Å). This observation 

was confirmed for both Corina and Omega2 programs. Therefore, we decided to perform 

four different docking experiments for each protein–ligand pair using four different 

ensembles of ligands’ initial conformations. In two cases, we have selected only single low-
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energy conformations (comprising corina one and omega one datasets). In next two cases we 

docked two ensembles of 10 conformations generated by either Corina or Omega2 

(comprising corina ten and omega ten datasets). Therefore, we collected the docking results 

in those four independent experimental setups; each performed docking using different 

ensembles of the input ligand 3D conformations. The evaluation parameters (such as the 

RMSD values or the percentage of correctly docked complexes) were then averaged over 

those datasets, as no significant changes between those were observed. In addition, we 

carefully checked the docking results performed on the subset of complexes using hundreds 

of input conformers. The results were quite similar (in terms of both the minimal RMSD 

value and the percentage of accepted pairs below 2 Å). However, it takes on an average 

almost 10 times longer computational time in comparison with the docking of 10 

conformers; therefore, the experiment was not repeated on the whole benchmarking dataset.

The binding affinity

Another important issue in prediction of protein–ligand complexes is the ability of docking 

programs to correctly predict the strength of ligand binding to its protein target, i.e., the 

binding affinity. It describes the strength of intermolecular binding between the ligand and 

its receptor, and it can be described by the number of parameters, such as dissociations 

constant Ki, concentration of ligands that decrease the activity of particular enzymes by 50% 

IC50, or by the Gibbs free energy ΔG. The calculation of binding affinity was done here by 

each docking program internal scoring function. The PDBbind database reports the 

experimental values of the activity for all evaluated protein–ligand complexes. Therefore, 

we are able to compare the docking score with the corresponding experimental value of 

binding affinity, and to calculate the Pearson correlation coefficient between those two 

values. Scoring functions should order the list of poses in accordance with their binding 

strength to select those that are close to the native structure (hopefully the strongest bound 

conformation).

In our benchmark, we used the following scoring functions: GoldScore, LigScore1, 

GlideScore SP, Total score (the combination of several scoring functions used by Surflex: 

Chem-Score, F-Score, PMF-Score, and others), FlexX score, eHiTS score, and AutoDock 

scoring function. For each scoring function, we calculated Pearson and Spearman 

correlations for four different sets of conformers (generated using Corina and Omega2 

software). The Spearman correlation is much less sensitive to a few outsiders, and on the 

contrary, a few wrong protein–ligand complexes can significantly affect the Pearson 

correlation coefficient.

Selection of the optimal pose

Our benchmarking results show that no single docking software is more reliable than others. 

Therefore, the consensus approach seems to be the right tool to boost the overall docking 

accuracy. Several consensus approaches were successfully applied in the context of 

bioinformatics,54 chemoinformatics,55 and general computer sciences. For example, the 3D-

Jury53 algorithm predicts a 3D protein structure using several autonomous methods. Here, 

we present our novel method MetaPose that is able to improve the selection of the best pose 

using a set of conformations obtained from various docking programs. The n predicted poses 
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from seven tested programs are used, neglecting the scores obtained using their scoring 

functions (n = 70 for Corina and Omega2one, and n = 700 for Corina and Omega2 ten input 

datasets). Those 3D conformations are compared with each other by calculating the RMSD 

value between them. Even if a subset of the predicted poses is obviously wrong, or 

contaminated (for example, as a result of weak docking program), yet this does not affect 

our method because the majority of molecules would be placed correctly in a protein active 

site. In this way, the similarity matrix is created, where the ith row represents the similarity 

of the pose i to all other poses. The pose score 3DScore for this conformation is calculated 

as the arithmetical mean of RMSD values from the selected row:

(3)

where n is the number of conformations and wji is the RMSD value calculated between i and 

j poses.

The pose with the lowest value of the score is selected by our method as the final result. We 

search here for the conformation that represents the entire set of possible poses; therefore, it 

is most similar to others. The conformational search of the MetaPose method is based only 

on the geometrical similarity between poses, without taking into account the scores given by 

docking programs.

The strongly binding poses

The second step of our analysis is designed to improve the correlation between the docking 

score and its experimental values of the binding affinity. The MetaScore algorithm builds 

the consensus scoring function using multivariate linear regression optimization guided by 

the experimental results. We assume that the consensus scoring function is described by a 

linear combination of scores from seven docking programs with the weights describing the 

influence of each scoring function on the final result.

The optimization method has to be constructed and tested separately using different and not 

overlapping datasets of protein–ligand complexes. Therefore, we divided our benchmark 

dataset into two parts. The first dataset contains 400 pairs and was used for optimization of 

the new metascoring function. The second dataset (the rest of database) was used as the 

independent testing dataset. Each protein–ligand complex can be represented as an ensemble 

of seven hundreds or tens of poses (depending on the size of input conformers used in 

docking); therefore, each pose can be described by seven different docking scores of top 

score poses. The multivariate linear regression was then used to obtain the single MetaScore 

function for our four benchmarking subsets, namely Corina one, Corina ten, Omega2 best, 

and Omega2 ten generated conformers. However, surprisingly, the coefficients for each 

consensus scoring function were tested to be almost equal for each of those four 

optimization datasets, therefore the single MetaScore function can be proposed, and it is 

given by the equation:
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(4)

where each scoring function is described by the name of the corresponding docking 

program. Result of this function is value that represents ( −logKd) value for a given protein–

ligand complex.

The MetaScore subset of poses, i.e., all top score conformations from seven docking 

programs, are used for consensus procedure. We created the 7 × 7 similarity matrix 

calculating the RMSD values between those seven top score conformations. Then, for each 

of them, the 3DScore was calculated and the conformation with the lowest value was chosen 

as the predicted pose. The results of this procedure are summarized below and are presented 

in Tables 1 and 2 (the MetaScore row).

In addition, having all conformations ordered by their corresponding 3DScore value, we 

chose the top representative for all seven docking program, each with the lowest 3Dscore 

value of all predicted poses by this program. MetaScore eq. (4) can be calculated using 

docking scored of those six conformations. Similarly, the Pearson correlation between those 

values and experimentally determined binding affinities can be calculated. The results are 

presented in Table 1.

The consensus docking method

In the third step of our analysis, we designed the consensus method that is able both to 

predict the correct conformation of a protein-ligand complex, and its binding affinity value. 

Previously described methods, namely MetaPose and MetaScore, focus on different goals 

for virtual screening. The first algorithm selects the pose inside the protein active site that is 

close to the native one, and the second one focuses on the calculation of correct binding 

affinity for the analyzed ligand. Here, we introduce VoteDock algorithm that predicts both 

the correct pose and the strength of binding between the ligand and the receptor. The 

VoteDock uses modified MetaPose algorithm to select the correct conformation. The 

MetaPose neglects the information about the source of analyzed conformations (namely the 

docking programs from which they are taken). Therefore, although it is proven to be more 

effective than any individual program, yet the influence of each docking program is similar 

for all used algorithms, even if there is a single one among them that has a very weak ability 

to pose the ligand inside the active site, or to score it.

For each protein-ligand complex, we create subsets of poses, each containing the poses 

selected independently by a certain number of docking programs. Therefore, we can assign 

to each predicted conformation the number from one to six depending on the number of 

programs that confirmed that pose as the correct one. The similarity matrix for each subset 

of poses is calculated separately for all poses that were confirmed by the predefined number 

of docking programs, and called vote2, vote3, up to vote7. For example, if a conformation 

from GOLD was also predicted by eHiTS, i.e., if there exists at least one conformation from 

eHiTS’s predicted poses that has the RMSD value between it and the GOLD’s conformation 
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lower than the threshold value of 2 Å, such a conformation is qualified to be included in 

vote2 subset. If the next docking program (for example FlexX) has another predicted 

conformation closer than 2 Å from the original pose, then the pose is also included in vote3 

subset. In the case of vote7 dataset, the highest quality predicted conformations; all seven 

docking programs predicted each of them as the possible ones in our test. The voting 

procedure not only narrows down the number of predicted conformations but also eliminates 

incorrect poses that influence the center of the solutions domain. In the case of some 

protein–ligand complexes, the vote7 dataset is empty within the given RMSD threshold, 

therefore, the hybrid approach is proposed. For every protein–ligand pair, we select the 

subset of predicted conformations, which have the highest available vote order, and 

subsequently, we use MetaPose approach on such highest vote dataset. The similarity matrix 

is constructed and the 3DScore [see eq. (3)] is assigned to those poses. The conformation 

with the lowest value of 3DScore is chosen as the best one. If no vote subset is present (even 

the vote2 subset), as the result for such a protein–ligand complex, the pose selected by 

original MetaPose algorithm is returned.

The conformations selected by the first step of VoteDock procedure are then scored using 

the MetaScore scoring function, as each pose is now described by more than one docking 

score. A detailed analysis of vote subsets allows one to select a single program that is 

eliminated from each vote. In the case of vote7, the scores from all seven programs describe 

each predicted conformation. In the case of vote6, the AutoDock predictions are excluded 

for most of the complexes, vote5 eliminates Glide, vote4 FlexX docking program, vote3 

removes LigandFit, and finally, in vote2, in most cases, eHiTS is lacking, leaving only two 

programs, namely Surflex and GOLD. The MetaScore procedure is here modified by 

optimizing weights of each docking program for each vote dataset separately, using 

multivariate linear regression (details on scoring function used here are listed in Supporting 

Information Table S4). Therefore, six new Meta-Score functions are calculated, each for the 

particular subset of docking programs. To compare correlation values from the VoteDock 

with individual docking programs, here we use the hybrid approach similarly to the 

previously described optimal conformation selection prediction procedure. We select the 

highest vote subset for each protein–ligand complex and apply the MetaScore optimized 

function suitable for this particular vote order. If no vote is present or a conformation is 

described by a different combination of programs, we apply the original Meta-Score 

procedure. The highest scores from the available program are collected, and the eq. (4) is 

used to calculate the predicted value of the ligand binding affinity. The workflow of data is 

presented in Figure 1, together with the schematic diagram showing how consensus methods 

work.

Results

In this section, we summarize the quality of the three proposed consensus methods, namely 

MetaPose, MetaScore, and Vote-Dock and compare them with the results of seven diverse 

docking programs: AutoDock, eHiTS, FlexX, Glide, GOLD, LigandFit, and Surflex. First, 

we describe the ability of all used algorithms to correctly predict the ligand binding poses. In 

addition, we test whether the consensus docking results depend on the ligand size, type, and 

structure, such as the number of rotatable bonds in a molecule or its chemical properties like 
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hydrophobic and hydrophilic features given by the ligand partition coefficient between water 

and octanol. Then, we report the ability of all programs’ scoring functions to accurately 

predict the experimental binding affinities (pKi and pKd). The proposed novel methods that 

are based on the consensus between various docking algorithms are proved below to 

considerably increase docking accuracy and proper sorting of predicted poses.

In Tables 1 and 2, we present the evaluation of our consensus algorithms in both, the correct 

poses and the binding affinities prediction. Each consensus method is compared with the 

results obtained by the best and the second best docking program on the whole 

benchmarking dataset. In addition, we provide the mean docking result calculated by 

averaging the results of all seven docking programs on the same dataset.

We also explored several physicochemical features of the ligand, which are often used in 

various docking programs evaluations. First, we divided our datasets using the number of 

rotatable bonds in a ligand molecule. We created subsets of small compounds, which have 

five bonds or less, and large compounds, which have more than five rotatable bonds. It is 

obvious that for smaller molecules, the results will be better, yet our main goal was to 

identify, which program depends less on ligand size. Next, the hydrophobic/hydrophilic 

properties of ligands were analyzed. As previously, two datasets are created using the logp 

values. This parameter also covers the number of possible hydrogen bonds, which a ligand 

can create with a protein, as for more hydrophobic ligands, fewer contacts are usually built. 

Another ligands subset that we explored contains proteinlike molecules. This subset is 

interesting because of the growing number of protein-like drugs that are introduced to the 

market. We wanted to evaluate the quality of prediction for those types of molecules. 

Finally, the benchmarking dataset was divided based on the strength of the binding between 

the ligand and its corresponding receptor. Here, our goal was to determine if there is a 

preferable compound type that docking programs could handle more precisely, for example, 

small and strongly binding molecules. The results of those evaluations are presented for two 

preselected conformations: top score conformation and best pose conformation. The top 

score pose for each docking program, or consensus method, is the conformation that 

achieved the highest docking score of all generated by the program, whereas best pose is the 

one with the lowest RMSD value to the native conformation. In the case of MetaScore, top 

score conformation has the lowest 3DScore value of all conformations with the highest 

docking score from individual programs, whereas best pose has the lowest RMSD value of 

those conformations. MetaPose and VoteDock algorithms similarly have top score pose as 

the pose with the lowest value of 3DScore function among all poses generated by those 

consensus algorithms (MetaPose), or among those from the highest order vote subset of 

conformations, preferably vote7. In the case of MetaPose and VoteDock, the best pose was 

selected as the pose with the lowest RMSD value of the first 10 (corina one and omega one), 

or 100 (corina ten and omega ten) poses ordered by the 3DScore. Those limits in the number 

of analyzed poses simulates the use of our consensus algorithms as the stand-alone 

programs; therefore, they would generate only tens or one hundreds of poses.

In Table 1, we present the Pearson and Spearman correlations between the experimentally 

determined binding affinities and the scores from all scoring function. In our work, those 

correlations are calculated for both top score conformation and the best pose. To calculate 
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the correlation between the score of best pose for MetaScore and MetaPose algorithms, the 

scores of best poses for individual docking programs are used, and the total score is 

calculated using eq. (4). However, MetaPose uses only the first ten or one hundred 

conformations, and sometimes some docking programs are not represented in this dataset, 

therefore, not always all six scores were used in eq. (4), and zero value was used for such 

missing docking scores. In the case of VoteDock, instead of the highest 3DScore 

conformations, we used individual docking scores for conformations with the lowest RMSD 

values of the first ten or one hundred conformations as ordered by their 3DScore values. Our 

evaluation was done separately on four different datasets (corina one, corina ten, omega one, 

and finally omega ten), therefore, the values in Tables 1 and 2 are averaged over those 

subsets.

Quality of pose generation

The best docking program is the GOLD software, which in top score prediction outperforms 

other programs. However, the GOLD program uses the slowest, time-consuming algorithm 

that takes more than 5 min to dock a ligand to the receptor. In Table 1, GOLD was not 

chosen as the best program only twice, for the hydrophobic dataset of ligand eHiTS is the 

first one, and GOLD is the second one. The weakness of GOLD program in the case of 

hydrophobic ligands was already pointed out in other benchmarks.1 The GOLD scoring 

function was also not the first one in terms of the correlation with the experimental binding 

affinity (see Table 1). We report the eHiTS and Surflex scoring functions as the best and the 

second best program. In Table 2, we present the results of the pose generation that are 

analyzed in terms of ligand binding strength, where we report GOLD as the first program; 

however, in the case of strongly binding and small ligands, eHiTS achieves better results. In 

most cases, eHiTS is the second best docking program and sometimes switches its position 

with GOLD. In the case of protein-like ligands, AutoDock is chosen as the second program.

In the case of best pose presented in Tables 1 and 2, the best docking programs are usually 

the same as in the case of top score conformations. More diversity is observed for the second 

best program, namely Surflex (large ligand and hydrophobic ligands datasets) and LigandFit 

(protein dataset) are better than others. For the entire benchmark dataset of 1300 complexes, 

MetaPose algorithm is nearly 18% more accurate than averaged docking results, and its 

mean RMSD value drops by more than 1 Å. A smaller but still significant change can be 

observed when comparing MetaPose to the best docking program, where the increase is 

almost 5%, and the RMSD value is improved by almost 0.2 Å. Even more accurate is the 

VoteDock consensus docking method where the average docking accuracy increases by 

almost 23% in comparison with the average docking programs accuracy, and by more than 

10%, when compared with the best result obtained by GOLD. The mean RMSD value is 

also increased by 0.5 Å in comparison with GOLD. In the case of MetaScore, structural 

results are above average docking, yet less than a 10% increase in successfully docked pairs 

can be observed. However, when compared with the best and the second best program, the 

obtained results are not so good as before. Therefore, the results on top score subset prove 

that MetaScore is very efficient in the prediction of binding affinities, yet this does not 

correspond to the good overall structural prediction.
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The difference between MetaPose and the best docking program for all analyzed types of 

physicochemical features is typically around 5% increase in docking accuracy and 0.3 Å in 

the mean RMSD value. The VoteDock is usually even more accurate with a 10% increase in 

comparison with the best docking program, and the mean RMSD value usually drops by 

more than 0.6 Å. A similar difference can be seen when comparing the dataset composed of 

small molecules with one composed of large molecules. The number of ligand rotatable 

bonds describes its flexibility. The worst docking results are obtained for large ligands (the 

high number of rotatable bonds), which is due to the fact that the size of explored 

conformation space increases dramatically. MetaPose is on average 3 and 4% more accurate 

than the best docking program for, respectively, the small and large molecules subsets, 

whereas for VoteDock, 9 and 11% increase is observed. The gap in docking accuracy 

between small and large dataset of ligands is smaller when a consensus-docking algorithm is 

used. In the case of the best docking algorithm, there is an almost 20% drop in accuracy 

between small and large datasets. In the case of VoteDock, the drop of accuracy is close to 

15%, MetaPose achieves intermediate results of around 17%.

The same conclusions can be observed when dividing the entire benchmarking dataset using 

hydrophobic and hydrophilic characteristics of ligands. Those features result from some 

important aspects of ligand behavior, mostly the ability to create hydrogen bonding between 

a ligand and a protein, as well as forming interactions with the hydrophobic pocket in the 

protein active site. As expected, hydrophilic ligands are predicted with a much higher rate of 

success than hydrophobic ones. However, it should be remembered that for the hydrophilic 

dataset, GOLD was chosen as the best program, and for the hydrophobic data-set, eHiTS 

was most successful. MetaPose and VoteDock are more accurate than any individual 

docking software. For hydrophilic ligands, there is, respectively, a 2 and 7% increase 

between single docking and the consensus result. Those two metaalgorithms are even more 

accurate for hydrophobic ligands with a 9 and 14% increase in docking accuracy. Those 

results clearly suggest that the consensus approach can be very effective in avoiding the 

weaknesses of individual docking programs. Similarly, as in the case of the large and small 

molecules subsets, there is a much smaller gap when comparing hydrophilic ligands with 

hydrophobic ones. For the consensus approach, the difference is close to 10% in the number 

of successfully docked pairs, and 0.4 Å for the mean RMSD value, whereas for the single 

docking programs, those differences are significantly higher, reaching almost 20% and 0.7 

Å.

The increasing role of short peptides as potential drugs such as antibiotics, antihistamine, or 

antitumor agents create a unique opportunity to benchmark available docking software on 

known protein–peptide complexes. We have created a small benchmark dataset containing 

proteins with cocrystallized peptides, or other protein-like molecules. The complexes were 

extracted from PDBbind 2007 dataset, assuming that a selected ligand contains at least one 

amino acid-like substructure, and therefore, it is not always identical to the naturally 

occurring peptides. In the case of such polymers, we have checked the presence of protein 

bonding between molecule substructures, and structures with nontypical atoms (all types 

except oxygen, hydrogen, carbon, and sulfur) were discarded. Fourteen complexes contain 

phosphate atoms, and for six complexes, some fluorine atoms were found. Following this 

procedure, we have created the peptide benchmark dataset that contains in total 143 
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complexes for which ligand size may vary from single amino acids up to longer peptide 

chain created from tens of mers. The best docking software was able to find the correct top 

score pose only for 46% of those complexes within 2 Å cut off from the native ligand 

structure. The mean RMSD value for the top score pose was typically higher than 4 Å. 

eHiTS as the second best docking program achieved a very similar result. Our consensus 

approaches are able to increase the accuracy up to 50% for MetaPose and 57% for 

VoteDock. The mean RMSD value decreased to almost 3.5 Å and 3.3 Å, respectively. 

Therefore, we prove that our method is better in predicting the correct conformations for 

small proteins inside the receptor active site. Finally, we divided the ligands from the whole 

benchmarking dataset into three groups, according to their experimentally measured binding 

affinities to the corresponding protein receptors. The first group (strong) contains ligands for 

which their concentration necessary to inhibit the enzyme is lower than 45 nM; the second 

(medium) has their pKi or pKd between 45 nM and 3.6 µM, and, finally, the third group of 

inhibitors (weak) with the concentration of a compound greater than 3.6 µM. For all those 

groups, we calculated how many small and large molecules fall into each category, to check 

if the dependence of the benchmarking results is based only on ligand binding strength and 

not on its size. In the case of strong dataset, there are 271 large ligands and 159 small 

ligands; for medium dataset, there are 213 and 222; and finally for weak dataset, there are 

165 and 270, respectively. In Table 2, we summarize the results for each subset, additionally 

divided into small and large molecules. In the case of individual programs, there is a small 

difference between particular datasets, however, small&weak and small&-medium 

molecules are usually better predicted than small&-strong ones. A similar trend is observed 

when looking for large molecules where large&weak molecules are predicted to be 10% 

more accurate than large&strong ligands, in case of GOLD, best docking program. This 

result is very unfortunate as in typical drug design strong-binding molecules are searched 

for. Our consensus method follows individual docking programs trend, however, both 

MetaPose and VoteDock seem to be less affected when comparing strong to medium, or 

medium to weak subsets. In the case of VoteDock, the drop of accuracy between for 

example small&weak and small&strong bound molecules is only 3%, whereas the results for 

large&weak and large&strong are almost identical. The mean RMSD value seems to change 

between those datasets only marginally. Similar behavior can be observed for MetaPose 

algorithm.

Summarizing, the consensus structural methods (MetaPose and VoteDock) seem to be more 

effective than any individual docking program. The percentage of successfully docked pairs 

is 5 and 10% higher than the best individual docking program, and the observed result is 

even higher when comparing the consensus with the averaged docking results. The 

significant improvement in the mean RMSD value is observed with VoteDock close to the 

cut-off value of 2 Å. Similar results are observed when dividing our dataset based on 

physicochemical properties of a ligand. Interestingly, the consensus methods prove to be 

successful even when individual docking programs fail. The hydrophobic dataset can be 

given as an example here, where there is more than 10% increase between the best program 

and VoteDock algorithm.
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Evaluation of binding affinity prediction

The second important issue in the prediction of protein–ligand complexes is the ability of 

docking programs to predict the strength of a ligand binding to its protein target. The best 

docking program with the highest correlations is eHiTS for which the correlations are 0.39 

and 0.47 for Pearson and Spearman correlations, respectively. Surflex follows the eHiTS 

scoring function closely, with the correlation equal to 0.3 and 0.34, respectively. The 

averaged results for all seven scoring functions are around 0.2 for both Pearson and 

Spearman correlations, proving that programs have significant problems when binding 

affinities have to be predicted. The consensus docking procedure, namely Meta-Score [see 

eq. (4)] scoring function significantly improves the Pearson correlation between the final 

docking metascore and the experimental value of the binding affinity (see Table 1). In the 

case of training dataset (randomly selected subset of 400 protein–ligand complexes), the 

MetaScore reaches the value of 0.46 for the Pearson correlation. The optimized MetaScore 

was later tested on the rest of the protein–ligand complexes from the whole benchmarking 

dataset that were not used in the training. The Pearson correlation dropped slightly to 0.44, 

yet still it is much higher than any single docking program. If the MetaScore was trained on 

the whole PDBbind dataset, the Pearson correlation for the whole benchmarking dataset is 

equal to 0.48. Similar values were observed for Spearman correlation. What is more, the 

values of weights multiplying each used docking programs scores were found to be equal for 

all analyzed subsets used in optimization of the MetaScore equation, for example, for 

smaller and larger ligands if used separately for optimization procedure. Therefore, the 

MetaScore scoring function is the universal one, and it is applicable to various types or 

classes of inhibitors.

VoteDock is able to increase the Pearson correlation up to 0.49 and Spearman up to 0.5. 

However, in the case when protein–ligand complexes have at least vote2 or higher order 

subset and only the optimal combination of single docking programs is found (such 

conditions are fulfilled for half of the entire benchmarking dataset), the correlation is even 

higher and is close to 0.6. Summarizing, the drop in the values of Pearson and Spearman 

correlation for the whole dataset is explained by the fact that only half of the whole subset 

meets our selection criteria.

The third algorithm MetaPose achieved the worst results of all consensus approaches close 

to 0.4 for both Pearson and Spearman correlations, yet it is still higher than the correlation 

achieved by any single docking program. Nevertheless, MetaPose is designed to be the pose-

prediction algorithm and should not be used for binding affinities prediction, as more 

accurate consensus docking algorithms are optimized and presented in this article.

Consensus docking strategy

In Table 3, we present the results for each step of VoteDock procedure. VoteDock is the 

hybrid approach that uses for an individual protein–ligand pair, the highest possible vote 

order dataset created by our consensus procedure. In Table 3, we present how many pairs 

can be classified as each vote order in the hybrid VoteDock procedure based on the selected 

threshold. The less strict threshold is selected, the more pairs pass to higher vote order 

dataset. For example, for the threshold of 1 µ for only 43 pairs, the vote7 subset of poses 
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exists, whereas for the less restricted threshold of 3 Å, more than 220 pairs have vote7 as the 

final VoteDock set of solutions.

On the other hand, when the threshold increases the docking accuracy decrease is observed. 

For the threshold of 1 Å, the accuracy is 97%; in the case of the threshold of 1.5 Å, almost 

95% is achieved; the threshold of 2 Å has 87%, the threshold of 2.5 Å 81.5%; and finally for 

the threshold of 3 Å ,only 78% of pairs is docked successfully. A similar trend can be 

observed for the mean RMSD value, which increases from 0.6 Å for the threshold of 1 Å up 

to 1.42 Å for the threshold of 3 Å. Therefore, we selected for VoteDock algorithm the 

optimal threshold equal to 2 Å, as it maximizes both the mean RMSD and the percentage of 

successfully docked pairs.

Conclusions

Very low values of correlation coefficients between docking score and pKd (pKi) indicate 

that all molecular docking programs that have been tested are unable to predict binding 

affinities correctly. Our results clearly show that still there is the lack of scoring function 

that would be universal for all kinds of ligands and protein families. Although reports of 

increasing accuracy of scoring functions have already been published,30 yet none of the 

functions we studied could be classified as reliable, and so further analysis is necessary. On 

the other hand, protein– ligand docking programs can predict with high accuracy poses of 

ligands in the binding site of protein. As they are usually very fast, this capability is 

extremely valuable.

Our novel methods, namely MetaPose, MetaScore, and Vote-Dock, use as the source data 

the results of individual programs, and by consensus approach, they attempt to overcome the 

weaknesses of each docking program to better predict both a ligand conformation in the 

active site and the strength of that interaction. The VoteDock, which is a combination of 

MetaPose and MetaScore algorithms, outperforms each individual docking program, both as 

concerns the correct pose predictions and the scoring. Those observations lead to the 

conclusion that applying metaapproach is a very successful procedure and worth exploring 

in the near future when even more docking programs will be available. Although individual 

programs in some particular cases can be close to our consensus methods, none of them can 

reach the quality of VoteDock on the large dataset of more than a thousand ligand–protein 

complexes. The future improvements of the existing software will strongly and positively 

affect the accuracy of VoteDock algorithm. The consensus will benefit from those advances, 

and its quality will be further increased.

Consensus algorithms increase the number of successfully docked pairs up to 70% for 

VoteDock and 63% for MetaPose, whereas the best docking software in our evaluation 

reached less than 60% docking accuracy. The mean RMSD of top score pose for VoteDock 

is equal to 2 Å, and for MetaPose is nearly 2.5 Å, which confirms that the consensus 

approach is a powerful tool in predicting ligand conformation inside a protein active site. In 

93% of the protein–ligand complexes, at least one program was able to predict a single 

conformation with the RMSD value to the ligand native structure less than 2 Å. We were 

unable to exceed that value because a consensus method does not create ligands or poses de 
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novo but only allows for selection of poses out of those that were previously generated. 

Moderate success was achieved in terms of the binding affinity prediction; the correlations 

for VoteDock and MetaScore are close to 0.5. Although the correlation for the best scoring 

function in our evaluation is substantially lower and equal to 0.38, we are aware that our 

results are still about halfway to achieve the perfect 1.0 value. Correlation values for 

docking programs show that there is still a lot to be done to increase the accuracy of scoring 

functions. Further improvements of docking software will significantly improve VoteDock 

accuracy. In addition, if we could generate with VoteDock procedure at least to the level of 

vote2 for all benchmarked ligands, the overall correlation for them would improve 

substantially up to 0.6. This value is twice as good as the best docking program correlation 

(eHiTS score).

Furthermore, our method could be an important contribution to the vHTS. vHTS is a 

computational method, which is widely applied to in silico screening of commercial 

collections of compounds to select the most potent inhibitors for a selected protein receptor. 

Typically, because of its speed and prediction accuracy several ligand-based methods make 

use of the information provided by already known inhibitors, such as pharmacophore 

matching, 3D shapes matching methods,56 or clustering and machine-learning 

techniques.55,57,58 However, when the target structure is known and there is no prior 

knowledge about inhibitors, typically docking techniques have to be used.

In addition, libraries of compounds for vHTS, such as Ligand.Info,59 can contain millions of 

molecules. The time required for docking large datasets of compounds with the programs we 

used in this article on typical 100 nodes cluster would be close to 3 months (AutoDock 192 

s/molecule, eHiTS 168 s/ molecule, FlexX 34 s/molecule, LigandFit 110 s/molecule, Surflex 

100 s/melocule, GOLD 305 s/molecule, and Glide 660 s/molecule). The time of running our 

consensus docking procedure to analyze all predicted poses is marginal in comparison with 

the time of individual docking. We need only a few seconds per molecule to process all 

poses for a selected compound, therefore, the overall increase in time is less than a week. 

The extra time needed to process docking results will improve the accuracy of predictions 

by almost 15%, and eliminates many false positives from vHTS experiment saving months 

of experimental work on biochemical analysis. Recently, our consensus method was 

successfully applied for screening possible drugs against H1N1 influenza virus; the details 

will be provided in a forthcoming paper.

Summarizing, our VoteDock consensus docking algorithm is able to predict a structure of a 

protein–ligand complex within 1400 s/molecule on the 2-GHz single-core processor. When 

a set of input ligands or multiple protein targets are used, the time needed to perform the 

prediction is scaling linearly with the size of the input dataset. However, because of the 

parallelization on the linux cluster, those calculations can be submitted at once, the overall 

time is similar to that for a single submission. In the case of large datasets of proteins or 

ligands (for example, whole proteomes and metalobomes), we suggest performing the vHTS 

experiment using MLdock service (machine learning–based algorithm55,57,60 combined with 

ICM-Pro docking58) instead of slower VoteDock algorithm.
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The above VoteDock consensus method will be used in our new internet server that is now 

under development. Although most of docking programs used in our work cannot be 

distributed under academic license agreement, we have decided to combine VoteDock 

approach for pose prediction (using conformations obtained using AutoDock and DOCK 

software) with scoring prediction using the statistical function SMOG (Small Molecule 

Growth). Moreover, the VoteDock pipeline allows user with access to local versions of 

software described above to perform pose selection by combining several files with decoys 

prepared using those different docking programs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The VoteDock protein–ligand docking algorithm. The main goal of the VoteDock is to 

provide fast and accurate prediction method for 3D structure of a protein–ligand complex. It 

facilitates data exchange between various prediction docking methods, publicly available 

software, evaluation programs and visualization modules. The general model of the 

information flow and components of the algorithm are presented in the following diagram.
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