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Abstract
We study binary opinion dynamics in a fully connected network of interacting agents. The
agents are assumed to interact according to one of the following rules: (1) Voter rule: An
updating agent simply copies the opinion of another randomly sampled agent; (2) Majority
rule: An updating agent samples multiple agents and adopts the majority opinion in the
selected group. We focus on the scenario where the agents are biased towards one of the
opinions called the preferred opinion. Using suitably constructed branching processes, we
show that under both rules the mean time to reach consensus is Θ(log N ), where N is the
number of agents in the network. Furthermore, under the majority rule model, we show that
consensus can be achieved on the preferred opinion with high probability even if it is initially
the opinion of the minority.We also study the majority rule model when stubborn agents with
fixed opinions are present. We find that the stationary distribution of opinions in the network
in the large system limit using mean field techniques.
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1 Introduction

The social learning literature [4,12,13,29] studies how social agents, interacting under simple
rules, learn the true utilities of their choices, opinions or technologies over time. In this
context, the two central questions we study are: (1) Can social agents learn/adopt the better
technology/opinion through simple rules of interactions and if so, how fast? and (2) What
are the effects of the presence of stubborn agents (having fixed opinions) on the dynamics
opinion diffusion?

We consider a setting where the choices available to each agent are binary and are repre-
sented by {0} and {1} [2,4]. These are referred to as opinions of the agents. The interactions
among the agents aremodelled using two simple rules: the voter rule [7,10,19] and themajor-
ity rule [5,6,11,21]. In the voter rule, an agent randomly samples one of its neighbours at
an instant when it decides to update its opinion. The updating agent then adopts the opinion
of the sampled neighbour. This simple rule captures the tendency of an individual to mimic
other individuals in the society. In the majority rule, instead of sampling a single agent, an
updating agent samples 2K (K ≥ 1) neighbours and adopts the opinion of the majority of
the sampled neighbours (including itself). This rule captures the tendency of the individuals
to conform with the majority opinion in their local neighbourhoods.

1.1 Related Literature

The voter model and its variants have been studied extensively (see [3] for a recent survey)
for different network topologies, e.g., finite integer lattices in different dimensions [10,20],
complete graphs with three states [30], heterogeneous graphs [31], random d-regular graphs
[8], Erdos–Renyi random graphs, and random geometric graphs [33] etc. It is known [18,28]
that if the underlying graph is connected, then the classical voter rule leads to a consensus
where all agents adopt the same opinion. Furthermore, if A is the set of all agents having
an opinion i ∈ {0, 1} initially, then the probability that consensus is achieved on opinion i
(referred to as the exit probability to opinion i) is given by d(A)/2m, where d(A) is the sum
of the degrees of the vertices in A and m is the total number of edges in the graph. It is also
known that for most network topologies the mean consensus time is Ω(N ), where N is the
total number of agents. The voter model in the presence of individuals who prefer one of the
opinions over the other was first studied in [23] for finite dimensional integer lattices. It was
found that the presence of even one such agent can significantly affect the network dynamics.
In [24,34], the voter model has been studied under the presence of stubborn individuals who
do not update their opinions. In such a scenario, the network cannot reach a consensus. Using
coalescing random walk techniques the average opinion in the network and the variance of
opinions have been computed at steady state.

The majority rule model was first studied in [16], where it was assumed that, at every
iteration, groups of random sizes are formed by the agents. Within each group, the majority
opinion is adopted by all the agents. Similar models with fixed (odd) group size have been
considered in [5,21]. A more general majority rule based model has been analysed in [11]
for complete graphs. It has been shown that with high probability (probability tending to one
as N → ∞) consensus is achieved on the opinion with the initial majority and the mean
time to reach consensus time is Θ(log N ). A synchronous majority rule model for K = 1
has been studied for random d-regular graphs on N vertices in [9]. It has been shown that
when the initial difference between the fractions of agents having the two opinions is above
c
√
1/d + d/N (for some constant c > 0) then consensus is achieved with high probability
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in O(log N ) time on the opinion with the initial majority. A deterministic version of the
majority rulemodel, where an agent, instead of randomly sampling a subset of its neighbours,
adopts the majority opinion among all its neighbours, is considered in [1,14,25,26]. In such
models, given the graph structure of the network, the opinions of the agents at any time is a
deterministic function of the initial opinions of the agents. The interest there is to find out the
initial distribution of opinions for which the network converges to some specific absorbing
state.

1.2 Contributions

In all the prior works on the voter and the majority rule models, it is assumed that opinions
or technologies are indistinguishable. However, in a social learning model, one opin-
ion/technologymay be inherently ‘better’ than the other, leading tomore utility to individuals
choosing the better option in a round of update. As a result, individuals currently using the
better technology will update less frequently than individuals with the worse technology. To
model this scenario, we assume that an agent having opinion i ∈ {0, 1} performs an update
with probability qi . By choosing q1 < q0, we make the agents ‘biased’ towards the opinion
{1}, which is referred to as the preferred opinion. We study the opinion dynamics under
both voter and majority rules when the agents are biased. We focus on the case where the
underlying graph is complete which closely models situations where agents are mobile and
can therefore sample any other agent depending on their current neighbourhood.

For the votermodel with biased agents, we show that the probability of reaching consensus
on the non-preferred opinion decreases exponentially with the network size. Furthermore, the
mean consensus time is shown to be logarithmic in the network size. This is in sharp contrast
to the voter model with unbiased agents where the probability of reaching consensus on any
opinion remains constant and the mean consensus time grows linearly with the network size.
Therefore, in the biased voter model consensus is achieved exponentially faster than that in
the unbiased voter model.

For the majority rule model with biased agents, we show that the network reaches consen-
sus on the preferred opinion with high probability only if the initial fraction of agents with
the preferred opinion is above a certain threshold determined by the biases of the agents.
In particular, even if the preferred opinion is the minority opinion in the initial population,
consensus can be achieved on the preferred opinion with high probability. This is in contrast
to the majority rule model with unbiased agents where the opinion with the initial majority
wins with high probability. The mean consensus time for the biased majority rule model is
shown to be Θ(log N ) which is the same as in the unbiased majority rule model. However,
existing proofs for the unbiased majority rule model [11,21] cannot be extended to the biased
case as they crucially rely on the fact that opinions are indistinguishable. We use suitably
constructed branching processes and monotonicity of certain rational polynomials to prove
the results for the biased model.

We also study the majority rule model in the presence of agents having fixed opinions
at all times. These agents are referred to as ’stubborn’ agents. A similar study of the voter
model in the presence of stubborn agents was done in [34]. In presence of stubborn agents, the
network cannot reach a consensus state. The key objective, therefore, is to study the stationary
distribution of opinions among the non-stubborn agents. In [34], coalescing random random
walk techniques were used to study this stationary distribution of opinions. However, such
techniques do not apply to majority rule dynamics. We analyse the network dynamics in the
large scale limit using mean field techniques. In particular, we show that depending on the
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proportions of stubborn agents the mean field can either have single or multiple equilibrium
points. If multiple equilibrium points are present, the network shows metastability in which
it switches between stable configurations spending long time in each configuration.

An earlier version of this work [27], contained some of the results of this paper and an
analysis of the majority rule model for K = 1. However, only sketches of the proofs were
provided. In the current paper, we provide rigorous proofs of all results and a more general
analysis of the majority rule model (for K ≥ 1).

1.3 Organisation

The rest of the paper is organised as follows. In Sect. 2, we introduce the model with biased
agents. In Sects. 3 and 4 , we state the main results for the voter model and the majority
rule model with biased agents, respectively. Section 5 analyses the majority rule model with
stubborn agents. In Sects. 6–10, we provide the detailed proofs the main results on voter and
majority rule models with biased agents. In Sect. 11, we study the behaviour of the biased
voter and majority rule models on d-regular random graphs. Finally, the paper is concluded
in Sect. 12.

2 Model with Biased Agents

We consider a network of N social agents. Opinion of each agent is assumed to be a binary
variable taking values in the set {0, 1}. Initially, every agent adopts one of the two opinions.
Each agent considers updating its opinion at points of an independent unit rate Poisson point
process associated with itself. At a point of the Poisson process associated with itself, an
agent either updates its opinion or retains its past opinion. We assume that an agent with
opinion i ∈ {0, 1} updates its opinion at a point of the unit rate Poisson process associated
with itself with probability qi ∈ (0, 1) and retains its opinion with probability pi = 1 − qi .
To make the agents ‘biased’ towards opinion {1} we assume that q0 > q1 which implies that
an agent with opinion {1} updates its opinion less frequently than an agent with opinion {0}.

In case the agent decides to update its opinion, it does so either using the voter rule or
under the majority rule. In the voter rule, an updating agent samples an agent uniformly
at random from N agents (with replacement) from the network1 and adopts the opinion of
the sampled agent. In the majority rule, an updating agent samples 2K agents (K ≥ 1)
uniformly at random (with replacement) and adopts the opinion of the majority of the 2K +1
agents including itself. The results derived in this paper can be extended to the case where the
updating agent samples an agent from a random group of size O(N ). However, for simplicity
we only focus on the case where sampling occurs from the whole population.

3 Main Results for the Voter Model with Biased Agents

Wefirst consider the voter model with biased agents. In this case, clearly, the network reaches
consensus in a finite time with probability 1. Our interest is to find out the probability with
which consensus is achieved on the preferred opinion {1}. This is referred to as the exit
probability of the network. We also intend to characterise the average time to reach the
consensus.

1 In the large N limit sampling with or without replacement leads to the same results.
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The case q1 = q0 = 1 is referred to as the voter model with unbiased agents, which
has been analysed in [7,19]. It is known that for unbiased agents the probability with which
consensus is reached on a particular opinion is simply equal to the initial fraction α of agents
having that opinion and the expected time to reach consensus for large N is approximately
givenby Nh(α),whereh(α) = −[α ln(α)+(1−α) ln(1−α)].Wenowproceed to characterise
these quantities for the voter model with biased agents.

Let X (N )(t) denote the number of agents with opinion {1} at time t ≥ 0. Clearly, X (N )(·) is
a Markov process on state space {0, 1, . . . , N }, with absorbing states 0 and N . The transition
rates from state k are given by

q(k → k + 1) = q0k
N − k

N
, (1)

q(k → k − 1) = q1k
N − k

N
, (2)

where q(i → j) denotes the rate of transition from state i to state j . The embedded discrete-
time Markov chain X̃ (N ) for X (N ) is a one-dimensional random walk on {0, 1, . . . , N } with
jump probability of p = q0/(q0 + q1) to the right and q = 1 − p to the left. We define
r = q/p < 1 and r̄ = 1/r . Let Tk denote the first hitting time of state k, i.e.,

Tk = inf
{
t ≥ 0 : X (N )(t) ≥ k

}
, (3)

We are interested in the asymptotic behaviour of the quantities EN (α) := P�αN� (TN < T0)
and tN (α) = E�αN� [T0 ∧ TN ], where Px (·) and Ex [·], respectively denote the probability
measure and expectation conditioned on the event X (N )(0) = x . To characterise the above
quantities we require the following lemma which follows from the gambler ruin identity for
one-dimensional asymmetric random walks [32].

Lemma 1 For 0 ≤ a < x < b ≤ N, we have

Px (Ta < Tb) = r x − rb

ra − rb
. (4)

From the above lemma it follows that

EN (α) = P�αN� (TN < T0) ,

= 1 − r�αN�

1 − r N
,

≥ 1 − r�αN� = 1 − exp(−cN ),

for some constant c > 0 (since r < 1). Hence, the probability of having a consensus on the
non-preferred opinion approaches 0 exponentially fast in N . This is unlike the voter model
with unbiased agents where the probability of having consensus on either opinion remains
constant with respect to N .

The following theorem characterises the mean time tN (α) to reach the consensus state
starting from α fraction of agents having opinion {1}.
Theorem 1 For all α ∈ (0, 1) we have tN (α) = Θ(log N ).

Hence, the above theorem shows that the mean consensus time in the biased voter model
is logarithmic in the network size. This is in contrast to the voter model with unbiased agents
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where the mean consensus time is linear in the network size. Thus, with biased agents, the
network reaches consensus exponentially faster.

We now consider the measure-valued process x (N ) = X (N )/N , which describes the
evolution of the fraction of agents with opinion {1}. We show that the following convergence
takes place.

Theorem 2 If x (N )(0) ⇒ α, then x (N )(·) ⇒ x(·), where ⇒ denotes weak convergence
and x(·) is a deterministic process with initial condition x(0) = α and is governed by the
following differential equation

ẋ(t) = (q0 − q1)x(t)(1 − x(t)), (5)

According to the above result, for large N , the process x (N )(·) is well approximated by
the deterministic process x(·) which is generally referred to as the mean field limit of the
system. Using the mean field limit, we can approximate the mean consensus time tN (α) by
the time the process x(·) takes to reach the state 1 − 1/N starting from α.

Theorem 3 1. For the process x(·) defined by (5), we have x(t)→1 as t → ∞ for any
x(0) ∈ (0, 1).

2. Let t(ε, α) denote the time required by the process x(·) to reach ε ∈ (0, 1) starting from
x(0) = α ∈ (0, 1). Then

t(ε, α) = 1

q0 − q1

(
log

ε

1 − ε
− ln

α

1 − α

)
. (6)

In particular, for ε = 1 − 1/N we have

t(1 − 1/N , α) = 1

q0 − q1
log(N − 1) − 1

q0 − q1
log

(
α

1 − α

)
. (7)

Proof Since q0 > q1 and x(t) ∈ (0, 1) for all t ≥ 0, we have from (5) that ẋ(t) ≥ 0 for all
t ≥ 0. Hence, x(t) → 1 as t → ∞.

The second assertion follows directly by solving (5) with initial condition x(0) = α. �

Remark 1 Note that the process x(·) does not reach 1 in a finite time even though the process
x (N )(·) does reach 1 in a finite time with probability 1. However, it is ‘reasonable’ to assume
that tN (α) is ’closely’ approximated by t(1−1/N , α). Such approximation of the absorption
time of an absorbingMarkov chain using its corresponding mean field limit is common in the
literature [21,30]. However, except from a few special cases, e.g. [17], there is no rigorous
theory justifying such approximations. It is also worth noting that for the unbiased voter rule
(q0 = q1) the mean field limit is simply x(t) = α for all t ≥ 0. Hence, in this case the mean
consensus time cannot be approximated with the mean field limit.

3.1 Simulation Results

In Fig. 1, we plot the exit probability for both unbiased (q0 = q1 = 1) and biased (1 =
q0 > q1 = 0.5) cases as functions of the number of agents N for α = 0.2. As expected from
our theory, we observe that in the biased case the exit probability exponentially increases to
1 with the increase N . This is in contrast to the unbiased case, where the exit probability
remains constant at α for all N .
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Fig. 1 Exit probability EN (α) as
a function of the number of
agents N . Parameters: q0 = 1,
q1 = 0.5, α = 0.2

(a) Mean consensus time tN (α) as a function
of the number of agents N

(b) Mean consensus time tN (α) as a function
of the initial fraction α of agents with opinion
{1}.

Fig. 2 Mean consensus time under the voter model with biased agents

In Fig. 2a, we plot the mean consensus time tN (α) for both unbiased and biased cases
as a function of N for α = 0.4. We observe a good match between the estimate obtained
in Theorem 3 and the simulation results. The observation also verifies the statement of
Theorem 1. In Fig. 2b, we plot the mean consensus time as a function of α for both biased an
unbiased cases. The network size is kept fixed at N = 100. We observe that for the unbiased
case, the consensus time increases in the range α ∈ (0, 0.5) and decreases in the range
α ∈ (0.5, 1). In contrast, for the biased case, the consensus time steadily decreases with the
increase in α. This is expected since, in the unbiased case, consensus is achieved faster on
a particular opinion if the initial number agents having that opinion is more than the initial
number of agents having the other opinion. On the other hand, in the biased case, consensus
is achieved with high probability on the preferred opinion and therefore increasing the initial
fraction of agents having the preferred opinion always decreases the mean consensus time.

4 Main Results for theMajority Rule Model with Biased Agents

In this section, we consider the majority rule model with biased agents. As in the voter model,
it is easy to see that in this case a consensus is achieved in a finite time with probability 1.
We proceed to find the exit probability to opinion 1 and the mean consensus time.
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Let X (N )(t) denote the number of agents with opinion {1} at time t ≥ 0. Clearly, X (N )(·)
is a Markov process on state space {0, 1, . . . , N }. The jump rates of X (N ) from state n to
state n + 1 and n − 1 are given by

q(n → n + 1) = (N − n)q0

2K∑
i=K+1

(
2K

i

)( n

N

)i (N − n

N

)2K−i

, (8)

= (N − n)q0P
(
Bin

(
2K ,

n

N

)
≥ K + 1

)
, (9)

q(n → n − 1) = nq1

2K∑
i=K+1

(
2K

i

)(
N − n

N

)i ( n

N

)2K−i
, (10)

= nq1P
(
Bin

(
2K , 1 − n

N

)
≥ K + 1

)
, (11)

respectively. Let X̃ (N ) denote the embedded Markov chain corresponding to X (N ). Then the
jump probabilities for the embedded chain X̃ (N ) are given by

pn,n+1 = 1 − pn,n−1

= q(n → n + 1)

q(n → n − 1) + q(n → n + 1)

= gK (n/N )

gK (n/N ) + r
, (12)

where 1 ≤ n ≤ N − 1, r = q1/q0 < 1, and gK : (0, 1) → (0,∞) is defined as

gK (x) =
1
x P (Bin(2K , x) ≥ K + 1)

1
1−x P (Bin (2K , 1 − x) ≥ K + 1)

. (13)

With probability 1, X (N ) gets absorbed in one of the states 0 or N in finite time. We are
interested in the probability of absorption in the state N and the average time till absorption.
We first state the following lemma which is key to proving many of the results in this section.

Lemma 2 The function gK : (0, 1) → (0,∞) as defined by (13) is strictly increasing and is
therefore also one-to-one.

In the following theorem, we characterise the exit probability to state N .

Theorem 4 1. Let EN (n) denote the probability that the process X (N ) gets absorbed in
state N starting from state n. Then, we have

EN (n) =
∑n−1

t=0
∏t

j=1
r

gK ( j/N )∑N−1
t=0

∏t
j=1

r
gK ( j/N )

, (14)

2. Define EN (α) := EN (�αN�) and β := g−1
K (r). Then EN (α) → 1 (resp. EN (α) → 0)

as N → ∞ if α > β (resp. α < β) and this convergence is exponential in N.

Hence, a phase transition of the exit probability occurs at β = g−1
K (r) for all values of

K ≥ 1. This implies, that even though the agents are biased towards the preferred opinion,
consensus may not be obtained on the preferred opinion if the initial fraction of agents having
the preferred opinion is below the threshold β. This is in contrast to the voter model, where
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Opinion Dynamics with Biased and Stubborn Agents 1247

consensus is obtained on the preferred opinion irrespective of the initial state. The threshold
β can be computed by solving gK (β) = r using either Newton-Raphson method or other
fixed point methods.

Remark 2 We note that for the unbiased majority rule model we have r = 1 and β =
g−1
K (r) = g−1

K (1) = 1/2. Thus, the known results [11,21] for the majority rule model with
unbiased agents are recovered.

We now characterise the mean time tN (α) to reach the consensus state starting from α

fraction of agents having opinion {1}. As before, we define Tn to be the time of first hitting
the state n, i.e., Tn = inf

{
t ≥ 0 : X (N )(t) ≥ n

}
.

Theorem 5 For α ∈ (0, β) ∪ (β, 1) we have tN (α) = Θ(log N ).

The theorem above shows that the mean consensus time is logarithmic in the network size.
To prove the theorem we use branching processes and the monotonicity shown in Lemma 2.
Our proof does not require the indistinguishability of the opinions and is therefore more
general than existing proofs for the unbiased voter model [11,21].

It is easy to derive the mean field limit corresponding to the empirical measure process
x (N ) = X (N )/N . Using the transition rates of the process X (N )(·) it can be verified that if
x (N )(0) ⇒ α as N → ∞, then x (N )(·) ⇒ x(·) as N → ∞, where process x(·) satisfies the
initial condition x(0) = α and is governed by the following ODE:

ẋ(t) = q0x(t)(1 − x(t))hK (x(t))(gK (x(t)) − r), (15)

where hK is defined as hK (x) = ∑2K
i=K+1

(2k
i

)
(1 − x)i−1x2K−i . By definition hK (x) > 0

for x ∈ (0, 1). Hence, from Lemma 2, it follows that the process x(·) has three equilibrium
points at 0, 1, and β, respectively. Furthermore, using the monotonicity of gK established in
Lemma 2 and the non-negativity of hK we have that ẋ(t) > 0 for x(t) > β and ẋ(t) < 0 for
x(t) < β. This shows that the only stable equilibrium points of the mean field limit x(·) are
0 and 1. At β, x(·) has an unstable equilibrium point.

4.1 Simulation Results

In Fig. 3a, we plot the exit probability EN (α) as a function of the total number N of agents in
the network. The parameters are chosen to be q0 = 1, q1 = 0.6, K = 1. For this parameter
setting, we can explicitly compute the thresholdβ to beβ = g−1

K (r) = q1/(q0+q1) = 0.375.
We observe that for α > β the exit probability exponentially increases to 1 with the increase
in N and for α < β the exit probability decreases exponentially to zero with the increase in
N . This is in accordance with the assertion made in Theorem 4. Similarly, in Fig. 3b, we plot
the exit probability as a function of the initial fraction α of agents having opinion {1} for the
same parameter setting and different values of N . The plot shows a clear phase transition at
β = 0.375. The sharpness of the transition increases as N increases.

In Fig. 4a, we plot the mean consensus time under the majority rule as a function of N
for different values of α. As predicted by Theorem 5, we find that that the mean consensus
time is logarithmic in the network size. In Fig. 4b, we study the mean consensus time as a
function of K for q0 = 1, q1 = 0.6, α = 0.5, N = 50. We observe that with the increase in
K , the mean time to reach consensus decreases. This is expected since the slope of the mean
field x(t) increases with K . This leads to faster convergence to the stable equilibrium points.
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1248 A. Mukhopadhyay et al.

(a) Exit probability EN (α) as a function of
the number of agents N . Parameters: q0 = 1,
q1 = 0.6

(b) Exit probability EN (α) as a function of
the initial fraction α of agents with opinion
{1}. Prameters: q0 = 1, q1 = 0.6.

Fig. 3 Mean consensus time under the voter model with biased agents

(a) Mean consensus time as a function of N .
Parameters: q0 = 1, q1 = 0.6, α = 0.5
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(b) Mean consensus time as a function of K.
Parameters: q0 = 1, q1 = 0.6, α = 0.5, N = 50

Fig. 4 Mean consensus time under majority rule with biased agents

5 Majority Model with Stubborn Agents

In this section, we consider the majority rule model in the presence of ‘stubborn agents’.
These are agents that never update their opinions. The other agents, referred to as the non-
stubborn agents, are assumed to update their opinions at all points of the Poisson processes
associated with themselves. We focus on the case where the updates occur according to the
majority rule model. The voter model with stubborn agents was studied before in [34] using
coalescing randomwalks. However, this technique does not apply to the majority rule model.
We use mean field techniques to study the opinion dynamics under the majority rule model.

We denote by γi , i ∈ {0, 1}, the fraction of agents in network who are stubborn and have
opinion i at all times. Thus, (1− γ0 − γ1) is fraction of non-stubborn agents in the network.
The presence of stubborn agents prevents the network from reaching a consensus state. This
is because at all times there are at least Nγ0 stubborn agents having opinion {0} and Nγ1
stubborn agents having opinion {1}. Furthermore, since each non-stubborn agentmay interact
with some stubborn agents at every update instant, it is always possible for the non-stubborn
agent to change its opinion. Below we characterise the equilibrium fraction of non-stubborn
agents having opinion {1} in the network for large N using mean field techniques. For
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Opinion Dynamics with Biased and Stubborn Agents 1249

analytical tractability, we consider the case K = 1, i.e., when an agent sample two agents at
each update instant. However, similar results hold even for larger values of K .

Let x (N )(t) denote the fraction of non-stubborn agents having opinion {1} at time t ≥ 0.
Clearly, x (N )(·) is aMarkov process with possible jumps at the points of a rate N (1−γ0−γ1)

Poisson process. The process x (N )(·) jumps from the state x to the state x+1/N (1−γ0−γ1)

when one of the non-stubborn agents having opinion {0} becomes active (which happens with
rate N (1 − γ0 − γ1)(1 − x)) and samples two agents with opinion {1}. The probability of
sampling an agent having opinion {1} from the entire network is (1−γ0 −γ1)x +γ1. Hence,
the total rate at which the process transits from state x to the state x + 1/N (1 − γ0 − γ1) is
given by

q

(
x → x + 1

N (1 − γ0 − γ1)

)
= N (1 − γ0 − γ1)(1 − x)

×[(1 − γ0 − γ1)x + γ1]2. (16)

Similarly, the rate of the other possible transition is given by

q

(
x → x − 1

N (1 − γ0 − γ1)

)
= N (1 − γ0 − γ1)x

×[(1 − γ0 − γ1)(1 − x) + γ0]2. (17)

As in Theorem 2, it can be shown from the above transition rates that the process x (N )(·)
converges weakly to the mean field limit x(·) which satisfies the following differential equa-
tion

ẋ(t) = (1 − x(t))[(1 − γ0 − γ1)x(t) + γ1]2
−x(t)[(1 − γ0 − γ1)(1 − x(t)) + γ0]2. (18)

We now study the equilibrium distribution πN of the process x (N )(·) for large N via the
equilibrium points of the mean field x(·).

From (18) we see that ẋ(t) is a cubic polynomial in x(t). Hence, the process x(·) can
have at most three equilibrium points in [0, 1]. We first characterise the stability of these
equilibrium points.

Proposition 1 The process x(·) defined by (18) has at least one equilibrium point in (0, 1).
Furthermore, the number of stable equilibrium points of x(·) in (0, 1) is either two or one. If
there exists only one equilibrium point of x(·) in (0, 1), then the equilibrium point must be
globally stable (attractive).

Proof Define f (x) = (1− x)[(1−γ0−γ1)x+γ1]2− x[(1−γ0−γ1)(1− x)+γ0]2. Clearly,
f (0) = γ 2

1 > 0 and f (1) = −γ 2
0 < 0. Hence, there exists at least one root of f (x) = 0 in

(0, 1). This proves the existence of an equilibrium point of x(·) in (0, 1).
Since f (x) is a cubic polynomial and f (0) f (1) < 0, either all three roots of f (x) = 0 lie

in (0, 1) or exactly one root of f (x) = 0 lies in (0, 1). Let the three (possibly complex and
non-distinct) roots of f (x) = 0 be denoted by r1, r2, r3, respectively. By expanding f (x)we
see that the coefficient of the cubic term is −2(1− γ0 − γ1)

2. Hence, f (x) can be written as

f (x) = −2(1 − γ0 − γ1)
2(x − r1)(x − r2)(x − r3). (19)

We first consider the case when 0 < r1, r2, r3 < 1 and not all of them are equal. Let us
suppose, without loss of generality, that the roots are arranged in the increasing order, i.e.,
0 < r1 ≤ r2 < r3 < 1 or 0 < r1 < r2 ≤ r3 < 1. From (19) and (18), it is clear that, if

123



1250 A. Mukhopadhyay et al.

x(t) > r2 and x(t) > r3, then ẋ(t) < 0. Similarly, if x(t) > r2 and x(t) < r3, then ẋ(t) > 0
. Hence, if x(0) > r2 then x(t) → r3 as t → ∞. Using similar arguments we have that for
x(0) < r2, x(t) → r1 as t → ∞. Hence, r1, r3 are the stable equilibrium points of x(·). This
proves that there exist at most two stable equilibrium points of the mean field x(·).

Now suppose that there exists only one equilibrium point of x(·) in (0, 1). This is possible
either i) if there exists exactly one real root of f (x) = 0 in (0, 1), or ii) if all the roots of
f (x) = 0 are equal and lie in (0, 1). Let r1 be a root of f (x) = 0 in (0, 1). Now by expanding
f (x) from (19), we see that the product of the roots must be γ 2

1 /2(1 − γ0 − γ1)
2 > 0. This

implies that the other roots, r2 and r3, must satisfy one of the following conditions: 1)
r2, r3 > 1, 2) r2, r3 < 0, 3) r2, r3 are complex conjugates, 4) r2 = r3 = r1.

In all the above cases, we have that (x − r2)(x − r3) ≥ 0 for all x ∈ [0, 1] with equality
if and only if x = r1 = r2 = r3. Hence, from (19) and (18), it is easy to see that ẋ(t) > 0
when 0 ≤ x(t) < r1 and ẋ(t) < 0 when 1 ≥ x(t) > r1. This implies that x(t) → r1 for all
x(0) ∈ [0, 1]. In other words, r1 is globally stable. �


In the next proposition, we provide the conditions on γ0 and γ1 for which there exist
multiple stable equilibrium points of the mean field x(·).
Proposition 2 There exist two distinct stable equilibrium points of the mean field x(·) in
(0, 1) if and only if

1. D(γ0, γ1) = (γ0 − γ1)
2 + 3(1 − 2γ0 − 2γ1) > 0

2. 0 < z1, z2 < 1, where

z1 = (3 − γ0 − 5γ1) + √
D(γ0, γ1)

6(1 − γ0 − γ1)
, (20)

z2 = (3 − γ0 − 5γ1) − √
D(γ0, γ1)

6(1 − γ0 − γ1)
. (21)

3. f (z1) f (z2) ≤ 0, where f (x) = (1 − x)[(1 − γ0 − γ1)x + γ1]2 − x[(1 − γ0 − γ1)(1 −
x) + γ0]2.

If any one of the above conditions is not satisfied then x(·) has a unique, globally stable
equilibrium point in (0, 1).

Proof From Proposition 1, we have seen that x(·) has two stable equilibrium points in (0, 1)
if and only if f (x) = 0 has three real roots in (0, 1) among which at least two are distinct.
This happens if and only if f ′(x) = 0 has two distinct real roots z1, z2 in the interval (0, 1)
and f (z1) f (z2) ≤ 0. Since f ′(x) is a quadratic polynomial in x , the above conditions are
satisfied if and only if

1. The discriminant of f ′(x) = 0 is positive. This corresponds to the first condition of the
proposition.

2. The two roots z1, z2 of f ′(x) = 0 must lie in (0, 1). This corresponds to the second
condition of the proposition.

3. f (z1) f (z2) ≤ 0. This is the third condition of the proposition.

Clearly, if any one of the above conditions is not satisfied, then x(·) has a unique equi-
librium point in (0, 1). According to Proposition 1 this equilibrium point must be globally
stable. �


Hence, depending on the values of γ0 and γ1 there may exist of multiple stable equilibrium
points of the mean field x(·). However, for every finite N , the process x (N )(·) has a unique
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stationary distribution πN (since it is irreducible on a finite state space). In the next result, we
establish that any limit point of the sequence of stationary probability distributions (πN )N is
a convex combination of the Dirac measures concentrated on the equilibrium points of the
mean field x(·) in [0, 1].
Theorem 6 Any limit point of the sequence of probability measures (πN )N is a convex com-
bination of the Dirac measures concentrated on the equilibrium points of x(·) in [0, 1]. In
particular, if there exists a unique equilibrium point r of x(·) in [0, 1] then πN ⇒ δr , where
δr denotes the Dirac measure concentrated at the point r .

Proof We first note that since the sequence of probability measures (πN )N is defined on the
compact space [0, 1], it must be tight. Hence, Prokhorov’s theorem implies that (πN )N is
relatively compact. Let π be any limit point of the sequence (πN )N . Then by the mean field
convergence result we know that π must be an invariant distribution of the maps α �→ x(t, α)

for all t ≥ 0, i.e.,
∫

ϕ(x(t, α))dπ(α) = ∫ ϕ(α)dπ(α), for all t ≥ 0, and all continuous (and
hence bounded) functions ϕ : [0, 1] �→ R. In the above, x(t, α) denotes the process x(·)
started at x(0) = α. Hence we have

∫
ϕ(α)dπ(α) = lim

t→∞

∫
ϕ(x(t, α))dπ(α) (22)

=
∫

ϕ
(
lim
t→∞ x(t, α)

)
dπ(α). (23)

The second equality follows from the first by the Dominated convergence theorem and the
continuity of ϕ. Now, let r1, r2, and r3 denote the three equilibrium points of the mean
field x(·). Hence, by Proposition 1 we have that for each α ∈ [0, 1], ϕ(limt→∞ x(t, α)) =
ϕ(r1)INr1

(α) + ϕ(r2)INr2
(α) + ϕ(r3)INr3

(α), where for i = 1, 2, 3, Nri ∈ [0, 1] denotes the
set for which if x(0) ∈ Nri then x(t) → ri as t → ∞, and I denotes the indicator function.
Hence, by (23) we have that for all continuous functions ϕ : [0, 1] �→ R

∫
ϕ(α)dπ(α) = ϕ(r1)π(Nr1) + ϕ(r2)π(Nr2) + ϕ(r3)π(Nr3). (24)

This proves that π must be of the form π = c1δr1 + c2δr2 + c3δr3 , where c1, c2, c3 ∈ [0, 1]
are such that c1 + c2 + c3 = 1. This completes the proof. �


Thus, according to the above theorem, if there exists a unique equilibrium point of the
process x(·) in [0,1], then the sequence of stationary distributions (πN )N concentrates on that
equilibrium point as N → ∞. In other words, for large N , the fraction of non-stubborn agents
having opinion {1} (at equilibrium) will approximately be equal to the unique equilibrium
point of the mean field.

5.1 Simulation Results

In Fig. 5, we plot the equilibrium point of x(·) (when it is unique) as a function of the fraction
γ1 of agents having opinion {1} who are stubborn keeping the fraction γ0 of stubborn agents
having opinion {0} fixed. We choose the parameter values so that there exists a unique equi-
librium point of x(·) in [0, 1] (such parameter settings can be obtained using the conditions
of Proposition 2). We see that as γ1 is increased in the range (0, 1 − γ0), the equilibrium
point shifts closer to unity. This is expected since increasing the fraction of stubborn agents
with opinion {1} increases the probability with which a non-stubborn agent samples an agent
with opinion {1} at an update instant.
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Fig. 5 Majority rule with stubborn agents: equilibrium point of x(·) as a function of γ1 for different values of
γ0

If there exist multiple equilibrium points of the process x(·) then the convergence
x (N )(·) ⇒ x(·) implies that at steady state the process x (N )(·) spends intervals near the
region corresponding to one of the stable equilibrium points of x(·). Then due to some rare
events, it reaches, via the unstable equilibrium point, to a region corresponding to the other
stable equilibrium point of x(·). This fluctuation repeats giving the process x (N )(·) a unique
stationary distribution. This behavior is formally known as metastability.

To demonstrate metastability, we simulate a network with N = 100 agents and γ0 =
γ1 = 0.2. For the above parameters, the mean field x(·) has two stable equilibrium points
at 0.127322 and 0.872678. In Fig. 6, we show the sample path of the process x (N )(·). We
see that at steady state the process switches back and forth between regions corresponding
to the stable equilibrium points of x(·). This provides numerical evidence of the metastable
behavior of the finite system.

6 Proof of Theorem 1

Let T = T0 ∧ TN denote the random time to reach consensus. Then we have

T =
N−1∑
k=1

Zk∑
j=1

Mk, j , (25)

where Zk denotes the number of visits to state k before absorption and Mk, j denotes the time
spent in the j th visit to state k. Clearly, the randomvariables Zk and (Mk, j ) j≥1 are independent
with each Mk, j being an exponential random variable with rate (q0+q1)k(N −k)/N . Hence,
using Wald’s identity we have

tN (α) = E�αN� [T ] (26)
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Fig. 6 Majority rule with stubborn agents: sample path of the process x(N )(·) with N = 100, γ0 = γ1 = 0.2

=
N−1∑
k=1

E�αN� [Zk]E�αN�
[
Mk, j

]
(27)

= 1

q0 + q1

N−1∑
k=1

(
1

k
+ 1

N − k

)
E�αN� [Zk] . (28)

We now proceed to find lower and upper bounds of tN (α).
Let A = {ω : TN (ω) < T0(ω)} denote the event that the Markov chain gets absorbed in

state N . We have

E�αN� [Zk] = E�αN� [Zk |A]P�αN� (A) + E�αN�
[
Zk |Ac] (1 − P�αN� (A)). (29)

Lower bound of tN (α)Wefirst obtain a lower bound for tN (α). Clearly, we have the following

Zk |A ≥ 1 ∀k ≥ �αN�
Zk |Ac ≥ 0 ∀k > �αN�
Zk |A ≥ 0 ∀k < �αN�
Zk |Ac ≥ 1 ∀k ≤ �αN� .

Using the above in (29) we have

E�αN� [Zk] ≥ P�αN� (A)1{k≥�αN�} + (1 − P�αN� (A))1{k≤�αN�},
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where 1Ω denotes the indicator function for the set Ω . Using the above in (28), we have

tN (α) ≥ P�αN� (A)

q0 + q1

N−1∑
k=�αN�

(
1

k
+ 1

N − k

)
+ 1 − P�αN� (A)

q0 + q1

�αN�∑
k=1

(
1

k
+ 1

N − k

)
(30)

≥ 1

q0 + q1

N (α∧(1−α))∑
k=1

1

k
(31)

>
1

q0 + q1
log(N (α ∧ (1 − α))). (32)

Upper bound for tN (α) We first obtain an upper bound on Ex [Zk; A] for k ≥ x with any
0 < x < N . Given A, let ζk denote the number of times the embedded chain X̃ (N ) jumps
from k to k − 1 before absorption. It is easy to observe that conditioned on A, the embedded
chain X̃ (N ) is a Markov chain with jump probabilities given by

pA
k,k+1 = 1 − pA

k,k−1 = p
Pk+1 (A)

Pk (A)

(a)= p
1 − rk+1

1 − rk
, (33)

where equality (a) follows from Lemma 1. Furthermore, we have

Zk |A = 1 + ζk + ζk+1, for x ≤ k ≤ N − 1. (34)

The above relationship follows by observing that the facts that (i) the states k ≥ x are visited
at least once and (ii) the number of visits to state k is the sum of the numbers of jumps of
X̃ (N ) to the left and to the right from state k.

Given A, wemust have ζN = 0. Let ξl,k denote the randomnumber of left-jumps from state
k between l th and (l+1)th left-jumps from state k+1. Then (ξl,k)l≥0 are i.i.d with geometric
distribution having mean pA

k,k−1/p
A
k,k+1. Moreover, we have the following recursion

ζk =
ζk+1∑
l=0

ξl,k, for x ≤ k ≤ N − 1, (35)

(the above sum starts from l = 0 because for k ≥ x left jumps from j can occur even before
the chain visits j + 1 for the first time) Thus, we see that (ζk)x≤k≤N forms a branching
process with immigration of one individual in each generation. Applying Wald’s identity to
solve the above recursion we have for x ≤ k ≤ N − 1

Ex [ζk] =
N−1∑
n=k

n∏
i=k

pA
i,i−1

pA
i,i+1

(a)=
N−1∑
n=k

n∏
i=k

r(1 − r i−1)

1 − r i+1

= r(1 − rk−1)(1 − r N−k)

(1 − r)(1 − r N )
, (36)
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where equality (a) follows from (33). Taking expectation in (34) and substituting (36) we
obtain that for x ≤ k ≤ N − 1

Ex [Zk |A] = 1 + Ex [ζk] + Ex
[
ζk+1

]

= 1 + r

1 − r

(1 − r N−k)(1 − rk)

1 − r N

≤ 1 + r

1 − r
. (37)

But we also have

Ex [Zk; A] ≤ Ex [Zk |A] ≤ 1 + r

1 − r
.

which provides the required bound on Ex [Zk; A]. We note that the above bound is indepen-
dent of x . In particular, it is true when x = �αN� and k ≥ �αN�.

For 1 ≤ k < x we have

Ex [Zk; A] = Ex [Zk; Tk < TN < T0] ,

= Ex [Zk |Tk < TN < T0]Px (Tk < TN < T0) ,

(a)= Ek [Zk |TN < T0]Px (Tk < TN < T0) ,

(b)≤ 1 + r

1 − r
,

where the equality (a) follows from the Markov property and inequality (b) follows from
(37). Hence, combining all the results above we have that for all 0 < k < N

Ex [Zk; A] ≤ 1 + r

1 − r
.

Using similar arguments for the process conditioned on Ac, it follows that for any 0 <

x < N and any 0 < k ≤ x we have

Ex
[
Zk; Ac] ≤ Ex

[
Zk |Ac]

= r̄ + 1

r̄ − 1

(r̄ N−k − 1)(r̄ k − 1)

r̄ N − 1

≤ 1 + r

1 − r
.

Furthermore, for N > k > x we have

Ex
[
Zk; Ac] = Ex [Zk; Tk < T0 < TN ]

= Ex [Zk |Tk < T0 < TN ]Px (Tk < T0 < TN )

= Ek [Zk |T0 < TN ]Px (Tk < T0 < TN )

≤ 1 + r

1 − r
.
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Combining all the above results we haveE�αN� [Zk] ≤ (1+r)/(1−r) for all 0 < k < N .
Hence from (28) we obtain

tN (α) ≤ 2

q0 + q1

1 + r

1 − r

N−1∑
k=1

1

k
,

≤ 2

q0 + q1

1 + r

1 − r
(log(N − 1) + 1),

which completes the proof.

7 Proof of Theorem 2

The process x (N )(·) jumps from the state x to the state x + 1/N when one of the N (1 − x)
agents having opinion {0} updates (with probability q0) its opinion by interacting with an
agent with opinion {1}. Since the agents update their opinions at points of independent unit
rate Poisson processes, the rate at which one of the N (1 − x) agents having opinion {0}
decides to update its opinion is N (1 − x)q0. The probability with which the updating agent
interacts with an agent with opinion {1} is x . Hence, the total rate of transition from x to
x + 1/N is given by r(x → x + 1/N ) = q0Nx(1 − x). Similarly, the rate of transition
from x to x − 1/N is given by r(x → x − 1/N ) = q1Nx(1 − x). From the above transition
rates it can be easily seen that the generator of the process x (N )(·) converges uniformly as
N → ∞ to the generator of the deterministic process x(·) defined by (5). From the classical
results (see e.g., Kurtz [22]), the theorem follows.

8 Proof of Lemma 2

We can write gK (x) = φ(ψ(x)), where ψ(x) = x
1−x : [0, 1) → [0,∞) and

φ(t) =
∑2K

i=K+1

(2K
i

)
t i

∑2K
i=K+1

(2K
i

)
t2K+1−i

=
∑2K

i=K+1

(2K
i

)
t i

∑K
i=1

(2K
i−1

)
t i

.

Clearly, ψ(x) : [0, 1) → [0,∞) is strictly increasing. Thus, it is sufficient to show that
φ : (0,∞) → (0,∞) is also strictly increasing. Clearly, φ′(t) = A(t)/(

∑K
i=1

(2K
i−1

)
t i )2,

where

A(t) =
(

2K∑
i=K+1

i

(
2K

i

)
t i−1

)(
K∑
i=1

(
2K

i − 1

)
t i
)

−
(

2K∑
i=K+1

(
2K

i

)
t i
)(

K∑
i=1

i

(
2K

i − 1

)
t i−1

)

=
3K−1∑
j=K+1

Mj t
j (38)
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with

Mj =
max(K , j−K )∑

i=min(1, j+1−2K )

(
2K

i − 1

)(
2K

j − i + 1

)
( j + 1 − 2i).

We note that in the above sum the running variable i satisfies i ≤ max(K , j − K ). Further-
more, from (38), we have that K +1 ≤ j ≤ 3K −1. Hence, we have i ≤ max(K , j − K ) <
j+1
2 for any K ≥ 1. This implies that Mj > 0 for all j satisfying K + 1 ≤ j ≤ 3K − 1

Hence, φ′(t) > 0, ∀t > 0, which implies that φ(t) is strictly increasing in (0,∞).

9 Proof of Theorem 4

From the first step analysis of the embedded chain X̃ (N )(·) it follows that
EN (n) = pn,n+1EN (n + 1) + pn,n−1EN (n − 1), (39)

which upon rearranging gives

EN (n + 1) − EN (n) = pn,n−1

pn,n+1
(EN (n) − EN (n − 1)). (40)

Putting DN (n) = EN (n + 1) − EN (n) we find that (40) reduces to a first order recursion in
DN (n) which satisfies the following relation for 1 ≤ n ≤ N − 1

DN (n) = r
1

gK (n/N )
DN (n − 1). (41)

To compute DN (0) we use the boundary conditions EN (0) = 0 and EN (N ) = 1, which
imply that

∑N−1
n=0 DN (n) = 1. Hence, we have

DN (0) = 1∑N−1
t=0

∏t
j=1

r
gK ( j/N )

, (42)

Thus, using EN (n) = ∑n−1
k=0 DN (k) we have the required expression for EN (n) for all

0 ≤ n ≤ N .
It is also important to note that DN defines a probability distribution on the set

{0, 1, . . . , N − 1}. Furthermore, using the monotonicity of gK proved in Lemma 2 and (41)
we have

DN (n) < DN (n − 1) for n ≥ �βN� + 1,

DN (n) > DN (n − 1) for n ≤ �βN� .

Thus, the mode of the distribution DN is at �βN�. Now for any α > β we choose β ′ such
that α > β ′ > β. Hence, by the monotonicity of gK we have

r ′ := r

gK (β ′)
<

r

gK (β)
= 1.
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Also using the monotonicity of gK and (41) we have for any j ≥ 1

DN (
⌊
β ′N

⌋+ j) ≤
⎛
⎝ r

gK
( �β ′N�+1

N

)
⎞
⎠

j

DN (
⌊
β ′N

⌋
)

≤ (r ′) j DN (
⌊
β ′N

⌋
),

where the last step follows since β ′N <
⌊
β ′N

⌋+ 1. Hence, we have

EN (α) =
�αN�−1∑
t=0

DN (t)

= 1 −
N−1∑

t=�Nα�
DN (t)

≥ 1 − DN (
⌊
β ′N

⌋
)(r ′)�αN�−�β ′N�

N−1−�αN�∑
t=0

(r ′)t

≥ 1 − (r ′)�αN�−�β ′N� 1 − (r ′)N−�αN�

1 − r ′
→ 1 as N → ∞.

The proof for α < β follows similarly.

10 Proof of Theorem 5

Let T = T0 ∧ TN denote the random time to reach consensus. Then we have

T =
N−1∑
n=1

Zn∑
j=1

Mn, j , (43)

where Zn denotes the number of visits to state n before absorption and Mn, j denotes the
time spent in the j th visit to state n. Clearly, the random variables Zn and (Mn, j ) j≥1 are
independent with each Mn, j being an exponential random variable with rate q(n → n+1)+
q(n → n − 1). Using Wald’s identity we have

tN (α) = E�αN� [T ]

=
N−1∑
n=1

E�αN� [Zn]E�αN�
[
Mn, j

]

=
N−1∑
n=1

E�αN� [Zn]

(q(n → n + 1) + q(n → n − 1))
. (44)
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Below we find lower and upper bounds of tN (α). Let A = {ω : TN (ω) < T0(ω)} denote the
event that the Markov chain gets absorbed in state N . We have

E�αN� [Zn] = E�αN� [Zn |A]P�αN� (A)

+ E�αN�
[
Zn |Ac] (1 − P�αN� (A)). (45)

Lower bound of tN (α): Applying Markov inequality to the RHS of (9) and (11) we obtain

q(n → n + 1) + q(n → n − 1) ≤ (N − n)q0
2K n

N

K + 1
+ nq1

2K
(
1 − n

N

)

K + 1

= (q0 + q1)
2K

K + 1

N (N − n)

N
.

Furthermore, as in the case of voter model, we have

E�αN� [Zn] ≥ P�αN� (A)1{n≥�αN�} + (1 − P�αN� (A))1{n≤�αN�}.

Using (44) and the above inequalities we obtain

tN (α) ≥ P�αN� (A)

q0 + q1

K + 1

2K

N−1∑
n=�αN�

(
1

n
+ 1

N − n

)

+ 1 − P�αN� (A)

q0 + q1

K + 1

2K

�αN�∑
n=1

(
1

n
+ 1

N − n

)

≥ 1

q0 + q1

K + 1

2K

N (α∧(1−α))∑
n=1

1

n

>
1

q0 + q1

K + 1

2K
log(N (α ∧ (1 − α))).

Upper bound for tN (α) From (9) and (11) we have

q(n → n + 1) + q(n → n − 1) ≥
{
cn, for n

N ≤ 1
2 ,

c(N − n), for n
N > 1

2 ,
(46)

where c = q1P
(
Bin

(
2K , 1

2

) ≥ K + 1
)
. Using the above inequalities in (44) we have

tN (α) ≤
�N/2�∑
n=1

E�αN� [Zn]

cn
+

N−1∑
n=�N/2�+1

E�αN� [Zn]

c(N − n)
(47)

Hence, to show that tN (α) = Θ(log N ) it is sufficient to show that E�αN� [Zn] = O(1) for
all 1 ≤ n ≤ N − 1.

For the rest of the proof we assume α > β. The case α < β can be handled similarly.
Let x = �αN�. We first find upper bound ofEx [Zn; A]. Conditioned on A, the embedded

chain X̃ (N ) is a Markov chain with jump probabilities given by

pA
n,n+1 = 1 − pA

n,n−1 = pn,n+1
Pn+1 (A)

Pn (A)
. (48)
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We have

pA
n,n−1

pA
n,n+1

= pn,n−1

pn,n+1

Pn−1 (A)

Pn+1 (A)
, (49)

(a)= r

gK
( n
N

)
∑n−2

t=0
∏t

j=1
r

gK ( j/N )∑n
t=0
∏t

j=1
r

gK ( j/N )

, (50)

(b)≤ min

(
1,

r

gK
( n
N

)
)

, (51)

where equality (a) follows from (12) and Theorem 4. Inequality (b) follows from the facts
(i) Pn−1 (A) ≤ Pn+1 (A) and (ii) for a monotonically non-increasing non-negative sequence
(yn)n≥1 the following inequality holds

yn

∑n−2
t=0

∏t
j=1 y j∑n

t=0
∏t

j=1 y j
≤ 1

(follows simply by comparing the terms in the numerator with the middle n − 1 terms in the
denominator).

Given A, let ζn denote the number of times the embedded chain X̃ (N ) jumps from n to
n − 1 before absorption. Then as in the voter model we have

Zn |A =
{
1 + ζn + ζn+1, for x ≤ n ≤ N − 1,

ζn + ζn+1, for 1 ≤ n < x,
(52)

where ζn follows the recursion

ζn =
{∑ζn+1

l=0 ξl,n, for x ≤ n ≤ N − 1,∑ζn+1
l=1 ξl,n, for 1 ≤ n < x

(53)

with ζN = 0 and ξl,n denoting the random number of left-jumps from state n between l th and
(l + 1)th left-jumps from state n + 1. Clearly (ξl,n)l≥0 are i.i.d with geometric distribution
having mean pA

n,n−1/p
A
n,n+1. Hence, applying Wald’s identity to solve the above recursion

we have

Ex [ζn] =

⎧⎪⎨
⎪⎩

∑N−1
t=n

∏t
i=n

pAi,i−1

pAi,i+1
, for x ≤ n ≤ N − 1(∏x−1

i=n
pAi,i−1

pAi,i+1

)
Ex [ζx ] , for 1 ≤ n < x .

(54)

Nowusing inequality (51), monotonicity of gK , and the fact that for n ≥ x = �αN� > �βN�,
1 > rα := r/gK (α) ≥ r/gK (n/N ) we have for n ≥ x = �αN�

Ex [ζn] ≤ rα + r2α + . . . + r N−n
α ≤ rα

1 − rα
. (55)

Hence, using (52) we have for n ≥ x = �αN�

Ex [Zn; A] ≤ Ex [Zn |A] ≤ 1 + rα
1 − rα

= O(1). (56)
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For n < x = �αN� we have

Ex [ζn]
(a)≤ Ex [ζx ]

(b)≤ rα
1 − rα

, (57)

where (a) follows from (54) and (51) and (b) follows from (55). Hence, from (52) we have
for n < x = �αN�

Ex [Zn; A] ≤ Ex [Zn |A] ≤ 2rα
1 − rα

= O(1). (58)

Similarly, conditioned on Ac we have

Zn |Ac =
{
1 + ζ̄n + ζ̄n−1 for 1 ≤ n ≤ x,

ζ̄n + ζ̄n−1 for x < n < N − 1,
(59)

where ζ̄n denotes the number of times X̃ (N ) jumps to the right from state n given Ac. Hence,
ζ̄n follows the recursion given by

ζ̄n =
{∑ζ̄n−1

l=0 ξ̄l,n, for 1 ≤ n ≤ x,∑ζ̄n−1
l=1 ξ̄l,n, for x < n < N − 1

(60)

where ζ̄0 = 0 and ξ̄l,n denotes the random number of right-jumps from state n between l th

and (l+1)th right-jumps from state n−1 given Ac. Clearly (ξ̄l,n)l≥0 are i.i.d. with geometric
distribution having mean pAc

n,n+1/p
Ac

n,n−1 where

pAc

n,n+1 = 1 − pAc

n,n−1 = pn,n+1
Pn+1 (Ac)

Pn (Ac)
. (61)

As before, we have

pAc

n,n+1

pAc

n,n−1

=gK
( n
N

)

r

∑N−1
t=n+1

∏N−1
j=t+1

gK ( j/N )
r∑N−1

t=n−1
∏N−1

j=t+1
gK ( j/N )

r

≤min

(
1,

gK
( n
N

)

r

)
, (62)

Solving (60) using Wald’s identity we obtain

Ex
[
ζ̄n
] =

⎧⎪⎪⎨
⎪⎪⎩

∑n
t=1
∏n

i=t
pA

c
i,i+1

pA
c

i,i−1
, for 1 ≤ n ≤ x,

(∏n
i=x+1

pA
c

i,i+1

pA
c

i,i−1

)
Ex
[
ζ̄x
]
, for x < n < N − 1.

(63)

For 1 ≤ n ≤ x after some simplification of (63) we obtain

Ex
[
ζ̄n
] =

∏n
j=1

gK ( j/N )
r∏N−1

j=1
gK ( j/N )

r

Pn+1
(
Ac) (1 − Pn

(
Ac)) . (64)
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(a) Mean consensus time tN (α) as a function
of the number of agents N for α = 0.6.

(b) Exit probability EN (α) as a function of
the initial fraction α of agents having opinion
{1}.

Fig. 7 Voter model for 3-regular random graphs. We choose q0 = 1, q1 = 0.6 for the biased model

We observe that for j ≤ �βN� we have gK ( j/N )
r ≤ 1 and using the fact that gK (x) =

1/gK (1− x) we have
∏N−1

j=1
gK ( j/N )

r = 1/r N−1. Hence, using (64) for n ≤ �βN� we have

Ex
[
ζ̄n
] ≤

∏n
j=1

gK ( j/N )
r∏N−1

j=1
gK ( j/N )

r

≤ r N−1 ≤ 1. (65)

Furthermore, for �βN� < n ≤ x we have

Ex
[
ζ̄n
] ≤ 1∏N−1

j=n+1
gK ( j/N )

r

(a)≤ 1, (66)

where (a) follows from the fact that gK ( j/N )
r ≥ 1 for j > n > �βN�. Hence, we have

shown that Ex
[
ζ̄n
] = O(1) for 1 ≤ n ≤ x . Now, using (63) and inequality (62) we

have for x < n < N − 1 that Ex
[
ζ̄n
] ≤ Ex

[
ζ̄x
] = O(1). Hence, from (59) we see that

Ex
[
Zn; Ac

] ≤ Ex
[
Zn |Ac

] = O(1) thereby completing the proof.

11 Effects of the Network Topology

In this section, we present some numerical studies on the effects of network topology on the
exit probability and mean consensus time of the voter and majority rule models. In particular,
we consider connected d-regular random graphs (d ≥ 3) which are known to have near-
optimal expansion properties [15]. Note that for fixed d , the neighbourhood-size for each
agent remains constant with respect to N as opposed to complete graphs, where it grows as
Θ(N ).

In Fig. 7a, we study the mean consensus time under the voter model (both with and
without the presence of biased agents) for 3-regular random graphs. We observe that the
mean consensus time scales as Θ(log N ) when the agents are biased (as opposed to Θ(N )

for unbiased agents). Furthermore, in Fig. 7b, the exit probability is observed to increase
exponentially to one with the increase in α for the biased voter model as opposed to a linear
increase in the unbiased voter model. Hence, the observations are qualitatively similar to
those in the case of complete graphs.
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(a) Mean consensus time tN (α) as a function
of the number of agents N for different values
of α.

(b) Exit probability EN (α) as a function of
the initial fraction α of agents having opinion
{1} for different values of N .

Fig. 8 Majority rule model for 3-regular random graphs. We choose q0 = 1, q1 = 0.8 for the biased model

In Fig. 8a,we plot themean consensus time for 3-regular randomgraphs under themajority
rule model as a function of N for different values α. We observe that the mean consensus
time grows as Θ(log N ). In Fig. 8b, we plot the exit probability for 3-regular random graphs
under the majority rule model as a function of α for different values N . We observe that in
each case a phase transition occurs near α = 0.2 and the transition becomes sharper with
the increase in N . Again, the results are qualitatively similar to those obtained for complete
graphs.

Hence, the results lead us to conjecture that the asymptotic behaviour of d-regular random
graphs under biased voter and majority rule models is independent of the neighbourhood size
of each agent as long as d ≥ 3.

12 Conclusion

Weanalysed the voter and the themajority rulemodels of social interaction under the presence
of biased and stubborn agents. We observed that for the voter model the presence of biased
agents reduces the mean consensus time exponentially in comparison to the voter model
with unbiased agents. For the majority rule model with biased agents, we showed that the
network can reach consensus on the preferred opinion even if the the preferred opinion is
not the opinion of the majority initially. Finally, we have analysed the majority rule model
with stubborn agents and shown that the network exhibits metastability, where it fluctuates
between multiple stable configurations, spending long intervals in each configuration.

Several interesting directions for future work exist. For example, analytically studying
the behaviour of random d-regular graphs under the biased voter and majority rule models
remains an open problem. Furthermore, the effects of the presence of more than two opin-
ions and time-varying update probabilities are unknown. It will also be interesting to study
the network dynamics under the majority rule model for general network topologies when
stubborn agents are present.

Acknowledgements RR acknowledges support from the University ofWaterloo during various visits and also
support from the Matrics Grant MTR/2017/000141.
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