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Voter model dynamics in complex networks: Role of dimensionality, disorder,

and degree distribution

Krzysztof Suchecki,* Víctor M. Eguíluz,† and Maxi San Miguel‡

Instituto Mediterráneo de Estudios Avanzados IMEDEA (CSIC-UIB), E07122 Palma de Mallorca, Spain

�Received 19 April 2005; revised manuscript received 20 July 2005; published 30 September 2005�

We analyze the ordering dynamics of the voter model in different classes of complex networks. We observe
that whether the voter dynamics orders the system depends on the effective dimensionality of the interaction
networks. We also find that when there is no ordering in the system, the average survival time of metastable
states in finite networks decreases with network disorder and degree heterogeneity. The existence of hubs, i.e.,
highly connected nodes, in the network modifies the linear system size scaling law of the survival time. The
size of an ordered domain is sensitive to the network disorder and the average degree, decreasing with both;
however, it seems not to depend on network size and on the heterogeneity of the degree distribution.

DOI: 10.1103/PhysRevE.72.036132 PACS number�s�: 64.60.Cn, 89.75.�k, 87.23.Ge

I. INTRODUCTION

Equilibrium order-disorder phase transitions, as well as
nonequilibrium transitions and the kinetics of these transi-
tions �1�, have been widely studied by spin Ising-type mod-
els in different lattices �2�. Given the recent widespread in-
terest in complex networks �3–6� the effect of the network
topology on the ordering processes described by these mod-
els has also been considered �7–11�. In particular, models of
opinion formation, or with similar social motivations, have
been discussed when interactions are defined through a com-
plex network �12–18�.

A paradigmatic and simple model where a systematic
study of network topology effects can be addressed is the
voter model �19�, for which analytical and well established
results exist in regular lattices �20,21�. The dynamics of or-
dering processes for the voter model in regular lattices �22� is
known to depend on dimensionality, with metastable disor-
dered states prevailing for d�2 �23�. In this paper we ad-
dress the general question of the role of network topology in
determining if a system orders or not, and on the dynamics
of the ordering process. Quenched disorder in regular net-
works is known to be able to modify equilibrium critical
properties �24�. A different question is the role of disorder
that changes the effective dimensionality of the network. For
example, disorder in a small-world network is measured by a
rewiring parameter p. The degree of disorder affects the criti-
cal properties of equilibrium phase transitions in these net-
works with a crossover temperature to mean-field behavior
that depends on p �25�. A general related question that we
address here is how disorder, of the type considered in a
small-world network, modifies qualitative features of non-

equilbrium dynamics on these networks. We do that in the
voter model which does not incorporate thermal fluctuations.
Specifically, analyzing the voter model in several different
networks, we consider the role of the effective dimensional-
ity of the network, of the degree distribution, and of the level
of disorder present in the network.

The paper is organized as follows. In Sec. II we briefly
review the basics as well as recent results on the voter model.
Section III considers the voter model in scale-free �SF� net-
works �3� of different effective dimensionality, showing that
voter dynamics can order the system in spite of a SF degree
distribution. In Sec. IV we consider the role of network dis-
order by introducing a disorder parameter that leads from a
structured �effectively one-dimensional� SF �SSF� network
�26� to a random SF �RSF� network through a small-world
�27� SF �SWSF� network. The role of the degree distribution
is discussed, comparing the results on the SSF, RSF, and
SWSF networks with networks with an equivalent disorder
but without a power law degree distribution. Some general
conclusions are given in Sec. V.

II. VOTER MODEL

The voter model �19� is defined by a set of “voters” with
two opinions or spins �i= ±1 located at the nodes of a net-
work. The elementary dynamical step consists in randomly
choosing one node �asynchronous update� and assigning to it
the opinion, or spin value, of one of its nearest neighbors,
also chosen at random. In a general network two spins are
nearest neighbors if they are connected by a direct link.
Therefore, the probability that a spin changes is given by

P��i → − �i� =
1

2�1 −
�i

ki
�
j�Vi

� j� , �1�

where ki is the degree of node i, that is, the number of its
nearest neighbors, and Vi is the neighborhood of node i, that
is, the set of nearest neighboring nodes of node i. In the
asynchronous update used here, one time step corresponds to
updating a number of nodes equal to the system size, so that
each node is, on the average, updated once. In our work we
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choose initial random configurations with the same propor-
tion of spins +1 and −1.

The dynamical rule implemented here corresponds to a
node-update. An alternative dynamics is given by a link-

update rule in which the elementary dynamical step consists
in randomly choosing a pair of nearest neighbor spins, i.e., a
link, and randomly assigning to both nearest neighbor spins
the same value if they have different values, and leaving
them unchanged otherwise. These two updating rules are
equivalent in a regular lattice, but they are different in a
complex network in which different nodes have different
number of nearest neighbors �28�. In particular, both rules
conserve the ensemble average magnetization in a regular
lattice, while in a complex network this is only a conserved
quantity for link-update dynamics. Node-update dynamics
conserves an average magnetization weighted by the degree
of the node �28,29�. We restrict ourselves in this paper to the
standard node-update for better comparison with the growing
literature on the voter model in complex networks �30–33�.

The voter model dynamics has two absorbing states, cor-
responding to situations in which all the spins have con-
verged to the �i=1 or to the �i=−1 states. The ordering
dynamics towards one of these attractors in a one-
dimensional lattice is equivalent to the one of the zero tem-
perature kinetic Ising model with Glauber dynamics. In more
general situations, as in regular lattice of higher dimension or
in a complex network, the ordering dynamics is still a zero-
temperature dynamics driven by interfacial noise, with no
role played by surface tension. A comparison of the voter
model and the zero temperature Ising Glauber dynamics in
complex networks �11� has been recently reported �33�. A
standard order parameter to measure the ordering process in
the voter model dynamics �22,30� is the average interface
density �, defined as the density of links connecting sites
with different spin values:

� = ��
i=1

N

�
j�Vi

1−�i� j

2 ���
i=1

N

ki. �2�

In a disordered configuration with randomly distributed
spins �	1/2, while when � takes a small value it indicates
the presence of large spatial domains in which each spin is
surrounded by nearest neighbor spins with the same value.
For a completely ordered system, that is, for any of the two
absorbing states, �=0. Starting from a random initial condi-
tion, the time evolution of � describes the kinetics of the
ordering process. In regular lattices of dimensionality d�2
the system orders. This means that, in the limit of large sys-
tems, there is a coarsening process with unbounded growth
of spatial domains of one of the absorbing states. The
asymptotic regime of approach to the ordered state is char-
acterized in d=1 by a power law 
��� t−1/2, while for
the critical dimension d=2 a logarithmic decay is found

����ln t�−1 �22�. Here the average 
·� is an ensemble
average.

In regular lattices with d�2 �20�, as well as in small-
world networks �30�, it is known that the voter dynamics
does not order the system in the thermodynamic limit of
large systems. After an initial transient, the system falls in

these cases in a metastable partially ordered state where
coarsening processes have stopped: spatial domains of a
given attractor, on the average, do not grow. In the initial
transient of a given realization of the process, � initially de-
creases, indicating a partial ordering of the system. After this
initial transient � fluctuates randomly around an average pla-
teau value �. This quantity gives a measure of the partial
order of the metastable state since l=�−1 gives an estimate of
the average linear size of an ordered domain in that state. In
a finite system the metastable state has a finite lifetime: a
finite size fluctuation takes the system from the metastable
state to one of the two ordered absorbing states. In this pro-
cess the fluctuation orders the system and � changes from its
metastable plateau value to �=0. Considering an ensemble of
realizations, the ordering of each of them typically happens
randomly with a constant rate. This is reflected in the late
stage exponential decay of the ensemble average interface
density from its plateau value


�� � e−t/�, �3�

where � is the survival time of the partially ordered meta-
stable state. Note then that the average plateau value � �see
Fig. 1� has to be calculated at each time t, averaging only
over the realizations of the ensemble that have not yet de-
cayed to �=0.

The survival time �, for a regular lattice in d=3 �20� and
also for a small-world network �30�, is known to scale lin-
early with the system size N, ��N, so that the system does
not order in the thermodynamic limit. More recently the
same scaling has been found for random graphs �32,33�
while a scaling ��N0.88 has been numerically found �28,33�
for the voter model in the scale-free Barabási-Albert network
�34�. This scaling is compatible with the analytical result �
�N / ln N reported in Ref. �32�. Other analytical results for
random networks with arbitrary power law degree distribu-
tion are also reported in Ref. �32�. We note that a conceptu-
ally different, but related quantity, is the time �1 that a finite
system takes to reach an absorbing state when coarsening
processes are at work, that is in situations in which the sys-
tem would order in the thermodynamic limit. The time scale

FIG. 1. �Color online� Evolution of the interface density �, Eq.
�2�, for ten realizations of Barabási-Albert networks of system size
N=10 000 and average degree 
k�=8. Note the plateau value � in-
dicated by the solid line.
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is here determined by the presence of boundaries, while � is
determined by the likelihood of a finite size fluctuation. The
time �1 is known to scale as �1�N2 for a regular d=1 lattice
and �1�N ln N for a regular d=2 lattice. We will be here
mostly concerned with situations in complex networks of
large dimensionality for which there is no coarsening, so that
the relevant characteristic time is the survival time �.

In the next sections we discuss the time evolution of � and
the characteristic properties of the plateau value � and sur-
vival time � for asynchronous node-update voter dynamics in
a variety of different complex networks.

III. DIMENSIONALITY AND ORDERING: VOTER

MODEL IN SCALE-FREE NETWORKS

One of simplest models that displays a scale-free degree
distributions is the well known Barabási-Albert network
�34�. In this model, the degree distribution follows a power
law with an exponent 	=3, the path length grows logarith-
mically with the system size �3� while the clustering coeffi-
cient decreases with system size �35�. It has been shown that
critical phenomena on this class of networks are well repro-
duced by mean-field calculations valid for random networks
�36�. Thus we will consider in the remainder the Barabási-
Albert �BA� networks as a representative example of a ran-
dom scale-free �RSF� network �37�. Results for the voter
model in the BA network are shown in Figs. 1–3. The quali-
tative behavior that we observe is the same as the one-
described above for regular lattices of d�2 or also observed
in a small-world network �30�: The system does not order but
reaches a metastable partially ordered state. The interface
density � for different individual realizations of the dynamics
is shown in Fig. 1. In this figure we see examples of how
finite size fluctuations take the system from the metastable
state with a finite plateau value of � to the absorbing state
with �=0. The level of ordering in this finite lifetime meta-
stable state can be quantified by the plateau level � shown in
Fig. 2. We obtain the plateau level � from the prefactor in the
exponential decay �Eq. �3�� of the average interface density.
We find that the level of ordering decreases significantly with
the average degree of the network, a result consistent with

the idea that total ordering is more easily achieved for effec-
tive lower dimensionality. On the other hand the level of
ordering is not seen to be sensitive to the system size, for
large enough sizes.

The survival time � can be calculated from the ensemble
average interface density 
�� as indicated in Eq. �3�. The time
dependence of 
�� for systems of different size �Fig. 3�
shows an exponential decrease for which the result men-
tioned above ��N0.88 can be obtained �28�. We note that the
value � is found to be independent of the average degree of
the network and that a linear scaling ��N is obtained if a
link-update dynamics is used �28�.

The fact that the presence of hubs in the BA network is
not an efficient mechanism to order the system might be
counterintuitive, in the same way as the presence of long
range links in a small-world network is also not efficient to
lead to an ordered state. However, in both cases the effective
dimensionality of the network is infinity and the result is in
agreement with what is known for regular lattices with
d�2. A natural question is then the relevance of the degree
distribution versus the effective dimensionality in the order-
ing dynamics. To address this question we have chosen to
study the voter model dynamics in the structured scale-free
network introduced in Ref. �26�. The SSF networks are non-
random networks with a power law degree distribution with
exponent 	=3 but with an effective dimension d=1 �38,39�.

Our results for the time dependence of the average inter-
face density in the SSF network are shown in Fig. 4. For
comparison the results for a regular d=1 network are also
included. For both networks we observe that the system or-
ders with the average interface density decreasing with a
power law with characteristic exponent 1 /2,


�� � t−1/2. �4�

The only noticeable difference is that the SSF network has
a larger number of interfaces at any moment, but the order-
ing process follows the same power law. Additionally we
find that for a finite system the time �1 to reach the absorbing
state scales as �1�N2, as also happens for the regular d=1
network.

FIG. 2. Average plateau height � for BA networks of system size
N=10 000 for different average degree. Inset: Plateau height depen-
dence on network size with average degree 
k�=6. Data are aver-
aged over 1000 realizations.

FIG. 3. Evolution of the average interface density 
��, Eq. �2�, in
BA networks of different sizes �increasing from left to right:
N=1000, 2000, 5000, 10 000, 20 000, and 50 000�. Data are aver-
aged over 1000 realizations for 
k�=6.
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The network is completely ordered when the last interface
disappears. At this point, the density is simply �N
k��−1,
where N
k� is the total number of links in the network. Since
the interface density decreases as 
��� t−1/2, then the time to
order �1 is given by

�N
k��−1 = �1
−1/2, �5�

leading to �1�N2.
Therefore we conclude that the effective dimensionality

of the network is the important ingredient in determining the
ordering process that results from a voter model dynamics,
while the fact that the system orders or falls in a metastable
state is not sensitive to the degree distribution.

IV. ROLE OF NETWORK DISORDER AND

HETEROGENEITY OF THE DEGREE DISTRIBUTION

Once we have identified in the previous section the cru-
cial role of dimensionality we now address the role of net-
work disorder and heterogeneity of the degree distribution in
quantitative aspects of the voter model dynamics. We do that
by considering a collection of complex networks in which
the system falls into partially disordered metastable states,
except for the regular one-dimensional lattice and SSF net-
works of Ref. �26� in which the system shows genuine or-
dering dynamics.

�1� Structured scale-free �SSF� network as defined in the
previous section.

�2� Small-world scale-free �SWSF� network. This is de-
fined by rewiring with probability p the links of a SSF net-
work. In order to conserve the degree distribution of the
unperturbed �p=0� networks, a randomly chosen link con-
necting nodes i, j is permuted with that connecting nodes k,
l �40�.

�3� Random scale-free �RSF� network. This is defined as
the limit p=1 of the SWSF network. The RSF network
shares most important characteristics with the BA network.

By changing the parameter p from p=0 �SSF� to p=1
�RSF� we can analyze how increasing levels of disorder af-
fect the voter model dynamics while keeping a scale-free

degree distribution. On the other hand, the consequences of
the heterogeneity of the degree distribution characteristic of
SF networks can be analyzed by comparing the voter model
dynamics on these networks with networks with the same
level of disorder and a non-SF degree distribution. These
other networks are constructed introducing the same disorder
parameter p, but starting from a regular d=1 network;
namely we consider the following.

�4� Regular d=1 network that can be compared with a
SSF network.

�5� Small-world �SW� network defined by introducing the
rewiring parameter p in the regular network as in the pre-
scription by Watts and Strogatz �27�. The SW network can be
compared with the SWSF network.

�6� Random �RN� network corresponding to the limit
p=1 of the SW network.

Likewise, one can consider a random network with an
exponential degree distribution. The exponential �EN� net-
work is constructed as in the BA prescription but with ran-
dom instead of preferential attachment of the new nodes.
These two random networks, RN and EN, can be compared
with the RSF network.

A. Role of disorder

Figure 5 shows the evolution of the mean interface den-
sity for SWSF networks with different values of the disorder
parameter p. It shows how by varying p one smoothly inter-
polates between the results for the SSF network and those for
a RSF network. In general, increasing network randomness
by increasing p the system approaches the behavior in a BA
network, causing it to fall in a metastable state of higher
disorder, but with finite size fluctuations causing faster order-
ing. This trend is quantitatively shown in Figs. 6 and 7 where
the survival time � and plateau level � for SWSF networks
are plotted as a function of the disorder parameter p. We
observe that � and the size of the ordered domains l=�−1

decrease with p but without following any clear power law.

FIG. 4. Evolution of the average interface density 
��, Eq. �2�, in
one-dimensional systems with system size N=10 000 and average
degree 
k�=8: �solid symbols� with scale-free topology and �empty
symbols� regular lattice. For reference, the dotted line is a power
law with exponent −1/2. Average over 1000 realizations.

FIG. 5. Evolution of the mean interface density 
��, Eq. �2�, for
SWSF networks of system size N=10 000, 
k�=8, with different
disorder parameter p �increasing from circles to stars: p=0.0004,
0.001, 0.002, 0.004, 0.01, 0.02, 0.04, and 0.1�, and comparison with
the BA network �+�. For reference, the dotted line is a power law
with exponent −1/2. Data averaged over 100 realization for
p�0.01 and over 1000 realizations for p
0.01.
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As a general conclusion, when extrapolating to p=1, we find
that �SWSF��RSF and lSWSF� lRSF.

The role of increasing disorder in the network can also be
analyzed in networks without a scale-free degree distribution
by considering SW networks with different values of the
rewiring parameter p. The survival time � and plateau level �
for SW networks are also plotted in Figs. 6 and 7. We ob-
serve that the effect of disorder is qualitatively the same for
SW as for SWSF networks �41�. Extrapolating the results in
Figs. 6 and 7 to p=1 where the SW network becomes a RN
network we find that �SW��RN and lSW� lRN.

B. Role of degree distribution

To address the question of the role of the degree distribu-
tion of the network in the voter model dynamics we compare
the evolution in networks with a scale-free degree distribu-
tion with the evolution in equivalent networks but with a
degree distribution involving a single scale. A first compari-

son was already made between the dynamics in a regular
d=1 network and the SSF network of Ref. �26� �Fig. 4�. This
is included for reference in Fig. 8 where we compare the
evolution of the mean interface density in a SWSF network
with the evolution in a SW network with the same level of
disorder. We observe for the SWSF network a similar plateau
value �similar but slightly more disordered state� at any time
before the exponential decay of 
�� which is faster for the
SWSF than for the SW networks. Finite size fluctuations that
order the system seem to be more efficient when hubs are
present, causing complete ordering more often, and therefore
a faster exponential decay of 
��. These claims are
made quantitative in Figs. 6 and 7 where it is shown that
�SW��SWSF and lSW	 lSWSF. In addition, extrapolating to the
limit p=1 we have that �RN��RSF and lRN	 lRSF

It is also interesting to compare the dependence with sys-
tem size of the voter model dynamics in SW �30� and SFSW
networks: The time dependence of the mean interface density
for a SWSF network with an intermediate fixed value of p is
shown in �Fig. 9�. The qualitative behavior is the same as the
one found for SW networks. However, the survival times
shown in Fig. 10 deviates consistently from the linear power

FIG. 6. Survival times � for a SWSF networks of system size
N=10 000 and 
k�=8, with different disorder parameter p �solid
symbols�. For comparison results for SW networks are also in-
cluded �empty symbols�. Average over 1000 realizations.

FIG. 7. Average plateau heights � for SWSF networks �solid
symbols� of system size N=10 000 and 
k�=8, with different disor-
der parameter p. For reference, dotted line is a power law �� p

while the solid line �� p0.76. For comparison results for SW net-
works are also included �empty symbols�. Average over 100 real-
ization for p�0.01 and over 1000 realizations for p
0.01. Inset:
Plateau heights for SWSF networks of different system size N. Av-
erage over 1000 realizations, with p=0.01 and 
k�=8.

FIG. 8. Evolution of the average interface density 
��, Eq. �2�,
for SFSW �solid symbols� and SW networks �empty symbols� of
system size N=10 000 and 
k�=8, with the same level of disorder
p=0.01. Average over 1000 realizations. For reference, the evolu-
tion of the average interface density 
�� for the one-dimensional
lattice �dotted line� and the SSF �solid line� is also plotted.

FIG. 9. Evolution of the average interface density 
��, Eq. �2�,
for SWSF networks of different system size N �increasing from left
to right: N=1000, 2000, 5000, 10 000, 20 000, 50 000�. Average
over 1000 realizations, with p=0.01 and 
k�=8.
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law ��N found for SW networks �30�. This deviation might
possibly have the same origin as the deviation from the lin-
ear power law observed for BA networks, that is the lack of
conservation of magnetization in the node-update dynamics
of the voter model in a complex network �28�. This noncon-
servation becomes much more important in a SWSF network
than in a SW network because of the high heterogeneity of
the degree distribution. On the other hand we note that the
analytical results for survival times in Ref. �32� apply only to
uncorrelated networks and therefore do not help us in under-
standing our numerical result for SWSF networks. We also
mention that the plateau level � for SWSF networks does not
show important dependence with system size �see inset of
Fig. 7�.

The role of the heterogeneity of the degree distribution
can be further clarified considering the limit of random net-
works p=1 where the SW network becomes a RN network
and the SWSF network becomes a RSF network essentially
equivalent to the BA network. The evolution for the mean
interface density for different random networks is shown in
Fig. 11. We find again that when there are hubs �large het-
erogeneity of the degree distribution� there is a faster expo-
nential decay of 
��, so that ordering is faster in BA networks
than in RN or EN networks, while the plateau level or level

of order in that state does not seem to be sensitive to the
degree distribution. This coincides with the extrapolation to
p=1 of the data in Figs. 6 and 7 which indicate that �RN
��RSF and lRN	 lRSF. Our results for the system size depen-
dence of the survival times and plateau levels for RN and EN
networks are shown in Fig. 12. The size of the ordered do-
mains l=�−1 is again found not to be sensitive to system size.
The survival times for RN and EN networks follow a linear
scaling ��N in agreement with the prediction in Ref. �32�.
We recall that, as discussed earlier, in random networks with
scale-free distribution such as the BA network a different
scaling is found ���N0.88� �28,33� compatible with the pre-
diction ��N / ln N �32�.

V. CONCLUSIONS

We have analyzed how the ordering dynamics of the voter
model is affected by the topology of the network that defines
the interaction among the nodes. First we have shown that
the voter model dynamics orders the system in a SSF net-
work �26�, which is a scale-free network with an effective
dimension d=1. This result, together with the known result
that in regular lattices the voter model orders in d�2, sug-
gests that the effective dimension of the underlying network
is a relevant parameter to determine whether the voter model
orders. In fact we find the same scaling law for the ordering
process in a regular d=1 network than in a SSF network with
the density of interfaces decreasing as 
��� t−1/2 in both
cases. This seems to indicate that such laws are not sensitive
to the degree distribution which is a delta function in the d

=1 regular network while it has power law behavior for the
SSF network. The relevance of the effective dimensionality
of different scale-free networks has also been observed in
other dynamical processes �14,38,42,43�.

Second, we have introduced standard rewiring algorithms
to study the effect of network disorder. Disorder is charac-
terized by a parameter p that changes continuously from a
one-dimensional network to a random network. We have
studied this variation in the case of networks with a degree
distribution characterized by a single scale �from a regular

FIG. 10. Survival times � for SWSF networks of different sys-
tem size N. Average over 1000 realizations, with p=0.01 and

k�=8. The solid line is a power law fit ��N0.95.

FIG. 11. �Color online� Evolution of the average interface den-
sity 
��, Eq. �2�, for RN and EN networks of different sizes N. BA
network of size 10 000 is also shown for comparison. Average over
1000 realizations, and 
k�=8.

FIG. 12. �Color online� Survival times � for RN �diamonds� and
EN �circles� networks of different sizes N. Average over 1000 real-
izations, with 
k�=8. For reference, the solid and the dotted lines
correspond to a linear dependence of the survival time with system
size ��N. Inset: Plateau heights for the same networks.
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d=1 network to a RN network through SW networks� or by
a scale-free distribution �from a SSF to a RSF network
through SWSF networks�. In general we find that network
disorder decreases the lifetime of metastable disordered
states so that the survival time to reach an ordered state in
finite networks is smaller,

�SWSF � �RSF, �SW � �RN.

Likewise, the average size of ordered domains in these meta-
stable states decreases with increasing disorder,

lSWSF � lRSF, lSW � lRN.

Third, the heterogeneity of the degree, that is the presence
of nodes with rather different number of links, also facilitates
reaching an absorbing ordered configuration in finite net-
works by decreasing the survival time. We have analyzed
this question comparing networks with same level of disor-
der �same value of the parameter p� but which have or do not
have a scale-free distribution of degree. We conclude that
finite size fluctuations ordering the system are more efficient
when there are nodes with a very large number of links
�“hubs”� in the network, so that

�SW � �SWSF, �RN � �RSF.

The presence of hubs also invalidates the scaling law for the
survival time ��N found in SW and RN networks. However
we did not find differences in the average size of ordered
domains depending on the heterogeneity of the degree distri-
bution,

lSW 	 lSWSF, lRN 	 lRSF.

In summary, we find for the different classes of networks
considered in this work that

�SW � �RN � �RSF,

lSW 	 lSWSF � lRN 	 lRSF.

In general our results illustrate how different features �di-
mensionality, order, heterogeneity of the degree� of complex
networks modify key aspects of a simple stochastic dynam-
ics.
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