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ABSTRACT

While federated learning (FL) enables distributed agents to collaboratively train
a centralized model without sharing data with each other, it fails to protect users
against inference attacks that mine private information from the centralized model.
Thus, facilitating federated learning methods with differential privacy (DPFL)
becomes attractive. Existing algorithms based on privately aggregating clipped
gradients require many rounds of communication, which may not converge, and
cannot scale up to large-capacity models due to explicit dimension-dependence
in its added noise. In this paper, we adopt the knowledge transfer model of pri-
vate learning pioneered by Papernot et al. (2017; 2018) and extend their algorithm
PATE, as well as the recent alternative PrivateKNN (Zhu et al., 2020) to the fed-
erated learning setting. The key difference is that our method privately aggregates
the labels from the agents in a voting scheme, instead of aggregating the gradi-
ents, hence avoiding the dimension dependence and achieving significant savings
in communication cost. Theoretically, we show that when the margins of the vot-
ing scores are large, the agents enjoy exponentially higher accuracy and stronger
(data-dependent) differential privacy guarantees on both agent-level and instance-
level. Extensive experiments show that our approach significantly improves the
privacy-utility trade-off over the current state-of-the-art in DPFL.

1 INTRODUCTION

With increasing ethical and legal concerns on leveraging private data, federated learning (McMahan
et al., 2017) (FL) has emerged as a paradigm that allows agents to collaboratively train a central-
ized model without sharing local data. In this work, we consider two typical settings of federated
learning: (1) Local agents are in large number, i.e., learning user behavior over many mobile de-
vices (Hard et al., 2018). (2) Local agents are in small number with sufficient instances, i.e., learning
a health related model across multiple hospitals without sharing patients’ data (Huang et al., 2019).

When implemented using secure multi-party computation (SMC) (Bonawitz et al., 2017), federated
learning eliminates the need for any agent to share its local data. However, it does not protect the
agents or their users from inference attacks that combine the learned model with side information.
Extensive studies have established that these attacks could lead to blatant reconstruction of the pro-
prietary datasets (Dinur & Nissim, 2003) and identification of individuals (a legal liability for the
participating agents) (Shokri et al., 2017). Motivated by this challenge, there had been a number of
recent efforts (Truex et al., 2019b; Geyer et al., 2017; McMahan et al., 2018) in developing federated
learning methods with differential privacy (DP), which is a well-established definition of privacy that
provably prevents such attacks.

Among the efforts, DP-FedAvg (Geyer et al., 2017; McMahan et al., 2018) extends the NoisySGD
method (Song et al., 2013; Abadi et al., 2016) to the federated learning setting by adding Gaussian
noise to the clipped accumulated gradient. The recent state-of-the-art DP-FedSGD (Truex et al.,
2019b) is under the same framework but with per-sample gradient clipping. A notable limitation
for these gradient-based methods is that they require clipping the magnitude of gradients to τ and
adding noise proportional to τ to every coordinate of the shared global model with d parameters.
The clipping and perturbation steps introduce either large bias (when τ is small) or large variance
(when τ is large), which interferes the SGD convergence and makes it hard to scale up to large-
capacity models. In Sec. 3, we concretely demonstrate these limitations with examples and theory.
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Particularly, we show that the FedAvg may fail to decrease the loss function together with gradient
clipping, and DP-FedAvg requires many outer-loop iterations (i.e., many rounds of communication
to synchronize model parameters) to converge under differential privacy.

To avoid the gradient clipping, we propose to conduct the aggregation over the label space, as shown
to be an effective approach in standard (non-federated) learning settings, i.e., voting-based model-
agnostic approaches (Papernot et al., 2017; 2018; Zhu et al., 2020). To achieve it, we relax the
traditional federated learning setting to allow unlabeled public data at the server side. We also
consider a more complete scenario for federated learning, where there are a large number of local
agents or a limited number of local agents. The agent-level privacy as introduced in DP-FedAvg,
works seamlessly with our setting having many agents. However, when there are few agents, hiding
each data belonging to one specific agent becomes burdensome or unnecessary. To this end, we
provide a more complete privacy notion, i.e., agent-level and instance-level. Under each of the
setting, we theoretically and empirically show that the proposed label aggregation method effectively
removes the sensitivity issue caused by gradient clipping or noise addition, and achieves favorable
privacy-utility trade-off compared to other DPFL algorithms.

Our contributions are summarized as the following:

1. We propose two voting-based DPFL algorithms via label aggregation (PATE-FL and Private-
KNN-FL) and demonstrate their clear advantages over gradient aggregation based DPFL
methods (e.g., DP-FedAvg) in terms of communication cost and scalability to high-capacity
models.

2. We provide provable differential privacy guarantees under two levels of granularity: agent-
level DP and instance-level DP. Each is natural in a particular regime of FL depending on the
number of agents and the size of their data.

3. Extensive evaluation demonstrates that our method improves the privacy-utility trade-off over
randomized gradient-based approaches in both agent-level and instance-level cases.

A remark of our novelty. Though PATE-FL and Private-kNN-FL are algorithmically similar to the
original PATE (Papernot et al., 2018) and Private-KNN (Zhu et al., 2020), they are not the same and
we are adapting them to a new problem — federated learning. The adaptation itself is nontrivial and
requires substantial technical innovations. We highlight three challenges below.

• Several key DP techniques that contributed to the success of PATE and Private-KNN in the
standard setting are no longer applicable (e.g., Privacy amplification by Sampling and Noisy
Screening). This is partly due to that in standard private learning, the attacker only sees the
final models; but in FL, the attacker can eavesdrop in all network traffic.

• Moreover, PATE and Private-kNN only provide instance-level DP. We show PATE-FL and
Private-kNN-FL also satisfy the stronger agent-level DP. PATE-FL’s agent-level DP param-
eter is, surprisingly, a factor of 2 better than its instance-level DP parameter. And Private-
kNN-FL in addition enjoys a factor of k amplification for the instance-level DP.

• A key challenge of FL is the data heterogeneity of individual agents, while PATE randomly
splits the dataset so each teacher is identically distributed. The heterogeneity does not affect
our privacy analysis but does make it unclear whether PATE would work. We are the first to
report strong empirical evidence that the PATE-style DP algorithms remain highly effective
in the non-iid case.

2 PRELIMINARY

In this section, we start with introducing the typical notations of federated learning and differential
privacy. Then, two randomized gradient-based baselines, DP-FedAvg and DP-FedSGD, are intro-
duced as the DPFL background.

2.1 FEDERATED LEARNING

Federated learning (McMahan et al., 2017; Bonawitz et al., 2017; Mohassel & Zhang, 2017; Smith
et al., 2017) is a distributed machine learning framework that allows clients to collaboratively train a
global model without sharing local data. We consider N agents, each agent i has ni data kept locally
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Figure 1: DP-FedAvg and PATE-FL are used for agent-level DP. DP-FedSGD and Private-kNN-FL
are used for instance-level DP.

and privately from a party-specific domain distributionDi. C is the number of classes. The objective
is to output a global model that performs well on the target (server) distribution. Most prior works
consider the target distribution as a uniform distribution over the union of all local data, which is
restrictive in practice. Here we consider an agnostic federated learning scenario (Mohri et al., 2019;
Peng et al., 2019c), where the server distributionDG can be different from all agent distributions. In
light of this, we assume each agent has access to part of unlabeled server data drawn from the target
distribution DG.

FedAvg (McMahan et al., 2017) is a vanilla federated learning algorithm that we consider as a
non-DP baseline. In this algorithm, a fraction of agents is sampled at each communication round
with a probability q. Each selected agent downloads the shared global model and improves it by
learning from local data using E iterations of stochastic gradient descent (SGD). We denote this
local update process as an inner loop. Only the gradient is sent to the server, where it is averaged
with other selected agents’ gradient to improve the global model. The global model is learned after
T communication rounds, where each communication round is denoted as one outer loop.

2.2 DIFFERENTIAL PRIVACY FOR FEDERATED LEARNING

Differential privacy (Dwork et al., 2006) is a quantifiable and composable definition of privacy that
provides provable guarantees against identification of individuals in a private dataset.

Definition 1. A randomized mechanism M : D → R with a domain D and range R satisfies
(ǫ, δ)-differential privacy, if for any two adjacent datasets D,D′ ∈ D and for any subset of outputs
S ⊆ R, it holds that Pr[M(D) ∈ S] ≤ eǫPr[M(D′) ∈ S] + δ.

The definition applies to a variety of different granularity, depending on how the adjacent datasets
are defined, i.e., if we are to protect whether one agent participates into training, the neighboring
datasets are defined by adding or removing the entire local data within that agent. It is known as
agent-level (user-level) differential privacy, which has been investigated in DP-FedAvg (Geyer et al.,
2017; McMahan et al., 2018). Compared to FedAvg, DP-FedAvg (Figure 1) enforces clipping of per-
agent model gradient to a threshold S and adds noise to the scaled gradient before it is averaged at
the server. Note that this DP notion is favored when data samples within one agent reveal the same
sensitive information, e.g., cell phone agents send the same message.

However, when there are only a few agents, hiding the entire dataset from one agent becomes
difficult and inappropriate. We then consider the instance-level DP, where the adjacent dataset is
defined by differing one single training example. This definition is consistent with the standard
non-federated learning differential privacy (Abadi et al., 2016; Bassily et al., 2014; Chaudhuri et al.,
2011). Model training with instance-level DP restricts the adversary’s power in detecting a specific
training instance’s presence or absence. DP-FedSGD (Truex et al., 2019a; Peterson et al., 2019),
one such state-of-the-art for the instance-level DP, performs NoisySGD (Abadi et al., 2016) for a
fixed number of iterations at each agent. The gradient updates are averaged on each communication
round at the server, as shown in Figure 1.

SMC is a cryptographic technique that securely aggregates local updates before the server receives it.
While SMC does not have a differential privacy guarantee, it can be combined with DP to amplify the
privacy guarantee (Bhowmick et al., 2018; Agarwal et al., 2018; Truex et al., 2019b) against attackers
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that eavesdrop what sent out by each agent. In our experiment, we assume that the aggregation is
conducted by SMC for all privacy-preserving algorithms that we consider.

3 CHALLENGES FOR GRADIENT-BASED FEDERATED LEARNING

In this section, we highlight the main challenges of the conventional DPFL frameworks in terms
of accuracy, convergence and communication cost. For other challenges, we refer the readers to
a survey (Kairouz et al., 2019). The details of DP-FedAvg are summarized in appendix algorithm
section.

3.1 CHALLENGE 1: BIASED GRADIENT ESTIMATION

Recent works (Li et al., 2018) have shown that the FedAvg may not converge well under heterogene-
ity (e.g., non-identical distributions). Here, we provide a simple example to show that the clipping
step of DP-FedAvg may raise additional challenge.

Example 2 (clipping). Let N = 2, each agent i’s local update is △i (E iterations of SGD). We

enforce clipping of per-agent update△i by performing△i/max(1, ||△i||2
τ ), where τ is the clipping

threshold. Consider the special case when ||△1||2 = τ+α and ||△2||2 ≤ τ . Then the global update

will be 1
2 (

τ△1

||△1||2
+△2), which is biased.

The unbiased global update shall be 1
2 (△1+△2). Such a simple example can be embedded in more

realistic problems, causing substantial bias that leads to non-convergence.

3.2 CHALLENGE 2: SLOW CONVERGENCE

Recent works (Li et al., 2019; Wang et al., 2019) have investigated the convergence rate in FL
methods. Here, we draw connections to DP-FedAvg’s convergence rate and demonstrate that using
many outer-loop iterations (T ) could have a similar convergence issue under differential privacy.

When E = 1 in the local update (inner loop), the FedAvg algorithm is equivalent to SGD with
distributed data, which requires many rounds of communication. The appeal of FedAvg is to set E
to be larger so that each agent performs E iterations to update its own parameters before synchro-
nizing the parameters to the global model, hence reducing the number of rounds in communication.
However, setting E > 1 may not improve convergence at all.

Now, we take a closer look at the effect of increasing E in the case of piecewise linear functions. Let
η be the learning rate for individual agents. In appendix convergence section, we establish that the
effect of increasing E is essentially increasing the learning rate for a large family of optimization
problems with piecewise linear objective functions. It is known that for the family of G−Lipschitz
functions supported on a B-bounded domain, any Krylov-space method 1 has a rate of convergence

that is lower bounded by Ω(BG/
√
T ) (Nesterov, 2003, Section 3.2.1). This indicates that the variant

of FedAvg that aggregates only the loss function part of the gradient or projects only when synchro-
nizing requires Ω(1/α2) rounds of outer loop (i.e., communication), in order to converge to an α
stationary point, i.e., increasing E does not help, even if no noise is added.

This also says that DP-FedAvg is essentially the same as stochastic subgradient method in almost
all locations of a piecewise linear objective function with gradient noise being N (0, σ2/NId). The
additional noise in DP-FedAvg imposes more challenges to the convergence. If we plan to run T

rounds and achieve (ǫ, δ)-DP, we need to choose σ =
ηEG
√

2T log(1.25/δ)

Nǫ (see, e.g., McMahan
et al., 2018, Theorem 1). which results in a convergence rate upper bound of

GB(
√

1 + 2Td log(1.25/δ)
N2ǫ2 )

√
T

= O

(

GB√
T

+

√

d log(1.25/δ)

Nǫ

)

,

for an optimal choice of the learning rate Eη.

1One that outputs a solution in the subspace spanned by a sequence of subgradients.
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The above bound is tight for stochastic subgradient methods, and in fact also information-

theoretically optimal. The GB/
√
T part of upper bound matches the information-theoretical lower

bound for all methods that have access to T -calls of stochastic subgradient oracle (Agarwal et al.,
2009, Theorem 1), while the second matches the information-theoretical lower bound for all (ǫ, δ)-
differentially private methods on the agent level (Bassily et al., 2014, Theorem 5.3). That is, the first
term indicates that there must be many rounds of communications, while the second term says that
the dependence in ambient dimension d is unavoidable for DP-FedAvg. Clearly, our method also
has such a dependence in the worst case, but it is easier for our approach to adapt to the structure
that exists in the data (i.e., high consensus among voting), as we will illustrate later. In contrast, it
has larger impact on DP-FedAvg, since it needs to explicitly add noises with variance Ω(d).

Another observation is that when N is small, no DP method with reasonable ǫ, δ parameters is able
to achieve high accuracy. This partially motivates us to consider the other regime that deals with
instance-level DP.

3.3 OTHER CHALLENGES

Expensive Communication Cost: Up-stream communication cost (Konečnỳ et al., 2016), i.e., to-
tal transmitted updates from local agent to server, is another key concern in FL. For FedAvg, our
convergence analysis suggests that increasing E does not speed up the convergence. A high commu-
nication cost is expected till the model converges. CpSGD (Agarwal et al., 2018) is another DPFL
method, aiming at reducing the communication cost by gradient quantization with binomial noise.
However, sampling from binomial distribution can be difficult on devices, which prevents it from
being practical in real-world scenarios.

Network Complexity: DP-FedAvg requires to clip gradient magnitude to τ at each coordinate in
parameters, which is hard to scale up to large models, as the noise level increases proportional to the
network capacity. To address this issue, recent works apply delicate clipping strategies (McMahan
et al., 2018; Geyer et al., 2017) and reduce data dimension with PCA (Abadi et al., 2016). In this
work, we propose to avoid such dimension dependence and empirically investigate how network
architecture affects performance in various DPFL approaches.

4 ALGORITHM

We assume there are unlabeled data drawn from DG at the server, which is public and accessible
from any agent. The goal is to design an (ǫ, δ)-DP algorithm (either on the agent-level or instance-
level) that outputs pseudo-labels for a subset of server’s unlabeled data. Then a global model is
trained in a semi-supervised way, using pseudo-labeled and unlabeled data.

PATE-FL In PATE-FL (Algorithm 1), each agent i trains a local “teacher” model fi using its own
private local data. For each “student” query xt, every agent adds Gaussian Noise to her prediction
(i.e., C-dim histogram), aggregates their noisy predictions via SMC and the label with the most votes
is returned to the server as the “pseudo-label” of xt. Similar to the original PATE, the idea behind
the privacy guarantee is that by adding or removing any instance, it can change at most one agent’s
prediction. The same argument also naturally applies to adding or removing one agent. In fact we
gain a factor of 2 in the stronger agent-level DP due to a smaller sensitivity (see the proof for details)!
Another important difference is that in the original PATE, the teachers are trained on random splits
of the data, while in our case, the agents are naturally present with different distributions. We
propose to optionally use domain adaptation techniques to mitigate these differences when training
the “teachers”.

Private-kNN-FL Next we present how the teachers fi is constructed in Private-kNN-FL method
(see Algorithm 2). Each agent has a data-independent feature extractor φ. For every unlabeled
query xt, agent i finds the ki nearest neighbor to xt from its local data by measuring their Euclidean
distance in the feature space Rdφ and fi(xt) outputs the frequency vector of the votes for these
nearest neighbors. Subsequently, fi(xt) from all agents are privately aggregated with the argmax of
the noisy voting scores returned to the server.

Different from the original Private-kNN (Zhu et al., 2020), we apply kNN on each agent’s local data
instead of the entire private dataset. This distinction allows us to receive up to kN neighbors while
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Algorithm 1 PATE-FL

Input: Noise σ, global data DG, Q query

1: for i in N clients do
2: Train local model fi using Di

3: for t = 0, 1, ..., Q, pick xt ∈ DG do
4: for each agent i in 1, ..., N do

5: f̃i(xt) = fi(xt) +N (0, σ2

N IC).
6: end for
7: ỹt = argmaxy∈{1,...,C}[

∑N
i=1 f̃i(xt)]y

8: end for
9: Train a global model θ using (xt, ỹt)

Q
t=1

Algorithm 2 Private-kNN-FL

Input: Noise σ, global data DG, Q query

1: for t = 0, 1, ..., Q, pick xt ∈ DG do
2: for each agent i in 1, ..., N do
3: Apply φ on Di and xt

4: y1, ..., yk ← top-k closest labels

5: f̃i(xt) =
1
k (
∑k

j=1 yj) +N (0, σ2

N IC)
6: end for
7: ỹt = argmaxy∈{1,...,C}[

∑N
i=1 f̃i(xt)]y

8: end for
9: Train a global model θ using (xt, ỹt)

Q
t=1

bounding the contribution of individual agents by k. Comparing to PATE-FL, this approach enjoys
a stronger instance-level DP guarantee since the sensitivity from adding or removing one instance is
a factor of k/2 times smaller than that of the agent-level.

4.1 PRIVACY ANALYSIS

We provide our privacy analysis based on Renyi differential privacy (RDP) (Mironov, 2017). RDP
inherits and generalizes the information-theoretical properties of DP, and has been used for privacy
analysis in DP-FedAvg. We defer the background about RDP, its connection to DP and all proofs of
our technical results to the appendix RDP section.

Theorem 3 (Privacy guarantee). Let PATE-FL and Private-kNN-FL answer Q queries with noise
scale σ. For agent-level protection, both algorithms guarantee (α,Qα/(2σ2))-RDP for all α ≥ 1.
For instance-level protection, PATE-FL and Private-kNN-FL obey (α,Qα/σ2) and (α,Qα/(kσ2))-
RDP respectively.

This theorem says that both algorithms achieve agent-level and instance-level differential privacy.
With the same noise injection to the agent’s output, Private-kNN-FL enjoys a stronger instance-level
DP (by a factor of k/2) compared to its agent-level guarantee, while PATE-FL’s instance-level DP
is weaker by a factor of 2.

Improved accuracy and privacy with large margin: Let f1, ..., fN : X → △C−1 where △C−1

denotes the probability simplex — the soft-label space. Note that both algorithms we propose can
be viewed as voting of these local agents, which output a probability distribution in △C−1. First,
let us define the margin parameter γ(x) that measures the difference between the largest and second

largest coordinate of 1
N

∑N
i=1 fi(x).

Lemma 4. Conditioning on the teachers, for each public data point x, the noise added to

each coordinate of 1
N

∑N
i=1 fi(x) is drawn from N (0, σ2/N2), then with probability ≥ 1 −

C exp{−N2γ(x)2/8σ2}, the privately released label matches the majority vote without noise.

The proof (in Appendix) is a straightforward application of Gaussian tail bounds and a union
bound over C coordinates. This lemma implies that for all public data point x such that γ(x) ≥
2
√

2 log(C/δ)

N , the output label matches noiseless majority votes with probability at least 1− δ.

Next we show that for those data point x such that γ(x) is large, the privacy loss for releasing

argmaxj [
1
N

∑N
i=1 fi(x)]j is exponentially smaller.

Theorem 5. For each public data point x, the mechanism that releases argmaxj [
1
N

∑N
i=1 fi(x) +

N (0, (σ2/N2)IC)]j obeys (α, ǫ)-data-dependent-RDP, where

ǫ ≤ Ce−
N2γ(x)2

8σ2 +
1

α− 1
log

(

1 + e
(2α−1)σ2

2s2
−

N2γ(x)2

16σ2 +logC

)

,

where s = 1 for PATE-FL, and s = 1/k for Private-KNN-FL.

This bound implies that when the margin of the voting scores is large, the agents enjoy exponentially
stronger (data-dependent) differential privacy guarantees in both agent-level and instance-level. In
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Datasets # Agents Methods Accuracy ǫ ↓

SVHN, MNIST → USPS 200

FedAvg 87.6± 0.1% -
FedAvg+DA 86.9± 0.1% -
DP-FedAvg 76.3± 0.3% 3.7

DP-FedAvg+DA 71.2± 0.4% 3.6
PATE-FL (Ours) 83.8± 0.2% 3.6

PATE-FL+DA (Ours) 92.5± 0.2% 2.8

CelebA 300
FedAvg 84.9± 0.1% -

DP-FedAvg 83.2± 0.1% 4.0
PATE-FL (Ours) 85.0± 0.1% 4.0

MNIST 100
FedAvg 97.8± 0.1% -

DP-FedAvg 84.2± 0.2% 4.3
PATE-FL (Ours) 95.1± 0.3% 4.3

Table 1: Agent-level DP Evaluation. We compare the state-of-the-art DPFL methods with ours on
the Digit and CelebA datasets. For (ǫ, δ)-DP setting, we set δ = 10−3 across all the methods.

other words, our proposed methods avoid the dependence on model dimension d that are inherited in
DP-FedAvg and can release models for free privacy cost when a high consensus among votes from
local agents.

4.2 COMMUNICATION COST

Finally, regarding the communication issue, our proposed methods are parallel as each agent work
independently without any synchronization. Overall, we reduce the up-stream communication cost
from d · T floats (model size times T rounds) to C ·Q floats in one round.

5 EXPERIMENTAL RESULTS

We verify our PATE-FL for agent-level DP on Digit (LeCun et al., 1998; Netzer et al., 2011) and
CelebA (Liu et al., 2015). Then, we evaluate Private-kNN-FL on Office-Caltech10 (Gong et al.,
2012) and DomainNet (Peng et al., 2019a) for instance-level DP. Five independent rounds of exper-
iments are conducted to report mean accuracy and its standard deviation. We use both labeled and
unlabeled data on Digit datasets but only labeled data for all other datasets. We defer the experimen-
tal details to appendix.

5.1 EVALUATION ON AGENT-LEVEL DP
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Figure 2: Privacy-accuracy tradeoff for MNIST
dataset with Non-i.i.d partition. The x-axis is the
privacy budget and the y-axis reports the corre-
sponding accuracy.

Digit Datasets Evaluation: MNIST, SVHN
and USPS together as Digit datasets, is a con-
trolled setting to mimic the real case, where
distribution of agent-to-server or agent-to-agent
can be different. We simulate 140 agents using
SVHN with 3000 records each and 60 agents
using MNIST with 1000 records each. USPS
serves as unlabeled public data, where 3000
records can be accessed by the local agents and
the remaining records are used for testing.

In Table 1, our methods PATE-FL and PATE-
FL+DA are compared to private and non-
private baselines. PATE-FL+DA is based on
PATE-FL, where each agent model is trained
with domain adaptation (DA) technique (Ganin
et al., 2016). FedAvg+DA is the variant of Fe-
dAvg with the same DA technique. We observe:
(1) When the privacy cost ǫ of DP-FedAvg and PATE-FL is close, our method significantly improves
the accuracy from 76.3% to 83.8%. (2) The further improved accuracy 92.5% of PATE-FL+DA
demonstrates that our framework can orthogonally benefit from DA techniques, where it is highly
uncertain yet for the gradient-based methods. (3) Both FedAvg and DP-FedAvg perform better than
their DA variants. The possible reason might be that FL with domain adaptation is more closely
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Network Methods A,C,D → W (Acc.) ǫ ↓ A,C,W → D(Acc.) ǫ ↓

AlexNet

FedAvg 90.5± 0.1% - 96.8± 0.1% -
DP-FedAvg 28.1± 0.7% 46.6 48.2± 0.8% 47.1
DP-FedSGD 32.6± 0.9% 4.1 48.3± 0.9% 4.0
DP-FedSGD 75.2± 0.5% 12.4 83.7± 0.6% 7.9

Private-kNN-FL (Ours) 75.4± 0.3% 3.9 84.3± 0.3% 3.7

ResNet50
FedAvg 96.5± 0.1% - 97.8± 0.1% -

DP-FedSGD 25.8± 0.6% 4.0 42.7± 0.5% 3.9
Private-kNN-FL (Ours) 86.3± 0.4% 2.8 91.9± 0.2% 2.0

Table 2: Instance-level DP on Office-Caltech using different backbones.

Clipart (Acc.) ǫ ↓ Painting (Acc.) ǫ ↓ Real (Acc.) ǫ ↓

FedAvg 81.8± 0.2% - 72.8± 0.2% - 82.0± 0.3% -
DP-FedSGD 44.2± 0.2% 4.4 42.6± 0.3% 4.6 39.1± 0.6% 4.3
DP-FedSGD 55.6± 0.2% 11.6 60.0± 0.6% 14.6 55.1± 0.6% 11.9

Private-kNN-FL (Ours) 55.8± 0.6% 4.4 61.2± 0.8% 4.7 55.5± 0.7% 4.2

Table 3: Instance-level DP on DomainNet. We compare our method with DP-FedSGD and the
non-private baseline FedAvg. Total number of local agents is 5. We set δ = 10−4.

related to multi-source domain adaptation (Peng et al., 2019b) than the traditional domain adapta-
tion. In other words, averaging gradients of domain adaptation methods implies averaging different
trajectories towards the server’s distribution, which may not work in practice. How to improve
DP-FedAvg variants with DA techniques remains an open problem.

CelebA Dataset Evaluation: CelebA is a 220k face attribute dataset with 40 attributes defined.
300 agents are designed with partitioned training data. We split 600 unlabeled data at server, and
the rest 59,400 images are for testing. Detailed settings are referred to appendix. Consistent to
Digits dataset, our method achieves clear performance gain by 1.8% compared to DP-FedAvg while
maintaining the same privacy cost.

MNIST Dataset with Non-i.i.d Partition Evaluation: In both CelebA and Digit experiments, we
i.i.d partition each dataset into different agents. To investigate our proposed algorithm under a non-
i.i.d partition scenario, we choose a similar experimental setup as (McMahan et al., 2017) did. We
divide the training set of sorted MNIST into 100 agents, such that each agent will have samples
from 6 digits only. This way, each agent gets 600 data points from 6 classes. We split 30% of the
testing set in MNIST as the available unlabeled public data and the remaining testing set used for
testing. As shown in Table 1, our method achieves consistent better performance than DP-FedAvg.
Moreover, we plot the privacy-accuracy tradeoff in Figure 2. For every fixed privacy budget at the
x-axis, we do a grid search on all hyperparameters (e.g., #queries and noise scale for PATE-FL
and #communication round, noise scale for DP-FedAvg). In the figure, the accuracy of PATE-FL is
consistently higher than DP-FedAvg.

5.2 EVALUATION ON INSTANCE-LEVEL DP

When agents are few, preserving privacy across agents becomes hard and meaningless. We then
focus on preserving each instance’s privacy, a.k.a instance-level DP. FedAvg is non-private baseline.

Office-Caltech Evaluation: Office-Caltech consists of data from four domains: Caltech (C), Ama-
zon (A), Webcam(W) and DSLR (D). We pick one domain as server each time and the rest ones
are for local agents (e.g., in A,C,D → W , Webcam is treated as the server). We split 70% data
from the server domain as public available unlabeled data while the remaining 30% data is used for
testing. For Private-kNN-FL, we instantiate the public feature extractor using the network backbone
without the classifier layer. Both AlexNet and Resnet50 are Imagenet pre-trained. We set σ = 15
for Private-kNN-FL with AlexNet and σ = 25 for ResNet50. To address the domain adaptation
issue, each agent can choose k to be smaller if they observe the domain gap is large, as a smaller k
implies a more selective set of neighbors. In our experiment, we set k to be the 5% of the local data
size (i.e., each agent returns the noisy top-5% neighbors’ predictions).

We observe in Table 2, DP-FedSGD degrades when backbone changes from light load AlexNet to
heavy load ResNet50, while ours is improved by 10%. It is because larger model capacity leads
to more sensitive response to gradient clipping or noise injection. In contrast, our Private-kNN-
FL avoids the gradient operation by label aggregation and can still benefit from the larger model
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(a) Effect on the amount of data per agent (b) Effect on the number of agent

Figure 3: Ablation study on amount of data per agent and number of agent. The non-private model,
FedAvg, is served as the performance upper bound.

capacity. Again, our method achieves consistently better utility-privacy trade-off as maintaining
same privacy cost and can achieve significantly better utility, or maintaining same utility and can
achieve much low privacy cost.

DomainNet Evaluation: DomainNet contains 0.6 million images of 345 categories, ranging from
six domains: Clipart, Painting, Real, Quickdraw, Infograph and Sketch. As a challenging dataset
even for non-private setting (Peng et al., 2019c), we only consider seven fruit classes (apple, banana,
grapes, strawberry, watermelon, pear, pineapple) for demonstration. Large domain shift exists be-
tween infograph/quickdraw and other domains (Peng et al., 2019c). Thus we only report results on
cases where servers are chosen from Clipart, Painting and Real. Five domain data are assigned to
five agents respectively. 70% of the left domain data is split for server and 30% rest for testing.

Table 3 compares our Private-kNN-FL method with DP-FedSGD. We observe that when the privacy
cost ǫ is aligned close, our method outperforms DP-FedSGD by more than 10% in accuracy gain
across all the three cases. When the accuracy is aligned close, our method saves more than 60%
privacy cost, showing consistent advantage over DP-FedSGD.

5.3 ABLATION STUDY

In this section, we investigate the agent-level privacy-utility trade-off with respect to the number of
agents and the volume of local data. MNIST is utilized for generality and simplicity. We randomly
pick 1000 testing data as the unlabeled server data and the remaining 9000 data for testing. We adopt
the model structure proposed in (Abadi et al., 2016) for both of our methods.

Effect of Data per Agent: We fix the number of agent to 100 and range the number of data per
agent from {50, 100, 200, 400, 600}. By only relaxing the “data per agent” factor, we fairly tune
the other privacy parameters for all the methods to its maximized performance. In Figure 3 (a), as
“data per agent” increases, all the methods improves as the overall dataset volume increases. Our
method achieves consistently higher accuracy over DP-FedAvg. The failure cases for both methods
are when “data per agent” is below 50, which cannot ensure the well-trained local agent models.
Label aggregation over such weak local models results in failure or sub-optimal performance.

Effect of Number of Agents: In Figure 3 (b), we vary N ∈ {50, 100, 200, 400, 800} and set overall
privacy budget fixed as ǫ = 5, δ = 10−3. Following (Geyer et al., 2017), each agent has exactly 600
data, where data samples are duplicated when N ∈ {200, 400, 800}. We conduct grid search for
each method to obtain optimal hyper-parameters. Our method shows clear performance advantage
over DP-FedAvg. We also see DP-FedAvg gradually approaches our method as the number of agents
increases.

6 CONCLUSIONS

In this work, we propose voting-based approaches for differentially private federated learning
(DPFL) under two privacy regimes: agent-level and instance-level. We substantially investigate
the real-world challenges of DPFL and demonstrate the advantages of our methods over gradient
aggregation-based DPFL methods on utility, convergence, reliance on network capacity, and com-
munication cost. Extensive empirical evaluation shows that our methods improve the privacy-utility
trade-off in both privacy regimes.
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