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Abstract

We analyze and evaluate the di¤erent decision rules describing the Council of Min-
isters of the EU starting from 1958 up to now. Most of the existing studies use the
Banzhaf index (for binary voting) or the Shapley-Shubik index (for distributive poli-
tics). We argue in favor of the nucleolus as a power measure in distributive situations
and an alternative to the Shapley-Shubik index. We then calculate the nucleolus and
compare the results of our calculations with the conventional measures. In the second
part, we analyze the power of the European citizens as measured by the nucleolus under
the egalitarian criterion proposed by Felsenthal and Machover (1998), and characterize
the �rst best situation. Based on these results we propose a methodology for the de-
sign of the optimal (fair) decision rules. We perform the optimization exercise for the
earlier stages of the EU within a restricted domain of voting rules, and conclude that
Germany should receive more than the other three large countries under the optimal
voting rule.
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1 Introduction

Democratic decision-making is based on voting. Political scientists and economists have long
noted that it is far from obvious how to measure the voting power of di¤erent individuals or
groups, e.g. parliamentary coalitions, in decision-making bodies. They noticed that voting
power is not always proportional to the number of votes controlled by the individual or group.
For example, Luxembourg was powerless in the Council of Ministers of the EU between 1958
and 1973. It held one vote, whereas a quali�ed majority of votes was de�ned to be 12 out
of 17. Since all other member states held an even number of votes, Luxembourg formally
was never able to make a di¤erence. The recent enlargement of the European Union caused
a lively debate on the adequate tools for measuring power and had strong implications for
the balance of power among member states.
There is a vast theoretical and empirical literature on power measures.1 Most of this

literature assumes that the decision that must be made by the committee is a binary yes/no
decision on an external proposal; compromise solutions or other amendments to the proposal
are not possible. The power of a voter in this binary setting is usually measured by the
probability of the voter being pivotal. For example the Penrose (1946) measure, of which
the Banzhaf index is a normalization, can be interpreted as the probability of being pivotal
when each member of the committee is equally likely to vote yes and no, and all committee
members vote independently.
There is less consensus as to the best way to measure power when the decision is not

binary. Napel and Widgrén (2004) note that

"Scientists who study power ... seem divided into two disjoint methodological
camps. The �rst one uses non cooperative game theory to analyze the impact
of explicit decision making procedures and given preferences over a well-de�ned,
usually Euclidean policy space. The second one stands in the tradition of coop-
erative game theory with more abstractly de�ned voting bodies: the considered
agents have no particular preferences and form winning coalitions which imple-
ment unspeci�ed policies. Individual chances of being part of and in�uencing a
winning coalition are then measured by a power index... Several authors have
concluded that it is time to develop a uni�ed framework for measuring decision
power. On the one hand, such framework should allow for predictions and ex
post analysis of decisions based on knowledge of procedures and preferences. On
the other hand, it must be open to ex ante and even completely a priori analysis
of power when detailed information may either not be available or should be
ignored for normative reasons".

This approach is followed by Steunenberg, Schmidtchen and Koboldt (1999) and Napel
and Widgrén (2004). They assume a multidimensional policy space2 and a mapping from

1Recent papers include Algaba et al. (2007), Barr and Passarelli (2009), Bilbao et al. (2002), Felsenthal
and Machover (2001, 2004), Kaniovski and Leech (2009), Laruelle and Widgrén (1998) and Leech (2002).

2Other papers departing from the binary setting are Maaser and Napel (2007) and Kurz et al. (2011)
who consider a unidimensional policy space, and Laruelle and Valenciano (2008, chapter 4), who consider a
multidimensional policy space.
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the ideal points of the voters and the status quo to an outcome (usually the equilibrium of a
noncooperative game)3; the ideal points and status quo are randomly determined according
to some probability distribution. The strategic power index of Steunenberg, Schmidtchen
and Koboldt (1999) is based on the expected distance between a player�s ideal point and
the equilibrium outcome, with a larger distance indicating a less powerful player; a dummy
player who has no voting rights is used as the benchmark for comparison. Napel andWidgrén
(2004) compare the actual outcome with a shadow outcome that would arise if all other voters
keep their strategy but the voter in question deviates from equilibrium; power is measured
by the sensitivity of the outcome to the actions of that voter.
Our paper focuses on surplus distribution, so we consider a speci�c, but extremely im-

portant, multidimensional policy space, namely the simplex of some Euclidean space. This
setting arises naturally when the issue under scrutiny is the allocation of a �xed budget
across the members of an organization. More generally, under the assumptions of transfer-
able utility (i.e., quasi-linearity with respect to some common numeraire) and e¢ciency in
public decision making, the simplex structure appears as the e¢cient frontier of any bounded
and convex subset of policies like those considered in spatial models of politics. The key as-
sumption we make on preferences is that members care only about their share. Their ideal
points are the vertices of the simplex and there is no room for a di¤erence between ex ante
and ex post power measurement from the perspective of preferences.
Given the policy space we consider, the probability of being pivotal is a very imprecise

measure of voting power.4 For example, if the �nal outcome is the distribution of the surplus
within a minimal winning coalition, all members of the coalition are presumably pivotal, but
some members may receive very little whereas others may receive a lot. These di¤erent
shares are the result of di¤erences in power, and thus we chose to measure power by the
expected payo¤ of a voter5 ;6.
The question arises of what measure of expected payo¤ to use. We certainly agree with

Napel and Widgrén�s postulate that game forms have to be taken into account by political
analysis but we do not want the power analysis to be extremely sensitive to the details of the
game form used to describe the non-cooperative decision process, i.e. we would like a robust
power measure. We have chosen the nucleolus (Schmeidler, 1969) because, as we will discuss

3Several authors including Napel and Widgrén (2006, 2011) and Tsebelis (1994) have analyzed noncoop-
erative game forms describing the interaction between di¤erent EU decision making bodies.

4As we will see in section 2, all voters may have the same probability of being pivotal even if there are
large asymmetries between them.

5Early studies de�ned success (or satisfaction) as power + luck in the binary setting. Success means
getting what one voted for. This may be due to power (being pivotal) or luck (e.g., having the same
preferences as another player who is pivotal). Because voters� preferences are completely opposed in our
setting, luck plays no role and any positive payo¤ is a re�ection of power.

6The notion of power as expected payo¤ is far from new. Felsenthal and Machover (1998) discuss this
notion and call it P-power, as opposed to the probability of being pivotal in binary voting, which they call
I-power. The Shapley value, of which the Shapley-Shubik index is a special case, can be interpreted as
the expected payo¤ of playing a cooperative game (see Shapley (1953) and Roth (1977)). Expected payo¤s
play a central role in the strategic power index of Steunenberg, Schmidtchen and Koboldt (1999), though
power in their setting needs to be disentangled from luck (see Napel and Widgrén (2004); Schmidtchen and
Steunenberg (2011)).

3



in section 2, it appears as the vector of equilibrium payo¤s for the voters in two unrelated
games that have been used to model the public decision making process. The �rst is the
legislative bargaining game with random proposers of Baron and Ferejohn (1989), in which
voters directly make proposals and vote over how to divide a budget between themselves. If
proposal probabilities coincide with the nucleolus, then the nucleolus is the unique vector of
expected payo¤s (Montero, 2006); the nucleolus may arise for other proposal probabilities as
well depending on the voting game. The second is the sequential lobbying model of Groseclose
and Snyder (1996), in which the legislature votes over a binary issue and two opposing lobbies
buy the votes of (some of) the members of the legislature in order to get them to vote for
their preferred alternative. If at equilibrium lobbying takes place, then the nucleolus is a
vector of equilibrium payo¤s and, often, the unique vector of equilibrium payo¤s (see Young
(1978 a,b), Le Breton and Zaporozhets (2010) and Le Breton, Sudhölter and Zaporozhets
(2010)). In both models, the ex ante approach is well de�ned. In the bargaining model, it
arises because the proposer is randomly selected. In the lobbying model, as suggested in
Diermeier and Myerson (1999), randomness results from the fact that the willingness to pay
of each lobby is the realization of a random variable and that lobbying takes place i¤ the
ratio of the two realizations is larger than some threshold called the hurdle factor.
One of the important questions in the literature is whether the allocation of votes among

EU states is fair, and in particular whether the large countries are under-represented rela-
tively to the small ones. We address this question using the nucleolus as a power measure. In
the �rst part of our paper, we analyze the distribution of power in the Council of Ministers
according to the nucleolus starting from 1958 up to now. In the second part, we move to
a normative analysis, i.e. to the determination of the weights that should be assigned to
the members of the EU Council of Ministers in order to achieve a certain social objective.
Hereafter, we will refer to these weights as being the optimal weights.
The question of �nding the optimal weights has been addressed before in the literature,

mostly in the binary setting in which an alternative is pitted against the status quo, rather
than in a distributive setting in which the set of alternatives is a simplex7. Within the binary
setting, there have been egalitarian approaches that seek to equalize the power of all citizens
(as measured by the Banzhaf index), and utilitarian approaches that seek to maximize the
total utility of all citizens.8 In this paper, we follow the egalitarian approach with the
nucleolus being the measure of power of the countries in the EU Council of Ministers9: in
our setting the role of the Council of Ministers is to distribute some surplus across the
countries. The country amount is then divided equally among their citizens (we do not
introduce any bias). If this surplus is interpreted as the gains from the EU, we would like
this surplus to be shared equally among European citizens10. It follows from our result that

7An exception is Laruelle and Valenciano (2008, chapter 4), who study the optimal voting rule in a
generalized Nash bargaining setting.

8The egalitarian approach is implicit in Penrose�s (1946) square root rule. The utilitarian approach has
been explored by Beisbart, Bovens and Hartmann (2005), Barberà and Jackson (2006) and Beisbart and
Hartmann (2010).

9As it will be clear, we could of course reproduce the analysis for any other power measure.
10The principle of "one person, one vote" is generally taken to be the cornerstone of democracy. In this

distributive setting, the principle is as simple as "one person, one euro".
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this egalitarian goal will be met perfectly if and only if the nucleolus for the representatives
coincides with the population shares. It is not clear, however, how this principle ought
to be operationalized in practice. Although it seems straightforward to allocate weights
proportional to population sizes, there are often stark discrepancies between voting weight
and voting power as illustrated in the beginning of the introduction. We are confronted with
a combinatorial second best optimization problem. Second best, because perfect equality is
unattainable in general, thus we need to evaluate the social loss associated to deviations from
equality. Combinatorial, because there is a �nite number of possible games. In that respect
the terminology "optimal weights" can be misleading as what matters is the simple game
induced by the weights (if there are only three countries, weights are almost meaningless). In
addition to that, there is no reason to infer that the optimal simple game will be a weighted
majority game11. The combinatorial problem is di¢cult. We introduce a methodology based
on variance minimization12 for the design of the voting rule and illustrate its application
when the number of EU members was relatively small; even in this case, implementing the
method is far from easy and we restrict our search to a subset of all simple games13. We
conclude that the allocation was not fair14. In particular, we show that in the Council of
Ministers in 1958, Germany got too little weight as compared to France and Italy, and that,
surprisingly, the choice to make Luxembourg a dummy was optimal.
The rest of the paper is organized as follows. Section 2 provides a review of the closely

related literature. Section 3 describes the �rst �ve con�gurations of the Council of Ministers
between 1958 and 1995 which operated under weighted voting rules. We provide the values
for the nucleolus and compare them with alternative indices. In section 4, we repeat the
exercise for the quali�ed voting rules for 15 and 27 members as prescribed by the Treaty
of Nice. Section 5 is devoted to the design of the optimal (fair) voting rules. Section 6
deals with the calculation of the optimal voting rule for the earlier stages of the EU. An
appendix is dedicated to an overview of the notions from cooperative game theory which are
used in this paper, as well as some results on the combinatorics of simple games with special
attention to the issue of representation by weights.

2 Two "New" Power Indices

A measure of power is a map � from the set of simple games (N;W) to the set of n-tuples of
real numbers. The value �i = �i (N;W) is the power of player i in the game (N;W) ; and it
satis�es 0 � �i � 1. The most famous power measures used in the literature are the Banzhaf
(BZ) and the Shapley-Shubik (SS) indices. The latter is considered the appropriate power

11In the utilitarian framework, Barberà and Jackson (2006) show that the optimal voting rule is almost a
weighted voting rule.
12Other inequality indices like the Gini index or the Kolm-Atkinson indices could be used instead. The

results are very similar if the Gini index is used (see p. 31).
13Because the optimal second best game is not guaranteed to be a member of the chosen class of games,

the problem becomes a third best optimization problem.
14The smaller countries have not been systematically overrepresented according to the nucleolus. In

particular, the total payo¤ is divided among the four largest countries in the 1973 and 1981 Councils.
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measure in distributive situations (see Felsenthal and Machover (1998) and Laruelle and
Valenciano (2008)). Its justi�cation is mainly axiomatic (Shapley, 1953; Dubey, 1975).
In this paper, we introduce two new measures of power which are not derived from any

set of axioms but instead as vectors of equilibrium payo¤s of positive models of politics. We
are interested in the power of a country to approve as well as its power to block a decision.
The Banzhaf and the Shapley-Shubik indices give the same answer in both situations15. The
two new measures may assign di¤erent values to the power to approve and to the power to
block a proposal by a country.

2.1 Lobbying and Power : The Nucleolus

In this section, we show that the nucleolus and more generally, the vectors belonging to the
least core of the simple game arise as the vectors of equilibrium payo¤s of a game describing
the competition between two lobbies to buy the vote of the legislators. This game is due
to Groseclose and Snyder (1996) and further analyzed by Banks (2000) and Diermeier and
Myerson (1999). Lobbies make o¤ers to the legislators sequentially, and each legislator votes
for the lobby that paid him the most.
Le Breton and Zaporozhets (2010) and Le Breton, Sudhölter and Zaporozhets (2010)

show that, if lobbying takes place in equilibrium, the set of equilibrium o¤ers coincides with
the least core of the cooperative game. The public policy can be biased toward one side or
the other depending upon the strength of each lobby and one key parameter called the hurdle
factor of the simple game. Le Breton and Zaporozhets (2010) and Le Breton, Sudhölter and
Zaporozhets (2010) show how to calculate the hurdle factor. Young (1978 a, b) had already
developed a similar model assuming that lobbies move simultaneously and showed that the
set of equilibrium o¤ers coincides with the least core if one lobby is much stronger than the
other.
As emphasized by Young, the nucleolus NU (N;W) of the simple game (N;W) can be

interpreted as the vector of relative prices of the legislators� votes that a lobby has to pay
to impose its most preferred outcome in the presence of the opposition. If the �rst mover
favors the status quo, it needs to forestall all possible attempts by the second mover to bribe
a winning coalition. The optimal prices are the solutions to the following linear program
(the budget of the second mover is normalized to 1):

min
X

i2N

ti

s.t.
X

i2S

ti � 1 for all S 2 W

ti � 0 for all i 2 N

: (1)

15The (absolute) Banzhaf measure of a game coincides with the Banzhaf measure of the dual game in which
the blocking coalitions of the original game are winning. There are two other measures, the Coleman (1971)
measures, which refer to the probability of being pivotal conditional on the �nal decision being positive or
negative. The two Coleman measures are proportional to the Banzhaf measure and are mutually dual (see
Felsenthal and Machover, p. 49).
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The solution to this program (rescaled so that total payo¤s add up to 1) is the least core
of the corresponding cooperative game. It may contain multiple solutions, but the nucleolus
is always one of them.
It is important to point out that the set of equilibrium prices crucially depends on the

order of moves. If the second mover favors the status quo, it only needs to convince a blocking
coalition rather than a winning coalition, and the �rst mover needs to make sure that no
blocking coalition is a¤ordable to the second mover. The corresponding vectors of prices are
the solutions to the following linear program, where B is the set of blocking coalitions:

min
X

i2N

ti

s.t.
X

i2S

ti � 1 for all S 2 B

ti � 0 for all i 2 N

:

The measures of power advocated by Banzhaf and Shapley-Shubik are invariant to the
duality operation, i.e. BZ (N;W) = BZ (N;B) and SS (N;W) = SS (N;B). In contrast,
NU (N;W) 6= NU (N;B) except in the case where (N;W) is constant sum.

2.2 Bargaining and Power : The Nucleolus (Again)

In this section, we describe the power of the players as their expected equilibrium payo¤ in
a legislative bargaining game introduced by Baron and Ferejohn (1989). The voting rule is
represented by a simple voting game (N;W).
Bargaining proceeds as follows. At every round t = 1; 2,... Nature selects a random

proposer: player i is selected with probability pi. This player proposes a distribution of the
budget (x1; :::; xn) with xj � 0 for all j = 1; :::n and

Pn

j=1 xj = 1. The proposal is voted
upon immediately (closed rule). If the coalition of voters in favor of the proposal is winning,
the proposal is implemented and the game ends; otherwise the game proceeds to the next
period in which Nature selects a new proposer. Players are risk neutral and discount future
payo¤s by a factor �i 2 [0; 1]. A (pure) strategy for player i is a sequence �i = (�ti)

1
t=1,

where �ti(:); the tth round strategy of player i, prescribes a proposal x and a response to all
possible proposals by the other players. Players may condition their actions on the history
of play; however we will focus on equilibria in which they do not.
The solution concept is stationary subgame perfect equilibrium (SSPE). Stationarity re-

quires that players follow the same strategy at every round t regardless of past o¤ers and
responses to past o¤ers. Banks and Duggan (2000) have shown that an SSPE16 always exists

16The main predictions of the model in the absence of veto players are the following. First, there is
immediate agreement. Even without discounting there is a pressure to reach agreement in the �rst period
because of the risk of being excluded afterward. Second, all coalition partners with a positive expected
payo¤ must be pivotal, since otherwise it would be a waste of resources for the proposer. Third, the proposer
receives a disproportionate share of the pie, because he always buys the cheapest coalition and pays its
members just enough to secure the acceptance of the proposal.
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in this type of bargaining model. In addition, Eraslan and McLennan (2006) have shown
that all SSPE lead to the same expected equilibrium payo¤s17.
In the case where pi =

1
n
and �i = 1 for all i = 1; :::; n, we denote by BF (N;W) the

unique vector of equilibrium payo¤s attached to the SSPE of the bargaining game. Hereafter,
we will refer to this vector as the Baron-Ferejohn measure of power attached to the simple
game (N;W).
Montero (2006) has analyzed the above bargaining game in the case where �i = � for

all i = 1; :::; n. She shows that if the vector p coincides with the nucleolus, then p is the
unique vector of equilibrium payo¤s. In her terminology, the nucleolus is a self-con�rming
measure of power. She also shows that in equilibrium all players are equally likely to be in
the coalition that forms (except for players who get 0 according to the nucleolus, who may
appear more infrequently). This is consistent with an interpretation of the nucleolus as a
system of competitive prices: if players are paid a competitive price, there is no reason for
some coalition partners to be more desirable than others (see Montero (2005), section 3).
It is worth noting that Kalandrakis (2006) shows that any vector from the simplex is the

vector of equilibrium payo¤s of the Baron-Ferejohn game for some choice of the recognition
probabilities. In particular, the Shapley-Shubik index can be obtained in this way. However,
the nucleolus is much more robust to changes in the recognition probabilities. For example,
in the weighted majority game [3; 2; 1; 1; 1] if we assume p2 = p3 = p4, it turns out that the
nucleolus is the equilibrium payo¤ for 0 < p1 � 0:5 (a broad interval encompassing equal
probabilities for all players and probabilities proportional to votes) whereas the Shapley-
Shubik index arises only if p1 = 3=5 (Montero (2006), example 9).

3 Five Voting Bodies: Descriptive Analysis of Power

This section is purely descriptive. We analyze �ve weighted majority voting games associated
to the Council of Ministers of the European Union in 1958, 1973, 1981, 1986 and 1995 (Table 1
is adapted from Felsenthal and Machover, 2001), and compare the distribution of the decision
power according to the four di¤erent power measures.
We provide values for the Banzhaf (BZ) and the Shapley-Shubik (SS) indices (calculated

using the webpage of D. Leech), the nucleolus (denoted byNU and calculated using a Maple
program based on Matsui and Matsui (2000)), the nucleolus of the dual game (denoted
NU(b)) and two indices obtained from the Baron-Ferejohn noncooperative game assuming
equal recognition probabilities. Expected payo¤s for the original Baron-Ferejohn game are
denoted by BF and taken from Montero (2007); some of these results also appear in Snyder
et al. (2005)18. Expected payo¤s in the Baron-Ferejohn model with respect to the dual game
(N;B) are calculated below and denoted by BF(b). Besides being relevant to lobbying, the
dual game can be relevant to bargaining if the �rst coalition that forms is able to set the
status quo and commit itself to vote against any alternative proposal.

17Special cases of this result were proven in Eraslan (2002), Montero (2006) and Yan (2009).
18Montero (2007) computes expected payo¤s for the 1958, 1973 and 1981 Councils. Snyder et al.�s (2005)

table 2 contains expected payo¤s for 1958 and 1973. The calculations coincide for 1958 but disagree for 1973.
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Table 1: Weights and quota in the Council of Ministers.

Country 1958 1973 1981 1986 1995

Germany 4 10 10 10 10
Italy 4 10 10 10 10
France 4 10 10 10 10
UK � 10 10 10 10
Spain � � � 8 8
Belgium 2 5 5 5 5
Netherlands 2 5 5 5 5
Greece � � 5 5 5
Portugal � � � 5 5
Sweden � � � � 4
Austria � � � � 4
Denmark � 3 3 3 3
Ireland � 3 3 3 3
Finland � � � � 3
Luxembourg 1 2 2 2 2
Quota 12 41 45 54 62
Total votes 17 58 63 76 87
Quota (%) 70:59 70:69 71:43 71:05 71:26

3.1 Power Distribution in 1958

The European Community is represented by the weighted majority game [12; 4; 4; 4; 2; 2; 1].
As one can easily see Luxembourg is not in any minimal winning coalition, and the game
can be equivalently represented as [6; 2; 2; 2; 1; 1; 0].
First, we look at the expected equilibrium payo¤s in the bargaining game with equal

probabilities of being a proposer and focusing on blocking coalitions. Denote by x, y and z
respectively the expected payo¤s for players of type 2, 1 and 0. We conjecture that x = y in
equilibrium. If this is the case, the equilibrium strategies might be summarized as follows:

Player type
[2] [1] [0]

Coalition type [2; 2] � � �
[2; 1] 1� � 1 �
[2; 2; 0] � � �
[2; 1; 0] � � 1� �

In the table we indicate the probability of proposing each coalition type by each player

9



type.19 The equations for the players� expected payo¤s are:

x =
1

6
(1� x) +

2

6

�

2
x+

2

6

1

3
x+

1

6

�
2

3
�+

1� �

3

�
x

y =
1

6
(1� x) +

3

6

1� �

2
y +

1

6

1� �

2
y

z =
1

6
(1� 2x)

x = y

The solution is: 0 � � � 1, � = 6�5�
15

; x = y = 5
28
� 0:179; z = 3

28
� 0:107. The values found

for the probabilities are between 0 and 1 and no player can gain by proposing an alternative
coalition given the values of x, y and z; hence we have an equilibrium.
Interestingly, the medium-size countries get the same payo¤ as the large ones, and the

small country gets a disproportionately high payo¤ as well. Part of the reason is that the
small and medium countries have a disproportionately high proposal power: the probability
of being selected as a proposer is the same for all the countries and equals 1=6. Note also
that Luxembourg is a dummy but gets a positive expected payo¤ because it is allowed to
make proposals.
Denote by x, y and z respectively the payo¤s for players of type 2, 1 and 0. In order to

calculate the nucleolus (NU) we solve the problem (1) which looks like

min 3x+ 2y
s.t. 2x+ 2y � 1

3x � 1
x; y � 0

:

The solution of this problem is x = 1
3
and y = 1

6
, and the value of the program (the

hurdle factor) is  = 1:333: A player of type 2 receives twice as much as a player of type
1, which is intuitive since it can be replaced by two players of type 1 in a minimal winning
coalition. This substitutability property often holds for the nucleolus in contrast to other
power indices, but it does not hold in all cases. In particular, it does not hold for 1973 and
1981 as we will see below.
If we look at the dual game, the nucleolus is the solution (up to a normalization) of the

following program:
min 3x+ 2y
s.t. x+ y � 1
2x � 1
x; y � 0

:

19For example, a player of type [2] proposes a coalition of type [2,2] with probability �. Because each
proposer of type [2] belongs to two coalitions of type [2,2], each of them is proposed with probability �=2.
A type [0] player proposes a coalition of type [2,1,0] with probability 1��. There are 6 such coalitions, and
each type [1] player belongs to 3 of them. Thus, if type [0] is selected to be the proposer, each type [1] player
receives a proposal with probability (1� �)=2.
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The solution now is
�
1
2
; 1
2

�
and the value of the program (the dual hurdle factor) is

 = 2:5. Note that players of types 2 and 1 get the same payo¤ according to the nucleolus
even though they are not interchangeable.
The power measures are summarized in Table 2:

Table 2: Power distribution in 1958.

Country SS BZ BF BF (b) NU NU(b)
 = 1:333  = 2:5

Germany 0:233 0:238 0:238 0:179 0:250 0:200
Italy 0:233 0:238 0:238 0:179 0:250 0:200
France 0:233 0:238 0:238 0:179 0:250 0:200
Netherlands 0:150 0:143 0:119 0:179 0:125 0:200
Belgium 0:150 0:143 0:119 0:179 0:125 0:200
Luxembourg 0 0 0:048 0:107 0 0

3.2 Power Distribution in 1973

The voting body is represented by the weighted majority game [41; 10; 10; 10; 10; 5; 5; 3; 3; 2].
Again, we are looking for the expected equilibrium payo¤s in the dual game, and we

denote by x, y, z and w the expected payo¤s for players of type 10, 5, 3 and 2 respectively.
We look for an equilibrium in which y = z and x < 2y. If such an equilibrium exists, [10,10] is
the cheapest coalition type for proposer type [10], and [10,5,3] is the cheapest coalition type
for [3]. Type [5] is indi¤erent between [10,5,5] and [10,5,3]; we will look for an equilibrium
in which [10,5,3] is proposed with certainty. Type [2]�s cheapest minimal winning coalition
is [10,3,3,2], but this is not the optimal coalition for this type because [10,10,2] is cheaper.
The equilibrium strategies might be summarized as follows:

Player type
[10] [5] [3] [2]

Coalition type [10; 10] 1(3) � � �
[10; 5; 3] � 1(8) 1(8) �
[10; 10; 2] � � � 1(4)
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The equations for the expected payo¤s are given by:

x =
1

9
(1� x) +

3

9

1

3
x+

4

9

1

4
x+

1

9

1

2
x

y =
1

9
(1� x� z) +

2

9

1

2
y

z =
1

9
(1� x� y) +

2

9

1

2
z

w =
1

9
(1� 2x)

y = z

Expected equilibrium payo¤s are:

x =
2

15
� 0:133; y = z =

13

135
� 0:096, w =

11

135
� 0:081:

Because the expected payo¤s we found satisfy our original conjecture x < 2y, we have
found an equilibrium. Surprisingly, expected payo¤s for the smaller countries are quite large
and do not di¤er much between player types.
To calculate the nucleolus we solve the linear program:

min 4x+ 2y + 2z + w
s.t. 4x+ y � 1

4x+ z � 1
4x+ w � 1
3x+ 2y + z � 1
3x+ 2y + w � 1
3x+ y + 2z � 1
x; y; z; w � 0

:

The solution is (1=3; 0; 0; 0) and the value of the program is 4=3. As compared to 1958
the hurdle factor does not change, as well as the power of the big countries. However,
other countries, even though they are not dummies, get zero. Giving 0 to nondummies is
impossible for SS and BZ but is not unusual for the nucleolus; as a result the nucleolus is
very di¤erent from other indices in this example.
Looking at the minimal blocking coalitions we need to solve:

min 4x+ 2y + 2z + w
s.t. x+ y + z � 1

x+ 2y � 1
2x � 1
2y + 2z + w � 1
x+ 2z + w � 1
x; y; z; w � 0
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The solution is
�
1
6
; 1
12
; 1
12
; 0
�
and the dual hurdle factor is  = 3. Even though Luxembourg

is not a dummy anymore it still gets 0. The dual hurdle factor is greater than in the previous
case, which means that the Council became less vulnerable to lobbying.
The power measures are summarized in Table 3.

Table 3: Power distribution in 1973.

Country SS BZ BF BF (b) NU NU (b)
 = 1:333  = 3:0

Germany 0:179 0:167 0:159 0:133 0:250 0:167
Italy 0:179 0:167 0:159 0:133 0:250 0:167
France 0:179 0:167 0:159 0:133 0:250 0:167
UK 0:179 0:167 0:159 0:133 0:250 0:167
Belgium 0:081 0:091 0:079 0:096 0 0:083
Netherlands 0:081 0:091 0:079 0:096 0 0:083
Denmark 0:057 0:066 0:071 0:096 0 0:083
Ireland 0:057 0:066 0:071 0:096 0 0:083
Luxembourg 0:001 0:016 0:063 0:081 0 0

3.3 Power Distribution in 1981

As pointed out in Montero (2007) the representation [45; 10; 10; 10; 10; 5; 5; 5; 3; 3; 2] is equiv-
alent to [18; 4; 4; 4; 4; 2; 2; 2; 1; 1; 1]. The dual game is then [8; 4; 4; 4; 4; 2; 2; 2; 1; 1; 1]:
The nucleolus is the solution of the linear program:

min 4x+ 3y + 3z
s.t. 4x+ y � 1

4x+ 2z � 1
3x+ 3y � 1
3x+ 2y + 2z � 1
x; y; z � 0

The minimum is reached at (1=3; 0; 0), and the value of this minimum is 4=3. In fact,
nothing is changed as compared to 1973.

The following linear program:
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min 4x+ 3y + 3z
s.t. 2x � 1

x+ 2y � 1
x+ y + 2z � 1
3y + 2z � 1
x; y; z � 0

gives the solution if we are interested in blocking coalitions. The nucleolus in this case is
(0:16; 0:08; 0:04) and the dual hurdle factor is  = 3:125.
When calculating expected payo¤s in the dual game, we look for an equilibrium in which

x < 2y, y < 2z and x < y + z (the latter inequality implies that [4,4,1] is the optimal
coalition type for player type [1]). Then, the optimal strategies can be summarized in the
following table:

Player type
[4] [2] [1]

Coalition type [4; 4] 1(3) � �
[4; 2; 2] � 1(8) �
[4; 4; 1] � � 1(6)

The system for the equilibrium expected payo¤s is:

x =
1

10
(1� x) +

3

10

1

3
x+

3

10

2

8
x+

3

10

3

6
x

y =
1

10
(1� x� y) +

2

10

4

8
y

z =
1

10
(1� 2x)

The solution is:

x =
4

31
� 0:129; y =

27

310
� 0:087 and z =

23

310
� 0:074:

Because the values of x, y and z we found satisfy our original assumptions of x < 2y,
y < 2z and x < y + z, we have found an equilibrium.
The power measures are summarized in Table 4.

3.4 Power Distribution in 1986

The game is described as [54; 10; 10; 10; 10; 8; 5; 5; 5; 5; 3; 3; 2]: The dual game can be written
as [23; 10; 10; 10; 10; 8; 5; 5; 5; 5; 3; 3; 2]: By ! we denote the number of minimal winning coali-
tions. Table 5 summarizes the power measures for this voting rule. Unlike in the previous
two cases, the four power measures are not too di¤erent. Some groups of equivalent players
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Table 4: Power distribution in 1981.

Country SS BZ BF BF (b) NU NU (b)
 = 1:333  = 3:125

Germany 0:174 0:158 0:160 0:129 0:250 0:160
Italy 0:174 0:158 0:160 0:129 0:250 0:160
France 0:174 0:158 0:160 0:129 0:250 0:160
UK 0:174 0:158 0:160 0:129 0:250 0:160
Belgium 0:071 0:082 0:080 0:087 0 0:080
Netherlands 0:071 0:082 0:080 0:087 0 0:080
Greece 0:071 0:082 0:080 0:087 0 0:080
Denmark 0:030 0:041 0:040 0:074 0 0:040
Ireland 0:030 0:041 0:040 0:074 0 0:040
Luxembourg 0:030 0:041 0:040 0:074 0 0:040

get the same payo¤ according to the nucleolus: a player with 10 votes gets the same payo¤
as two players with 5 votes, and the player with 8 votes gets the same as two players with 5
and 3 votes. Nevertheless, Luxembourg still gets 0 even though it can replace a large country
together with Spain.

Table 5: Power distribution in 1986.

Country SS BZ NU NU (b)
 = 1:38  = 3:2
! = 135 ! = 182

Germany 0:134 0:129 0:138 0:125
Italy 0:134 0:129 0:138 0:125
France 0:134 0:129 0:138 0:125
UK 0:134 0:129 0:138 0:125
Spain 0:111 0:109 0:103 0:125
Belgium 0:064 0:067 0:069 0:063
Netherlands 0:064 0:067 0:069 0:063
Greece 0:064 0:067 0:069 0:063
Portugal 0:064 0:067 0:069 0:063
Denmark 0:043 0:046 0:034 0:063
Ireland 0:043 0:046 0:034 0:063
Luxembourg 0:012 0:018 0 0
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3.5 Power Distribution in 1995

The game is described as [62; 10; 10; 10; 10; 8; 5; 5; 5; 5; 4; 4; 3; 3; 3; 2] with total weight 87.
The dual game is [26; 10; 10; 10; 10; 8; 5; 5; 5; 5; 4; 4; 3; 3; 3; 2]. Table 6 summarizes the power
measures for this voting rule. It is interesting to note that this is the only case in which the
nucleolus is proportional to the weights.

Table 6: Power distribution in 1995.

Country SS BZ NU NU (b)
 = 1:4  = 3:33
! = 829 ! = 1270

Germany 0:117 0:112 0:115 0:1
Italy 0:117 0:112 0:115 0:1
France 0:117 0:112 0:115 0:1
UK 0:117 0:112 0:115 0:1
Spain 0:095 0:092 0:092 0:1
Belgium 0:055 0:059 0:057 0:05
Netherlands 0:055 0:059 0:057 0:05
Greece 0:055 0:059 0:057 0:05
Portugal 0:055 0:059 0:057 0:05
Sweden 0:045 0:048 0:046 0:05
Austria 0:045 0:048 0:046 0:05
Denmark 0:035 0:036 0:034 0:05
Ireland 0:035 0:036 0:034 0:05
Finland 0:035 0:036 0:034 0:05
Luxembourg 0:021 0:023 0:023 0:05

4 Quali�ed Majority Voting in the Treaty of Nice

4.1 QMV in non-enlarged CM

The Treaty of Nice changed the votes of the member states and the quota to W15 =
[169; 29; 29; 29; 29; 27; 13; 12; 12; 12; 10; 10; 7; 7; 7; 4]. It also introduced the additional require-
ment that the member states constituting the quali�ed majority represent at least 62% of
the total population. A majority of member states is also mentioned, but this turns out to
be redundant (see Felsenthal and Machover (2001)).
The rule P15 = [2327; 820; 592; 590; 576; 394; 158; 105; 102; 100; 89; 81; 53; 52; 37; 4] (total

weight is 3753) is the weighted rule whose weights are population sizes of 15 countries and
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quota is 62%. The following Table 7 presents the results of computing the nucleolus forW15

as well as for the double majority system W15 \ P15.

Table 7: Power distribution for the 15 EU countries under the nucleolus.

Country W15 W15 \ P15
NU NU(b) NU NU(b)
 = 1:4  = 3:414  = 1:4  = 3:483
! = 775 ! = 1018 ! = 760 ! = 1490

Germany 0:122 0:121 0:122 0:139
Italy 0:122 0:121 0:122 0:119
France 0:122 0:121 0:122 0:119
UK 0:122 0:121 0:122 0:119
Spain 0:112 0:111 0:112 0:109
Belgium 0:051 0:061 0:051 0:059
Netherlands 0:051 0:051 0:051 0:050
Greece 0:051 0:051 0:051 0:050
Portugal 0:051 0:051 0:051 0:050
Sweden 0:041 0:040 0:041 0:050
Austria 0:041 0:040 0:041 0:040
Denmark 0:031 0:030 0:031 0:030
Ireland 0:031 0:030 0:031 0:030
Finland 0:031 0:030 0:031 0:030
Luxembourg 0:020 0:020 0:020 0:020

4.2 QMV in a 27-member CM

Following Felsenthal and Machover (2001) and Bilbao et al. (2002) we consider di¤erent
variants involving votes, population and/or number of member countries.
The �rst variant is a double majority system v1\v2, or v1\v3. The rule v1 is the weighted

rule with votes described by
W27 = [255; 29; 29; 29; 29; 27; 27; 14; 13; 12; 12; 12; 12; 12; 10; 10; 10; 7; 7; 7; 7; 7; 4; 4; 4; 4; 4; 3].
The rule v2 is rule P27, the weighted rule whose weights are population shares (per

thousand) of the 27 members and whose quota is equal to 62%:
P27 = [620; 170; 123; 122; 120; 82; 80; 47; 33; 22; 21; 21; 21; 21; 18; 17; 17; 11; 11; 11; 8; 8; 5; 4; 3; 2; 1; 1].
Finally, v3 isM27, the ordinary majority rule:
M27 = [14; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1]:
The second variant is a triple majority system of votes, population and member countries

v1 \ v2 \ v3, where v1, v2 and v3 are as before.
We report the number of minimal winning coalitions for each rule below.
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Table 8: Minimal winning coalitions for the 27 EU countries under di¤erent rules.

rule !
W27 561645
W27 \ P27 561642
W27 \M27 561823
W27 \M27 \ P27 561820

Felsenthal and Machover (2001) show that W27 and W27 \M27 \ P27 di¤er in only 23
coalitions (out of the 2,718,774 winning coalitions of W27, 23 become losing inW27 \M27 \
P27); this di¤erence has a negligible impact on the Banzhaf index. Similarly, we observe little
di¤erence between the four rules in terms of the number of minimal winning coalitions20.
The hurdle factor  is not a¤ected by the additional requirements and remains the same
( = 1:353) for all rules. Likewise, the nucleolus assigns the same values to the countries
under the four rules (see table 9), and these values are proportional to the weights in W27.

20Note that while the number of winning coalitions cannot increase under intersection, the number of
minimal winning coalitions may increase or decrease.
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Table 9: Power distribution for the 27 EU countries according to the nucleolus
under any of the considered rules.

Country NU
Germany 0:084
UK 0:084
France 0:084
Italy 0:084
Spain 0:078
Poland 0:078
Romania 0:041
Netherlands 0:038
Greece 0:035
Czech Republic 0:035
Belgium 0:035
Hungary 0:035
Portugal 0:035
Sweden 0:029
Bulgaria 0:029
Austria 0:029
Slovak Republic 0:020
Denmark 0:020
Finland 0:020
Ireland 0:020
Lithuania 0:020
Latvia 0:012
Slovenia 0:012
Estonia 0:012
Cyprus 0:012
Luxembourg 0:012
Malta 0:009

5 The Power of the European Citizens and the Optimal

Decision Rule

In the previous sections we calculated several measures of the power of each nation (repre-
sentative) in the Council of Ministers of the European Union. In this section, we will focus
on the nucleolus and we will adopt a normative perspective. As already explained, focusing
on the nucleolus simply means that we are interested in European policy issues which can be
described formally as distributive politics. Something has to be shared among the members
of the Council of Ministers and ultimately among the European citizens and the nucleolus is
the reduced form of equilibrium for several alternative game forms spanning bargaining and
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lobbying. To �x ideas, let us for the time being interpret this pie as the gains (measured
in appropriate units) resulting from European coordination. Fairness requires equal division
of these gains between all citizens, which implies that each country should receive a share
proportional to its population size. If there were no intermediate political bodies i.e. if
the simple game was a majority game with the set of all European citizens as the set of
players, then all the coordinates of the nucleolus would be equal and proportionality would
be ful�lled. Unfortunately, we are in a second best environment: the negotiation takes place
across the countries, and only in a second stage is the share obtained by each country divided
among the citizens of the country. We need to evaluate the citizens� indirect power via their
representatives.
Let the simple voting game � = (M;W) describe the decision-making process at the

council, where M = f1; :::;mg is the set of countries and W is set of all winning coalitions.
The set of citizens is denoted by N = N1 [ :::[Nm, and the number of citizens of country i
is denoted by ni. Denoting the nucleolus of the game � as �, the citizens� payo¤s are given
by

y =

0

BB
@
�1
n1
; :::;

�1
n1| {z }

n1 times

; :::;
�m
nm

; :::;
�m
nm| {z }

nm times

1

CC
A :

Remark 1 Citizens� indirect powers are equal for all i 2 N i¤ the nucleolus paypo¤s of the
delegates �j are equal to the respective population rates

nj
n
.

The optimization variable is the simple game (M;W). There is a �nite number of possible
choices. This number can be large if we do not impose any restrictions on the nature of the
simple game. In appendix 3 we report some results from the literature on the enumeration of
all simple games or important families of simple games. One of the most important classes is
that of constant-sum weighted majority games. Peleg (1968) showed that, if we assign zero
weight to dummy players, the unique normalized homogeneous representation of a constant-
sum homogeneous weighted majority game (N;W) coincides with the nucleolus of (N; v).

If the game generated by the weights !i = ni and the quota
P
i2M !i

2
is homogeneous and

has no dummy players, then the solution of our problem is trivial as we can get the �rst
best; however this will only happen by coincidence. In what follows, we will formulate the
combinatorial optimization problem that we consider and derive the optimal simple game
(M;W). Before doing so, it is useful to evaluate the actual choices of (M;W) for the �ve
stages of European enlargement which are considered in this paper. In the following two
tables 10 and 11 we show the population ratios taken from Felsenthal and Machover (1998,
2004) and the nucleolus taken from the tables in the previous section. An asterisk indicates
an occurrence of the paradox of new members: a member state�s relative power has increased
although its relative weight has decreased as a result of the accession of the new members.
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Table 10: Population and the nucleolus in the Council of Ministers 1958-1995.

Country 1958 1973 1981 1986 1995
nj
n

NU
nj
n

NU
nj
n

NU
nj
n

NU
nj
n

NU
France 0:266 0:250 0:203 0:250 0:200 0:250 0:172 0:138 0:156 0:115
Germany 0:322 0:250 0:242 0:250 0:228 0:250 0:189 0:138 0:220 0:115
Italy 0:291 0:250 0:214 0:250 0:209 0:250 0:176 0:138 0:154 0:115
Belgium 0:053 0:125 0:03 8 0 0:036 0 0:031 0:069� 0:027 0:057
Netherlands 0:066 0:125 0:052 0 0:053 0 0:045 0:069� 0:042 0:057
Luxembourg 0:002 0 0:001 0 0:001 0 0:001 0 0:001 0:023�

UK � � 0:218 0:250 0:205 0:250 0:176 0:138 0:157 0:115
Denmark � � 0:019 0 0:019 0 0:016 0:034� 0:014 0:034
Ireland � � 0:012 0 0:013 0 0:011 0:034� 0:010 0:034
Greece � � � � 0:036 0 0:031 0:069� 0:02 8 0:057
Spain � � � � � � 0:120 0:103 0:105 0:092
Portugal � � � � � � 0:031 0:069 0:027 0:057
Austria � � � � � � � � 0:022 0:046
Sweden � � � � � � � � 0:024 0:046
Finland � � � � � � � � 0:014 0:034
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Table 11: Population and the nucleolus in the Council of Ministers under QM
rules with 15 and 27 members.

Country QM 15 QM 27
nj
n

NU
nj
n

NU
Germany 0:219 0:122 0:170 0:084
France 0:157 0:122 0:123 0:084
UK 0:158 0:122 0:123 0:084
Italy 0:154 0:122 0:120 0:084
Spain 0:105 0:112 0:082 0:078
Poland � � 0:080 0:078
Romania � � 0:047 0:041
Netherlands 0:042 0:051 0:033 0:038
Greece 0:028 0:051 0:022 0:035
Portugal 0:027 0:051 0:021 0:035
Belgium 0:027 0:051 0:021 0:035
Czech Republic � � 0:021 0:035
Hungary � � 0:021 0:035
Sweden 0:024 0:041 0:018 0:029
Austria 0:022 0:041 0:017 0:029
Bulgaria � � 0:017 0:029
Denmark 0:014 0:031 0:011 0:02
Slovak Republic � � 0:011 0:02
Finland 0:014 0:031 0:011 0:02
Ireland 0:010 0:031 0:008 0:02
Lithuania � � 0:008 0:02
Latvia � � 0:005 0:012
Slovenia � � 0:004 0:012
Estonia � � 0:003 0:012
Cyprus � � 0:002 0:012
Luxembourg 0:001 0:020 0:001 0:012
Malta � � 0:001 0:009

It is interesting to compare table 10 with table 5.3.9 in Felsenthal and Machover (1998),
where fairness is evaluated using the Banzhaf index as a power measure. By comparing
Banzhaf indices and the square root of the population, they show that larger member states
tend to have too little power and the smaller ones too much, though they claim that the
discrepancies are not too large except for Germany and Luxembourg. In our table we see
two types of situation: for 1958, 1986 and 1995 the pattern of larger countries getting a less
than proportional payo¤ is repeated; however in 1973 and 1981 the payo¤ is divided among
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the four largest countries.
Analogously we can compare table 11 with tables 6 and 9 in Felsenthal and Machover

(2001). While larger countries have too little power and smaller countries too much according
to the nucleolus, the results are not so clear-cut according to the Banzhaf index. For example,
Spain has too much power according to the Banzhaf index but smaller countries like Denmark
have too little power.
Obviously, the results suggest that the European citizens are not treated equally under

the decision rules operating in the CM since 1958 till now. The reason is that the nucleolus
does not coincide with the population ratios. In what follows we investigate the question of
whether it would have been possible to do better and describe the methodology to choose
the optimal decision rule.

6 The Optimal (Fair) Decision Rules

Remark 1 states that if we would like to equalize the citizens� power, we need to choose a
voting rule which leads to the nucleolus �j for the representatives being equal to the countries�
population sizes. However, except in exceptional circumstances, it is not possible to �nd a
game for which the vector of countries� population sizes coincides with the nucleolus. Our
tables 10 and 11 provide information on the distance between the �rst best and the outcome
of the choices which were made. We will now show that it was possible to �nd simple games
whose nucleolus is closer to the population shares.
Hereafter, we will assume that the objective of the political architect is to design the

simple game (M;W) in such a way that the distance between the induced nucleolus calculated
at the citizen level and the egalitarian division is the smallest possible. We chose to measure
this distance by the variance, but the minimization of any other inequality index like the
Gini index or a Kolm-Atkinson index would also be appropriate.
Denoting by Sm the set of all simple games with m players, our combinatorial problem

is de�ned as follows:

Min
(M;W)2Sm

V ar (NU ((M;W))) ;

where

V ar (NU ((M;W))) =
X

i2M

ni

�
1

n
�
�i
ni

�2
; (2)

where NU ((M;W)) = (�1; �2; :::; �m). The term
�i
ni
indicates how much power a citizen

in country i gets given a speci�c voting rule.
Maaser and Napel (2007) refer to (2) as the cumulative individual quadratic deviation and

point out that it is equivalent to considering the Euclidean distance. Beisbart and Bovens
(2007) also use the quadratic criterion to measure departure from perfect equality.

Expanding (2) we obtain V ar (NU ((M;W))) =
X

i2M

ni

h
1
n2
+ (�i)

2

(ni)
2 �

2�i
nni

i
, or equivalently
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X

i2M

h
ni
n2
+ (�i)

2

ni
� 2�i

n

i
. Taking into account that

X

i2M

ni = n and
X

i2M

�i = 1 and collecting

terms, we �nd

V ar (NU ((M;W))) =
X

i2M

(�i)
2

ni
�
1

n
: (3)

The resolution of our problem would be greatly simpli�ed if we knew the image Im (NUm)
of the mapping NUm attaching to any simple game (M;W) 2 Sm the nucleolus of the
game. Im (NUm) is a �nite subset of the (m� 1)� dimensional simplex. If Im (NUm) was
characterized, our problem would be

Min
X

i2M

(xi)
2

ni

s.t. x 2 Im (NUm)
: (4)

Unfortunately, Im (NUm) has not been characterized. The characterization of the set of
vectors that can be obtained as power measures for some simple game given the number of
players is known as the inverse problem. This problem has been formulated recently by Alon
and Edelman (2010) for the Banzhaf index and they obtained partial results. We are not
aware of any general result on the inverse problem for the nucleolus. This means that we
will examine the combinatorial problem in its original formulation. Due to the large number
of simple games, we will restrict the search to a subset Gm of the set Sm of all simple games.
The procedure for solving (4) can be presented as the sequence of the following steps:
Step 1. For the given number of countries m, list all games in the class Gm;
Step 2. Calculate the nucleolus � for each game from the list;
Step 3. Find the variance from (3);
Step 4. Choose the game with the minimal variance.
We illustrate our technique for m = 3. Without loss of generality we assume that

n1 � n2 � n3.
For 3 countries there are very few possible games, so we can solve the problem quite

generally. If we assume that the game is monotonic (adding players cannot turn a winning
coalition into a losing one), proper (no two disjoint coalitions can be winning), directed
(players can be unambiguously ranked in order of desirability with player 1 being at least as
desirable as player 2, who is at least as desirable as player 3), v(?) = 0 and v(N) = 1, it turns
out that there are only �ve possible games and three possible values for the nucleolus. All
�ve games can be described as weighted majority games. These are [1; 1; 0; 0] in which player
1 is a dictator, [3; 2; 1; 1] in which player 1 is a veto player but not a dictator, [2; 1; 1; 0] in
which players 1 and 2 are veto players, [3; 1; 1; 1] in which all three players are veto players,
and [2; 1; 1; 1] which is the simple majority game with no veto players. The nucleolus is
(1; 0; 0) for the �rst two games, (1

2
; 1
2
; 0) for the third game and (1

3
; 1
3
; 1
3
) for the last two

games.
Given (3), the variance for the majority game (and for the unanimity game) is
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V armaj =
1
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n
;

and the variance for the dictatorial game (and for the game with one veto player) is

V ardict =
1

n1
�
1

n
:

The variance for the rule with two veto players is

V arveto12 =
1

4

�
1

n1
+
1

n2

�
�
1

n
:

The next �gure shows the values of the two biggest countries� population shares, 1 and
2; for which each of the three games is optimal.

Figure 1: The optimal rule for m = 3

Not surprisingly, the majority rule is optimal when the three countries are not too di¤erent
in terms of the population ratios, and the dictatorial rule is optimal in the case where there
is a relatively big country.
From the results reported in appendix 3, it is clear that we can solve our optimality prob-

lem by "brute force" as long as m � 8 for some speci�c important classes of simple games,
like constant-sum weighted majority games. It is far from certain that the optimal game
will be a member of this class, however this class has some desirable properties. Because
the nucleolus is always a representation for constant-sum majority games (Peleg, 1968), by
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choosing voting weights to coincide with the nucleolus we can achieve a maximally transpar-
ent voting system in which voting weights are equal to voting power.21 Because even this
class becomes too large to be analyzed for m � 9, we also analyze another class of games
in which the weights are �xed, so that the only element that varies from game to game is
the quota. We then look for the quota that minimizes nV ar. We �x the weights to coincide
with population shares. This seems a natural choice and it is also the choice made in the
Treaty of Lisbon. We implement the following algorithm.

1. Given the vector of weights (!1; :::; !n), we calculate the total weight !(S) associated
to each subset S � N . There are 2n such subsets (including the empty set).

2. Order the !(S) from lowest to largest. About half of these values are above !(N)
2

(exactly half if none of the coalitions has !(N)
2
votes). This gives at most 2n�1 relevant

values for the quota.22 Any numbers in between two of the values would be equivalent
to the higher of the two values and need not be considered.

3. Find the nucleolus for each of the games, calculate nV ar, and �nd the quotas that
minimize nV ar.

Note that payo¤s achievable in this class are not necessarily available in the class of
constant-sum weighted majority games and vice versa. For example, in a game with 4
players and n1 � n2 > n3 � n4, setting q = n1+ n2 leads to a nucleolus payo¤ of

�
1
2
; 1
2
; 0; 0

�
,

which is not available in the class of constant-sum weighted majority games. On the other
hand, with populations (3; 2; 2; 1) the payo¤ vector

�
2
5
; 1
5
; 1
5
; 1
5

�
is available in the class of

constant-sum weighted majority games but cannot be achieved if the weights must coincide
with the population shares.
We have chosen these two classes of games for the reasons outlined above. However,

there is no guarantee that the optimal game will be a member of either of the two classes.
For example, suppose the population values are (5; 4; 3; 3; 2; 1). If we are restricted to use
these values as weights, the best value for the quota is 12, which leads to a nucleolus value of
1
24
(7; 6; 4; 4; 2; 1). If we are restricted to the class of constant-sum weighted majority games,

the best choice is [9; 5; 4; 3; 2; 2; 1]; weights coincide with population values for all countries
except country 4, and the nucleolus is proportional to these weights. We can do quite well
within both classes, but we cannot achieve the �rst best. However, if we take the game
[16; 6; 5; 4; 4; 3; 2], which has di¤erent weights and is not constant-sum, it turns out that the
nucleolus is 1

18
(5; 4; 3; 3; 2; 1), exactly proportional to the population values.

In what follows, the nucleolus is computed using Derks and Kuipers� DOS program.
The program is available at Jean Derks� homepage (http://www.personeel.unimaas.nl/Jean-
Derks/), and the algorithm is explained in Derks and Kuipers (1997); see also Wolsey (1976).

21 ·Zyczkowski and S÷omczyński (2004) include transparency as a desirable condition for a voting system;
see also Pajala (2005).
22Because several coalitions may have the same total weight, the number of distinct available quotas may

be much lower.
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6.1 The EU Council of Ministers 1958 Revisited

We now apply our technique to �nd the optimal decision rule for the EU Council of Ministers
in 1958 given the population sizes in Table 10. Table 12 lists all constant-sum weighted
majority games with six players (taken from Isbell (1959)) with the corresponding values for
the nucleolus and nV ar. Note that, as discussed earlier, the nucleolus is proportional to the
weights.

Table 12: Constant-Sum Weighted Voting Games with 6 Players.

NU nVar

[1; 0; 0; 0; 0; 0] (1; 0; 0; 0; 0; 0) 2:106
[1; 1; 1; 0; 0; 0] (1=3; 1=3; 1=3; 0; 0; 0) 0:145
[2; 1; 1; 1; 0; 0] (2=5; 1=5; 1=5; 1=5; 0; 0) 0:391
[1; 1; 1; 1; 1; 0] (1=5; 1=5; 1=5; 1=5; 1=5; 0) 0:773
[3; 1; 1; 1; 1; 0] (3=7; 1=7; 1=7; 1=7; 1=7; 0) 0:412
[2; 2; 1; 1; 1; 0] (2=7; 2=7; 1=7; 1=7; 1=7; 0) 0:305
[3; 2; 2; 1; 1; 0] (1=3; 2=9; 2=9; 1=9; 1=9; 0) 0:120
[2; 1; 1; 1; 1; 1] (2=7; 1=7; 1=7; 1=7; 1=7; 1=7) 10:299
[4; 1; 1; 1; 1; 1] (4=9; 1=9; 1=9; 1=9; 1=9; 1=9) 6:295
[3; 2; 1; 1; 1; 1] (1=3; 2=9; 1=9; 1=9; 1=9; 1=9) 6:154
[4; 2; 2; 1; 1; 1] (4=11; 2=11; 2=11; 1=11; 1=11; 1=11) 4:062
[3; 3; 2; 1; 1; 1] (3=11; 3=11; 2=11; 1=11; 1=11; 1=11) 4:024
[4; 3; 3; 1; 1; 1] (4=13; 3=13; 3=13; 1=13; 1=13; 1=13) 2:837
[5; 2; 2; 2; 1; 1] (5=13; 2=13; 2=13; 2=13; 1=13; 1=13) 3:059
[5; 3; 3; 2; 1; 1] (1=3; 1=5; 1=5; 2=15; 1=15; 1=15) 2:208
[2; 2; 2; 1; 1; 1] (2=9; 2=9; 2=9; 1=9; 1=9; 1=9) 6:102
[3; 2; 2; 2; 1; 1] (3=11; 2=11; 2=11; 2=11; 1=11; 1=11) 4:258
[4; 3; 2; 2; 1; 1] (4=13; 3=13; 2=13; 2=13; 1=13; 1=13) 2:995
[3; 3; 2; 2; 2; 1] (3=13; 3=13; 2=13; 2=13; 2=13; 1=13) 3:201
[4; 3; 3; 2; 2; 1] (4=15; 1=5; 1=5; 2=15; 2=15; 1=15) 2:336
[5; 4; 3; 2; 2; 1] (5=17; 4=17; 3=17; 2=17; 2=17; 1=17) 1:777

As one can see from Table 12, in the class of constant-sum weighted majority games the
game [3; 2; 2; 1; 1; 0] provides the minimal variance with nV ar = 0:12. The actual decision
rule for 1958 is not in the list, because it is not a strong game. However, nV ar for this game
equals 0:175, and therefore this rule cannot be optimal.
Two conclusions can be drawn from this exercise. First, Germany got too little weight

compared to France and Italy. Second, the choice to make Luxembourg a dummy was
optimal in our context: because the population of Luxembourg is very small compared with
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the rest of countries, all games in which Luxembourg has a positive payo¤ have a very large
variance.
If instead we make weights coincide with population shares, the vector of weights would

be (0:322; 0:291; 0:266; 0:066; 0:053; 0:002). There are 25 = 32 possible games, but only 9
di¤erent values for the nucleolus. Perhaps surprisingly, the optimal voting game in this class
has the same nucleolus and thus the same nV ar as the optimal voting game in the class of
constant-sum weighted majority games.

Table 13: Possible Values for the Nucleolus in the 1958 Council of Ministers using
the Population as Weights.

Quota NU nVar

(0:500; 0:625] (1=3; 1=3; 1=3; 0; 0; 0) 0:145
(0:625; 0:643] (1=3; 2=9; 2=9; 1=9; 1=9; 0) 0:120
(0:643; 0:656] (1=3; 1=4; 1=6; 1=6; 1=12; 0) 0:216
(0:656; 0:668] (2=7; 2=7; 1=7; 1=7; 1=7; 0) 0:305
(0:668; 0:678] (1=4; 1=4; 1=4; 1=4; 0; 0) 0:591
(0:678; 0:709] (1; 0; 0; 0; 0; 0) 2:106
(0:709; 0:734] (0:5; 0:5; 0; 0; 0; 0) 0:636
(0:734; 0:934] (1=3; 1=3; 1=3; 0; 0; 0) 0:145
(0:934; 0:947] (1=4; 1=4; 1=4; 1=4; 0; 0) 0:591
(0:947; 0:998] (1=5; 1=5; 1=5; 1=5; 1=5; 0) 0:773
(0:998; 1] (1=6; 1=6; 1=6; 1=6; 1=6; 1=6) 14:120

6.2 The EU Council of Ministers 1973 Revisited

The 1973 Council of Ministers has nine states. As can be seen in table 17, there are 175428
constant-sum weighted majority games with n = 9.
If we assume that weights coincide with population shares, we �nd 201 possible games

and 33 di¤erent values for the nucleolus. The optimal value of the quota is in the interval
(0:554; 0:563], leading to payo¤ vector

�
4
15
; 3
15
; 3
15
; 3
15
; 1
15
; 1
15
; 0; 0; 0

�
and nV ar = 0:064. This

is again lower than the value for the actual decision rule in 1973, which is nV ar = 0:145.
As in the 1958 case, the nucleolus of the optimal game treats Germany di¤erently from the
other large countries, and the other large countries are treated symmetrically23. Also, some
of the states receive 0 in the nucleolus of the optimal game24.

23If we order the possible values of the nucleolus by decreasing nVar, the �rst few values also have the
property that Germany gets more than the next largest country.
24Unlike in the 1958 case, there are no dummy players in the optimal game. Note that there are values of

the quota for which each of the nine countries gets a di¤erent payo¤. It is almost inevitable for Luxembourg
to get 0 (the only exception is when unanimity is required), but there are quota values for which the other
small countries would get a positive payo¤.
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Table 14: Possible Values for the Nucleolus in the 1973 Council of Ministers using
the Population as Weights.

Quota NU nVar

[0:500; 0:503] ( 9
39
; 7
39
; 7
39
; 6
39
; 4
39
; 3
39
; 2
39
; 1
39
; 0) 0:186

(0:503; 0:505]
�
6
27
; 5
27
; 5
27
; 4
27
; 3
27
; 2
27
; 1
27
; 1
27
; 0
�
0:198

(0:505; 0:508]
�
9
38
; 7
38
; 7
38
; 6
38
; 4
38
; 3
38
; 1
38
; 1
38
; 0
�
0:140

(0:508; 0:510]
�
23
95
; 18
95
; 17
95
; 15
95
; 10
95
; 7
95
; 3
95
; 2
95
; 0
�
0:125

(0:510; 0:511]
�
12
51
; 10
51
; 9
51
; 8
51
; 5
51
; 4
51
; 2
51
; 1
51
; 0
�
0:132

(0:511; 0:512]
�
16
68
; 13
68
; 12
68
; 11
68
; 7
68
; 5
68
; 3
68
; 1
68
; 0
�
0:137

(0:512; 0:513]
�
8
32
; 6
32
; 6
32
; 5
32
; 3
32
; 2
32
; 1
32
; 1
32
; 0
�
0:109

(0:513; 0:515]
�
10
43
; 8
43
; 8
43
; 7
43
; 4
43
; 3
43
; 2
43
; 1
43
; 0
�
0:128

(0:515; 0:516]
�
6
26
; 5
26
; 5
26
; 4
26
; 3
26
; 2
26
; 1
26
; 0; 0

�
0:169

(0:516; 0:518]
�
3
11
; 2
11
; 2
11
; 2
11
; 1
11
; 1
11
; 0; 0; 0

�
0:153

(0:518; 0:524]
�
7
31
; 6
31
; 6
31
; 5
31
; 3
31
; 2
31
; 1
31
; 1
31
; 0
�
0:117

(0:524; 0:525]
�
5
20
; 4
20
; 4
20
; 3
20
; 2
20
; 1
20
; 1
20
; 0
�

0:129
(0:525; 0:526]

�
11
47
; 9
47
; 9
47
; 8
47
; 4
47
; 3
47
; 2
47
; 1
47
; 0
�
0:088

(0:526; 0:527]
�
4
18
; 4
18
; 3
18
; 3
18
; 2
18
; 1
18
; 1
18
; 0; 0

�
0:178

(0:527; 0:528]
�
17
72
; 15
72
; 13
72
; 12
72
; 7
72
; 4
72
; 3
72
; 1
72
; 0
�
0:089

(0:528; 0:529]
�
8
34
; 7
34
; 6
34
; 6
34
; 3
34
; 2
34
; 1
34
; 1
34
; 0
�
0:081

(0:529; 0:530]
�
6
25
; 5
25
; 5
25
; 4
25
; 2
25
; 2
25
; 1
25
; 0; 0

�
0:110

(0:530; 0:544]
�
1
5
; 1
5
; 1
5
; 1
5
; 1
5
; 0; 0; 0; 0

�
0:502

(0:544; 0:554]
�
1
5
; 1
5
; 1
5
; 1
5
; 1
10
; 1
10
; 0; 0; 0

�
0:188

(0:554; 0:563]
�
4
15
; 3
15
; 3
15
; 3
15
; 1
15
; 1
15
; 0; 0; 0

�
0:064

(0:563; 0:567]
�
5
20
; 4
20
; 4
20
; 4
20
; 1
20
; 1
20
; 1
20
; 0; 0

�
0:071

(0:567; 0:578]
�
1
3
; 1
3
; 1
3
; 0; 0; 0; 0; 0; 0

�
0:488

(0:578; 0:582]
�
1
3
; 1
3
; 1
6
; 1
6
; 0; 0; 0; 0; 0

�
0:235

(0:582; 0:733]
�
1
4
; 1
4
; 1
4
; 1
4
; 0; 0; 0; 0; 0

�
0:145

(0:733; 0:738]
�
1
4
; 1
4
; 1
4
; 1
8
; 1
8
; 0; 0; 0; 0

�
0:214

(0:738; 0:739]
�
6
24
; 5
24
; 5
24
; 3
24
; 3
24
; 1
24
; 1
24
; 0; 0

�
0:175

(0:739; 0:743]
�
5
20
; 4
20
; 4
20
; 3
20
; 2
20
; 1
20
; 1
20
; 0; 0

�
0:129

(0:743; 0:744]
�
7
28
; 6
28
; 5
28
; 4
28
; 3
28
; 2
28
; 1
28
; 0; 0

�
0:141

(0:744; 0:757]
�
1
5
; 1
5
; 1
5
; 1
5
; 1
5
; 0; 0; 0; 0

�
0:502

(0:757; 0:781] (1; 0; 0; 0; 0; 0; 0; 0; 0) 3:132
(0:781; 0:785]

�
1
2
; 1
2
; 0; 0; 0; 0; 0; 0; 0

�
1:180

(0:785; 0:796]
�
1
3
; 1
3
; 1
3
; 0; 0; 0; 0; 0; 0

�
0:488

(0:796; 0:947]
�
1
4
; 1
4
; 1
4
; 1
4
; 0; 0; 0; 0; 0

�
0:145

(0:947; 0:961]
�
1
5
; 1
5
; 1
5
; 1
5
; 1
5
; 0; 0; 0; 0

�
0:502

(0:961; 0:980]
�
1
6
; 1
6
; 1
6
; 1
6
; 1
6
; 1
6
; 0; 0; 0

�
0:774

(0:980; 0:987]
�
1
7
; 1
7
; 1
7
; 1
7
; 1
7
; 1
7
; 1
7
; 0; 0

�
1:377

(0:987; 0:988]
�
1
8
; 1
8
; 1
8
; 1
8
; 1
8
; 1
8
; 1
8
; 1
8
; 0
�

2:122
(0:988; 0:999]

�
1
9
; 1
9
; 1
9
; 1
9
; 1
9
; 1
9
; 1
9
; 1
9
; 1
9

�
13:813
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Table 15: Possible Values for the Nucleolus in the 1981 Council of Ministers using
the Population as Weights.

Quota NU nVar

[0:500; 0:501] ( 23
107
; 19
107
; 18
107
; 17
107
; 10
107
; 7
107
; 7
107
; 4
107
; 2
107
; 0) 0:121

(0:501; 0:502]
�
7
33
; 6
33
; 6
33
; 5
33
; 3
33
; 2
33
; 2
33
; 1
33
; 1
33
; 0
�

0:111
(0:502; 0:507]

�
6
29
; 5
29
; 5
29
; 5
29
; 3
29
; 2
29
; 2
29
; 1
29
; 0; 0

�
0:152

(0:507; 0:509]
�
10
48
; 9
48
; 8
48
; 8
48
; 4
48
; 3
48
; 3
48
; 2
48
; 1
48
; 0
�

0:106
(0:509; 0:511]

�
7
34
; 6
34
; 6
34
; 6
34
; 3
34
; 2
34
; 2
34
; 1
34
; 1
34
; 0
�

0:094
(0:511; 0:516]

�
7
32
; 6
32
; 6
32
; 5
32
; 3
32
; 2
32
; 2
32
; 1
32
; 0; 0

�
0:106

(0:516; 0:519]
�
12
54
; 10
54
; 10
54
; 9
54
; 4
54
; 3
54
; 3
54
; 2
54
; 1
54
; 0
�

0:060
(0:519; 0:522]

�
8
37
; 7
37
; 7
37
; 6
37
; 3
37
; 2
37
; 2
37
; 1
37
; 1
37
; 0
�

0:063
(0:522; 0:524]

�
7
33
; 6
33
; 6
33
; 6
33
; 3
33
; 2
33
; 2
33
; 1
33
; 0; 0

�
0:090

(0:524; 0:528]
�
11
51
; 10
51
; 9
51
; 9
51
; 4
51
; 3
51
; 3
51
; 1
51
; 1
51
; 0
�

0:054
(0:528; 0:530]

�
8
38
; 7
38
; 7
38
; 7
38
; 3
38
; 2
38
; 2
38
; 1
38
; 1
38
; 0
�

0:053
(0:530; 0:534]

�
8
36
; 7
36
; 7
36
; 6
36
; 3
36
; 2
36
; 2
36
; 1
36
; 0; 0

�
0:064

(0:534; 0:537]
�
4
16
; 3
16
; 3
16
; 3
16
; 1
16
; 1
16
; 1
16
; 0; 0; 0

�
0:080

(0:537; 0:541]
�
7
32
; 6
32
; 6
32
; 6
32
; 2
32
; 2
32
; 2
32
; 1
32
; 0; 0

�
0:067

(0:541; 0:543]
�
1
5
; 1
5
; 1
5
; 1
5
; 1
5
; 0; 0; 0; 0; 0

�
0:517

(0:543; 0:562]
�
3
15
; 3
15
; 3
15
; 3
15
; 1
15
; 1
15
; 1
15
; 0; 0; 0

�
0:093

(0:562; 0:573]
�
5
20
; 4
20
; 4
20
; 4
20
; 1
20
; 1
20
; 1
20
; 0; 0; 0

�
0:047

(0:573; 0:577]
�
6
25
; 5
25
; 5
25
; 5
25
; 1
25
; 1
25
; 1
25
; 1
25
; 0; 0

�
0:042

(0:577; 0:585]
�
7
30
; 6
30
; 6
30
; 6
30
; 1
30
; 1
30
; 1
30
; 1
30
; 1
30
; 0
�

0:052
(0:585; 0:590]

�
1
3
; 1
3
; 1
3
; 0; 0; 0; 0; 0; 0; 0

�
0:561

(0:590; 0:594]
�
2
6
; 2
6
; 1
6
; 1
6
; 0; 0; 0; 0; 0; 0

�
0:293

(0:594; 0:614]
�
1
4
; 1
4
; 1
4
; 1
4
; 0; 0; 0; 0; 0; 0

�
0:191

(0:614; 0:737]
�
4
16
; 3
16
; 3
16
; 3
16
; 1
16
; 1
16
; 1
16
; 0; 0; 0

�
0:080

(0:737; 0:744]
�
17
76
; 15
76
; 14
76
; 12
76
; 7
76
; 4
76
; 4
76
; 2
76
; 1
76
; 0
�

0:060
(0:744; 0:746]

�
16
72
; 14
72
; 13
72
; 12
72
; 6
72
; 4
72
; 4
72
; 2
72
; 1
72
; 0
�

0:053
(0:746; 0:747]

�
8
37
; 7
37
; 7
37
; 6
37
; 3
37
; 2
37
; 2
37
; 1
37
; 1
37
; 0
�

0:063
(0:747; 0:750]

�
1
5
; 1
5
; 1
5
; 1
5
; 1
5
; 0; 0; 0; 0; 0

�
0:517

(0:750; 0:767]
�
3
15
; 3
15
; 3
15
; 3
15
; 1
15
; 1
15
; 1
15
; 0; 0; 0

�
0:093

(0:767; 0:775] (1; 0; 0; 0; 0; 0; 0; 0; 0; 0) 3:386
(0:775; 0:794] (1

2
; 1
2
; 0; 0; 0; 0; 0; 0; 0; 0) 1:293

(0:794; 0:799] (1
3
; 1
3
; 1
3
; 0; 0; 0; 0; 0; 0; 0) 0:561

(0:799; 0:842] (1
4
; 1
4
; 1
4
; 1
4
; 0; 0; 0; 0; 0; 0) 0:191

(0:842; 0:950]
�
1
5
; 1
5
; 1
5
; 1
5
; 1
5
; 0; 0; 0; 0; 0

�
0:517

(0:950; 0:967]
�
1
7
; 1
7
; 1
7
; 1
7
; 1
7
; 1
7
; 1
7
; 0; 0; 0

�
0:908

(0:967; 0:986]
�
1
8
; 1
8
; 1
8
; 1
8
; 1
8
; 1
8
; 1
8
; 1
8
; 0; 0

�
1:283

(0:986; 0:999]
�
1
9
; 1
9
; 1
9
; 1
9
; 1
9
; 1
9
; 1
9
; 1
9
; 1
9
; 0
�

1:753
(0:999; 1]

�
1
10
; 1
10
; 1
10
; 1
10
; 1
10
; 1
10
; 1
10
; 1
10
; 1
10
; 1
10

�
11:230
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6.3 The EU Council of Ministers 1981 Revisited

In principle, if we �x the weights and vary the quota there could be up to 29 = 512 dif-
ferent weighted majority games with ten players. However, given the population shares
w = (0:228; 0:209; 0:205; 0:200; 0:053; 0:036; 0:036; 0:019; 0:013; 0:001) there is a substantial
duplication of values for w(S).25 It turns out that two countries have the same (rounded)
population shares (!6 = !7). Moreover, there are groups of countries with the same total
weight (e.g., !1 = !2+!8, !1+!9 = !3+!6, !5+!8 = !6+!7, !4+!8 = !3+!9+!10).
Because of this, there are only 239 di¤erent games, which correspond to 30 di¤erent values
of the nucleolus. The optimal value of the quota is in the interval (0:573; 0:577], leading to
payo¤ vector

�
6
25
; 5
25
; 5
25
; 5
25
; 1
25
; 1
25
; 1
25
; 1
25
; 0; 0

�
and nV ar = 0:042. This is an improvement

over the actual decision rule in 1981, which has nV ar = 0:190. As before, it turns out that
the nucleolus of the optimal game gives Germany a larger payo¤, whereas the other three
large countries are treated symmetrically.26

The optimal values for the nucleolus are summarized in table 16.

Table 16: Optimal values for the nucleolus if weights must coincide with popula-
tion shares.

Country 1958 1973 1981
nj
n

NU
nj
n

NU
nj
n

NU
France 0:266 0:222 0:203 0:2 0:200 0:2
Germany 0:322 0:333 0:242 0:267 0:228 0:24
Italy 0:291 0:222 0:214 0:2 0:209 0:2
Belgium 0:053 0:111 0:038 0:067 0:036 0:04
Netherlands 0:066 0:111 0:052 0:067 0:053 0:04
Luxembourg 0:002 0 0:001 0 0:001 0

UK � � 0:218 0:2 0:205 0:2
Denmark � � 0:019 0 0:019 0:04
Ireland � � 0:012 0 0:013 0

Greece � � � � 0:036 0:04

Using the Gini coe¢cient instead of nV ar as a measure of inequality would give very
similar results27. The optimal value for the nucleolus in 1958 and 1981 is not a¤ected. For

25This duplication is due to the rounding of population shares. We have rounded the population shares
to three decimal places and then worked with the rounded weights. If instead we take the population
values reported by Felsenthal and Machover (which are also rounded, but less so) and calculate !(S) for all
coalitions, it turns out that all 1024 values are distinct. On the other hand, with weights rounded to three
decimal places there cannot be more than 1000 distinct values, and in fact there are only 479 distinct values.
26It is also the case that if we order the possible values of the nucleolus by decreasing nVar, the �rst few

values also have the property that Germany gets more than the next largest country.
27An ideal robustness test would involve the calculation of the the Lorenz curve (Van Puyenbroeck (2008))

attached to each simple game. The pointwise comparison of these curves produces a partial ordering of the
simple games which does not depend upon the speci�c details of the disproportionality index which is used
(Monroe (1994)).
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1973, the two nucleolus values with the lowest nV ar also have the lowest Gini coe¢cient,
but the order is reversed. The payo¤ vector that minimizes the Gini index gives a positive
payo¤ of 0:05 to Denmark at the expense of Germany, Belgium and the Netherlands (whose
payo¤s are reduced to 0:25 for Germany and 0:05 for Belgium and the Netherlands). All
other payo¤s are unchanged.
One may also ask whether, taking the actual weights as given, the choice of the quota was

optimal. It turns out that the quota of 41 could not be improved for the 1973 Council given
the actual weights (10; 10; 10; 10; 5; 5; 3; 3; 2), but there could have been improvements in the
other two Councils. For the 1958 Council of Ministers, if weights are �xed at their actual
values (4; 4; 4; 2; 2; 1), the quota of 12 yields a nucleolus of (1

4
; 1
4
; 1
4
; 1
8
; 1
8
; 0). The payo¤ vector

(1
3
; 1
3
; 1
3
; 0; 0; 0) has a lower value for nV ar, and it is the nucleolus of the game for a quota of

10, 14 or 15. Neither was the quota of 45 optimal for the 1981 Council of Ministers given the
actual weights (10; 10; 10; 10; 5; 5; 5; 3; 3; 2): it yields a nucleolus of

�
1
4
; 1
4
; 1
4
; 1
4
; 0; 0; 0; 0; 0; 0

�
,

but a quota of 46 yields
�
5
28
; 5
28
; 5
28
; 5
28
; 2
28
; 2
28
; 2
28
; 1
28
; 1
28
; 0
�
, which corresponds to a lower value

of nV ar:

7 Conclusion

In this paper, we have developed a methodology to evaluate and design voting organizations
in order to minimize the distance to an egalitarian sharing of the surplus when the process
of division across the countries which are members of the organization is described by the
nucleolus of the simple game. We have explained why the vector corresponding to the
nucleolus can be viewed as a vector measuring the power of each member of the organization
when the policy issue has the characteristics of distributive politics.
In the �rst part of the paper, we have reported our computation results concerning the

nucleolus for the organizations describing the �ve consecutive stages of the EU. For the
1958, 1986 and 1995 cases we reach a similar conclusion to studies that use the Banzhaf
index: smaller countries tend to have a disproportionately high power. For 1973 and 1981
we reach the opposite conclusion: it is the larger countries that are favored. We have
also formulated the design issue and alluded to the di¢culties attached to the resulting
combinatorial problem. For the sake of illustration, we have shown our optimization at work
in the class of constant-sum weighted majority games in the case of the EU in 1958. Among
the lessons of this exercise, we were able to con�rm that making Luxembourg a dummy was
appropriate but that Germany was mistreated. This conclusion is not a¤ected if we consider
the class of games in which weights coincide with population shares. Since this latter class is
smaller than the class of constant-sum weighted majority games, we were able to perform the
optimization exercise for 1973 and 1981 as well. In both cases it turns out that the optimal
game assigns Germany the largest payo¤, the three other large countries get the same payo¤,
and some other smaller countries get 0. The same qualitative results are achieved if the Gini
coe¢cient is used instead of the variance.
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8 Appendix

8.1 Appendix 1 : Cooperative Games28, Least Core and Nucleolus

A cooperative game with transferable utility (TU) is a pair (N; V ) where N = f1; : : : ; ng
with n � 2 is a �nite set of players and V is a function that associates a real number V (S)
to each subset S of N . It is assumed that V (?) = 0. The game is constant-sum if V (S) +
V (NnS) = V (N). It is monotonic if S � T � N ) V (S) � V (T ). It is zero-monotonic if
V (S [fig)�V (S) � V (fig) for all i 2 N and S � N n fig. It is superadditive if V (S [T ) �
V (S)+V (T ) for all S; T � N such that S\T = ?. A player i 2 N is a null-player (dummy)
of (N; V ) if V (S[fig) = V (S) (V (S[fig) = V (S)+V fig). Hereafter, we denote by XPO �
fy 2 Rn j

Pn

i=1 y
i = V (N)g the set of preimputations (or Pareto optimal imputations) and

by XIR � fy 2 Rn j
Pn

i=1 y
i = V (N); yj � V (fjg)8j 2 Ng the set of imputations i.e. the

set of individually rational preimputations. A player k 2 N is at least as desirable as a player
l 2 N , denoted k � l if V (S [ fkg) � V (S [ flg) for all S � Nn fk; lg. The desirability
relation � is re�exive and transitive. If � is complete, the game is called a complete game.
According to Krohn and Sudhölter (1995), a directed game is a complete game such that
1 � 2 � ::: � n.
Let X be a compact and convex subset of Rn and let x 2 X. We denote by �(x) the

2n-dimensional vector whose components are the excesses e(S; x) � V (S) �
P

i2S x
i for

; � S � N arranged according to their magnitude, i.e., �i(x) � �j(x) for 1 � i � j � 2n.
The nucleolus of (N; V ) with respect to X is the unique vector29 x� = Nu(N; V ) 2 X such
that �(x�) is minimal, in the sense of the lexicographic order, in the set f�(y) j y 2 Xg.
The nucleolus of (N; V ) with respect to XIR will be called hereafter the nucleolus; it is
the nucleolus as originally de�ned by Schmeidler (1969)30. We denote by  (x) the 22n-
dimensional vector whose components are the numbers e(S; x) � e(T; x) for ; � S; T � N
arranged according to their magnitude, i.e.,  i(x) �  j(x) for 1 � i � j � 22n. The modiclus
(Sudhölter (1997)) is the unique vector x�� 2 XPO such that  (x

��) is minimal, in the sense
of the lexicographic order, in the set f (y) j y 2 XPOg.
Given a real number �, the �� core of (N; V ) is the set

C� � fx 2 XPO : e(S; x) � � for all ? " S & Ng :

The least core of (N; V ), introduced by Maschler, Peleg and Shapley (1979) and denoted
LC(V;N), is the intersection of all nonempty �-cores of (N; V ). If (N; V ) is zero-monotonic,
then LC(V;N) � XIR. Then LC(V;N) consists of the vectors x such that �1(x) = �1(x

�)
and consequently x� 2 LC(V;N).

28See Owen (1995) and Peleg and Sudhölter (2003).
29See Peleg and Sudhölter (2003) for a proof of uniqueness.
30In contrast, the prenucleolus is the nucleolus with respect to XIR. If the game is zero-monotonic the

nucleolus and the prenucleolus coincide. A simple game is always zero-monotonic unless fig; S 2 W for some
i 2 N and S � N n fig.
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8.2 Appendix 2 : Simple Games31

A simple game is a pair (N;W) where N = f1; : : : ; ng with n � 2 is a �nite set of players
and W is a set of subsets of N satisfying : N 2 W ; ? =2 W and the monotonicity condition
(S � T � N and S 2 W) ) T 2 W : The collection W of coalitions is the set of winning
coalitions. The simple game (N;W) is proper if S 2 W ) NnS =2 W. It is strong if
S =2 W ) NnS 2 W. It is constant sum (self-dual or decisive) if it is proper and strong32.
Hereafter, we will attach to any simple (N;W) the monotonic TU cooperative game (N; V )
where

V (S) =

�
1 if S 2 W
0 otherwise

:

Note that (N; V ) is superadditive i¤ (N;W) is proper and that (N; V ) is constant-sum
i¤ (N;W) is decisive. A simple game (N;W) is a weighted majority game if there exists
a vector ! = (q;!1; : : : ; !n) of (n + 1) nonnegative real numbers such that a coalition
S 2 W ()

P
i2S !i � q; q is referred to as the quota and !i is the weight of player

i 2 N . The vector ! is called a representation of the simple game (N;W); the same
game may admit several representations. Note that if !i � !j, then player i is at least as
desirable as a player j. A simple game is homogeneous if there exists a representation ! such
that

P
i2S !i =

P
i2T !i for all S; T 2 Wm where Wm denotes the set of minimal winning

coalitions; such a representation is called a homogeneous representation. A representation is
symmetric if !i = !j whenever i and j are interchangeable.
The dual of (N;W) is the simple game (N;B) where S 2 B if and only if NnS =2 W.

The collection B of coalitions is the set of blocking coalitions.

8.3 Appendix 3: Representation and Enumeration of Simple Games

A representation of a weighted majority game (N;W) is an integral representation if !i 2
N[ f0g for all i 2 N . Note that, without loss of generality, the quota q can be chosen to be
Min
S2Wm

!(S). An integral representation ! is minimal if there does not exist another integral

representation !0 of (N;W) such that !0 � !. If ! � !0 for every integral representation
!0 of (N;W), then is the minimum integral representation of (N;W). A representation is
normalized if

P
i2N !i = 1.

In a constant-sum weighted majority game (N;W), an imputation x is a normalized
representation of (N;W) if and only if q(x) := Min

S2Wm

x(S) > 1
2
. Peleg (1968) has proved

that any imputation in the least core of a constant-sum weighted majority game (N;W)
is a normalized representation of (N;W); if (N;W) is moreover homogeneous, then the
nucleolus is the unique normalized homogeneous representation of (N;W) which assigns
zero to each null player. The nucleolus has rational coordinates, i.e. can be written as
x� ((N;W)) = !�

!�(N)
where the !�i for i 2 N are integers whose greatest common divisor

31See Von Neumann and Morgenstern (1944), Shapley (1962) and Taylor and Zwicker (1999).
32Some authors use the term strong for constant sum.
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is 1. Peleg proves that if (N;W) is a constant-sum weighted majority game then !� is a
minimal integral representation if and only if !� (N) = 2q (!�)� 1; if the game is moreover
homogeneous !� is always the minimum integral representation. Sudhölter (1996) proved
that if (N;W) is a weighted majority game, then the modiclus is a normalized representation
of (N;W). Ostman (1987) and Rosenmüller (1987) showed that every homogeneous (not
necessarily strong) weighted majority game has a unique minimal integral representation
and this representation is homogeneous. Sudhölter (1996) proved that, up to normalization,
this representation coincides with the modiclus.
These results point out the existence of relationships between the nucleolus and the

set of minimal integral representations. Note however that the nucleolus need not be a
representation at all if the game is not constant-sum. Even for constant-sum games, if the
game is not homogeneous !� need not be a minimal integral representation. Peleg (1968)
showed that !� is not a minimal integral representation for a game with n = 12 and two
minimal integral representations that appears in Isbell (1959). Isbell (1969) provides an
example of a game with n = 19 and a minimum integral representation ! such that !� 6= !.
Krohn and Sudhölter (1995) proved that if (N;W) is a constant-sum weighted majority

game and n � 8, then LC(N; V ) = Nu(N; V ) which coincides with the unique normalized
minimal integral representation of (N;W). For n = 9, the result holds with the exception of
14 games which have exactly two minimal representations di¤ering on one type of players.
In 12 of these games both representations are the extreme points of the least core and the
nucleolus is the midpoint of these representations. In the remaining two cases, no normalized
representation is contained in the least core though the set is a singleton (i.e. coincides
with the nucleolus). Freixas, Molinero and Roura (2007) show that these 14 games have a
minimum symmetric integral representation, but this is not guaranteed for n = 10.
If we do not require the game to be constant-sum, Freixas and Molinero (2009) found that

all weighted majority games have a unique minimal integral representation for n � 7. For
n = 8 there are 154 weighted majority games without a minimum integral representation,
though all of them have a minimum symmetric integral representation. Freixas and Molinero
(2010) contains examples of games where n = 9 without a minimum symmetric integral
representation.
The enumeration of all simple games or subclasses like weighted majority games is im-

portant for the combinatorial optimization conducted in our paper. Constant-sum simple
games were enumerated by von Neumann and Morgenstern (1944) for n � 5 and Gurk and
Isbell (1959) for n = 6. Isbell (1959) lists the 135 constant-sum weighted majority games
for n � 7 together with their unique minimal integral representations; 38 of those games
are homogeneous. Table 17 below is taken from Krohn and Sudhölter (1995), except for the
number of directed games and of weighted majority games for n = 9 which is taken from
Kurz (2012). Note that Krohn and Sudhölter do not assume that ? =2 W, N 2 W or that
the game is proper.
The enumeration of all simple games (including the two constant ones attached to

V (?) = 1 and V (N) = 0) is known as Dedekind�s problem. Table 18 below reproduces
the enumeration for games with n � 6.
The enumeration of all constant-sum simple games (also called maximal intersecting
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Table 17:
n 1 2 3 4 5 6 7 8 9

# directed games 3 5 10 27 119 1173 44315 161175190 284432730176
# weighted majority games 3 5 10 27 119 1113 29375 2730166 989913346
# constant-sum directed games 1 1 2 3 7 21 135 2470 319124
# constant-sum weighted games 1 1 2 3 7 21 135 2470 175428
# homogeneous games 1 3 8 23 76 293 1307 6642 37882

Table 18:
n 1 2 3 4 5 6

# simple games 3 6 20 168 7581 7828354

families of sets) has also attracted attention. Table 19 below, extracted from Loeb and
Conway (2000), reproduces the enumeration for games with n � 8.

Table 19:
n 1 2 3 4 5 6 7 8

# constant-sum simple games 1 2 4 12 81 2646 1422564 229809982112

The enumerations in tables 18 and 19 count games which are isomorphic. Otherwise the
numbers decrease in a signi�cant way as illustrated in table 20 below for games with n � 7:

Table 20:
n 1 2 3 4 5 6 7

# isomorphism classes of constant-sum simple games 1 1 2 3 7 30 716

We may also limit the enumeration to games where some players are always treated
similarly (the set of players is partitioned into a number of types where two players of the
same type are perfect substitutes in the simple game). Freixas, Molinero and Roura (2009)
and Kurz and Tautenhahn (2010) have derived formulas to enumerate all such simple games.
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