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Voxel Similarity Measures for 3-D Serial MR Brain
Image Registration

Mark Holden, Derek L. G. Hill*, Erika R. E. Denton, Jo M. Jarosz, Tim C. S. Cox, Torsten Rohlfing, Joanne Goodey,
and David J. Hawkes

Abstract—We have evaluated eight different similarity measures
used for rigid body registration of serial magnetic resonance (MR)
brain scans. To assess their accuracy we used 33 clinical three-
dimensional (3-D) serial MR images, with deformable extradural
tissue excluded by manual segmentation and simulated 3-D MR
images with added intensity distortion. For each measure we deter-
mined the consistency of registration transformations for both sets
of segmented and unsegmented data. We have shown that of the
eight measures tested, the ones based on joint entropy produced
the best consistency. In particular, these measures seemed to be
least sensitive to the presence of extradural tissue. For these data
the difference in accuracy of these joint entropy measures, with or
without brain segmentation, was within the threshold of visually
detectable change in the difference images.

Index Terms—Consistency of transformation estimates, evalua-
tion with clinical data, serial MR registration, voxel-based simi-
larity measures.

I. INTRODUCTION

T HE registration of serial magnetic resonance images (se-
rial MR) of the brain has recently become a widely used

research tool [1], [2] with the potential to enter routine clinical
use. The technique involves accurately aligning images of the
same subject acquired at different times. The resulting aligned
images can be subtracted and visually inspected [5], [6] or fur-
ther processed to provide a quantitative measures of change [3],
[7]. It has been proposed that this approach can increase the
sensitivity of the observer to disease progression, response to
therapy, or uptake of contrast material compared to conventional
viewing [3], [7].

Several different similarity measures have been proposed in
the literature [8], [6], [2] and, while these have been validated
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separately, there has been no rigorous comparison of these dif-
ferent measures on a single set of test data. There is no con-
sensus on the benefit of presegmentation to remove deformable
extradural material [8], [9] or the impact that presegmentation
has on registration accuracy with different similarity measures.
It is important that this is resolved as the need to presegment
images is an obstacle to routine clinical use, due to the unrelia-
bility of segmentation algorithms.

There is agreement in the literature about the need for sub-
voxel registration accuracy in serial MR. Lemieux has estimated
a registration accuracy of the order of 0.05 voxels (typically
50 m) is required to avoid a misregistration artifact [6]. The
most accurate registration gold standard for clinical data is ob-
tainable with bone-implanted markers and has an accuracy of
around 500 m [10]. This is insufficient for assessing serial MR
techniques. In light of this limitation, authors have attempted to
quantify accuracy by assessing the consistency of transforma-
tions. For example, Freeborough [2] used the ratio of image uni-
formity (RIU) similarity measure that was proposed by Woods
[11] for registration and a sinc kernel for transformation and
measured the number of voxels that were outside an intensity
window in the difference image [12]. Lemieux used the Pearson
product-moment correlation coefficient to register scalp seg-
mented serial images of three patients [6]. Each patient had three
scans which were registered first to second, second to third, third
to first, and in the opposite sense. The registration consistency of
the combined transformations was measured by calculating the
mean of rms displacement of 1000 uniformly distributed points
in the brain ( estimate). For three subjects the mean
was 60 m [6]. In a recent experiment with images acquired
within a few minutes of each other, Woods compared his RIU
and the least mean squared difference similarity measures and
found typical inconsistency of 75–100m and a maximum of
less than 500 m [9]. However, it has not yet been demonstrated
what accuracy is required to maximize the sensitivity and speci-
ficity of the technique in a clinical situation. It is, therefore, not
clear whether a technique with an accuracy of 10m is more
clinically useful than one with an accuracy of 250m.

In this paper, we report the results of a systematic compar-
ison of eight similarity measures, three of which have previ-
ously been used for serial MR registration, four for related ap-
plications such as multimodal registration, and one that is a
novel variant of the RIU measure. We measure the accuracy of
the measures using simulated MR brain images [13] and quan-
tify consistency using images from 11 subjects from a clinical
growth hormone study [14]. We compare the performance of the
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Fig. 1. Axial (top) coronal (bottom) planes through a clinical image,
non-segmented (left) segmented (right).

similarity measures on the clinical data, with and without seg-
mentation of extradural tissue. We interpret these results in the
context of the threshold of perceptible change [14].

Our approach compares all the serial MR registration sim-
ilarity measures that, to our knowledge, have been used, and
does this on both simulated and clinical data. Our tests of the
consistency of registration transformations extends the work of
Woods on similarity measures [9] and applies them to clinical
data serially acquired over a six-month period and to simulated
MR brain data. It builds on the work of Freeborough [2] and
Lemieux [6] by comparing several cost functions with consis-
tency measures and relating these to blinded visual assessment
of misregistration in difference images. We have shown a sig-
nificant difference in the performance of measures and propose
an explanation for these differences.

II. M ETHODS AND MATERIALS

A. Acquisition and Segmentation of Clinical Data

Our clinical data are from a recent study of five adult growth
hormone deficient patients undergoing therapy and six normal
subjects (see [14]). Each subject was scanned three times at
three monthly intervals with a fixed MR protocol. Subjects
were positioned such that the whole brain and brain stem were
imaged. To reduce the effect of wraparound the field of view
was set so that ten slices superior to the head contained only
air. All acquisitions were with a 1-T Siemens Impact Expert
with a three-dimensional (3-D) flash spoiled gradient echo
sequence: 256 192 169-mm FOV; 256 256 94, 1
1 1.8-mm voxels; axial slices; 20/6/2/60 (TR/TE/NEX/flip).
The readout gradient was in the posterior/anterior direction
with a field strength of 4.587 mT/m. As part of the preamble
of the 3-D flash sequence, a scout pulse is transmitted and the
returned signal used to normalize the intensity of the whole
volume. As part of the scanning protocol, a scaling phantom
was also scanned so that scaling errors could be measured [15].
Images were segmented by a radiologist to eliminate potentially
deformable tissue, such as the scalp and muscles of the head
and neck, using the interactive tracing facility available in the

Fig. 2. Axial (top) coronal (bottom) planes through a McGill brain image
without added noise or RF inhomogeneity. Nonsegmented (left) segmented
(right).

Analyze software package (Mayo Clinic, Rochester, MN). As a
result, voxels corresponding to tissue external to the dura were
excluded. Fig. 1 (left) shows the mid axial and coronal planes
of a typical scan of a growth hormone patient, the extradural
segmentation of this image is also shown (right).

B. Simulated MR Brain Image with Added Noise
and Distortion

Simulated data were derived from the McGill full anatomical
MR brain model image, 181 217 181, 1 1 1-mm voxels
[13]. Two different noiseless images were used, one without any
intensity distortion, the other with 40% RF inhomogeneity. To
create a segmented brain comparable to the ones from the clin-
ical data, the models of cerebrospinal fluid, grey matter, white
matter, and glial matter tissue classes were combined. Fig. 2
(left) shows axial and coronal planes through the image of the
brain model without added noise or RF distortion the segmented
image is also shown (right).

During the acquisition of an MR image, noise arises in both
real and imaginary signals. The two noise signals are indepen-
dent and Gaussian distributed, so noise in the magnitude image
is Rician distributed [16]. For a correctly calibrated quadrature
detector the real and imaginary noise have zero mean and the
same variance [17]. To simulate Rician noise a numerical com-
plex random variable was generated and added to each voxel
of the noiseless (real) image, then the modulus was taken to
produce a magnitude image. The complex random variable was
based on two independent Gaussian distributed random deviates
as described by Press [18]. The mean and standard deviation of
the simulated noise distribution were estimated from measure-
ments of voxel intensities of an artifact-free region of a clinical
image corresponding to air, as described by Henkelman [17].

C. Voxel Similarity Measures

The purpose of a similarity measure is to return a value indi-
cating how well two images match. Ideally, the function would
have one optimum at the point of registration and, to simplify
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optimization, be quadratic. In the case of two images each with
Gaussian noise and whose intensity transformation is the iden-
tity, it has been shown that the sum of the square intensity differ-
ences measure is optimal [19]. If there is a linear intensity trans-
formation, then the Pearson product moment measure is optimal
[19]. In cases where the intensity transformation is not known
Viola [19] proposed that a measure based on joint entropy would
be optimal. For serial MR, neither the Gaussian noise distribu-
tion or linear intensity transformation are valid assumptions so
neither the sum of square intensity differences nor the Pearson
product moment measures are optimal. A Gaussian noise dis-
tribution is present in complex MR images, but for magnitude
images the noise distribution is Rician [16]. Although the Ri-
cian distribution is approximately Gaussian for high-intensity
signals, for low intensities (typically 40% of voxels in an MR
head image correspond to air) it is approximately Rayleigh dis-
tributed [16]. The Rayleigh probability density function can be
expressed as where
is the actual intensity and is the standard deviation of the
Gaussian noise in the real and imaginary images [16]. In ad-
dition to noise, there is intensity distortion in typical clinical
data, such as the bias field due to RF inhomogeneity and mo-
tion artifacts due to blood and CSF flow. Furthermore, although
the brain is rigidly attached to the skull, the scalp and facial
tissue may deform between serial acquisitions and so violate the
rigid-body hypothesis. Typically, about 20% of voxels in an MR
head image correspond to tissue types that are potentially de-
formable, e.g., skin, muscle, and fat. Although these tissues are
attached to rigid structures, e.g., the skull, they can deform by
several millimetres. Deformations are caused by forces acting
upon soft tissue while the subject is in the scanner. Typical phys-
ical forces are gravity and friction which acts on a region at the
back of the head in contact with the bed. These forces are likely
to lead to large deformations in a particular direction. Forces
arising from biological processes such as muscle movements
around the eyes and forehead are likely to cause smaller defor-
mations in many different directions. If the deformation is sub-
stantially different between acquisitions then the optimum of the
similarity measure could correspond to a significantly different
transformation [8]. Similarity measures may differ in their sen-
sitivity to these changes. The complicating factors of Rician
noise, distortion, deformable tissue, and potential anatomical
change make the problem difficult to resolve by theoretical anal-
ysis and suggest that a systematic experimental approach is most
appropriate.

We have implemented eight similarity measures: 1) mean
square difference of intensities (MSD) [8]; 2) entropy of the
difference image (EDI) [20], [21]; 3) mutual information (MI)
[22], [19], [23], [24]; 4) Pearson product-moment cross correla-
tion (NCC) [6]; 5) normalized mutual information (NMI) [25],
[26]; 6) pattern intensity, radius one, (PI) [27]; 7) ratio
image uniformity (RIU); and 8) we have also devised a novel
variant of the RIU measure (MRIU).

These measures are defined mathematically in Section II-D
below. Three of these measures have been widely used by re-
searchers in serial MR (MSD, NCC, and RIU). With the excep-

tion of the new measure MRIU, all the others have been used
in other image registration applications. The measures can be
split into two groups: a) those based on entropy: MI, NMI, and
EDI and b) those based on correlation: MSD, NCC, PI, RIU, and
MRIU. The entropy-based measures are one-dimensional (1-D)
in the case of entropy of the difference image and two-dimen-
sional (2-D) (joint entropy) in the case of the MI measures. The
MSD and NCC measures are variants of standard statistical cor-
relation. The PI measure applies a mean squared difference type
correlation measure to each local neighborhood thus allowing
for local spatial changes in intensity between the two images.
The ratio image uniformity measure is robust to linear changes
in mean intensity because these are factored out by the division.

D. Mathematical Definition of Measures

All the measures are applied to overlapping voxels in the in-
tersecting region of the reference (target) and transformed im-
ages. This region, denoted by , is the subset of voxel
locations of the reference image,, whose corresponding lo-
cations are in the space of the transformed imageor, more
precisely, where is the trial
rigid body transformation (see later). The intensity of a voxel
located at in the reference image is denoted by and
the corresponding one in the transformed image by . The
sets of intensities of the overlapping voxels of the reference and
transformed images are referred to as and , re-
spectively. The difference image is defined as the set
of differences of overlapping voxel intensities, i.e.,

. , refer to the probability of ob-
serving (frequency of occurrence) intensity in and

in , respectively. is the joint probability of
observing the pair of intensities at corresponding voxel
locations.

1) MSD: we seek the minimum of msd where

msd

2) (EDI: we seek the minimum of where

3) MI: we seek the maximum of where

and where is the space of joint intensi-
ties.

4) NCC: we seek the maximum of NCC where

NCC
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where and are the mean intensities of and
and

5) NMI: we seek the maximum of where the equa-
tion at the bottom of this page holds.

6) PI: this measure is applied locally in a sphere (in discrete
space), radius, center, in the difference
image, We seek the maximum of
where

and where are the locations of voxels
in and is the Euclidean distance from
center of the sphere and and is an
arbitrary constant.

7) RIU: we seek the minimum of RIU where

RIU

and

8) MRIU: the standard RIU measure assigns an uneven
weighting to off-diagonal intensity pairs. The weighting
for pairs for which the numerator (transformed voxel
intensity) is high and the denominator (target voxel
intensity) is low gives a high weighting and the converse
gives a low weighting. This bias can be reduced if a
constant (we used the maximum intensity of the target
image) is added to both the numerator and denominator,
hence, we seek the minimum of MRIU where

MRIU

Fig. 3. Schematic representation of flow of control of registration algorithm
for a single resolution level. Measure similarity, transform and updateT

refer to the matching, transformation, and optimization stages, respectively.
I (reference image),I (transformed image),I (I spatially transformed
by T). The initial transformationT is iteratively modified to maximize the
similarity of I andI :

As well as reducing the bias, another advantage this mea-
sure has over RIU is that low intensities need not be ex-
cluded (by thresholding) and so statistics can be based on
a larger number of voxels.

E. Registration Algorithm

Our algorithm has been designed in four distinct modules so
that each can be changed individually to allow the impact of
different strategies on registration accuracy to be investigated.
Fig. 3 shows schematically the flow of control. Imageis the
baseline (target) image andis the transformed image. The al-
gorithm consists of four main stages: 1) a data preparation stage
that creates a set of multiscale images and prescribes an initial
transformation ; 2) a function that measures the similarity of
a pair of images; 3) a function that spatially transforms, using
trilinear interpolation, the image into according to a pre-
scribed rigid body transformation, ; and 4) an optimization
stage that searches for the optimal transformation and prescribes
a new search interval and position in search space,.

The optimization stage is similar to that described by
Studholme [28]. It evaluates the similarity measure within a
local neighborhood of the current position and tests for
convergence. The neighborhood is the set of points at
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Fig. 4. Comparing two transformation estimates.

where is the search interval in each of the six directions of
rigid body motion. The search interval is gradually decreased,
and updated as better matches are achieved. The convergence
criterion is that the current transformation estimate is the best
one in the local neighborhood for the smallest search interval.
The function measure similarity provides an estimate of how
well the images and match.

1) Multiresolution Search:This is a refinement to the
optimization strategy aimed at reducing the number of itera-
tions needed to find the optimal transformation estimate and
decreasing the incidence of local optima far from the optimal
solution [29]–[31]. A pyramid of images, each of successively
lower resolution than the original (base resolution) is created
for both reference and transformed images in a similar way to
that described by Studholme [28]. The image is sub-sampled
to an isotropic voxel dimension with a Gaussian kernel to
create the first lower (base) resolution image. The base voxel
dimension is chosen to be the next power of two greater than
the largest original dimension (in mm). So 11 1.8-mm
images are resampled to 2 2 2 mm. Each low resolu-
tion level is produced by calculating the eight neighborhood
mean intensity of the previous level. This strategy is a simple
and a computationally inexpensive way of constructing the
lower resolution levels. In the multiresolution search strategy,
transformation estimates from the matching level are
propagated to the next higher resolution level, .

F. Measures of Registration Consistency

We term the combination or product of two transformations
[six-dimensional (6-D) vectors] a composition, so for two trans-
formations and we write for the transformation
that applies first then . Given two estimates of a transfor-
mation and that map points in image one, e.g.,to points

and in image two, then a measure of their vector differ-
ence in image one can be derived by applying the composition
of with the inverse of to , i.e.,
(see Fig. 4).

1) Consistency of Two Transformations:To measure the
shift of a voxel location resulting from the transformation

, we calculate the length of the displacement vector ,
i.e., . For a set of voxel locations in an image
, we can determine a mean displacement given by

where is the number of
voxels in the image andis a voxel index. Similarly, if we wish

Fig. 5. Composition of three perfect transformations.

to determine the mean displacement in a region of interest,
for example, just those voxels that correspond to brain tissue,
then the measure is applied only to the region of interest

where is the region of
interest containing voxels. Some authors argue that an rms
measure is less biased [6]. This can be calculated as follows:

2) Consistency of Three Transformations:For images the
number of possible transformations is the number of two permu-
tations of , i.e, .
So, for three images one, two, three, there are
possible transformations between image pairs. If we consider
three transformations between image pairs such
that transforms image one into the coordinate frame of
image two, etc., then in the absence of error their composition

maps image one back into it’s own coordinate
system, forming a closed loop (circuit) and is, therefore, equiv-
alent to the identity as shown schematically in Fig. 5.

If the transformations are estimated by a registration algo-
rithm each will, inevitably, have some error and hence their
composition will differ from the identity by an amount that de-
pends on the error in each transformation. It is possible, though
extremely improbable, that errors may combine and cancel out.

For the case of 3-D images, the rigid body transformations
can be represented as 44 homogeneous matrices, so we can
replace the explicit symbol for composition with implicit ma-
trix multiplication and write where
is the identity transformation, so is the
error resulting from each individual transformation. Applying
the error transformation to each voxel location and taking
the modulus, as above, we can calculate the mean error over the
image .

G. Registration of Clinical Data and Measurement
of Consistency

All registrations were rigid body with six degrees of freedom,
four lower resolution levels and with the identity as the starting
transformation. The search interval (step size) ranged from
4 mm, 4 to 0.01 mm, 0.01. The step size was always reduced
by a factor of For the lower resolution levels four, three,
two, and one there were four, two, two, and four reductions
in the step size, respectively and for the highest resolution
level, original image, there were 12 reductions. For each of
the 11 subjects, who were imaged 3 times, the first image
was registered to the second, the second to the third, and the
third to the first. For each of the eight similarity measures
there were three registrations for each of the 11 subjects, with
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Fig. 6. Axial (top) coronal (bottom) planes through two difference images,
clinical data (left) McGill data with simulated Rician noise (right).

both unsegmented and segmented data. This made a total of
66 registrations for each similarity measure, 33 with unseg-
mented data and 33 with segmented data. Both consistency
measures described in Section II-F were applied to each set of
transformations for each of the 11 subjects. This produced a
total of 33 measurements of the consistency of corresponding
pairs of transformation estimates derived from registration of
segmented data and non segmented data; 11 measurements
of internal (triangular) consistency for registrations with seg-
mented data and 11 for registrations without. For each of the
consistency measurements the mean, rms, and maximum voxel
shifts over the segmented brain region were calculated.

H. Registration of Simulated Data

We used the noiseless brain model image and the noiseless
brain model with 40% RF inhomogeneity from the McConnell
Brain Imaging Centre, McGill University [32] to create four
image pairs: 1) two noiseless replica images; 2) two noiseless
images with different simulated noise; 3) two noiseless images,
one with and one without RF inhomogeneity; and 4) two images
with simulated noise, one with and one without RF inhomo-
geneity. So that the effects of interpolation could be avoided, im-
ages were not transformed before registration. Instead the reg-
istration algorithm was given starting estimates that represented
typical misregistration. This was done by choosing six transfor-
mations from the registrations (with NMI) of patient data in the
clinical study. A perfect solution is the identity transformation
and so the inconsistency between the estimate obtained and the
identity was measured over voxels corresponding to the brain.
Fig. 6 shows resulting difference images from subtracting two
serial clinical scans (left) and two noisy simulated model im-
ages (right). This demonstrates the similarity of the simulated
and actual noise distributions. For the simulated data exact reg-
istration is achieved so the difference signal is spatially uncorre-
lated. For the clinical data there are spatially correlated signals
near the scalp because of non-rigid tissue deformation.

TABLE I
MEAN (STANDARD DEVIATION) OF 33 MEASUREMENTS OF THECONSISTENCY

BETWEEN TRANSFORMATION ESTIMATES (SEE FIG. 4) OBTAINED BY

REGISTRATION WITH AND WITHOUT PRIOR SEGMENTATION

TABLE II
MEAN (STANDARD DEVIATION) OF 11 MEASUREMENTS OF THECONSISTENCY

OF THE COMPOSITION OFTRANSFORMATION ESTIMATES (SEE FIG. 5) FROM

REGISTRATION WITHOUT PRIOR SEGMENTATION

TABLE III
MEAN (STANDARD DEVIATION) OF 11 MEASUREMENTS OF THECONSISTENCY

OF THE COMPOSITION OFTRANSFORMATION ESTIMATES (SEE FIG. 5)
OBTAINED BY REGISTRATION WITH PRIOR SEGMENTATION

III. RESULTS

We present consistency measurements for registration with
all eight measures for both clinical (segmented and not seg-
mented) and simulated data. All measurements are expressed
as the mean, rms, and maximum voxel displacements over the
segmented brain region and are given in microns, rounded to the
nearest micron. To assist in the interpretation of the results, we
plot some example joint probability distributions for simulated
data and use these to explain why some measures perform better
than others.

A. Registration Consistency for the Eight Similarity Measures

Shown in Tables I, II, and III are the averages of consistency
measurements for transformation estimates derived from rigid
body registration of the clinical data, with and without segmen-
tation, with each of the eight measures. The statistics given, for
each measure, are the mean (standard deviation) of the consis-
tency measurements of 33 transformation estimates obtained
from three registrations of 11 subjects. Measurements of the
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TABLE IV
MEAN (STANDARD DEVIATION) OF REGISTRATION ACCURACY USING SIX

DIFFERENTSTARTING TRANSFORMATIONS. TWO IDENTICAL IMAGES

TABLE V
MEAN (STANDARD DEVIATION) OF REGISTRATION ACCURACY USING SIX

DIFFERENTSTARTING TRANSFORMATIONS. TWO IDENTICAL IMAGES WITH

DIFFERENTSIMULATED NOISE

consistency between transformation estimates obtained by reg-
istrations of the same data, with and without baseline image seg-
mentation, are given in Table I. Tables II and III show the mean
(standard deviation) for consistency measurements for the com-
position of three transformation estimates for the
11 subjects. Table II refers to transformation estimates derived
from registration without segmentation and Table III to transfor-
mation estimates derived from registration with segmentation.

B. Registration Consistency with Simulated Images

Measurements of the consistency of transformation estimates
derived from the four image pairs described in Section II-H are
shown in Tables IV–VII. The four pairs correspond to two noise-
less replica images (Table IV), two images with different Rician
noise (Table V), two noiseless images, one with RF inhomo-
geneity and the other without (Table VI), and one image with
simulated noise and the other with RF inhomogeneity and sim-
ulated noise (Table VII).

C. Analysis of Results

We tested whether the differences in samples of the mean
voxel shift measurements were significant for each of the mea-
sures. The sample derived from the MI was assigned the base-
line and each of the other measure’s samples were tested against
it. We used a nonparametric statistical sign test [33] (Matlab,
Mathworks, MA) to test for significant differences in median be-
tween samples. For registration consistency (with and without
prior segmentation) based on samples of 33 consistency mea-
surements of registration solutions (the summary statistics are
given in Table I) there was no significant difference for NMI

. For both MSD and NCC the difference was sig-
nificant at the 5% level For the other 4 mea-
sures there was a significant difference at the 1% level: EDI

, PI , MRIU ,

TABLE VI
MEAN (STANDARD DEVIATION) OF REGISTRATION ACCURACY USING

SIX DIFFERENT STARTING TRANSFORMATIONS. ONE IMAGE WITH RF
INHOMOGENEITY THE OTHER WITHOUT. THE ASTERISK(*) I NDICATES A

FAILURE THAT WAS OMITTED

TABLE VII
MEAN (STANDARD DEVIATION) OF REGISTRATION ACCURACY USING

SIX DIFFERENT STARTING TRANSFORMATIONS. ONE IMAGE WITH RF
INHOMOGENEITY AND NOISE THEOTHER WITH DIFFERENTNOISE

and RIU . For the 11 measurements of the
internal consistency for unsegmented data (see Table II) there
were significant differences at the 1% level between MI and
EDI, RIU, and PI . For segmented data (see
Table III) there were significant differences for the RIU mea-
sure at the 5% level We also tested whether there
were significant differences in internal consistency for regis-
tration solutions with segmented and with unsegmented data
for each measure. The Wilcoxon rank sum test was applied to
the two sets of 11 measurements for each measure. The results
showed that there were significant differences for the two types
of data for EDI , RIU , and
PI . None of the other measures, CHI, NCC, MI,
NMI, and MRIU, showed any significant differences at the 5%
level for the two types of data.

D. Relationship of Corresponding Voxel Intensities

It is clear from inspection of Tables I–VI and from the statis-
tical analysis in Section III-C that some of the similarity mea-
sures that we have compared perform significantly better than
others for the clinical data and show the same pattern for the
simulated data. In particular, the measures based on joint en-
tropy (MI, NMI) perform best. The joint probability distribu-
tion of corresponding voxel intensities and can
be displayed as images and provide a useful tool for visualizing
how the intensities are related (see earlier work in [34]). We
use these joint distributions to better understand the effect of
noise and RF inhomogeneity. The joint probability distribution
of three pairs of brain model images are shown in Figs. 7–9.
Fig. 7 shows the joint distribution for two identical images at
registration and with small amounts of misregistration. At regis-
tration there are only diagonal entries in the distribution. As mis-
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Fig. 7. Joint probability distributions of voxel intensities for replicas of
the noiseless brain model image. At registration (left) misregistered by anx

translation of 0.1 mm (center) and 0.5 mm (right). The axes are the image
intensities (origin top left corner, range 0–255 grey levels). The intensity shown
is the logarithm of the probability.

Fig. 8. Joint probability distributions of voxel intensities for brain model
images with different added Rician noise. At registration (left) misregistered
by anx translation of 0.1 mm (center) and 0.5 mm (right).

Fig. 9. Joint probability distributions for intensities of noiseless brain model
image and the brain model image with added Rician noise and 40% intensity
inhomogeneity. At registration (left) misregistered by anx translation of 0.1
mm (center) and 0.5 mm (right).

registration increases off-diagonal entries start to appear and the
distribution becomes dispersed. Fig. 8 shows the effect of Rician
noise, in both images, on the joint distribution. At registration
the diagonal entries are blurred, but the blurring is symmetric
and so the linear relationship is preserved. Off-diagonal entries
again appear as misregistration increases. Fig. 9 shows the effect
of intensity inhomogeneity, in one image, on the joint distribu-
tion. There is increased dispersion and it is intensity dependent.
In general, the intensity inhomogeneity will change for serial ac-
quisitions, this will lead to nonsymmetric dispersion and a non-
linear relationship between intensities.

IV. DISCUSSION ANDCONCLUSION

In this paper we have carried out a comparison of eight simi-
larity measures for serial MR registration with the aim of identi-
fying the most appropriate one for use with clinical images con-
taining subtle amounts of anatomical change. We have quan-
tified the accuracy of the measures using simulated data, and
their consistency using clinical images. In the simulation, we
investigated the effect of noise and RF inhomogeneity on their
accuracy and using the clinical images, we compared their per-
formance on images with, and without prior segmentation of
extradural tissue. In order to interpret the accuracy and consis-
tency of values that we measured, we compare them with the

threshold of discernable misregistration which was shown to
correspond to a mean voxel shift of about 200m for similar
data [14]. We use this threshold to demarcate acceptable accu-
racy for the simulated data and acceptable consistency for the
clinical data. We found that all eight measures were accurate
to within the threshold of acceptable accuracy for the noise-
less simulated images with or without RF inhomogeneity. When
using simulated images differing only by noise, six of the mea-
sures (MSD, EDI, MI, NCC, NMI, and MRIU) were accurate to
within the threshold. When both noise and RF inhomogeneity
were included, four of the measures had acceptable accuracy
(MI, NCC, NMI, and MRIU), although both MSD and EDI were
borderline. For the clinical data, there was a similar ranking
of the measures. For the segmented images all measures ex-
cept RIU could register the images with acceptable consistency
and RIU was borderline (Table II). Without segmentation, how-
ever, only five measures had acceptable consistency (MSD, MI,
NCC, NMI, and MRIU). These same five measures produced
solutions, with or without segmentation, that agreed within the
threshold of visual detectability of misregistration (see Table I).
This is consistent with visual assessment results from the clin-
ical study which indicated that there was no significant differ-
ence in perceived misregistration between the sets of difference
images registered (with NMI), with and without segmentation
[14].

Statistical analysis of Table I showed that MI performed sig-
nificantly better than the measures that were not based on joint
entropy. A possible reason for the relatively good performance
of the MI measures can be seen by visual inspection of the joint
probability distribution in Figs. 7–9.

Joint entropy is directly related the joint
probability distribution, , i.e.,

, and defines
the statistical relationship of corresponding voxel intensities.
Low joint entropy is equivalent to low dispersion of the joint
histogram, i.e. a compact relationship. There is no assumption
here about the form of relationship between voxel intensities,
it could be nonlinear. In contrast, for a correlation measure,
a linear relationship of corresponding voxel intensities is
required. In general, for serial acquisitions the relationship
is nonlinear because of intensity distortion, as illustrated in
Fig. 9. A linear relationship between intensities (i.e., a line in
the joint histogram) is required for a correlation type measure.
A measure based on joint entropy does not require such a
linear relationship. A low joint entropy simply corresponds to
a compact joint distribution (i.e., a small number of entries in
the joint distribution).

Results with the simulated images suggested that image noise
had a significant effect on registration accuracy. However, the
highest resolution matching was done with images at the orig-
inal resolution without any filtering to reduce the impact of
noise. It is possible that low-pass filtering with intensity thresh-
olding might improve performance of some measures.

The results for both clinical and simulated data show that the
modified RIU criterion performs better than the original one.
This is most likely to be attributable to its increased robustness
to RF inhomogeneity since high/low intensities are more equally
weighted. However, the clinical results indicate that modified
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RIU performs no better than either the MSD or NCC correlation
measures and worse than both MI and NMI.

Our results show that the similarity measures based on MI are
the most suitable to determine the six degrees of freedom (rigid
body) transformation between serial MR images of the head.
Using our optimization strategy with trilinear interpolation we
achieve registration solutions with and without extradural seg-
mentation that are consistent to within the threshold of observer
discernibility (i.e, 200–300 m). Our results apply to serial MR
images under the conditions of typical scalp deformations and
small-scale anatomical change.
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