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Abstract. 3D volumetric microscopical techniques (e.g. confocal laser
scanning microscopy) have become a standard tool in biomedical ap-
plications to record three-dimensional objects with highly anisotropic
morphology. To analyze these data in high-throughput experiments, re-
liable, easy to use and generally applicable pattern recognition tools are
required. The major problem of nearly all existing applications is their
high specialization to exact one problem, and the their time-consuming
adaption to new problems, that has to be done by pattern recognition
experts. We therefore search for a tool that can be adapted to new prob-
lems just by an interactive training process. Our main idea is therefore to
combine object segmentation and recognition into one step by comput-
ing voxel-wise gray scale invariants (using nonlinear kernel functions and
Haar-integration) on the volumetric multi-channel data set and classify
each voxel using support vector machines.

After the selection of an appropriate set of nonlinear kernel functions
(which allows to integrate previous knowledge, but still needs some ex-
pertise), this approach allows a biologist to adapt the recognition system
for his problem just by interactively selecting several voxels as training
points for each class of objects. Based on these points the classification
result is computed and the biologist may refine it by selecting additional
training points until the result meets his needs. In this paper we present
the theoretical background and a fast approximative algorithm using
FFTs for computing Haar-integrals over the very rich class of nonlinear
3-point-kernel functions. The approximation still fulfils the invariance
conditions. The experimental application for the recognition of different
cell cores of the chorioallantoic membrane is presented in the accompa-
nying paper [1] and in the technical report [2]

1 Introduction

Three-dimensional microscopical techniques, e.g., confocal laser scanning mi-
croscopy, has become a standard tool in biomedical applications within the last
few years. Due to the increasing need of high throughput experiments, e.g. in
the analysis of 3D gene expression patterns, the gap between the automated
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recording of the data and the tedious and subjective manual evaluation becomes
larger and larger.

Due to the rapidly changing requirements for an automatic evaluation, the
traditional way of developing highly specialized model-based solutions for exactly
one problem with dozens of manually selected morphological processing steps and
thresholds does usually not meet the needs of the biologists.

A step towards a generally applicable and easy to use system is presented in
this paper. Many of the problems can be reduced to a rotation and translation
invariant recognition of certain 3D structures, that are trained by a manually
labeled database (e.g., counting or localization of different cell cores). Therefore,
we use gray scale invariants [3,4], that have already been successfully applied
to the recognition of pollen grains in volumetric data sets [5]. The main limita-
tion of this approach was its need for objects that are already segmented from
the background. A good segmentation on the other hand needs already much
information about the object to isolate it from the background.

To overcome this classical dilemma, we integrated the segmentation and
recognition of the objects into one step by calculating voxel-wise gray scale in-
variants: For each voxel several rotation invariant features from its surrounding
are extracted and the resulting feature vector is classified using support vector
machines [6]. The result is a label for each voxel (or several probabilities per
voxel). A simple connected component analysis in the next step then searches
regions with the same label to segment the objects.

The main advantage of this approach is its direct operation on the raw data
and the avoidance of manually selected thresholds. Instead it learns all necessary
informations from a labeled training data set.

2 Theory

2.1 Construction of Gray Scale Invariants

The precondition for the use of gray scale invariants in recognizing n-dimensional
structures in the real world are:

1. One or more reproducible measurement techniques, that are able to measure
certain properties within the structure at definite positions independent from
the orientation of the structure (e.g., to measure the fluorescence activity at a
certain wavelength at the focal point of a confocal laser scanning microscope)
resulting in an n-dimensional multi-channel data set

2. Knowledge of those mathematical transformations, which do not change the
meaning of the structure (e.g. rotation and translation)

If these preconditions are fulfilled, we can find a feature extraction, that is
able to map all representations of the same object (given by the transformation
group) into one point of the feature space by using a nonlinear kernel function
and a Haar-integration over the whole transformation group [5].
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T [f ](X) :=
∫

G

f(gX)dg

G : transformation group
g : one element of the transformation group
f : nonlinear kernel function
X : n-dim, multi-channel data set

gX : the transformed n-dim data set

(1)

For each nonlinear kernel function f this integral returns a scalar value that
describes a certain feature of the n-dimensional data set invariant under the
given transformations, as long as the integral exists and is finite.

Reduction to Kernel-Functions with sparse support. If the kernel func-
tion f only depends on a few points of the image or volume, i.e., if we can rewrite
f(X) as f

(
X(x1),X(x2),X(x3), . . .

)
, where X(xi) is the gray value1 at position

xi we only need to transform the kernel points x1, x2, x3, . . . accordingly, instead
of the whole data set X. This transformation of the kernel points is denoted as
sg(xi) such that

(gX)(xi) := X(sg(xi)) ∀g, xi . (2)

With this we can rewrite (1) as

T [f ](X) :=
∫

G

f
(
X(sg(x1)), X(sg(x2)), X(sg(x3)), . . .

)
dg . (3)

This considerably speeds up the computation and results for a given kernel in
linear complexity O(N) of the algorithm, where N is the number of voxels in
the data set.

Multi Scale Approach. In the general formulation of the gray scale invariants
(1) appropriate kernel functions can be used in order to sense any features of
the structures at any scales. Computable kernel functions (3) depend only on
a few gray values at certain points. To use them for sensing also large-scale
informations, a multi scale approach is applied [5]. In the continuous domain
this is equivalent to applying a certain low-pass filter (e.g. convolution with a
Gaussian) to the data set before evaluating the kernel functions (see Fig. 1)

x1x1

x2
x2

x3
x3

Fig. 1. Computable kernels rely on a small number of sampling points. To sense in-
formations at multiple scales, the sampling points are “enlarged” with Gaussians of
mutliple size

1 We use the term “gray value” even for color or other multi-channel data. In this case
one “gray value” has multiple components.
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Voxel-Wise Gray Scale Invariants. For voxel-wise invariants the transfor-
mation group is just a rotation, where the origin of the coordinate system is
shifted to a certain voxel in advance. The resulting features from the different
kernel functions are collected in a feature vector, which then describes the sur-
rounding of this voxel in a unique and rotation invariant way. This is done for
all voxels in a volume.

2.2 Computation of Gray Scale Invariants

To compute the gray scale invariants from (3) we first have to select a parame-
terization λ of sg so that (3) can be rewritten as

T [f ](X) :=
∫

f
(
X(sλ(x1)), X(sλ(x2)), X(sλ(x3)), . . .

)
dλ . (4)

For a given data set X and given kernel points x1, x2, x3, . . . we can substitute
X(sλ(xi)) with vi(λ), where X(sλ(xi)) are the gray values, that are touched by
the i’th kernel point xi during all transformations described by λ, resulting in

T =
∫

f
(
v1(λ), v2(λ), v3(λ), . . .

)
dλ . (5)

A simple example for the resulting one-dimensional curves v1(ϕ), v2(ϕ) and
v3(ϕ) when using a 3-point kernel on a 2D image and the transformation group
of rotations is given in Fig. 2.
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Fig. 2. When using a 3-point kernel on a continuous 2D image and the transformation
group of rotations, the gray values, that are touched by the kernel points x1, x2 and
x3, are one-dimensional functions v1(ϕ), v2(ϕ) and v3(ϕ)

Two-Point Kernel Functions. The direct evaluation of the integral (3) is
usually too slow for real applications. A fast calculation method (using FFTs) for
a certain class of kernel-functions (so called separable two-point-kernel functions)
of the form

f(X) = fa

(
X(0)

)
· fb

(
X(q)

) fa, fb : any nonlinear functions that
transform the gray values

q : span of the kernel function
(6)
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and for Euclidean transformations was presented in [5]: For this purpose we
define A(x) := fa(X(x)) and B(x) := fb(X(x)) The resulting Haar integral
(3) is

T [f ](X) =
∫

dx A(x) · (B ∗ S)(x), with S(x) := δ
(
|x| − q

)
(7)

which is the convolution (denoted as ’∗’) of B with S (which is a surface of a
sphere in 3D or a circle in 2D) and the point-wise multiplication with A. For
the evaluation of voxel-wise gray scale invariants the final integration over x is
omitted.

Three-Point-Kernel Functions Two-point kernel functions perform very well
in Haar integrals over Euclidean motions. For the voxel-wise invariants, they are
somewhat limited in their discrimination power, because the resulting invariants
are not only invariant to rotation of the surrounding but also to any random
permutation of the gray values at the same radius. In contrast to this, three-
point kernel functions, where the first point is located at the rotation center2

f(X) = fa

(
X(0)

)
· fb

(
X(q2)

)
· fc

(
X(q3)

)
(8)

are sensitive to such permutations but they cannot be computed directly with the
above mentioned fast algorithm, because both factors in the product fb(X(q1)) ·
fc(X(q2)) change when rotating the kernel and therefore cannot be calculated
by a simple convolution.

In the following we present an expansion into a series of simple coonvolutions
with the nice property, that every truncated evaluation of this series still fulfills
the invariance criterion.

For volumetric data the rotations must be parameterized by three angles
λ = (ϕ1, ϕ2, ϕ3)T (see Fig. 3).

t1

t2

t3

ϕ1

ϕ2

ϕ3

Fig. 3. Parameterization of the 3D rotation with λ = (ϕ1, ϕ2, ϕ3)T

The first kernel point is always shifted to the rotation center, which results
in v1(λ) = v1(0). Without changing the result we can rotate the kernel func-
tion, such that the second kernel point is located on the z-axis, which makes
2 For Euclidean transformations, a translation of the kernel function does not change

the integral. We use the same terminology for voxel-wise invariants. If you do not
plan to integrate over translations in a later step, you could leave out the first kernel
point.
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v2(λ) insensitive to ϕ3-rotations, resulting in v2(λ) = v2(ϕ1, ϕ2, 0). With this
parameterization the Haar integral becomes

T = fa

(
v1(0)

) ∫ π

0
dϕ1 sin(ϕ1)

∫ π

−π

dϕ2 fb

(
v2(ϕ1, ϕ2, 0)

) ∫ π

−π

dϕ3 fc

(
v3(ϕ1, ϕ2, ϕ3)

)
.

(9)
The integration in the last term can be rewritten as a convolution with a circle
on the sphere surface,

vcc(ϕ1, ϕ2) :=
∫ π

−π

dϕ3 fc

(
v3(ϕ1, ϕ2, ϕ3)

)

=
∫ π

0
dψ1 sin(ψ1)

∫ π

−π

dψ2

∫ π

−π

dψ3 fc

(
v3(ψ1, ψ2, ψ3)

)

· δ
(
dist

(
(ψ1, ψ2, ψ3), (ϕ1, ϕ2, 0)

)
− r

)
(10)

where “dist” is the distance between two points on a sphere surface and r the
distance of the third kernel-point to the “north pole” of the sphere. This reduces
the evaluation of the Haar integral to a pixel-wise multiplication and subsequent
integration of two gray value data sets on the sphere surfaces. By defining va =
fa

(
v1(0)

)
and vb(ϕ1, ϕ2) = fb

(
v2(ϕ1, ϕ2, 0)

)
, the Haar integral becomes

T = va

∫ π

0
dϕ1 sin(ϕ1)

∫ π

−π

dϕ2 vb(ϕ1, ϕ2) · vcc(ϕ1, ϕ2) (11)

Analogous to Fourier series in 2D, this can be approximated with spherical
harmonics as basis functions. The coefficients are

Wblm =
∫ π

0
dϕ1 sin(ϕ1)

∫ π

−π

dϕ2 vb(ϕ1, ϕ2) Y l
m

∗
(ϕ1, ϕ2) (12)

(Wcclm if defined analogously) which allows to write the Haar integral as

T = va

∫ π

0
dϕ1 sin(ϕ1)

∫ π

−π

dϕ2

⎛
⎝ ∞∑

l1=0

l1∑
m1=−l1

Wbl1m1Y
l1
m1

(ϕ1, ϕ2)

⎞
⎠

·

⎛
⎝ ∞∑

l2=0

l2∑
m2=−l2

Wccl2m2Y
l2
m2

(ϕ1, ϕ2)

⎞
⎠ (13)

Using the orthogonality relationships between the basis functions Y l
m and

the precondition, that our data is real-valued, allows to reduce this integral to a
simple summation

T ∼ va

N∑
l=0

l∑
m=0

�
(
WblmW ∗

cclm

)
(14)

where the series may be truncated after the N ’th coefficient without violating
the rotation invariance. The full operations are shown in the scheme in Fig. 4.
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Fig. 4. Computation of three-point-kernel invariants f(X) = fa(X(0)) · fb(X(q2)) ·
fc(X(q3)) on multi-channel volumetric data. For each kernel function this scheme si-
multaneously calculates the invariants for all voxels.

Voxel-Wise Classification After the extraction of multiple voxel-wise invari-
ants, the feature vector for each voxel is classified with a SVM, that was trained
on manually labeled data. A simple connected component analysis on these voxel-
wise classification results is used to segment the different objects in the volume.

3 Experiments

Recognition of different cell cores on confocal recordings of the chicken embryo
chorioallantoic membrane are promising and show good discrimination perfor-
mance even for difficult constellations. For details see the accompanying paper
[1] or technical report [2].

4 Conclusion and Outlook

Voxel-wise gray scale invariants allow to recognize objects in volumetric multi-
channel data without prior segmentation. The presented fast computation al-
gorithms allow to use them in real-world applications. Therefore they build an
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important step towards a reliable, generally applicable and easy to use pattern
recognition system that can be adapted to new problems by a biologist just by
an interactive point-and-click procedure.

The next obvious extension will be the use of the voxel-wise classification
results (or probabilities) as additional synthetic data channels for additional fea-
ture extraction steps. This gives the biologist an easy possibility to integrate his
previous knowledge just by decomposing the recognition task into single steps.
E.g., in a first step he trains the system to recognize small low-level structures
(like cell cores or cell walls) and then combines in the next steps these interme-
diate results for the recognition of higher level structures.

Present limitations of this framework are the need for manually selected
kernel functions. Even though there are already some sets of kernel functions
for several applications, our current research focusses on a completely automatic
selection of the best kernel functions for a given training data set.

Another problem that cannot be solved with the current approach is segmen-
tation of two neighboring objects of the same class, when there is no significant
border between them, that can be trained and classified as an extra class or as
background. One solution may be to train seeding points in the center of each
object as an additional class. A seeded watershed on the classification results
might then be used to crop the two objects at the correct position.

References

1. Fehr, J., Ronneberger, O., Kurz, H., Burkhardt, H.: Self-learning segmentation
and classification of cell-nuclei in 3d volumetric data using voxel-wise gray scale
invariants. In Kropatsch, W., Sablating, R., eds.: Pattern Recognition - Proc. of the
27th DAGM Symposium, Vienna, Austria, Springer, Berlin (2005)

2. Ronneberger, O., Fehr, J., Burkhardt, H.: Voxel-wise gray scale invariants for si-
multaneous segmentation and classification – theory and application to cell-nuclei
in 3d volumetric data. Internal report 2/05, IIF-LMB, University Freiburg (2005)

3. Schulz-Mirbach, H.: Invariant features for gray scale images. In Sagerer, G., Posch,
S., Kummert, F., eds.: 17. DAGM - Symposium“Mustererkennung”, Bielefeld, Reihe
Informatik aktuell, Springer (1995) 1–14

4. Burkhardt, H., Siggelkow, S.: Invariant features in pattern recognition – fundamen-
tals and applications. In Kotropoulos, C., Pitas, I., eds.: Nonlinear Model-Based
Image/Video Processing and Analysis, John Wiley & Sons (2001) 269–307

5. Ronneberger, O., Burkhardt, H., Schultz, E.: General-purpose Object Recognition
in 3D Volume Data Sets using Gray-Scale Invariants – Classification of Airborne
Pollen-Grains Recorded with a Confocal Laser Scanning Microscope. In: Proceedings
of the International Conference on Pattern Recognition, Quebec, Canada (2002)

6. Vapnik, V.N.: The nature of statistical learning theory. Springer (1995)


	Introduction
	Theory
	Construction of Gray Scale Invariants
	Computation of Gray Scale Invariants

	Experiments
	Conclusion and Outlook

