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VoxelMorph: A Learning Framework for

Deformable Medical Image Registration
Guha Balakrishnan, Amy Zhao, Mert R. Sabuncu, John Guttag, and Adrian V. Dalca

Abstract—We present VoxelMorph, a fast learning-based
framework for deformable, pairwise medical image registration.
Traditional registration methods optimize an objective function
for each pair of images, which can be time-consuming for large
datasets or rich deformation models. In contrast to this approach,
and building on recent learning-based methods, we formulate
registration as a function that maps an input image pair to a
deformation field that aligns these images. We parameterize the
function via a convolutional neural network (CNN), and optimize
the parameters of the neural network on a set of images. Given a
new pair of scans, VoxelMorph rapidly computes a deformation
field by directly evaluating the function. In this work, we explore
two different training strategies. In the first (unsupervised)
setting, we train the model to maximize standard image matching
objective functions that are based on the image intensities. In
the second setting, we leverage auxiliary segmentations available
in the training data. We demonstrate that the unsupervised
model’s accuracy is comparable to state-of-the-art methods,
while operating orders of magnitude faster. We also show that
VoxelMorph trained with auxiliary data improves registration
accuracy at test time, and evaluate the effect of training set
size on registration. Our method promises to speed up medical
image analysis and processing pipelines, while facilitating novel
directions in learning-based registration and its applications. Our
code is freely available at http://voxelmorph.csail.mit.edu.

Index Terms—registration, machine learning, convolutional
neural networks

I. INTRODUCTION

DEFORMABLE registration is a fundamental task in a

variety of medical imaging studies, and has been a topic

of active research for decades. In deformable registration, a

dense, non-linear correspondence is established between a

pair of images, such as 3D magnetic resonance (MR) brain

scans. Traditional registration methods solve an optimization

problem for each volume pair by aligning voxels with similar

appearance while enforcing constraints on the registration

mapping. Unfortunately, solving a pairwise optimization can

be computationally intensive, and therefore slow in practice.

For example, state-of-the-art algorithms running on the CPU

can require tens of minutes to hours to register a pair of scans

with high accuracy [1]–[3]. Recent GPU implementations have

reduced this runtime to just minutes, but require a GPU for

each registration [4].

We present a novel registration method that learns a

parametrized registration function from a collection of vol-

umes. We implement the function using a convolutional neural
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network (CNN), that takes two n-D input volumes and outputs

a mapping of all voxels of one volume to another volume.

The parameters of the network, i.e. the convolutional kernel

weights, can be optimized using only a training set of volumes

from the dataset of interest. The procedure learns a common

representation that enables alignment of a new pair of volumes

from the same distribution. In essence, we replace a costly

optimization solved for each test image pair with one global

function optimization during a training phase. Registration of

a new test scan pair is achieved by simply evaluating the

learned function on the given volumes, resulting in rapid

registration, even on a CPU. We implement our method

as a general purpose framework, VoxelMorph, available at

http://voxelmorph.csail.mit.edu1.

In the learning-based framework of VoxelMorph, we are

free to adopt any differentiable objective function, and in this

paper we present two possible choices. The first approach,

which we refer to as unsupervised2, uses only the input

volume pair and the registration field computed by the model.

Similar to traditional image registration algorithms, this loss

function quantifies the dissimilarity between the intensities of

the two images and the spatial regularity of the deformation.

The second approach also leverages anatomical segmentations

available at training time for a subset of the data, to learn

network parameters.

Throughout this study, we use the example of registering

3D MR brain scans. However, our method is broadly ap-

plicable to other registration tasks, both within and beyond

the medical imaging domain. We evaluate our work on a

multi-study dataset of over 3,500 scans containing images of

healthy and diseased brains from a variety of age groups.

Our unsupervised model achieves comparable accuracy to

state-of-the-art registration, while taking orders-of-magnitude

less time. Registration with VoxelMorph requires less than a

minute using a CPU and under a second on a GPU, in contrast

to the state-of-the-art baselines which take tens of minutes to

over two hours on a CPU.

This paper extends a preliminary version of the work

presented at the 2018 International Conference on Computer

Vision and Pattern Recognition [6]. We build on that work

1We implement VoxelMorph as a flexible framework that includes the
methods proposed in this manuscript, as well as extensions that are beyond
the scope of this work [5]

2We use the term unsupervised to underscore the fact that VoxelMorph is
a learning method (with images as input and deformations as output) that
requires no deformation fields during training. Alternatively, such methods
have also been termed self-supervised, to highlight the lack of supervision, or
end-to-end, to highlight that no external computation is necessary as part of
a pipeline (such as computing ’true’ deformation fields).
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by expanding analyses, and introducing an auxiliary learning

model that can use anatomical segmentations during training

to improve registration on new test image pairs for which

segmentation maps are not available. We focus on providing a

thorough analysis of the behavior of the VoxelMorph algorithm

using two loss functions and a variety of settings, as follows.

We test the unsupervised approach on more datasets and

both atlas-based and subject-to-subject registration. We then

explore cases where different types and numbers of anatomical

region segmentations are available during training as auxiliary

information, and evaluate the effect on registration of test

data where segmentations are not available. We present an

empirical analysis quantifying the effect of training set size

on accuracy, and show how instance-specific optimization

can improve results. Finally, we perform sensitivity analyses

with respect to the hyperparameter choices, and discuss an

interpretation of our model as amortized optimization.

The paper is organized as follows. Section 2 introduces

medical image registration and Section 3 describes related

work. Section 4 presents our methods. Section 5 presents

experimental results on MRI data. We discuss insights of the

results and conclude in Section 6.

II. BACKGROUND

In the traditional volume registration formulation, one (mov-

ing or source) volume is warped to align with a second (fixed

or target) volume. Fig. 1 shows sample 2D coronal slices

taken from 3D MRI volumes, with boundaries of several

anatomical structures outlined. There is significant variability

across subjects, caused by natural anatomical brain variations

and differences in health state. Deformable registration enables

comparison of structures between scans. Such analyses are

useful for understanding variability across populations or the

evolution of brain anatomy over time for individuals with

disease. Deformable registration strategies often involve two

steps: an initial affine transformation for global alignment,

followed by a much slower deformable transformation with

more degrees of freedom. We concentrate on the latter step,

in which we compute a dense, nonlinear correspondence for

all voxels.

Most existing deformable registration algorithms iteratively

optimize a transformation based on an energy function [7]. Let

f and m denote the fixed and moving images, respectively, and

let φ be the registration field that maps coordinates of f to

coordinates of m. The optimization problem can be written

as:

φ̂ = argmin
φ

L(f,m,φ) (1)

= argmin
φ

Lsim(f,m ◦ φ) + λLsmooth(φ), (2)

where m ◦ φ represents m warped by φ, function Lsim(·, ·)
measures image similarity between its two inputs, Lsmooth(·)
imposes regularization, and λ is the regularization trade-off

parameter.

There are several common formulations for φ, Lsim and

Lsmooth. Often, φ is characterized by a displacement vector

field u specifying the vector offset from f to m for each

voxel: φ = Id + u, where Id is the identity transform [8].
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Fig. 1: Example coronal slices from the MRI brain dataset, af-

ter affine alignment. Each column is a different scan (subject)

and each row is a different coronal slice. Some anatomical

regions are outlined using different colors: L/R white matter

in light/dark blue, L/R ventricles in yellow/red, and L/R

hippocampi in purple/green. There are significant structural

differences across scans, necessitating a deformable registra-

tion step to analyze inter-scan variations.

Diffeomorphic transforms model φ through the integral of

a velocity vector field, preserving topology and maintain-

ing invertibility on the transformation [9]. Common metrics

used for Lsim include intensity mean squared error, mutual

information [10], and cross-correlation [11]. The latter two

are particularly useful when volumes have varying inten-

sity distributions and contrasts. Lsmooth enforces a spatially

smooth deformation, often modeled as a function of the spatial

gradients of u.

Traditional algorithms optimize (1) for each volume pair.

This is expensive when registering many volumes, for example

as part of population-wide analyses. In contrast, we assume

that a field can be computed by a parameterized function of

the data. We optimize the function parameters by minimizing

the expected energy of the form of (1) over a dataset of

volume pairs. Essentially, we replace pair-specific optimization

of the deformation field by global optimization of the shared

parameters, which in other domains has been referred to as

amortization [12]–[15]. Once the global function is estimated,

a field can be produced by evaluating the function on a

given volume pair. In this paper, we use a displacement-

based vector field representation, and focus on various aspects

of the learning framework and its advantages. However, we

recently demonstrated that velocity-based representations are

also possible in a VoxelMorph-like framework, also included

in our codebase [5].
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III. RELATED WORK

A. Medical Image Registration (Non-learning-based)

There is extensive work in 3D medical image registra-

tion [8], [9], [11], [16]–[21]. Several studies optimize within

the space of displacement vector fields. These include elastic-

type models [8], [22], [23], statistical parametric mapping [24],

free-form deformations with b-splines [25], discrete meth-

ods [17], [18] and Demons [19], [26]. Diffeomorphic trans-

forms, which are topology-preserving, have shown remarkable

success in various computational anatomy studies. Popular

formulations include Large Diffeomorphic Distance Metric

Mapping (LDDMM) [9], [21], [27]–[32], DARTEL [16], dif-

feomorphic demons [33], and standard symmetric normaliza-

tion (SyN) [11]. All of these non-learning-based approaches

optimize an energy function for each image pair, resulting in

slow registration. Recent GPU-based algorithms build on these

concepts to reduce algorithm runtime to several minutes, but

require a GPU to be available for each registration [4], [34].

B. Medical Image Registration (Learning-based)

There are several recent papers proposing neural networks to

learn a function for medical image registration. Most of these

rely on ground truth warp fields [35]–[39], which are either

obtained by simulating deformations and deformed images, or

running classical registration methods on pairs of scans. Some

also use image similarity to help guide the registration [35].

While supervised methods present a promising direction,

ground truth warp fields derived via conventional registration

tools as ground truth can be cumbersome to acquire and can

restrict the type of deformations that are learned. In contrast,

VoxelMorph is unsupervised, and is also capable of leveraging

auxiliary information such as segmentations during training if

those are available.

Two recent papers [40], [41], were the first to present

unsupervised learning based image registration methods. Both

propose a neural network consisting of a CNN and spatial

transformation function [42] that warps images to one another.

However, these two initial methods are only demonstrated on

limited subsets of volumes, such as 3D subregions [41] or 2D

slices [40], and support only small transformations [40].

A recent method has proposed a segmentation driven cost

function to be used in registering different imaging modalities

– T2w MRI and 3D ultrasound – within the same subject [43],

[44]. The authors demonstrate that a loss functions based

solely on segmentation maps can lead to an accurate within-

subject cross-modality registration network. Parallel to this

work, in one of our experiments, we demonstrate the use

of segmentation maps during training in subject-to-atlas reg-

istration. We provide an analysis of the effect of different

anatomical label availability on overall registration quality,

and evaluate how a combination of segmentation and image

based losses behaves in various scenarios. We find that a

segmentation-based loss can be helpful, for example if the

input segment labels are the same as those we evaluate on

(consistent with [43], and [44]). We also show that the image-

based and smoothness losses are still necessary, especially

when we evaluate registration accuracy on labels not observed

during training, and to encourage deformation regularity.

C. 2D Image Alignment

Optical flow estimation is a related registration problem for

2D images. Optical flow algorithms return a dense displace-

ment vector field depicting small displacements between a pair

of 2D images. Traditional optical flow approaches typically

solve an optimization problem similar to (1) using variational

methods [45]–[47]. Extensions that better handle large dis-

placements or dramatic changes in appearance include feature-

based matching [48], [49] and nearest neighbor fields [50].

In recent years, several learning-based approaches to op-

tical flow estimation using neural networks have been pro-

posed [51]–[56]. These algorithms take a pair of images as

input, and use a convolutional neural network to learn image

features that capture the concept of optical flow from data.

Several of these works require supervision in the form of

ground truth flow fields [52], [53], [55], [56], while we build

on a few that use an unsupervised objective [51], [54]. The

spatial transform layer enables neural networks to perform

both global parametric 2D image alignment [42] and dense

spatial transformations [54], [57], [58] without requiring su-

pervised labels. An alternative approach to dense estimation

is to use CNNs to match image patches [59]–[62]. These

methods require exhaustive matching of patches, resulting in

slow runtime.

We build on these ideas and extend the spatial transformer

to achieve n-D volume registration, and further show how

leveraging image segmentations during training can improve

registration accuracy at test time.

IV. METHOD

Let f,m be two image volumes defined over an n-D spatial

domain Ω ⊂ R
n. For the rest of this paper, we focus on the

case n = 3 but our method and implementation are dimension

independent. For simplicity we assume that f and m contain

single-channel, grayscale data. We also assume that f and

m are affinely aligned as a preprocessing step, so that the

only source of misalignment between the volumes is nonlinear.

Many packages are available for rapid affine alignment.

We model a function gθ(f,m) = u using a convolutional

neural network (CNN), where θ are network parameters, the

kernels of the convolutional layers. The displacement field u

between f and m is in practice stored in a n+ 1-dimensional

image. That is, for each voxel p ∈ Ω, u(p) is a displacement

such that f(p) and [m◦φ](p) correspond to similar anatomical

locations, where the map φ = Id + u is formed using an

identity transform and u.

Fig. 2 presents an overview of our method. The network

takes f and m as input, and computes φ using a set of pa-

rameters θ. We warp m to m◦φ using a spatial transformation

function, enabling evaluation of the similarity of m ◦ φ and

f . Given unseen images f and m during test time, we obtain

a registration field by evaluating gθ(f,m).
We use (single-element) stochastic gradient descent to find

optimal parameters θ̂ by minimizing an expected loss function

using a training dataset. We propose two unsupervised loss
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Fig. 2: Overview of the method. We learn parameters θ for a function gθ(·, ·), and register 3D volume m to a second, fixed

volume f . During training, we warp m with φ using a spatial transformer function. Optionally, auxiliary information such as

anatomical segmentations sf , sm can be leveraged during training (blue box).

functions in this work. The first captures image similarity and

field smoothness, while the second also leverages anatomical

segmentations. We describe our CNN architecture and the two

loss functions in detail in the next sections.

A. VoxelMorph CNN Architecture

In this section we describe the particular architecture used

in our experiments, but emphasize that a wide range of

architectures may work similarly well and that the exact

architecture is not our focus. The parametrization of gθ(·, ·) is

based on a convolutional neural network architecture similar

to UNet [63], [64], which consists of encoder and decoder

sections with skip connections.

Fig. 3 depicts the network used in VoxelMorph, which takes

a single input formed by concatenating m and f into a 2-

channel 3D image. In our experiments, the input is of size

160 × 192 × 224 × 2, but the framework is not limited by a

particular size. We apply 3D convolutions in both the encoder

and decoder stages using a kernel size of 3, and a stride of

2. Each convolution is followed by a LeakyReLU layer with

parameter 0.2. The convolutional layers capture hierarchical

features of the input image pair, used to estimate φ. In the

encoder, we use strided convolutions to reduce the spatial

dimensions in half at each layer. Successive layers of the

encoder therefore operate over coarser representations of the

input, similar to the image pyramid used in traditional image

registration work.

UNet Architecture

1/161/81/4
1/2

1

1/8
1/4

1/2

1

f, m !

1 1 1

32323232 3232 32 3216 16 16 3

Fig. 3: Convolutional UNet architecture implementing

gθ(f,m). Each rectangle represents a 3D volume, generated

from the preceding volume using a 3D convolutional network

layer. The spatial resolution of each volume with respect to

the input volume is printed underneath. In the decoder, we use

several 32-filter convolutions, each followed by an upsampling

layer, to bring the volume back to full resolution. Arrows

represent skip connections, which concatenate encoder and

decoder features. The full-resolution volume is further refined

using several convolutions.

In the decoding stage, we alternate between upsampling,

convolutions and concatenating skip connections that prop-

agate features learned during the encoding stages directly

to layers generating the registration. Successive layers of

the decoder operate on finer spatial scales, enabling precise



5

anatomical alignment. The receptive fields of the convolutional

kernels of the smallest layer should be at least as large as

the maximum expected displacement between corresponding

voxels in f and m. In our architecture, the smallest layer

applies convolutions over a volume (1/16)3 of the size of

the input images.

B. Spatial Transformation Function

The proposed method learns optimal parameter values in

part by minimizing differences between m◦φ and f . In order

to use standard gradient-based methods, we construct a differ-

entiable operation based on spatial transformer networks [42]

to compute m ◦ φ.

For each voxel p, we compute a (subpixel) voxel location

p
′ = p+ u(p) in m. Because image values are only defined

at integer locations, we linearly interpolate the values at the

eight neighboring voxels:

m ◦ φ(p) =
∑

q∈Z(p′)

m(q)
∏

d∈{x,y,z}

(1− |p′
d − qd|), (3)

where Z(p′) are the voxel neighbors of p′, and d iterates over

dimensions of Ω. Because we can compute gradients or sub-

gradients,3 we can backpropagate errors during optimization.

C. Loss Functions

In this section, we propose two loss functions: an unsuper-

vised loss Lus that evaluates the model using only the input

volumes and generated registration field, and an auxiliary loss

La that also leverages anatomical segmentations at training

time.

1) Unsupervised Loss Function: The unsupervised loss

Lus(·, ·, ·) consists of two components: Lsim that penalizes

differences in appearance, and Lsmooth that penalizes local

spatial variations in φ:

Lus(f,m,φ) = Lsim(f,m ◦ φ) + λLsmooth(φ), (4)

where λ is a regularization parameter. We experimented with

two often-used functions for Lsim. The first is the mean

squared voxelwise difference, applicable when f and m have

similar image intensity distributions and local contrast:

MSE(f,m ◦ φ) =
1

|Ω|

∑

p∈Ω

[f(p)− [m ◦ φ](p)]
2
. (5)

The second is the local cross-correlation of f and m ◦ φ,
which is more robust to intensity variations found across scans

and datasets [11]. Let f̂(p) and [m̂ ◦ φ](p) denote local mean

intensity images: f̂(p) = 1
n3

∑
pi

f(pi), where pi iterates

over a n3 volume around p, with n = 9 in our experiments.
The local cross-correlation of f and m ◦ φ is written as:

CC(f,m ◦ φ) =

∑

p∈Ω

(

∑

pi

(f(pi)− f̂(p))([m ◦ φ](pi)− [m̂ ◦ φ](p))

)2

(

∑

pi

(f(pi)− f̂(p))2

)(

∑

pi

([m ◦ φ](pi)− [m̂ ◦ φ](p))2

) . (6)

3The absolute value is implemented with a subgradient of 0 at 0.

A higher CC indicates a better alignment, yielding the loss

function: Lsim(f,m,φ) = −CC(f,m ◦ φ).
Minimizing Lsim will encourage m ◦ φ to approximate f ,

but may generate a non-smooth φ that is not physically

realistic. We encourage a smooth displacement field φ using

a diffusion regularizer on the spatial gradients of displace-

ment u:

Lsmooth(φ) =
∑

p∈Ω

‖∇u(p)‖2, (7)

and approximate spatial gradients using differences

between neighboring voxels. Specifically, for

∇u(p) =
(

∂u(p)
∂x

,
∂u(p)
∂y

,
∂u(p)
∂z

)

, we approximate
∂u(p)
∂x

≈ u((px + 1, py, pz)) − u((px, py, pz)), and use similar

approximations for ∂u(p)
∂y

and
∂u(p)
∂z

.

2) Auxiliary Data Loss Function: Here, we describe how

VoxelMorph can leverage auxiliary information available dur-

ing training but not during testing. Anatomical segmentation

maps are sometimes available during training, and can be

annotated by human experts or automated algorithms. A

segmentation map assigns each voxel to an anatomical struc-

ture. If a registration field φ represents accurate anatomical

correspondences, the regions in f and m◦φ corresponding to

the same anatomical structure should overlap well.

Let skf , s
k
m ◦φ be the voxels of structure k for f and m◦φ,

respectively. We quantify the volume overlap for structure k
using the Dice score [65]:

Dice(skf , s
k
m ◦ φ) = 2 ·

|skf ∩ (skm ◦ φ)|

|skf |+ |skm ◦ φ|
. (8)

A Dice score of 1 indicates that the anatomy matches perfectly,

and a score of 0 indicates that there is no overlap. We define

the segmentation loss Lseg over all structures k ∈ [1,K] as:

Lseg(sf , sm ◦ φ) = −
1

K

K∑

k=1

Dice(skf , s
k
m ◦ φ). (9)

Lseg alone does not encourage smoothness and agreement of

image appearance, which are essential to good registration. We

therefore combine Lseg with (4) to obtain the objective:

La(f,m, sf , sm,φ) =

Lus(f,m,φ) + γLseg(sf , sm ◦ φ), (10)

where γ is a regularization parameter.

In our experiments, which use affinely aligned images, we

demonstrate that loss (10) can lead to significant improve-

ments. In general, and depending on the task, this loss can

also be computed in a multiscale fashion as introduced in [43],

depending on quality of the initial alignment.

Since anatomical labels are categorical, a naive implementa-

tion of linear interpolation to compute sm ◦φ is inappropriate,

and a direct implementation of (8) might not be amenable

to auto-differentiation frameworks. We design sf and sm to

be image volumes with K channels, where each channel is

a binary mask specifying the spatial domain of a particular

structure. We compute sm ◦ φ by spatially transforming each

channel of sm using linear interpolation. We then compute the

numerator and denominator of (8) by multiplying and adding

sf and sm ◦ φ, respectively.
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D. Amortized Optimization Interpretation

Our method substitutes the pair-specific optimization over

the deformation field φ with a global optimization of function

parameters θ for function gθ(·, ·). This process is sometimes

referred to as amortized optimization [66]. Because the func-

tion gθ(·, ·) is tasked with estimating registration between any

two images, the fact that parameters θ are shared globally

acts as a natural regularization. We demonstrate this aspect

in Section V-C (Regularization Analysis). In addition, the

quality and generalizability of the deformations outputted by

the function will depend on the data it is trained on. Indeed,

the resulting deformation can be interpreted as simply an

approximation or initialization to the optimal deformation φ∗,

and the resulting difference is sometimes referred to as the

amortization gap [15], [66]. If desired, this initial deformation

field could be improved using any instance-specific optimiza-

tion. In our experiments, we accomplish this by treating

the resulting displacement u as model parameters, and fine-

tuning the deformation for each particular scan independently

using gradient descent. Essentially, this implements an auto-

differentiation version of conventional registration, using Vox-

elMorph output as initialization. However, most often we find

that the initial deformation, the VoxelMorph output, is already

as accurate as state of the art results. We explore these aspects

in experiments presented in Section V-D.

V. EXPERIMENTS

We demonstrate our method on the task of brain MRI reg-

istration. We first (Section V-B) present a series of atlas-based

registration experiments, in which we compute a registration

field between an atlas, or reference volume, and each volume

in our dataset. Atlas-based registration is a common formu-

lation in population analysis, where inter-subject registration

is a core problem. The atlas represents a reference, or average

volume, and is usually constructed by jointly and repeatedly

aligning a dataset of brain MR volumes and averaging them

together [67]. We use an atlas computed using an external

dataset [1], [68]. Each input volume pair consists of the atlas

(image f ) and a volume from the dataset (image m). Fig. 4

shows example image pairs using the same fixed atlas for all

examples. In a second experiment (Section V-C), we perform

hyper-parameter sensitivity analysis. In a third experiment

(Section V-D), we study the effect of training set size on regis-

tration, and demonstrate instance-specific optimization. In the

fourth experiment (Section V-E) we present results on a dataset

that contains manual segmentations. In the next experiment

(Section V-F), we train VoxelMorph using random pairs of

training subjects as input, and test registration between pairs

of unseen test subjects. Finally (Section V-G), we present an

empirical analysis of registration with auxiliary segmentation

data. All figures that depict brains in this paper show 2D slices,

but all registration is done in 3D.

A. Experimental Setup

1) Dataset: We use a large-scale, multi-site, multi-

study dataset of 3731 T1–weighted brain MRI scans from

eight publicly available datasets: OASIS [69], ABIDE [70],

VoxelMorph
(CC)

VoxelMorph
(MSE)

Fig. 4: Example MR coronal slices extracted from input

pairs (columns 1-2), and resulting m ◦ φ for VoxelMorph

using different loss functions. We overlaid boundaries of a

few structures: ventricles (blue/dark green), thalami (red/pink),

and hippocampi (light green/orange). A good registration will

cause structures in m ◦ φ to look similar to structures in f .

Our models are able to handle various changes in shape of

structures, including expansion/shrinkage of the ventricles in

rows 2 and 3, and stretching of the hippocampi in row 4.

ADHD200 [71], MCIC [72], PPMI [73], HABS [74], Harvard

GSP [75], and the FreeSurfer Buckner40 [1]. Acquisition

details, subject age ranges and health conditions are different

for each dataset. All scans were resampled to a 256×256×256
grid with 1mm isotropic voxels. We carry out standard pre-

processing steps, including affine spatial normalization and

brain extraction for each scan using FreeSurfer [1], and

crop the resulting images to 160 × 192 × 224. All MRIs

were anatomically segmented with FreeSurfer, and we applied

quality control using visual inspection to catch gross errors

in segmentation results and affine alignment. We include all

anatomical structures that are at least 100 voxels in volume for

all test subjects, resulting in 30 structures. We use the resulting

segmentation maps in evaluating our registration as described

below. We split our dataset into 3231, 250, and 250 volumes

for train, validation, and test sets respectively, although we

highlight that we do not use any supervised information at

any stage. In addition, the Buckner40 dataset is only used for

testing, using manual segmentations.

2) Evaluation Metrics: Obtaining dense ground truth reg-

istration for these data is not well-defined since many reg-
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Method Dice GPU sec CPU sec |Jφ| ≤ 0 % of |Jφ| ≤ 0

Affine only 0.584 (0.157) 0 0 0 0
ANTs SyN (CC) 0.749 (0.136) - 9059 (2023) 9662 (6258) 0.140 (0.091)
NiftyReg (CC) 0.755 (0.143) - 2347 (202) 41251 (14336) 0.600 (0.208)

VoxelMorph (CC) 0.753 (0.145) 0.45 (0.01) 57 (1) 19077 (5928) 0.366 (0.114)
VoxelMorph (MSE) 0.752 (0.140) 0.45 (0.01) 57 (1) 9606 (4516) 0.184 (0.087)

TABLE I: Average Dice scores and runtime results for affine alignment, ANTs, NiftyReg and VoxelMorph for the first

experiment. Standard deviations across structures and subjects are in parentheses. The average Dice score is computed over all

structures and subjects. Timing is computed after preprocessing. Our networks yield comparable results to ANTs and NiftyReg

in Dice score, while operating orders of magnitude faster during testing. We also show the number and percentage of voxels

with a non-positive Jacobian determinant for each method, for our volumes with 5.2 million voxels within the brain. All

methods exhibit less than 1 percent such voxels.

B
ra

in
-S

te
m

T
h
a
la

m
u
s

C
e
re

b
e
llu

m
-C

o
rt

e
x

C
e
re

b
ra

l-
W

. 
M

a
tt

e
r

C
e
re

b
e
llu

m
-W

. 
M

a
tt

e
r

P
u
ta

m
e
n

V
e
n
tr

a
lD

C

P
a
lli

d
u
m

C
a
u
d
a
te

La
te

ra
l-

V
e
n
tr

ic
le

H
ip

p
o
ca

m
p
u
s

3
rd

-V
e
n
tr

ic
le

4
th

-V
e
n
tr

ic
le

A
m

y
g
d
a
la

C
e
re

b
ra

l-
C

o
rt

e
x

C
S
F

ch
o
ro

id
-p

le
x
u
s0.0

0.2

0.4

0.6

0.8

1.0

ANTs
NiftyReg
VoxelMorph-CC
VoxelMorph-L2

Fig. 5: Boxplots of Dice scores for various anatomical structures for ANTs, NiftyReg, and VoxelMorph results for the first

(unsupervised) experiment. We average Dice scores of the left and right brain hemispheres into one score for this visualization.

Structures are ordered by average ANTs Dice score.

istration fields can yield similar looking warped images. We

first evaluate our method using volume overlap of anatomical

segmentations. If a registration field φ represents accurate

correspondences, the regions in f and m ◦ φ corresponding

to the same anatomical structure should overlap well (see

Fig. 4 for examples). We quantify the volume overlap between

structures using the Dice score (8). We also evaluate the

regularity of the deformation fields. Specifically, the Jacobian

matrix Jφ(p) = ∇φ(p) ∈ R3×3 captures the local properties

of φ around voxel p. We count all non-background voxels for

which |Jφ(p)| ≤ 0, where the deformation is not diffeomor-

phic [16].

3) Baseline Methods: We use Symmetric Normalization

(SyN) [11], the top-performing registration algorithm in a

comparative study [2] as a first baseline. We use the SyN

implementation in the publicly available Advanced Normal-

ization Tools (ANTs) software package [3], with a cross-

correlation similarity measure. Throughout our work with

medical images, we found the default ANTs smoothness

parameters to be sub-optimal for applying ANTs to our

data. We obtained improved parameters using a wide pa-

rameter sweep across multiple datasets, and use those in

these experiments. Specifically, we use SyN step size of 0.25,

Gaussian parameters (9, 0.2), at three scales with at most

201 iterations each. We also use the NiftyReg package, as

a second baseline. Unfortunately, a GPU implementation is

not currently available, and instead we build a multi-threaded

CPU version4. We searched through various parameter settings

to obtain improved parameters, and use the CC cost function,

grid spacing of 5, and 500 iterations.

4) VoxelMorph Implementation: We implemented our

method using Keras [76] with a Tensorflow backend [77].

We extended the 2D linear interpolation spatial transformer

layer to n-D, and here use n = 3. We use the ADAM

optimizer [78] with a learning rate of 10−4. While our imple-

mentation allows for mini-batch stochastic gradient descent,

in our experiments each training batch consists of one pair of

volumes. Our implementation includes a default of 150,000

iterations. Our code and model parameters are available online

at http://voxelmorph.csail.mit.edu.

B. Atlas-based Registration

4We used the latest source code, updated March, 2018 (tree [4e4525]).

http://voxelmorph.csail.mit.edu
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Fig. 6: Example deformation fields φ (columns 4-5) extracted

by registering the moving image (column 1) to the fixed image

(column 2) in the unsupervised experiment (Section V-B) . The

warped volume m ◦φ is shown in column 3. Displacement in

each spatial dimension is mapped to each of the RGB color

channels in column 4. The deformation fields produced by

VoxelMorph (MSE) are smooth within the brain, even when

registering moving images that are significantly different from

the fixed image.

In this experiment, we train VoxelMorph for atlas-based

registration. We train separate VoxelMorph networks with

different λ regularization parameters. We then select the

network that optimizes Dice score on our validation set, and

report results on our test set.

Table I presents average Dice scores computed for all

subjects and structures for baselines of only global affine

alignment, ANTs, and NiftyReg, as well as VoxelMorph with

different losses. VoxelMorph variants perform comparably to

ANTs and NiftyReg in terms of Dice5, and are significantly

5Both VoxelMorph variants are different from ANTs with paired t-test p-
values of 0.003 and 0.008 and with slightly higher Dice values. There is no
difference between VoxelMorph (CC) and NiftyReg (p-value of 0.21), and
no significant difference between VoxelMorph (CC) and VoxelMorph (MSE)
(p-value of 0.09)
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Fig. 7: Dice score of validation data for VoxelMorph with

varied regularization parameter λ.

better than affine alignment. Example visual results of the

warped images from our algorithms are shown in Figs. 4 and 6.

VoxelMorph is able to handle significant shape changes for

various structures.

Fig. 5 presents the Dice scores for each structure as a

boxplot. For ease of visualization, we average Dice scores

of the same structures from the two hemispheres into one

score, e.g., the left and right hippocampi scores are averaged.

The VoxelMorph models achieve comparable Dice measures

to ANTs and NiftyReg for all structures, performing slightly

better on some structures such as the lateral ventricles, and

worse on others such as the hippocampi.

Table I includes a count of voxels for which the Jacobian

determinant is non-positive. We find that all methods result

in deformations with small islands of such voxels, but are

diffeomorphic at the vast majority of voxels (99.4% - 99.9%).

Figs. 6 and Fig. 11 in the supplemental material illustrate

several example VoxelMorph deformation fields. VoxelMorph

has no explicit constraint for diffeomorphic deformations,

but in this setting the smoothness loss leads to generally

smooth and well-behaved results. ANTs and NiftyReg include

implementations that can enforce or strongly encourage diffeo-

morphic deformations, but during our parameter search these

negatively affected runtime or results. In this work, we ran

the baseline implementations with configurations that yielded

the best Dice scores, which also turned out to produce good

deformation regularity.

1) Runtime: Table I presents runtime results using an

Intel Xeon (E5-2680) CPU, and a NVIDIA TitanX GPU.

We report the elapsed time for computations following the

affine alignment preprocessing step, which all of the presented

methods share, and requires just a few minutes even on a

CPU. ANTs requires two or more hours on the CPU, while

NiftyReg requires roughly 39 minutes for the given setting.

ANTs runtimes vary widely, as its convergence depends on

the difficulty of the alignment task. Registering two images

with VoxelMorph is, on average, 150 times faster on the CPU

compared to ANTs, and 40 times faster than NiftyReg. When

using the GPU, VoxelMorph computes a registration in under

a second. To our knowledge, there is no publicly available

0.5 1 2 3 4

log
10

 of training set size
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Training Set

Test Set

Test Set (Instance-Specific Opt.)

ANTS (SyN)

Fig. 8: Effect of training set size on accuracy. Also shown

are results of instance-specific optimization of deformations,

after these are initialized with VoxelMorph outputs using the

optimal global parameters resulting from the training phase.
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Method Dice

Affine only 0.608 (0.175)
ANTs SyN (CC) 0.776 (0.130)
NiftyReg (CC) 0.776 (0.132)

VoxelMorph (MSE) 0.766 (0.133)
VoxelMorph (MSE) inst. 0.776 (0.132)

VoxelMorph (CC) 0.774 (0.133)
VoxelMorph (CC) inst. 0.786 (0.132)

TABLE II: Results for manual annotation experiment. We

show affine, ANTs, NiftyReg, and VoxelMorph, where “inst.”

indicates additional instance-specific optimization, as de-

scribed in Section V-D. The average Dice score is computed

over all structures and subjects, with standard deviations across

structures and subjects in parentheses.

ANTs implementation for GPUs. It is likely that the SyN

algorithm would benefit from a GPU implementation, but the

main advantage of VoxelMorph comes from not requiring

an optimization on each test pair, as can be seen in the

CPU comparison. Unfortunately, the NiftyReg GPU version

is unavailable in the current source code on all available

repository history.

C. Regularization Analysis

Fig. 7 shows average Dice scores for the validation set for

different values of the smoothness regularization parameter λ.

The results vary smoothly over a large range of λ values, il-

lustrating that our model is robust to choice of λ. Interestingly,

even setting λ = 0, which enforces no explicit regularization

on registration, results in a significant improvement over

affine registration. This is likely because the optimal network

parameters θ need to register all pairs in the training set well,

yielding an implicit dataset regularization for the function

gθ(·, ·).

D. Training Set Size and Instance-Specific Optimization

We evaluate the effect of training set size on accuracy,

and the relationship between amortized and instance-specific

optimization. Because MSE and CC performed similarly for

atlas-based registration, in this section we use MSE. We train

VoxelMorph on subsets of different sizes from our training

dataset, and report Dice scores on: (1) the training subset, (2)

the held out test set, and (3) the test set when each deformation

is further individually optimized for each test image pair.

We perform (3) by fine-tuning the displacements u obtained

from VoxelMorph using gradient descent for 100 iterations on

each test pair, which took 23.7± 0.4 seconds on the GPU or

628.0± 4.2 seconds on a single-threaded CPU.

Fig. 8 presents our results. A small training set size of

10 scans results in slightly lower train and test Dice scores

compared to larger training set sizes. However, there is no

significant difference in Dice scores when training with 100

scans or the full dataset. Further optimizing the VoxelMorph

parameters on each test image pair results in better test Dice

scores regardless of training set size, comparable to the state-

of-the-art.

Method Dice

Affine only 0.579 (0.173)
ANTs SyN (CC) 0.761 (0.117)
NiftyReg (CC) 0.772 (0.117)

VoxelMorph (MSE) 0.727 (0.146)
VoxelMorph x2 (MSE) 0.750 (0.058)

VoxelMorph x2 (MSE) inst. 0.764 (0.048)

VoxelMorph (CC) 0.737 (0.139)
VoxelMorph x2 (CC) 0.763 (0.049)

VoxelMorph x2 (CC) inst. 0.772 (0.119)

TABLE III: Results for subject-to-subject alignment using

affine, ANTs, and VoxelMorph variants, where “x2” refers to

a model where we doubled the number of features to account

for the increased inherent variability of the task, and “inst.”

indicates additional instance-specific optimization.

E. Manual Anatomical Delineations

Since manual segmentations are not available for most

datasets, the availability of FreeSurfer segmentations enabled

the broad range of experiments above. In this experiment, we

use VoxelMorph models already trained in Section V-B to test

registration on the (unseen) Buckner40 dataset containing 39
scans. This dataset contains expert manual delineations of

the same anatomical structures used in previous experiments,

which we use here for evaluation. We also compute Vox-

elMorph with instance-specific optimization, as described in

Section V-D. The Dice score results, shown in Table II, show

that VoxelMorph using cross-correlation loss behaves compa-

rably to ANTs and NiftyReg using the same cost function,

consistent with the first experiment where we evaluated on

FreeSurfer segmentations. VoxelMorph with instance-specific

optimization further improves the results, similar to the pre-

vious experiment. On this dataset, results using VoxelMorph

with MSE loss obtain slightly lower scores, but are improved

by the instance-specific optimization procedure to be compa-

rable to ANTs and NiftyReg.

F. Subject-to-Subject Registration

In this experiment, we train VoxelMorph for subject-to-

subject registration. Since there is more variability in each reg-

istration, we double the number of features for each network

layer. We also compute VoxelMorph with instance-specific

optimization, as described in Section V-D. Table III presents

average test Dice scores on 250 randomly selected test pairs

for registration. Consistent with literature, we find that the

normalized cross correlation loss leads to more robust results

compared to using the MSE loss. VoxelMorph (with doubled

feature counts) Dice scores are comparable with ANTs and

slightly below NiftyReg, while results from VoxelMorph with

instance-specific optimization are comparable to both base-

lines.

G. Registration with Auxiliary Data

In this section, we evaluate VoxelMorph when using seg-

mentation maps during training with loss function (10). Be-

cause MSE and CC performed similarly for atlas-based reg-

istration, in this section we use MSE with λ = 0.02. We
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Fig. 9: Results on test scans when using auxiliary data during training. Top: testing on the FreeSurfer segmentation of the

general test set. Bottom: testing the same models on the manual segmentation of the Buckner40 test set. We test having

varying number of observed labels (a-c), and having coarser segmentation maps (d). Error bars indicate standard deviations

across subjects. The leftmost datapoint in each graph for all labels, corresponding to γ = 0, indicates results of VoxelMorph

without using auxiliary data (unsupervised). γ = ∞ is achieved by setting the image and smoothness terms to 0. We show

Dice scores for results from ANTs with optimal parameters, which does not use segmentation maps, for comparison.

present an evaluation of our model in two practical scenarios:

(1) when subsets of anatomical structure labels are available

during training, and (2) when coarse segmentations labels are

available during training. We use the same train/validation/test

split as the previous experiments.

1) Training with a subset of anatomical labels: In many

practical settings, it may be infeasible to obtain training

segmentations for all structures. We therefore first consider the

case where segmentations are available for only a subset of the

30 structures. We refer to structures present in segmentations

as observed, and the rest as unobserved. We considered three

scenarios, when: one, 15 (half), and 30 (all) structure segmen-

tations are observed. The first two experiments essentially sim-

ulate different amounts of partially observed segmentations.

For each experiment, we train separate models on different

subsets of observed structures, as follows. For single structure

segmentations, we manually selected four important structures

for four folds (one for each fold) of the experiment: hip-

pocampi, cerebral cortex, cerebral white matter, and ventricles.

For the second experiment, we randomly selected 15 of the

30 structures, with a different selection for each of five folds.

For each fold and each subset of observed labels, we use the

segmentation maps at training, and show results on test pairs

where segmentation maps are not used.

Fig. 9a-c shows Dice scores for both the observed and

unobserved labels when sweeping γ in (10), the auxiliary

regularization trade-off parameter. We train our models with

FreeSurfer annotations, and show results on both the general

test set using FreeSurfer annotations (top) and the Buckner40

test set with manual annotations (bottom). The extreme values

γ = 0 (or log γ = −∞) and γ = ∞ serve as theoretical

extremes, with γ = 0 corresponding to unsupervised Vox-

elMorph, and γ = ∞ corresponding to VoxelMorph trained

only with auxiliary labels, without the smoothness and image

matching objective terms.

In general, VoxelMorph with auxiliary data significantly

outperforms (largest p-value < 10−9 among the four settings)

unsupervised VoxelMorph (equivalent to γ = 0 or log γ =
−∞) and ANTs on observed structures in terms of Dice score.

Dice score on observed labels generally increases with an

increase in γ.

Interestingly, VoxelMorph (trained with auxiliary data)

yields improved Dice scores for unobserved structures com-

pared to the unsupervised variant for a range of γ values

(see Fig. 9a-b), even though these segmentations were not

explicitly observed during training. When all structures that

we use during evaluation are observed during training, we find

good Dice results at higher γ values (Fig 9c.). Registration

accuracy for unobserved structures starts declining when γ is

large, in the range log γ ∈ [−3,−2]. This can be interpreted

as the range where the model starts to over-fit to the observed

structures - that is, it continues to improve the Dice score for

observed structures while harming the registration accuracy

for the other structures (Fig. 9c)

2) Training with coarse labels: We consider the scenario

where only coarse labels are available, such as when all the
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Setting 0 0.001 0.01 0.1 ∞

one (count) 9606 (4471) 10435 (4543) 22998 (3171) 121546 (12203) 685811 (6878)
one (%) 0.18 (0.09) 0.20 (0.09) 0.44 (0.06) 2.33 (0.23) 13.14 (0.13)

half (count) 9606 (4471) 9470 (4008) 17886 (4919) 86319 (13851) 516384 (7210)
half (%) 0.18 (0.09) 0.18 (0.08) 0.34 (0.09) 1.65 (0.27) 9.90 (0.14)

all (count) 9606 (4471) 10824 (5029) 19226 (4471) 102295 (14366) 528552 (8720)
all (%) 0.18 (0.09) 0.21 (0.10) 0.37 (0.09) 1.96 (0.28) 10.13 (0.17)

coarse (count) 9606 (4471) 9343 (4117) 15190 (4416) 76677 (11612) 564493 (7379)
coarse (%) 0.18 (0.09) 0.18 (0.08) 0.29 (0.08) 1.47 (0.22) 10.82 (0.14)

TABLE IV: Regularity of deformation fields when training with auxiliary segmentations obtained using FreeSurfer, MSE loss

function and smoothness parameter of 0.02, measured using count and percentage of the number of voxels with non-positive

Jacobian determinants.
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Fig. 10: Effect of γ on warped images and deformation fields.

We show the moving image, fixed image, and warped image

(columns 1-3) with the structures that were observed at train

time overlaid. The resulting deformation field is visualized

in columns 4 and 5. While providing better Dice scores

for observed structures, the deformation fields resulting from

training with γ = ∞ are far more irregular than those

using γ = 0.01. Similarly, the warped image are visually less

coherent for γ = ∞.

white matter is segmented as one structure. This situation

enables evaluation of how the auxiliary data affects anatomical

registration at finer scales, within the coarsely delineated

structures. To achieve this, we merge the 30 structures into

four broad groups: white matter, gray matter, cerebral spinal

fluid (CSF) and the brain stem, and evaluate the accuracy of

the registration on the original structures.

Fig. 9d (top) presents mean Dice scores over the original 30

structures with varying γ. With γ of 0.01, we obtain an average

Dice score of 0.78±0.03 on FreeSurfer segmentations. This is

roughly a 3 Dice point improvement over VoxelMorph without

auxiliary information (p-value < 10−10).

3) Regularity of Deformations: We also evaluate the regu-

larity of the deformation fields both visually and by computing

the number of voxels for which the determinant of the Jacobian

is non-positive. Table IV provides the quantitative regularity

measure for all γ values, showing that VoxelMorph defor-

mation regularity degrades slowly as a function of γ (shown

on a log scale), with roughly 0.2% of the voxels exhibiting

folding at the lowest parameter value, and at most 2.3% when

γ = 0.1. Deformations from models that don’t encourage

smoothness, at the extreme value of γ = ∞, exhibit 10–13%
folding voxels. A lower γ value such as γ = 0.01 therefore

provides a good compromise of high Dice scores for all

structures while avoiding highly irregular deformation fields,

and avoiding overfitting as described above. Fig 10 shows

examples of deformation fields for γ = 0.01 and γ = ∞,

and we include more figures in the supplemental material for

each experimental setting.

4) Testing on Manual Segmentation Maps: We also test

these models on the manual segmentations in the Buckner40

dataset used above, resulting in Fig. 9 (bottom). We observe

a behavior consistent with the conclusions above, with smaller

Dice score improvements, possibly due to the higher baseline

Dice scores achieved on the Buckner40 data.

VI. DISCUSSION AND CONCLUSION

VoxelMorph with unsupervised loss performs comparably to

the state-of-the-art ANTs and NiftyReg software in terms of

Dice score, while reducing the computation time from hours to

minutes on a CPU and under a second on a GPU. VoxelMorph

is flexible and handles both partially observed or coarsely

delineated auxiliary information during training, which can

lead to improvements in Dice score while still preserving the

runtime improvement.

VoxelMorph performs amortized optimization, learning

global function parameters that are optimal for an entire

training dataset. As Fig. 8 shows, the dataset need not be

large: with only 100 training images, VoxelMorph leads to

state-of-the-art registration quality scores for both training

and test sets. Instance-specific optimization further improves

VoxelMorph performance by one Dice point. This is a small

increase, illustrating that amortized optimization can lead to

nearly optimal registration.

We performed a thorough set of experiments demonstrating

that, for a reasonable choice of γ, the availability of anatomical

segmentations during training significantly improves test regis-

tration performance with VoxelMorph (in terms of Dice score)

while providing smooth deformations (e.g. for γ = 0.01,

less than 0.5% folding voxels). The performance gain varies
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based on the quality and number of anatomical segmentations

available. Given a single labeled anatomical structure during

training, the accuracy of registration of test subjects for that

label increases, without negatively impacting other anatomy. If

half or all of the labels are observed, or even a coarse segmen-

tation is provided at training, registration accuracy improves

for all labels during test. While we experimented with one

type of auxiliary data in this study, VoxelMorph can leverage

other auxiliary data, such as different modalities or anatomical

keypoints. Increasing γ also increases the number of voxels

exhibiting a folding of the registration field. This effect may be

alleviated by using a diffeomorphic deformation representation

for VoxelMorph, as introduced in recent work [5].

VoxelMorph is a general learning model, and is not limited

to a particular image type or anatomy – it may be useful in

other medical image registration applications such as cardiac

MR scans or lung CT images. With an appropriate loss func-

tion such as mutual information, the model can also perform

multimodal registration. VoxelMorph promises to significantly

speed up medical image analysis and processing pipelines,

while opening novel directions in learning-based registration.
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SUPPLEMENTARY MATERIAL

Fig. 11: Example atlas-based VoxelMorph flow fields φ (columns 4-5) extracted by registering the moving image (column 1)

to the fixed image (column 2). The warped image m ◦ φ is shown in column 3.
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Fig. 12: Auxiliary data experiment where the left and right hippocampus labels are observed at train time. We show the moving

image, fixed image and warped image (columns 1-3) with the observed labels overlaid, and the resulting deformation fields

(columns 4-5). We use the optimal γ = 0.01 (left) and the extreme γ = ∞ (right).

Fig. 13: Auxiliary data experiment where a random half of the labels are observed at train time. We show the moving image,

fixed image and warped image (columns 1-3) with the observed labels overlaid, and the resulting deformation fields (columns

4-5). We use the optimal γ = 0.01 (left) and the extreme γ = ∞ (right).
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Fig. 14: Auxiliary data experiment where all labels are observed at train time. We show the moving image, fixed image and

warped image (columns 1-3) with the observed labels overlaid, and the resulting deformation fields (columns 4-5). We use the

optimal γ = 0.01 (left) and the extreme γ = ∞ (right).

Fig. 15: Auxiliary data experiment where coarse labels are observed at train time. We show the moving image, fixed image

and warped image (columns 1-3) with the observed labels overlaid, and the resulting deformation fields (columns 4-5). We

use the optimal γ = 0.01 (left) and the extreme γ = ∞ (right).
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