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In healthy individuals, behavioral outcomes are highly associated with the variability

on brain regional structure or neurochemical phenotypes. Similarly, in the context of

neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to

the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein

aggregates across brain regions. However, modeling the effects of multiple regional

abnormalities as determinants of cognitive decline at the voxel level remains largely

unexplored by multimodal imaging research, given the high computational cost of

estimating regression models for every single voxel from various imaging modalities.

VoxelStats is a voxel-wise computational framework to overcome these computational

limitations and to perform statistical operations on multiple scalar variables and imaging

modalities at the voxel level. VoxelStats package has been developed in Matlab® and

supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in

VoxelStats enable the user to perform voxel-wise general and generalized linear models

and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can

recognize scalar values or image volumes as response variables and can accommodate

volumetric statistical covariates as well as their interaction effects with other variables.

Furthermore, this package includes built-in functionality to perform voxel-wise receiver

operating characteristic analysis and paired and unpaired group contrast analysis.

Validation of VoxelStats was conducted by comparing the linear regression functionality

with existing toolboxes such as glim_image and RMINC. The validation results were

identical to existing methods and the additional functionality was demonstrated by

generating feature case assessments (t-statistics, odds ratio, and true positive rate

maps). In summary, VoxelStats expands the current methods for multimodal imaging

analysis by allowing the estimation of advanced regional association metrics at the voxel

level.
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INTRODUCTION

Research studies based on multiple neuroimaging modalities
in the same individual (multimodal acquisition) is becoming
increasingly popular due to the widespread availability of
imaging techniques such as Magnetic Resonance Imaging (MRI)
and Positron Emission Tomography (PET). The availability of
ample computational resources permits the widespread use of
analytical algorithms performing voxel-wise statistical operations
where each voxel is treated as a Region-of-Interest (ROI;
Friston, 1995). Several analysis toolkits that support voxel-wise
statistical operations have been since introduced, as parts of
volumetric image processing software; SPM (Friston, 1995),
AFNI (Cox, 1996), FreeSurfer (Fischl, 2012) or as independent
toolboxes; BPM (Casanova et al., 2007), multistat (Surfstat;
Worsley et al., 2000), VLSM (Bates et al., 2003), RMINC
(web: https://wiki.mouseimaging.ca/display/MICePub/RMINC;
Accessed 23-11-2015), Neuroimaging in Python (NIPY; Millman
and Brett, 2007), glim_image (web: https://github.com/BIC-
MNI/glim_image; Accessed 23-11-2015). Nevertheless, in the
context of multiparametric analysis, the analytical capacities
of these toolboxes are confined by a number of limitations
including computational efficiency, the lack or limited support
for volumetric statistical covariates, restricted choice of statistical
models available, and the inadequate inclusion of sophisticated
voxel-wise mathematical operations.

Multiparametric imaging research brings the hope of a
comprehensive understanding of the dynamic neurodegenerative
processes in the human brain. Imaging has the power to
provide longitudinal information regarding the accumulation
of toxic proteins in the brain as well as the degeneration
associated with disease processes. This information is virtually
absent in postmortem evaluations given its intrinsic cross
sectional nature. Furthermore, it has been shown that clinical
symptoms of neurodegenerative diseases such as Alzheimer’s
(AD) or Parkinson’s disease (PD) constitute a late event on the
progression of the disease process given the amount of brain
damage present in symptomatic individuals. In the context of
longitudinal studies, multiparametric imaging analysis would
serve to identify signatures of imminent clinical progression
and determine the optimal scenario for a disease modifying
intervention. Such information is crucial for designing clinical
trials. For instance, the widely accepted pathophysiological
model of AD involves a cascade of events initialized by
the accumulation of a protein called amyloid (measured by
PET ligands such as [11C]Pittsburgh Compound B ([11C]PIB),
[18F]Florbetapir) and subsequent neurodegenerative events
involving hypo-metabolism [measured by PET ligands such as
[18F] Fludeoxyglucose ([18F]FDG)], atrophy, accumulation of
neurofibrillary tangles, neuro-inflammation, and many other
neurochemical changes (Jack et al., 2010, 2013) preceding several
years before the clinical onset of dementia. Therefore, the
aforementioned techniques would have immediate applications
not only to model disease progression but also to estimate the
efficacy of therapeutic intervention targeting upstream events
of the neurodegenerative cascade. Several multimodal imaging
studies have evaluated the association between the local amyloid

plaque deposition and glucosemetabolism using [18F]Florbetapir
PET and [18F]FDG PET images in patients in multiple stages of
dementia (Engler et al., 2006; Edison et al., 2007; Cohen et al.,
2009; Rabinovici et al., 2010; Furst et al., 2012; Ossenkoppele
et al., 2012; Lowe et al., 2014; Altmann et al., 2015; Fletcher
et al., 2016). However, these studies were conducted either by
focusing on a predefined set of brain regions (Engler et al., 2006;
Edison et al., 2007; Rabinovici et al., 2010; Lowe et al., 2014;
Altmann et al., 2015) or by using simple voxel wise correlation
analysis (Cohen et al., 2009). These studies can benefit by
performing their analysis at every voxel incorporating multiple
imaging modalities, saving time conceptualizing, defining and
extracting values from ROI, and avoiding assumptions regarding
specific regions. Furthermore, studies evaluating the interaction
between biomarkers (Pascoal et al., 2016) and genetic factors
(Benedet et al., 2015) can also take advantage of voxel wise
statistical modeling (Furst et al., 2012) with imaging covariates,
however; at present, performing voxel-wise statistical analyses
and mathematical operations often require utilizing several
different specialized toolboxes or modifying the study design to
suit the toolboxes available.

In this article we present an approach to multimodal
integrative image analyses using VoxelStats statistical framework.
This framework facilitates the investigation of neuroimaging data
using information from other functional or structural imaging
modalities. Furthermore, VoxelStats framework allows probing
the interactive and mediating effects between imaging modalities
and performing sophisticated mathematical operations at
the voxel level. The application of the methods facilitated
by VoxelStats provides a powerful tool for studies which
require multimodal information including, but not limited to,
studies for neurodegenerative disorders as mentioned above,
neuropsychiatric disorders, and brain injury.

VoxelStats is a statistical framework for voxel-wise operations
written in Matlab with existing support for Nifti-1 (Cox et al.,
2004), ANALYZE and MINC v2 (Vincent et al., 2004) volumes.
At present, VoxelStats includes several utility functions that can
be used in building sophisticated voxel-wise statistical analyses
and prebuilt functions to perform voxel-wise general/generalized
linear and mixed effects regression with multiple multimodal
volumetric covariate support, voxel-wise receiver operating
characteristic (ROC) analysis and statistical difference testing.
VoxelStats utilizes the Matlab parallel computing toolbox and
Matlab distributed computing server to parallelize the operations
to increase the efficiency of the analysis. In this article, we
describe the overall architecture and the computational steps in
the prebuilt functions of VoxelStats, followed by the validation
of computational accuracy. Subsequently, we perform a feature
case assessment to demonstrate a subset of novel features of
VoxelStats.

METHODS AND IMPLEMENTATION

The primary objective of VoxelStats is to serve as a framework
to facilitate image based statistical modeling at a voxel level. Its
users can utilize the supplied utility functions to perform trivial
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tasks such as file input/output, artificial parcellation of data for
parallel computation, etc. while the main computational task will
be carried out by a built in Matlab function. This architectural
design has enabled VoxelStats toolbox to be computationally
accurate and highly scalable as a framework to support a vast
array of functionality, and would allow for seamless integration
into existing Matlab pipelines.

Steps to Increase Computational
Performance
The primary challenges encountered when performing voxel-
wise mathematical operations are the computational time and
the memory requirement. These challenges have been addressed
in existing voxel-wise statistical toolkits by implementing
specialized regression algorithms for multi-dimensional analyses.
With the architectural design to utilize Matlab’s built-in methods
to perform the primary operation, VoxelStats has increased the
scalability of the framework to support sophisticated statistical
operations. However, it has increased the time and memory
requirement for the statistical operation.

To overcome the computational time limitation, VoxelStats
utilizes data parallelism techniques through the Matlab parallel
computing toolbox and the Matlab distributed computing server,
with artificial parcellation of data to reduce the memory and
network footprint. The artificial parcellation step splits and
transforms the masked volumetric data from image space
to a process space, which contains a predefined number of
parcellations and a uniform number of voxels in each parcellation
(Figure 1, see Supplementary Materials for artificial parcellation
algorithm).

The number of artificial parcellations has been set to 200 and
has been calculated based on the performance of the framework
on the development setup; a Matlab computing cluster with
5 nodes/32 workers and volumetric images resampled to the
MNI 152 (Fonov et al., 2011) template and operations based
on the MNI 152 brain mask. However, depending on the
computational setup the user canmodify this number to improve
the computational performance.

Procedural Steps in Prebuilt Functions
Prebuilt statistical operations in VoxelStats use the utility
functions to perform trivial operations including reading and
writing volumetric data and mask information while the
computational operations are performed using Matlab’s own
implementations. Although the manner in which the framework
can be utilized is conditional on the analysis performed, the
prebuilt functions follow a similar procedural structure differing
only to allow function-specific operations.

Voxel-Wise Statistical Group Difference
Two prebuilt functions are available to perform voxel-wise
statistical group differences; one for unpaired t-test analysis,
which is generally useful in cross-sectional study designs, and
the other for paired t-test analysis, which is generally used in
longitudinal study designs (Hölzel et al., 2011; Soriano-Mas et al.,
2011). Although invoking any prebuilt function in VoxelStats
requires a specific set of arguments, in most prebuilt functions

the user can specify a Matlab string argument to filter a set of
samples to be included in the analysis.

Both statistical group difference procedures use this string
argument to refine the input samples which will be included in
the analysis. This step is followed by the evaluation of the volume
information from the provided mask file, which will be used
in multiple steps of the analysis including extracting volumetric
data from subject files and performing voxel-wise statistical
analysis. Subsequently, grouping information is evaluated and
the volumetric data is read based on the mask information
provided. Unpaired t-test function uses Matlab’s “ttest2” method
to perform the statistical operation while the paired t-test
function utilizes Matlab’s “ttest” method.

General/Generalized Linear and Mixed Effects

Regression
Four prebuilt functions are available to perform voxel-wise
linear regression analysis, generalized linear regression analysis,
and general/generalized mixed effects regression analysis with
support for voxel-wise predictor and covariate effects. Analogous
to statistical difference procedures, these functions follow the
filtering string argument to refine the sample set. This step is
followed by parsing the statistical model string to identify the
variables used in the mathematical model. Subsequently, the
mask information is read, and the volumetric data from the
subject files are read based on the variable information and the
mask information provided. This step is followed by performing
any operation (arithmetic operations such as negation, inverse,
scalar addition, or multiplication) specified by the user on the
subject data extracted. Subsequently a sample regression (single
voxel) is performed to identify the output parameters such as the
number of output variables and their names.

Following this step, the extracted voxel data are artificially
parcellated, and the voxel-wise statistical operation is performed
using Matlab’s “fitlm,” “fitlme,” “fitglm,” and “fitglme” functions
for linear regression analysis, mixed effects regression analysis,
generalized linear regression analysis, and generalized mixed
effects regression analysis, respectively, utilizing the Matlab
parallel computing toolbox and Matlab distributed computing
server.

Voxel-Wise ROC Analysis
The function that performs voxel-wise ROC analysis follows
the steps adapted from the regression functions by evaluating
the sample filtering string argument mentioned earlier, followed
by extracting the mask information and corresponding subject
volumetric data. Subsequently, grouping information is
evaluated and the extracted volumetric data are artificially
parcellated similar to the regression function. Matlab’s
“perfcurve” method is utilized to carry out the ROC analysis.

Multiple Comparisons Correction
Statistical inference based on the results from any massively
univariate analysis resulting in voxel wise hypothesis testing
must be preceded by multiple comparison correction to reduce
the family wise error (FWE). VoxelStats framework provides
functionality to perform cluster based multiple comparisons
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FIGURE 1 | Computational steps performed in VoxelStats statistical operations. Image data is retrieved from 3D images and converted (Step A) to a 2D matrix

(Stage 1) for each subject. Image data is transformed to process space (Stage 2) using artificial parcellation (Step 1) and statistical operations are performed (Step 2,

Stage 3). Subsequently, statistical matrices (Step 3, Stage 4) are generated from the results and transformed back to the 3D image space (Step 4, Stage 5, Step A−1).

correction based on Random Field Theory (RFT; Worsley et al.,
1996), and can be used on results from the prebuilt group
difference or regression analysis functions. Using the probability
thresholds (p-value) provided by the user, VoxelStats calculates
the initial cluster threshold (t-value) using the T distribution and
the cluster size threshold using RFT. These two thresholds are
then applied to the statistics images resulting from the analyses.
The initial cluster threshold is used to define the clusters by
retaining groups of voxels above the threshold. Subsequently,
cluster sizes are calculated with a connectivity level of 6, and the
cluster size threshold is used to rule out the clusters below the
threshold value.

User Interaction
Commands to perform statistical operations in VoxelStats are
designed to be intuitive and convenient to increase the ease of
accessibility and user-friendliness. This reduces the complexity
of the functions in VoxelStats, allowing rapid prototyping of
statistical hypotheses with minimal programming fluency. In
addition, VoxelStats includes a graphical user interface (GUI;
Figure 2) to further increase the ease of accessibility. The
GUI can be used to perform any prebuilt function mentioned
above and to perform multiple comparisons correction on the
resultant statistical images. Furthermore, users can visualize these
statistical images using the interface provided through the GUI
(Figure 3) or the Matlab commands.

Inputs to Voxelstats
At present, inputs to VoxelStats must be 3D volumetric images
with the same image resolution (in voxels). This includes any
volumetric response variables, predictor variables, covariates,
and the image mask. Furthermore, it is expected that all the
images are spatially normalized to a common image space
and appropriately smoothed. Example input image modalities
include, but not limited to, Fractional anisotropy (FA) images,
Mean Diffusivity (MD) images, Voxel, or Deformation based
morphometric images (DBM or VBM), PET Binding Potential
(BP), or Standardized Uptake Value Ratio (SUVR) images,
PET, or Single-photon emission computed tomography (SPECT)
volume of distribution images and cerebral blood flow images.

Comparison and Additional Feature Case
Assessment
To compare VoxelStats with other available toolboxes,
neuroimaging data ([18F]Florbetapir PET, [18F]FDG PET,
T1-MRI) were acquired for 273 individuals from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database. Demographic
(clinical classification, age, gender) and neurophysiological
assessments [mini–mental state examination (MMSE), Clinical
Dementia Rating Scale Sum of Boxes scores (CDR-SOB)]
were also obtained for the same individuals to be included
in the regression models. ADNI was launched in 2003 as a
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FIGURE 2 | Graphical User Interface (GUI) of VoxelStats. Users can use this GUI to perform voxel-wise statistical operations including General/Generalized linear

regression, ROC analysis, paired, and unpaired group comparisons. The GUI also includes functionality to preform random field theory based multiple comparison

correction and visualization of the results.

FIGURE 3 | Example of the visualization function in VoxelStats. This function can be used to visualize any statistical result from VoxelStats.
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public-private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to test
whether serial MRI, PET, other biological markers, and clinical
and neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).

T1 neuroimaging data were processed using the CIVET
image processing pipeline (Zijdenbos et al., 2002; Ad-Dab’bagh
et al., 2006) and the Voxel Based Morphometry(VBM) maps
were generated using the resulting gray matter density images
while the PET neuroimaging data were processed to obtain
the SUVR maps with an established image processing pipeline
(see Supplementary Materials). All neuroimaging data were then
resampled to a grid of 95 × 117 × 99 voxels. Statistical models
used for comparison and additional feature case assessments are
summarized in Table 1.

RESULTS

Evaluating the computational accuracy of VoxelStats was
performed using a linear regression analysis with 273 samples,
using volumetric data as the dependent variable. The regression
model contained one predictor scalar variable, one continuous
scalar covariate and one factor covariate. The result was then
compared with other toolboxes available for MINC v2 volumes;
glim_image and RMINC. Two parallelization configurations

[one to utilize 12 processing cores in a single computational
node and the other to utilize 32 processing cores in 5
different computational nodes in a network (see Supplementary
Materials)] for VoxelStats have been compared with the
aforementioned toolboxes.

T-statistic image from VoxelStats for the statistical
significance of the model parameter (β1) for the variable
MMSE score is shown in Figure 4. The mean absolute error
between the statistical images from VoxelStats and glim_image
and VoxelStats and RMINC was 1.730966e-05 and 4.056825e-
05, respectively. This indicates no difference between the
results obtained from VoxelStats and glim_image or RMINC.
Computational times for VoxelStats were 755.8 s and 1655.9 s for
32 processors and 12 processors, respectively (see Supplementary
Materials).

Results from the additional feature case analysis of VoxelStats
are shown in Figure 5. These include the statistical significance
of the model parameter for VBM using linear regression with
volumetric independent and dependent variables model, scaled
odds ratio map for [18F]Florbetapir PET using generalized
linear regression with a volumetric independent variable model,
statistical significance of the model parameter for the interaction
of [18F]Florbetapir PET and [18F]FDG PET using linear
regression with interaction of volumetric variables model,
and the true positive rate based on [18F]Florbetapir PET for
development of dementia using the volumetric ROC analysis.
It is important to mention that the parameters of the statistical

TABLE 1 | Summary of the statistical models used to compare and demonstrate the principle feature cases.

Usage Statistical model Number of samples

COMPARING VOXELSTATS WITH EXISTING TOOLBOXES (VALIDATION STUDY)

Linear regression with volumetric dependent

variable

[

18F
]

Florbetapir PET[n×τ ] ∼ β0 + β1 MMSE[n×1]+

β2 Age[n×1] + β3 Gender[n×1]

273

ADDITIONAL FEATURE CASE ASSESSMENT

Linear regression with volumetric independent and

dependent variables

[18F ]FDG PET[n×τ ] ∼ β0 + β1 VBM[n×τ ]+

β2 Age[n×1] + β3 Gender[n×1]

219

Logistic regression with volumetric independent

variable (binary dependent variable)

ln
(

π
1−π

)

[n×1]
∼ β0 + β1 [18F ]Florbetapir PET[n×τ ]+

β2 Age[n×1] + β3 Gender[n×1]
where π

= Probability
(

clinical progression
∣

∣X
)

, Clinical progression

= developing dementia in 24 months {1, 0}.

273

Linear regression with continuous dependent

variable and the interaction two volumetric variables

CDR− SOB[n×1] ∼ β0 + β1

[

18F
]

Florbetapir PET[n×τ ]

+β2 (−1)
[

18F
]

FDG PET[n×τ ]

+ β3

[

18F
]

Florbetapir PET[n×τ ] x (−1)
[

18F
]

FDG PET[n×τ ]

+ β4 Age[n×1] + β5Gender[n×1]

219

Voxel-wise ROC analysis Decision Variable =

[

18F
]

Florbetapir PET[n×τ ]

Classification Variable = clinical progression

True Positive Rate (TPR) = 6True Positive
6Condition Positive

False Positive Rate (FPR) = 6False Positive
6Condition Negative

273

Subscripts indicate the dimensions of each variable in the model. n- number of subjects, τ- number of voxels in the image. The highlighted parameters have been evaluated in the results

shown in Figure 5.
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FIGURE 4 | T-statistical maps for the statistical significance of the parameter for MMSE score generated from VoxelStats toolbox.

models are calculated by comparing the same voxel in the
dependent and the independent volumetric variables. Although
not demonstrated, the utility of the general and generalized
regression features can be further expanded with mixed effect
modeling to incorporate longitudinal study designs. Statistical
maps in Figures 5A,B are corrected for multiple comparisons
using the cluster-based correction method. The initial cluster
threshold is calculated with p < 0.001, and the cluster size
threshold is calculated with p < 0.05. The statistical map in
Figure 5C is not corrected for multiple comparisons.

Figure 5A demonstrates the results of the functionality of
inclusion of voxel-wise independent variables on the model
by assessing the association between the regional gray matter
density measured by VBM and glucose metabolism measured
by [18F]FDG PET. Based on the images, it can be concluded
that the glucose metabolism is associated with the gray-matter
density of the particular region. Figure 5C demonstrates the
results of the extended functionality of VoxelStats where the
association of the interaction of two volumetric measures and a
neurophysiological test is assessed. Here the association between
the CDR-SOB and the interaction of [18F]Florbetapir PET and
[18F]FDG PET is evaluated, while including Age, Gender, and
the main effects of both [18F]Florbetapir PET and [18F]FDG
PET in the statistical model. It should be noted that the
[18F]FDG PET measures have been negated using VoxelStats
variable operations prior to the statistical modeling to increase
the interpretability of the interaction analysis, as the expected
relationship of the CDR-SOB and [18F]FDG PET is inversed. The
resultant images highlight that the interaction of [18F]Florbetapir
PET and [18F]FDG PET in brain regions such as the posterior
cingulate cortex (PCC) has a positive association with the CDR-
SOB test score. Another important feature of VoxelStats is the
ability to perform generalized linear modeling with multiple

volumetric covariates. This functionality enables the user to
perform a vast array of sophisticated association studies using
neuroimaging data. Similar to the general linear modeling, these
prebuilt functions support any type of dependent variable (voxel-
wise or subject wise) and the interaction among any independent
variables. Figure 5B demonstrates the results from a logistic
regression analysis performed to identify the brain regions which
have the highest odds ratios for developing dementia based on
[18F]Florbetapir PET images. Based on the results, the regions
such as the the Precuneus, PCC, parts of the temporal lobe
and frontal cortex have the highest odds ratios of developing
dementia with the increase of [18F]Florbetapir PET SUVR. The
ability to perform generalized linear regression enables the user
to perform a vast array of association studies using neuroimaging
data involving response variables derived from distributions such
as Binomial, Poisson, Gamma, or Inverse Gaussian. Another
important feature in VoxelStats is the ability to perform voxel-
wise ROC analyses to identify the brain regions that have
the highest differentiation between two classes based on the
classifying performance of an imaging measurement. Figure 5D
shows the true positive rate from a voxel-wise ROC analysis
performed based on [18F]Florbetapir PET images to classify
individuals who develop dementia within 24 months. Based
on the result, [18F]Florbetapir PET measurements from brain
regions such as the Precuneus, cingulate, medial frontal, and
temporal cortices have the highest classification ability.

DISCUSSION

VoxelStats is a statistical framework that enables sophisticated
voxel-wise operations using multispectral neuroimaging datasets
that can be used to answer a multitude of research questions.
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FIGURE 5 | Results from the feature case assessments. (A) Multiple comparison corrected statistical significance of the parameter for VBM for the association

with [18F]FDG PET. (B) Multiple comparison corrected scaled odds ratio values of developing dementia in 24 months for a unit increase of the standard deviation of

[18F] Florbetapir PET SUVR. (C) Uncorrected statistical significance of the parameter for the interaction between [18F]Florbetapir PET and [18F] FDG PET for the

association with CDR-SOB. (D) True positive rate values from the ROC analysis based on [18F] Florbetapir PET SUVR in classifying individual developing dementia in

24 months.
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At present, VoxelStats includes prebuilt functions to perform
common statistical operations including general and generalized
linear modeling with mixed effects, which can lead to new
insights in the analysis of longitudinal neuroimaging data. Its
ability to work as an independentMatlab toolbox and the support
for Nifti-1, ANALYZE, and MINC v2 format volumes will make
VoxelStats immediately useful in the neuroimaging community.

Although ROI-based correction for imaging variables can
be considered viable for correcting regional differences, tools
similar to VoxelStats will ensure that imaging matrices from
one brain region is corrected only for the behavior within the
same region. This method also enables voxel-wise independent
statistical modeling to assess the relationship between multiple
imaging modalities as well as non-imaging measurements such
as fluid biomarkers, neurophysiological assessments, and clinical
outcomes.

The aforementioned existing toolboxes have limited
functionality to perform sophisticated voxel-wise statistical
operations, particularly generalized linear modeling and the
support for volumetric covariates and their interactions. In
Oakes et al. (2007), the authors have modified the multistat
algorithm to include a volumetric VBM covariate, the BPM
toolbox includes support for general linear regression with
volumetric independent variables with volumetric dependent
variables, and glim_image can perform general/generalized
linear model analysis only with volumetric dependent variables
and does not allow imaging covariates. NIPY toolbox currently
provides functionality to perform a number of voxel-wise
statistical operations including generalized linear modeling,
however, its usage is mainly focused toward developers, therefore
a neuroimaging analyst might not be able to use it out of the box.

The example used in this article to evaluate the accuracy of
VoxelStats is a typical use case in a voxel-wise statistical analysis
where a volumetric dependent variable is regressed against one
other independent measurement from each individual to identify
the brain regions that are associated with the independent
measurement. Although the results from VoxelStats are identical
to the results from existing toolboxes, it falls behind in time
required, due to the architectural design to incorporate built-
in Matlab procedures. However, this architectural design has
enabled VoxelStats toolbox to be computationally accurate
and scalable as a framework to support a vast array of
functionalities. The average memory usage of VoxelStats across
all the computational nodes during all the analyses was less than
8 GB.

VoxelStats toolbox has many potential uses and while it would
not be possible to demonstrate all of the use cases, it is worthwhile
to mention the principle feature cases for which VoxelStats can
be used (Table 1). Inclusion of voxel-wise covariates in multiple
regression is one such feature. The authors of Oakes et al.
(2007) and Casanova et al. (2007) have incorporated voxel-
wise covariates into a general linear model with a volumetric
dependent variable. This analysis design enabled the correction
for the regional abnormalities in regression analysis, assessing
the independent associations within each voxel. VoxelStats has
expanded this functionality by removing the dependency on the
volumetric dependent variable and supporting the interaction

between any independent variables (voxel-wise and/or subject
wise) included in the model (Figures 5A,C). Performing voxel-
wise generalized linear regression can be considered one of the
prominent features of the VoxelStats framework. This feature
allows rapid testing of hypotheses at each voxel, based on
imaging measurements where the dependent variable follows a
Binomial, Poisson, Gamma, or Inverse Gaussian distribution.
The logistic regression example (Figure 5B) in this article is one
such example to identify the effect of amyloid deposition in
various brain regions for the clinical progression of dementia.
The features offered by VoxelStats compared with toolboxes
designed to perform voxel-wise linear regression using imaging
data is summarized in Table 2. It is important to mention that
the information on existing toolboxes was gathered using the
relevant publication if available and the publicly available user
manuals.

The voxel-wise ROC analysis based on amyloid-β deposition
and the clinical progression can be considered as an example to
identify region specific [18F]Florbetapir PET thresholds which
will be valuable in enrichment of study populations in clinical
trials (Carbonell et al., 2015). To the best of our knowledge,
VoxelStats is the only analytical package that can perform
the voxel-wise ROC analysis, logistic regression with multiple
imaging variables and evaluate the interaction between multiple
imaging measures at every voxel. It is important to mention
that the statistical models performed in this study are merely
to demonstrate the functionality of VoxelStats and that the
interpretation of the results are beyond the scope of this
article.

Due to the amount of statistical computations performed,
one of the biggest challenges in VoxelStats is the computational
time of the analysis. Although the time required to complete
an analysis is acceptable as recorded, it can be further reduced
by utilizing the modern grid/cluster computing environments.
Other toolboxes developed for neuroimage processing and

TABLE 2 | Comparison of features offered by VoxelStats with existing

statistical software packages designed to perform voxel-wise linear

regression using imaging data.

Feature in VoxelStats SurfStat BPM glim_image RMINC

General linear model X X X X

Generalized linear models X

Voxel-wise independent variables X a

Interactions of voxel-wise variables

Scalar response variables

User friendly commands/interface X Xb X

Multiple comparison correction X X X

Results visualization X X X

Nifti file format support X X

ANALYZE file format support X X

MINC file format support X X X

aRMINC currently supports one Voxel-wise independent variable in the regression model,

however the model cannot contain any other imaging or scalar covariates.
bAlthough BPM toolbox provides a user interface, it requires all the imaging and scalar

variables and covariates to be listed in separate files.
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analysis such as NIAK (web: https://www.nitrc.org/projects/
niak/; Accessed 23-11-2015), PSOM (Bellec et al., 2012), and ISC
toolbox (Kauppi et al., 2014) have used file based parallelization
techniques. These allow the users to utilize cluster computing
resources and to overcome the licensing restrictions of Matlab.
However, their performance is heavily dependent on the
hardware setup of the cluster environment, particularly the speed
of data access (Kauppi et al., 2014), and may not be optimum for
a task with a large number of disk operations as VoxelStats would
require.

One other challenge that needs to be mentioned is the
accuracy of the co-registration required between different
imaging modalities. As each of the voxel-wise calculation
assumes that the information is originated from the same
region of the brain, inaccurate or suboptimal image registration
will reduce the accuracy of the result. This challenge has
been effectively addressed by the advanced image registration
algorithms such as DARTEL (Ashburner, 2007), SyN (Avants
et al., 2008), IRTK (Schnabel et al., 2001), FLIRT (Jenkinson
and Smith, 2001; Jenkinson et al., 2002), AIR (Woods et al.,
1992), ANIMAL (Collins et al., 1995), and ART (web: https://
www.nitrc.org/projects/art/; Accessed 28-04-2016), which are
widely being used for image co-registration. But it is always
recommended to perform multiple validation checks to ensure
the co-registration accuracy. Interpretability of the result of
any general/generalized linear model depends on honoring
the primary assumptions: homogeneity, independence, and
the normality of residuals. Although performing these tests
at a voxel level may not be feasible, the users should
evaluate these conditions at least at the level of clusters
where significant voxels are present. The users should also
consider the problem of multiple comparisons prior to statistical
inference and interpretation. A RFT (Worsley et al., 1996)
or False Discovery Rate (FDR; Benjamini and Hochberg,
1995) correction method should be used to reduce false
positive voxels and to identify the voxels/clusters with statistical
significance.

At present, VoxelStats framework supports 3-dimensional
volumetric images, therefore analysis using higher dimensional
neuroimaging data [functional MRI, dynamic PET, diffusion
tensor imaging (DTI)] cannot be performed. However, the
support for multidimensional volumetric images are expected
to be included in a future release of VoxelStats. VoxelStats
also requires the image variables and the image mask used
in a single analysis to have the same resolution (in voxels).
Users can download the VoxelStats framework as a freely
available Matlab library from https://github.com/sulantha2006/
VoxelStats/releases/tag/v1.1a1.

VoxelStats framework expands the current multimodal
neuroimaging analysis possibilities by enabling the testing
of sophisticated image-based hypotheses incorporating
multiple imaging modalities simultaneously and response
variables from normal, binomial, poisson, gamma, or
inverse gaussian distributions. To this extent, VoxelStats
framework bests the functional specific or modal
specific limitations of existing neuroimaging analysis
software.
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