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VoxelTrack: Multi-Person 3D Human Pose
Estimation and Tracking in the Wild

Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenyu Liu, Wenjun Zeng

Abstract—We present VoxelTrack for multi-person 3D pose estimation and tracking from a few cameras which are separated by wide
baselines. It employs a multi-branch network to jointly estimate 3D poses and re-identification (Re-ID) features for all people in the
environment. In contrast to previous efforts which require to establish cross-view correspondence based on noisy 2D pose estimates,
it directly estimates and tracks 3D poses from a 3D voxel-based representation constructed from multi-view images. We first discretize
the 3D space by regular voxels and compute a feature vector for each voxel by averaging the body joint heatmaps that are inversely
projected from all views. We estimate 3D poses from the voxel representation by predicting whether each voxel contains a particular
body joint. Similarly, a Re-ID feature is computed for each voxel which is used to track the estimated 3D poses over time. The main
advantage of the approach is that it avoids making any hard decisions based on individual images. The approach can robustly estimate
and track 3D poses even when people are severely occluded in some cameras. It outperforms the state-of-the-art methods by a large
margin on three public datasets including Shelf, Campus and CMU Panoptic.

Index Terms—3D Human Pose Tracking, Volumetric, Multiple Camera Views
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1 INTRODUCTION

T his work addresses the problem of multi-person 3D pose
estimation and tracking from a few cameras separated by

wide baselines. The problem draws attention from multiple
areas such as human pose estimation [1], [2], [2], [3], [4], [5],
[6], [7], person re-identification [8], [9], [10] and multi-object
tracking [11], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22]. The problem can benefit many applications
such as smart retail [23] and sport video analysis [24].

Mainstream methods such as [25] usually address the prob-
lem by three separate models. First, they estimate 2D poses
in each camera view by CNN [4], [26], [27]. Second, they
associate 2D poses of the same person in different views
based on epipolar geometry or image features, and recover
the corresponding 3D pose for each person by geometric
methods [2], [28], [29], [30]. Third, they link the estimated 3D
poses over time by linear bipartite matching based on keypoint
locations and image features. The three tasks have been
independently addressed by researchers from different areas
which may unfortunately lead to degraded performance (1)
2D pose estimation is noisy especially when occlusion occurs;
(2) 3D estimation accuracy depends on the 2D estimation and
association results in all views; (3) unreliable appearance fea-
tures caused by occlusion harms 3D pose tracking accuracy. In
the following, we discuss the challenges in detail and present
an overview of how our end-to-end approach successfully
addresses them.
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Fig. 1. The top and right area show the images cap-
tured by five synchronized cameras. The bottom-left area
shows the 3D poses estimated by our approach. The
numbers represent the identities of the estimates. The
points with different colors represent the 3D trajectories of
the root joints of different persons over time. We project
the estimated 3D poses to images for visualization. The
red pyramids represent the locations and orientations of
the five cameras.

1.1 Challenges in 2D Human Pose Estimation

Introducing of CNN and large scale datasets [31], [32], [33]
has boosted 2D pose estimation accuracy [4], [5], [26], [34],
[35], [36], [37], [38] on benchmark datasets. However, even
top-ranking methods suffer when we apply them to crowded
scenes with severe occlusion and background clutter. Figure 1
shows some images of this type from the Panoptic dataset
[39]. On one hand, top-down pose estimators [26], [40], which
first detect all people in the image and then perform single
person pose estimation for each detection, often fail to detect
people that are mostly occluded. On the other hand, bottom-up
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methods [4], [36], [41], which first detect all joints in an image
and then group them into different instances, have limited
capability to detect joints of small scale people. In summary,
2D pose estimates are very noisy in real-world applications
which will inevitably cause negative and irreversible impact
to the 3D pose estimation step.

1.2 Challenges in 3D Human Pose Estimation

To estimate 3D poses of multiple people, we first need to
associate the 2D poses of the same person in different views.
This can be achieved by matching 2D poses based on epipolar
geometry. Some methods [25] also use image features to
improve robustness. But still, it is a challenging task because
2D pose estimates may have large errors and appearance
features may be corrupted when occlusion occurs. For example
in Figure 1, we can see that some people are only partially
visible in some camera views. So features of the people in
those camera views are very different from those in normal
views. After we obtain the corresponding joint locations of
each person, we estimate their 3D locations by triangulation
[28], [29] or pictorial structure models [2], [42]. The final 3D
pose estimation accuracy largely depends on the cross view
association step which in turn depends on the accuracy of the
2D pose estimation step.

1.3 Challenges in 3D Human Pose Tracking

The third step is to link the estimated 3D poses over time
and obtain a number of tracks. Although the task itself is
rarely studied, there are many works on 2D pose tracking
in videos [5], [6], [43], [44], [45], [46] which can be easily
extended to track 3D poses. The fundamental problem in
the task is to measure the similarity between every pair of
poses between neighboring frames and then solve the classic
assignment problem by bipartite matching [47]. Two sources
of information have been used to compute pose similarity.
The first is based on motion cues which uses Kalman Filter
or optical flow to predict future positions of the tracklets and
prevents them from being linked to the poses (in the current
frame) which are far from the predictions. This effectively
promotes smoothness in tracking results. The second class
of information is appearance features computed from images.
However, when occlusion occurs, appearance features may be
corrupted and unreliable.

1.4 Overview of Our Approach

We present an approach termed VoxelTrack for robustly track-
ing 3D poses of multiple people in challenging environment.
This builds on, and gives a more detailed description of our
preliminary work VoxelPose [1] which estimates 3D poses
from multiple cameras. Our new contributions include 1)
extending the work to be able to track 3D poses over time and
2) exploiting sparseness of the 3D representation to improve
the inference speed so that it can be applied to very large 3D
spaces such as football court. An overview of our approach is
shown in Figure 2.

(I) 2D Feature Extraction Given synchronized images as
input, it first estimates 2D pose heatmaps [27] and Re-ID
feature maps [48] by a CNN-based image encoder. Recall
that a pose heatmap encodes per-pixel likelihood of a joint.
Similarly, a Re-ID feature at each pixel encodes identity
embedding of the person centered at the pixel. Note that we
do not recover 2D poses from the heatmaps because they
are usually very noisy. Instead, we keep the ambiguity in the
representation and postpone decision making to the later 3D
stage in which multi-view information is available to resolve
the ambiguity.

(II) Holistic 3D Representation To avoid making incorrect
decisions in each view, our approach directly operates in the
3D space by fusing information from all views. Specifically,
we divide the 3D motion capture space by regular voxels
and compute a feature vector for each voxel by inversely
projecting the 2D heatmap vector at the corresponding location
in each view using camera parameters. The resulting 3D
heatmap volume, which carries positional information of body
joints, will be fed to 3D network to estimate the likelihood of
each voxel having a particular body joint. The holistic 3D
representation elegantly avoids cross view association of 2D
poses. In parallel, we also compute a 3D Re-ID feature volume
for tracking 3D poses over time.

(III) 3D Pose Estimation The resulting 3D heatmap volume
is sparse. So we apply a lightweight network with sparse 3D
CNNs [49] to the volume to estimate a 3D heatmap which
encodes per-voxel likelihood of all joints. We first obtain a
number of person instances by finding peak heatmap values
of the root joint. Then for each instance, we crop a smaller
fixed-size region from the volume centered at the root joint
and use an independent lightweight network to estimate 3D
heatmaps of all joints that belong to the instance. Finally, we
obtain the 3D pose of the instance by computing expectation
over the heatmaps.

(IV) 3D Pose Linking Considering that occlusion occurs fre-
quently in real-world applications, we introduce an occlusion-
aware multi-view feature fusion strategy when we compute
the Re-ID feature volume. The idea is that, for each 3D pose,
we estimate whether it is occluded by other people in each
camera view which determines whether the features in this
view will be used for fusion. We link the 3D poses over time
by bipartite matching based on the fused features and the 3D
locations. The occlusion-aware matching strategy eliminates
the harm of unreliable appearance features.

How VoxelTrack Addresses the Challenges?
The most prominent advantage of VoxelTrack is that it does

not require to do 2D pose estimation in every camera view
nor pose association in different views as in previous works
which is error-prone. Instead, all hard decisions are postponed
and made in the 3D space after fusing the inversely projected
2D image features from all views. As a result, the “end-to-
end” inference style effectively avoids error accumulation. In
addition, the representation is robust to occlusion because it
fuses the features in all camera views (a joint occluded in one
view may be visible in other views).
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Fig. 2. Overview of VoxelTrack for 3D pose tracking. Given multi-view images as input, it first estimates pixel-wise
pose heatmaps and Re-ID features for each view. Then the heatmaps are warped to construct a 3D feature grid which
is fed to a 3D pose network to estimate 3D poses. We estimate person-person occlusion relationships in each view by
using the 3D poses and camera parameters. Finally, we perform 3D pose tracking with the 3D poses, occlusion-masks
and Re-ID features as input.

We evaluate our approach on three public datasets including
the CMU Panoptic [39], Shelf [50] and Campus [50] datasets.
VoxelTrack outperforms the existing methods by a large mar-
gin which validates the advantages of performing tracking
in 3D space. More importantly, the estimation and tracking
results are very stable even when severe occlusion occurs
in some camera views. We also evaluate different factors in
our approach such as occlusion-masks, similarity metrics and
network structures. In addition, we find that the 3D network
can be accurately trained on automatically generated synthetic
heatmaps. This is possible mainly because the heatmap based
3D feature volume representation is a high level abstraction
that is disentangled from appearance/lighting, etc. This favor-
able property dramatically enhances the applicability of the
approach. The whole system runs at 15 FPS with 5 camera
views as input on a single 2080Ti GPU.

2 RELATED WORK

In this section, we briefly review the existing work which are
related to 3D pose tracking including 2D pose estimation, 3D
pose estimation, box-level human tracking and key-point-level
human tracking.

2.1 2D Human Pose Estimation

Estimating 2D poses in images has been a long-standing goal
in computer vision [51], [52], [53], [54]. Before deep learning,
this had often been approached by modeling human as a graph
and estimating the locations of the graph nodes in images
according to image features and structural priors. Development
of CNNs [4], [5], [37], [38] has led to remarkable accuracy
improvement on benchmark datasets. In particular, introducing
of the heatmap representation [38], which encodes per-pixel
likelihood of body joints for each image, has dramatically
improved the robustness of pose estimation. In fact, this
probabilistic representation has become the de facto standard
for pose estimation and is the main factor behind the success of

those approaches. Our approach also uses this representation.
But different from [38], we do not make hard decisions on
heatmaps to recover joint locations because they are unreliable
when occlusion occurs.

When an image has multiple people, an additional challenge
is to group the detected joints into different instances. Existing
multi-person pose estimation methods can be classified into
two classes based on how they do grouping: top-down and
bottom-up approaches. Top-down approaches [5], [35], [55],
[56] operate in two steps: detecting all people in the image
by a number of boxes and then performing single person
pose estimation for each box. They crop the image according
to the boxes and normalize the image patches to have the
same scale which notably improves the estimation accuracy.
However, those approaches suffer a lot when a large part of a
person is occluded because detection in such cases barely gets
satisfying results. In addition, it suffers from the scalability
issue because the computation time increases linearly as the
number of people in images.

In contrast, bottom-up approaches [4], [5], [36], [41] first
detect all joints in the image, and then group them into
instances according to spatial and appearance affinities among
them. However, since scales of different instances in a single
image may vary significantly, pose estimation results are
generally worse than those of the top-down methods. But joint
detection is more robust to occlusion. The 2D pose estimation
module in VoxelTrack is a bottom-up approach. However,
we do not group joints into instances. Instead, we keep the
heatmap representation and warps heatmaps of all views to a
common 3D space in order to detect 3D person instances. So
joint association is implicitly accomplished.

2.2 3D Human Pose Estimation

There are two challenges in multi-person 3D pose estimation.
First, it needs to associate joints of the same person as dis-
cussed previously. Second, it needs to associate the 2D poses
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of the same person in different views based on appearance
features [24], [25] or geometric features [23] which is unstable
when people are occluded. Some methods adopt model-based
methods by maximizing the consistency between the model
projections and image observations. For example, the pictorial
structure model is extended to deal with multiple person 3D
pose estimation in [50], [57]. However, the interactions across
people introduce loops to the graph which notably complicates
optimization. These challenges limit the 3D pose estimation
accuracy of those methods.

Dong et al. [25] propose a multi-way matching algorithm
to find cycle-consistent correspondences of detected 2D poses
across multiple views using both appearance and geometric
cues, which is able to prune false detections and deal with
partial overlaps between views. Then they recover the 3D pose
for each person using triangulation-based methods. Chen et
al. [23] exploit temporal consistency in videos to match the
detected 2D poses with the estimated 3D poses directly in
3D space and update the 3D poses iteratively via the cross-
view multi-human tracking. This novel formulation improves
both accuracy and efficiency. However, both approaches are
venerable to inaccurate 2D pose estimates in each view which
is often the case in practice.

Our work is better than the pictorial structure models [50],
[57] because it does not suffer from local optimum and does
not need the number of people in each frame to be known
as input. It differs from the model-free methods [23], [24],
[25] in that it elegantly avoids the two association problems.
The approach is readily applicable to large spaces such as
basketball court. The computation time is hardly affected by
the number of people in the environment because we use the
coarse-to-fine approach to divide space into voxels and the
lightweight sparse 3D CNN.

2.3 Human Pose Tracking

Human pose tracking is related to box-level object tracking
which aims to estimate trajectories of objects in videos. Most
methods follow the tracking-by-detection paradigm, which first
detect objects in each frame and then link them over time. The
key is to compute similarity between detections and tracklets.
One class of methods [15], [58], [59], [60] use location and
motion cues. For example, Kalman Filter [61] or optical
flow are used to predict future tracklet positions and then
they compute the distance between the predicted and detected
object positions as the similarity. Another class of methods
[11], [12], [14], [62] use image features to compute similarity.
The first class are fast and effective for short-range linking
while the second are better at handling long-range linking
which is critical to track objects that re-appear after being
occluded for a while. To track objects in multiple cameras,
some works [63], [64], [65], [66] propose to first detect 2D
boxes in each view and then link them across both time and
view points according to appearance similarity. Some other
works use multi-view geometry and location cues to track
ground plane detections [67], [68], [69], [70], [71], 3D points
[72] or 3D centroid-with-extent detections [73].

Compared to box-level tracking, pose tracking has access
to finer-grained joint locations. Some offline trackers such as
[43], [44], [74] formulate pose tracking as a graph partitioning
problem in which the joints of the same person in different
frames are expected to be connected while the joints of
different persons are disconnected. Some online trackers [5],
[6], [19], [45], [75], [76] solve the problem by bipartite
matching which first estimate 2D poses in the current frame
and then link them to the closest tracklets, respectively. In [5],
optical flow is used as the motion model to reduce missing
detections and the similarity is computed by the human joint
distances. In a recent work [76], a Graph Convolution Network
Re-ID model is used to extract Re-ID features based on all
joints instead of bounding boxes.

To our best, few works have systematically studied 3D
pose tracking in multiple cameras which is the focus of this
work. Different from previous multi-view box-level tracking
methods, we have more precise 3D keypoint coordinates which
allows us to reliably reason about occlusion. We combine
keypoint distances and occlusion-aware appearance feature
distances to compute similarity and achieve very stable track-
ing results in challenging scenes.

3 VOXELTRACK: 3D POSE ESTIMATION

In this section, we present the first part of VoxelTrack which
estimates 3D poses of all people in the environment. This
includes estimating 2D pose heatmaps, Re-ID features and 3D
poses from multiview images.

3.1 Backbone Network

As shown in Figure 3, we use DLA-34 [77] as backbone
network to extract intermediate features for images of all views
independently. The DLA network [78] was first proposed
for image classification. We use a recent variant [77] for
dense prediction tasks which uses iterative deep aggregation
to increase feature map resolution. It takes an image Iv ∈
R3×H×W from view v as input and outputs a feature map
Fv ∈ RC×H

4 ×
W
4 . The feature map will be fed to two networks

to estimate 2D pose heatmaps and Re-ID features, respectively
as will be discussed subsequently.

3.2 2D Pose Heatmap Estimation

We use a simple network to estimate 2D pose heatmaps
Hv ∈ RJ×H

4 ×
W
4 from backbone features Fv where J is

the number of body joint types. The network consists of two
convolutional layers as shown in Figure 3. A heatmap encodes
per-pixel likelihood of a body joint which is a common
surrogate representation for human pose used in many work
[4], [5]. We train the 2D pose heatmaps by minimizing:

L2D = ‖H∗v −Hv‖2, (1)

where H∗v ∈ RJ×H
4 ×

W
4 is the ground truth 2D pose heatmaps

computed following [5]. Different from the previous works, we
do not make any hard decisions on 2D heatmaps but use them
as input to our 3D pose network.
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Fig. 3. The network structure for estimating 2D pose heatmaps and Re-ID features. Iv, Fv, Hv and Gv represent the
image, backbone feature map, 2D heatmap and Re-ID feature map of camera v, respectively.

3.3 Re-ID Features
We use a simple network to estimate Re-ID feature maps
Gv ∈ Rd×H

4 ×
W
4 from backbone features Fv where d is the

dimension of Re-ID features. It consists of two convolutional
layers as shown in Figure 3. Inspired by FairMOT [11],
for each person in an image, we sample a d-dimensional
feature from the feature maps at the pelvis joint as its Re-
ID features. We use a Fully Connected (FC) network and
a softmax operation to map the sampled features to a one-
hot vector P = {p(t), t ∈ [1, T ]} representing the person’s
identity. Denote the one-hot representation of the GT class
label as Li(p). We train the Re-ID network as a classification
task using cross entropy loss as follows:

LID = −
N∑
i=1

T∑
t=1

Li(t)log(p(t)), (2)

where N is the number of people in the image and T is
the total number of unique people in the training dataset.
During training, we use ground-truth pelvis joint locations in
images to extract Re-ID features. During testing, we project
estimated 3D pelvis locations to images to sample Re-ID
features. During testing, we use the sampled Re-ID features
before the classification layer to represent each person as will
be described in the following sections.

3.4 3D Joint Estimation
We discretize the 3D motion space by X × Y × Z discrete
voxels {Dx,y,z}. Each voxel is a candidate location for body
joints. In order to reduce quantization error, we usually set
the size of a voxel to be as small as possible (62.5mm in
this paper). We compute a feature vector for each voxel by
calculating average 2D heatmap values sampled at its projected
locations in all camera views. Denote the 2D heatmap of view
v as Hv ∈ RJ×H

4 ×
W
4 where J is the number of body joints.

For each voxel Dx,y,z , we denote its projected location in
view v as Px,y,z

v . The heatmap feature at Px,y,z
v is denoted as

Hx,y,z
v ∈ RJ . We compute the feature vector of the voxel as:

Vx,y,z = 1
V

∑V
v=1 H

x,y,z
v where V is the number of camera

views. We can see that Vx,y,z actually encodes the likelihood
that the body joints are at Dx,y,z . Note that the feature volume
V is usually very noisy because some voxels which do not
correspond to body joints may also get non-zero features due
to lack of depth information.

We present Joint Estimation Network (JEN) to estimate
3D joint heatmaps U ∈ RJ,X,Y,Z from V. The network
structure is shown in Figure 4. Each confidence score Uj,x,y,z

represents the likelihood that there is a joint of type j at voxel
Dx,y,z . The likelihood of all joints at all voxels form 3D
joint heatmaps U ∈ RJ,X,Y,Z . During training, we compute
ground-truth joint heatmaps Uj,x,y,z

∗ for every voxel according
to its distance to ground-truth joint locations. Specifically,
for each pair of ground-truth joint location and voxel, we
compute a Gaussian score according to their distance. The
score decreases exponentially when distance increases. Note
that there could be multiple scores for one voxel if there are
multiple people in the environment and we simply keep the
largest one. We train JEN by minimizing:

LJEN =

J∑
j=1

X∑
x=1

Y∑
y=1

Z∑
z=1

‖Uj,x,y,z
∗ −Uj,x,y,z‖2 (3)

Inspired by the voxel-to-voxel prediction network in [79],
we adopt 3D convolutions as the basic building block for
estimating 3D joint heatmaps. Since input feature volumes
V are usually sparse and have clear semantic meanings, we
propose a simpler structure than [79] as shown in Figure 4.
In some scenarios such as football court, the motion capture
space can be very large which will inevitably result in high
dimensional feature volumes. This will notably decrease the
inference speed. We solve the problem by using sparse 3D
convolutions [49] because in general the feature volume only
has a small number of non-zero values. This significantly
improves the inference speed in our experiments, especially
for large voxel sizes.

3.5 3D Joint Grouping
Suppose we have already estimated 3D joint locations (rep-
resented by 3D joint heatmaps) as in the above section. The



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

𝑯𝟏, 𝑯𝟐, … , 𝑯𝒗

𝑫

project

sample

𝑽

3×3 3×3 2×2 3×3

3×3

3×32×2

3×3

1×1

𝑼

J×
𝐇

𝟒
×
𝐖

𝟒

J×X×Y×Z

J×X×Y×Z

16×X×Y×Z 32×
𝐗

𝟐
×
𝐘

𝟐
×
𝐙

𝟐
32×X×Y×Z

64×
𝐗

𝟐
×
𝐘

𝟐
×
𝐙

𝟐

64×
𝐗

𝟐
×
𝐘

𝟐
×
𝐙

𝟐

32×X×Y×Z

J×X×Y×Z

sample from pelvis joint 

3×3
N×J×𝟑𝟐𝟑

N×16×𝟑𝟐𝟑 N×32×𝟑𝟐𝟑

3×3 2×2
N×32×𝟏𝟔𝟑

3×3
N×64×𝟏𝟔𝟑

2×2
N×64×𝟖𝟑

3×3
N×128×𝟖𝟑

3×3

N×128×𝟖𝟑

3×3

N×128×𝟖𝟑

2×2

N×64×𝟏𝟔𝟑

3×3

N×64×𝟏𝟔𝟑

2×2

3×3

N×32×𝟑𝟐𝟑

1×1

N×J×𝟑𝟐𝟑

64×
𝐗

𝟐
×
𝐘

𝟐
×
𝐙

𝟐

3×3

soft

argmax

MSE Loss

L1 Loss

Conv 3D

ResBlock 3D

DeConv 3D

Max Pool 3D

Sparse  Conv 3D

J: number of joints

N: number of people

X,Y,Z: 3D grid size

H,W: 2D input size

N×J×3

Joint Estimation Network

Ambiguity Resolution Network

Fig. 4. The network structure for estimating 3D joint heatmaps and 3D poses. We first use a Joint Estimation Network
(JEN) to get the 3D heatmaps of all the joints and then use a Ambiguity Resolution Network (ARN) to get the 3D
poses. Hv, D, V, U represent the 2D heatmap, empty discrete voxels, feature vectors of the voxels and the 3D
heatmap, respectively.

remaining task is to assemble the estimated joints into poses
of different instances. To that end, we present an Ambiguity
Resolution Network (ARN) to fulfill the task which is shown
in the bottom part of Figure 4. We first obtain a number of
3D pelvis joint locations by finding peak responses in the 3D
joint heatmaps. Each location represents a candidate instance
of person. We perform Non-Maximum Suppression (NMS)
based on the heatmap scores to extract local peaks. Then for
each person, we pool features around the pelvis joint from the
3D joint heatmaps with a fixed size X ′ × Y ′ × Z ′ which is
sufficiently large to enclose a person in arbitrary poses. We
set X ′ = Y ′ = Z ′ = 32, which corresponds to 2000mm in
real world. We feed the pooled features to ARN to estimate
a 3D pose heatmap Ak ∈ RX′,Y ′,Z′

for each joint k of this
person. The joint responses of other persons are learned to be
suppressed by ARN. Finally, we use a soft argmax operation
[29] to generate 3D location Jk of the joint k from the pose
heatmaps. It can be obtained by computing the center of mass
of Ak according to the following formula:

Jk =

X′∑
x=1

Y ′∑
y=1

Z′∑
z=1

(x, y, z) ·Ak(x, y, z) (4)

Note that we do not obtain the location Jk by finding the
maximum of Ak because the quantization error of 62.5mm is
still large. Computing the expectation as in the above equation
effectively reduces the error. We train ARN by comparing the
estimated 3D poses to the ground-truth 3D poses J∗ with L1

loss as follows:

LARN =

J∑
k=1

‖Jk
∗ − Jk‖1 (5)

4 VOXELTRACK: 3D POSE TRACKING

We now present the second part of VoxelTrack which links
the estimated 3D poses over time. This is a standalone module
which does not require training. The core is to compute a sim-
ilarity matrix between 3D poses of the current and subsequent
frame. With the similarity matrix, it accomplishes linking by
solving a standard linear bipartite matching problem.

4.1 Occlusion Relationship Reasoning
Since Re-ID features in our work are extracted from images,
they suffer from occlusion. Considering that most occlusion in
the benchmark datasets belongs to person-person occlusion,
we estimate to what extent a 3D pose is occluded by other
people in the environment. The idea can also be used to handle
human-object occlusion.

In general, if a person is severely occluded by other people
in one view, we decrease the contribution of the corresponding
Re-ID feature. To achieve the target, for each estimated 3D
pose, we estimate its approximate depth relative to each
camera using the camera parameters. Figure 5 shows the way
to compute how much a person is occluded. Specifically, we
use the average depth of all joints to represent the depth of a
person. For every camera, we put a 2D bounding box parallel
to the camera plane at the average depth tightly enclosing
all body joints. For each location in the box, we can easily
determine whether it is occluded by the boxes of other poses.
We first compute a minimum depth map for each pixel of the
image. Then, we can compute the occluded area by comparing
each person’s depth map to the minimum depth map. The
percentage of locations that are not occluded is used as a
reliability score for its Re-ID feature.
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Camera 3D Poses

Person Depth Map Minimum Depth Map

Person1: no occlusion

Person2: partly occlusion

Person3: partly occlusion

Fig. 5. Some steps to compute the occlusion relationship
based on depth. The person depth map is computed
using camera parameters and 3D poses. For the mini-
mum depth map, the color becomes deeper as the depth
becomes larger.

4.2 Similarity Metrics

We compute similarity between two 3D poses according
to their appearance and spatial features. We project the
3D pelvis joint locations of the 3D poses to all cameras
and sample corresponding Re-ID features. Denote the Re-
ID features of the ith and jth poses in all camera views as
{G1

i ,G
2
i , · · · ,GV

i } and {G1
j ,G

2
j , · · · ,GV

j }, respectively. We
compute the weighted average of all camera views as the final
Re-ID feature Gi =

∑V
v=1 ω

v
i G

v
i where ωv

i represents the
reliability score computed according to occlusion relationship.
In particular, if more than 70% of the box is occluded by other
people, ωv

i is set to be 0. We compute the cosine distance
between the fused Re-ID features as the appearance cues.
We also compute Euclidean distance between two poses to
promote smoothness of tracking as the location cues. For each
tracklet, we normalize the Euclidean distance between it and
all the detections. We compute the average of the appearance
and location similarity as the final metric.

4.3 Tracking Framework

We adopt a simple framework for online multiple object
tracking. In the first frame, we initialize the estimated 3D poses
as tracklets. We use the Hungarian algorithm to assign the 3D
poses in the current frame to the existing tracklets. We prevent
a 3D pose from being matched to a tracklet which has very
large distance. If the spatial distance between the tracklet and
the 3D pose is too large, we reject the assignment. If a 3D
pose is not matched to any tracklets, we start a new track one.
When a tracklet is not matched to any 3D poses for more than
30 frames, we set the tracklet to inactive state and it will not
be used in the future. We use the appearance features of the
newly matched 3D pose to update the appearance features of
the tracklet by linear blending following [11].

5 DATASETS AND METRICS

5.1 Datasets

Campus Dataset [57] It captures three people interacting with
each other in an outdoor environment by three cameras. We
follow [25], [57] to split the dataset into training and testing
subsets. To avoid over-fitting to this small training data, we
train the 2D part on the COCO Keypoint dataset [32] and train
the 3D part using the camera parameters of the Campus dataset
to generate the sythetic 3D poses and 2D heatmap pairs.

Shelf Dataset [57] It captures four people disassembling a
shelf by five cameras. This dataset has more occlusion than
the Campus dataset. Similar to what we do for Campus, we
do not use the images or poses to train on the Shelf dataset.

CMU Panoptic Dataset [39] This is a recently introduced
large scale multi-camera dataset for 3D pose estimation and
tracking. It captures people doing daily activities by dozens of
cameras among which five HD cameras (3, 6, 12, 13, 23) are
used in our experiments. We also report results when we use
even fewer cameras. Following [80], the training set consists
of the following sequences: ‘‘160422 ultimatum1’’,‘‘16022
4 haggling1’’,‘‘160226 haggling1’’,‘‘161202 haggling1’’,‘
‘160906 ian1’’,‘‘160906 ian2’’,‘‘160906 ian3’’,‘‘160906 b
and1’’,‘‘160906 band2’’,‘‘160906 band3’’. The testing set
consists of :‘‘160906 pizza1’’,‘‘160422 haggling1’’,‘‘16090
6 ian5’’,and‘‘160906 band4’’.

5.2 Metrics

3D Pose Estimation Metric Following [25], we use the
Percentage of Correct Parts (PCP3D) metric to evaluate the
estimated 3D poses. Specifically, for each ground-truth 3D
pose, it finds the closest pose estimate and computes per-
centage of correct parts. We can see that this metric does
not penalize false positive pose estimates. To overcome the
limitation, we also extend the Average Precision (APK) metric
[81] in object detection to evaluate multi-person 3D pose
estimation quality which is more comprehensive than PCP3D.
In particular, if Mean Per Joint Position Error (MPJPE) of
an estimate is smaller than K millimeters, we think the pose
is accurately estimated. APK computes the average precision
value for recall value over 0 and 1.

3D Pose Tracking Metric We modify the standard bounding
box Multi-Object Tracking (MOT) metric CLEAR [82] and
the 2D pose tracking metrics [43] for 3D pose tracking.
In particular, we compute a MOTA score for each body
joint independently in a similar way as 2D pose tracking. In
particular, the matching threshold of the predicted joint and the
ground truth joint is half of a head size (150mm). The MOTA
score jointly considers the pose estimation and the pose linking
accuracy. We count the identity switches (ID Switch) for each
joint. We also compute IDF1 scores [83] to make an overall
evaluation of the identification task.
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6 EXPERIMENTS

6.1 Implementation Details

The training and testing images are resized to 800 × 608.
The resulting 2D heatmaps and Re-ID feature maps have the
resolution of 200×152. We use DLA-34 [77] as our backbone
which is pre-trained on the ImageNet classification dataset.
The number of body joints J is set to be 15 in accordance
with the COCO dataset. The dimension of Re-ID features is
set to be 64 following FairMOT [48].

The motion capture space is set to be 10m×10m×4m for the
three datasets. We divide the space into 160×160×64 bins. So
each bin is approximately of size 62.5mm×62.5mm×62.5mm.
Note that since we compute expectation of joint locations over
3D heatmaps, the actual error is much smaller than 62.5mm.
Recall that we apply sparse 3D convolution to feature volume
to estimate 3D heatmaps. To promote sparsity, we set features
in the volume to zero if their original values is smaller than
0.15. For ARN, we pool features from the space of size
2000mm× 2000mm× 2000mm (about 32× 32× 32 voxels)
around estimated pelvis joints.

We train VoxelTrack in three separate stages. We use Adam
optimizer in all stages. In the first stage, we train the 2D
model for estimating heatmaps and Re-ID feature maps for
20 epochs with a start learning rate of 1e−4. The learning rate
decreases to 1e−5 after the 15th epoch. Next, we fix the 2D
model and train the 3D joint estimation network for 10 epochs.
The learning rate is set to be 1e−4. Finally, we train ARN to
estimate 3D poses of all instances for 10 epochs with learning
rate set to be 1e−4. Note that we can also jointly train the
three models if we have access to a large number of paired
(image, 3D pose) training data. There are several reasons why
we choose separate training: (1) when we apply our model
to a new environment, it may be impossible to obtain a large
number of (image, 3D pose) pairs for training the model. In
this case, we can train the 2D model on public datasets and
train the 3D model by generating a large number of 3D pose
and 2D heatmap pairs; (2) separate training allows us to use
larger batch size which helps stabilize training.

For training on the Campus and Shelf dataset [57], we
do not use the images or poses and only use the camera
parameters to avoid over-fitting to these small datasets. We
use [27] as our 2D backbone network and train on the COCO
Keypoint dataset [32]. It is worth noting that COCO does not
have identity annotations and we cannot directly train the Re-
ID branch on it. We propose a weakly supervised learning
approach to train the Re-ID part on the COCO dataset. We
assign each 2D pose a unique identity and thus regard each
object instance in the dataset as a separate class. We apply
different transformations to the whole image including flip-
ping, rotation, scaling and translation to help create different
appearances of the same instance.

For training the 3D part on the Campus and Shelf dataset,
we generate many synthetic heatmaps using the camera pa-
rameters. we place a number of 3D poses (sampled from
the motion capture datasets such as Panoptic [39]) at random
locations in the space and project them to all views to get the
respective 2D locations. Then we generate 2D heatmaps from

the locations to train the 3D part. This has significant practical
values as we can easily apply our model to new environments
such as a retail store with the camera parameters available.

6.2 Comparison to the State-of-the-art Methods
3D Pose Estimation Table 1 shows the 3D pose estimation
results of the state-of-the-art methods on the Campus and the
Shelf datasets in the top and bottom sections, respectively. We
can see that our approach improves PCP3D from 96.6% of
[23] to 96.7% on the Campus dataset and 96.9% of [25] to
97.1% on the Shelf dataset, which is a decent improvement
considering the already very high accuracy. As discussed in
Section 5.2, the PCP3D metric does not penalize false positive
estimates. However, it is also meaningless to report AP scores
because the GT pose annotations in this dataset are incomplete.
So we propose to visualize and publish all of our estimated
poses of the Shelf dataset1 and the Campus datset2. We find
that our approach usually gets accurate estimates as long as
joints are visible in at least two views. The previous works
[23], [25], [50], [57], [84] did not report numerical results on
the large scale Panoptic dataset. We encourage future works
to do so as in Table 2 and Table 3.

3D Pose Tracking Table 1 shows the 3D pose tracking results
of our method on the Campus and the Shelf datasets. The
MOTA metric is computed by FP, FN and ID Switch, which
jointly consider the person detection, pose estimation and
pose tracking performance. The ID Switch and IDF1 metrics
can better reveal the tracking performance. We achieve 0 ID
Switch and high IDF1 score (94.6 on Campus and 97.2 on
Shelf) on both of the datasets with severe occlusion in each
single view, which indicates that our multi-view 3D tracking
method can achieve accurate tracking results. We achieve
higher MOTA on the Shelf dataset than on the Campus dataset
(94.4 vs 89.3) mainly because the pose estimation results on
the Shelf dataset is better.

Qualitative Study We show some 3D pose tracking results on
the Shelf dataset in Figure 6. We can see that there is severe
occlusion in the images of all camera views. However, by
fusing heatmaps from multiple cameras, our approach obtains
more robust features which allows us to successfully estimate
the 3D poses without bells and whistles. It is noteworthy that
we do not need to associate 2D poses in different views based
on noisy 2D poses by combining a number of sophisticated
techniques. This significantly improves the robustness of the
approach. We can see that people with identity 2, 3 and 4 are
walking around the shelf with lots of occlusion. The identities
of the four people keep the same across the frames, which
indicates that our approach has stable tracking performance in
severe occlusion cases.

6.3 Factors that Impact Estimation Accuracy
We conduct ablation studies to evaluate a variety of factors
of our approach. The results on the Panoptic dataset [39]

1. https://youtu.be/hwdk3sQEdY8
2. https://youtu.be/mXSQLDh953E
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Campus Actor 1 Actor 2 Actor 3 Average PCP3D MOTA ID Switch IDF1
Belagiannis et al. [57] 82.0 72.4 73.7 75.8 - - -
Belagiannis et al. [84] 83.0 73.0 78.0 78.0 - - -
Belagiannis et al. [50] 93.5 75.7 84.4 84.5 - - -

Ershadi-Nasab et al. [85] 94.2 92.9 84.6 90.6 - - -
Dong et al. [25] 97.6 93.3 98.0 96.3 - - -
Chen et al. [23] 97.1 94.1 98.6 96.6 - - -

Ours 98.1 93.7 98.3 96.7 89.3 0 94.6
Shelf Actor 1 Actor 2 Actor 3 Average MOTA ID Switch IDF1

Belagiannis et al. [57] 66.1 65.0 83.2 71.4 - - -
Belagiannis et al. [84] 75.0 67.0 86.0 76.0 - - -
Belagiannis et al. [50] 75.3 69.7 87.6 77.5 - - -

Ershadi-Nasab et al. [85] 93.3 75.9 94.8 88.0 - - -
Dong et al. [25] 98.8 94.1 97.8 96.9 - - -
Chen et al. [23] 99.6 93.2 97.5 96.8 - - -

Ours 98.6 94.9 97.7 97.1 94.4 0 97.2

TABLE 1
Comparison to the state-of-the-art methods on the Campus and the Shelf datasets. The metric is PCP3D and AP.

Frame 0

Frame 50

Frame 100

Frame 0 Frame 50 Frame 100

Fig. 6. Visualization results on the Shelf dataset. The top is the 2D images captured by 5 cameras and the bottom is
the 3D pose tracking results. Different numbers and colors represent different person identities.
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are shown in Table 2 and Table 3. We evaluate both the 3D
pose estimation accuracy, the 3D tracking accuracy and the
computation time. Table 2 shows the 3D factors and Table 3
shows the 2D factors.

Voxel Size We evaluate three different voxel sizes: 160 ×
160 × 64, 120 × 120 × 48 and 80 × 80 × 32. The motion
capture space is set to be 10m × 10m × 4m. By comparing
the first three lines in Table 2, we can see that increasing the
voxel size from 80× 80× 32 to 120× 120× 48 significantly
improves the 3D pose estimation accuracy as the AP25 metric
improves from 39.74 to 71.00 and the MPJPE metric decreases
from 26.16mm to 19.83mm. When further increasing the size
from 120× 120× 48 to 160× 160× 64, the improvement is
not that large, which is also reasonable because the accuracy
is more difficult to be increased as the grids become more
fine-grained. By comparing the MOTA, IDF1 and ID Switch
metrics, we can see that the voxel size does not influence
the tracking accuracy much. The computation time of JEN
increases as the voxel size increases. To strike a good balance
between accuracy and speed, we use 160 × 160 × 64 for the
rest of the experiments.

Sparse Convolution We use the sparse convolution to replace
the standard convolution as the 3D feature volume only has a
small number of non-zero values and the sparse convolution
only computes for the non-zero values. By comparing the
sparse convolution to the standard convolution with the same
voxel size in Table 2, we can see that the computation time
of JEN significantly decreases when using sparse convolution,
especially under large voxel sizes such as 160× 160× 64 and
120×120×48. For the small voxel size such as 80×80×32,
the sparse convolution is a little slower than the standard
convolution. This is because the sparse convolution needs to
find the index of the non-zero values and it takes considerable
time. Thus, we do not apply sparse convolution to ARN
because the size of the input 3D heatmap to ARN is much
smaller. We can also see that the pose estimation accuracy
of the sparse convolution is a little higher than the standard
convolution under all voxel sizes. This is because we set the
values of the feature volume to zero if their original values is
smaller than 0.15 when applying the sparse convolution. The
sparsity of the feature volume may reduce some ambiguity
and thus increase the pose estimation accuracy.

Number of Cameras As shown in the first three lines of Table
3, reducing the number of cameras generally increases the 3D
pose estimation error because the information in the feature
volume becomes less complete. The tracking accuracy is less
affected by the number of cameras as the ID Switch is always
0. We can see that using 3 cameras can already accurately
track the 3D poses. The computation time also decreases as
the number of cameras decreases.

Backbone Networks We evaluate three different backbone
networks including DLA-34 [77], MobileNet-V2 [86] and
Higher-HRNet-W32 [27]. For the MobileNet-V2, we add
several de-convolution layers after the backbone network
following [5]. The results are shown in Table 3. Higher-
HRNet-W32 achieves the highest AP and the lowest MPJPE.

MobileNet-V2 achieves the highest running speed. DLA-34
achieves a good balance between accuracy and speed.

Image Sizes We also evaluate three different image sizes
including 960 × 512, 800 × 448, 640 × 384. As shown in
Table 3, we use DLA-34 as the backbone and evaluate different
image sizes. Reducing the image sizes generally increases the
3D pose estimation error because large size images provide
more detailed information. The tracking performance is hardly
affected by image sizes. We can see that getting accurate 2D
heatmaps is critical to the 3D accuracy.

6.4 Factors that Impact Tracking Accuracy

There are three main components in our tracking procedure: 1)
3D poses, 2) Re-ID features, 3) occlusion-mask. We evaluate
the impact of each of these components. The tracking results
are shown in Table 4. The MOTA and IDF1 metrics are the
average of all keypoints. The ID Switch metric is the switches
of all the keypoints and it is a multiple of the number of joints
(i.e. 15).

3D Poses We only use the normalized Euclidean distances of
the 3D poses to link the detections to the tracklets. The result
is shown in the first line of Table 4. We can only get 93.82
IDF1 score and 90 ID switches when only using the 3D poses.
We find that the ID switches often occur when FP appears. In
general, the 3D poses are reliable because there is almost no
occlusion in the 3D space.

Re-ID Features We only use the cosine distance of Re-ID
features to perform linking. For each 3D person, we fuse the
Re-ID features in each view by just adding them without
reasoning about the occlusion. The result is shown in the
second line of Table 4. The IDF1 score (94.38 vs 93.82) and ID
Switch (15 vs 90) are better than only using 3D poses. There
still exists some ID Switches because some views with heavily
occluded people provide some unreliable Re-ID features which
cause some ambiguity.

Occlusion Mask We use the occlusion mask mentioned in
Section 4.1 computed by each person’s depth to fuse the Re-
ID features of all the views. If the person in the view is
heavily occluded, we do not use the Re-ID features of the
person in this view. The result is shown in the third line of
Table 4. We can see that using the occlusion mask to fuse Re-
ID features achieves the highest IDF1 score 98.67 and does
not have ID Switch which agrees with our expectation. When
we further use the Re-ID features with occlusion mask and
the 3D poses together, the tracking results keep the same,
which indicates that our multi-view fused Re-ID features have
powerful discriminative ability.

Qualitative Study We show the 3D pose tracking results
of the Panoptic dataset in Figure 7. We can see that there
are severe occlusions in the images of all camera views. The
person with identity 6 has the most obvious movement. He
comes to the table and then leaves. He is occluded in most
of the camera views and the Re-ID features of the person
are not reliable in most views. Thus, we need to use the
occlusion mask to choose the Re-ID features in the specific
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Voxel Size JEN Type AP25 AP50 AP100 MPJPE MOTA IDF1 ID Switch JEN Time ARN Time

160× 160× 64 SP Conv 79.34 96.83 99.58 18.49 mm 98.45 98.67 0 48.46 ms 2.72× n ms
120× 120× 48 SP Conv 71.00 97.04 99.45 19.83 mm 98.27 98.52 0 30.93 ms 1.35× n ms
80× 80× 32 SP Conv 39.74 94.27 99.10 26.16 mm 97.62 95.13 0 22.01 ms 1.21× n ms

160× 160× 64 Conv 74.09 96.87 99.55 19.05 mm 98.32 98.39 0 132.64 ms 2.71× n ms
120× 120× 48 Conv 68.89 97.06 99.51 20.28 mm 98.16 98.21 0 57.30 ms 1.36× n ms
80× 80× 32 Conv 38.66 94.40 99.17 25.93 mm 98.27 98.56 0 18.75 ms 1.21× n ms

TABLE 2
Ablation study of voxel size and sparse convolution on the Panoptic dataset.

Views Backbone Image Size AP25 AP50 AP100 MPJPE MOTA IDF1 ID Switch 2D Time

5 DLA-34 960× 512 79.34 96.83 99.58 18.49 mm 98.45 98.67 0 85.71 ms
4 DLA-34 960× 512 66.20 96.34 99.47 20.35 mm 98.37 98.46 0 66.93 ms
3 DLA-34 960× 512 49.09 92.44 97.62 24.93 mm 95.77 93.08 0 54.99 ms
5 DLA-34 800× 448 70.66 97.26 99.70 19.99 mm 98.61 98.99 0 65.20 ms
5 DLA-34 640× 384 55.96 96.78 99.65 21.67 mm 98.37 98.45 0 45.37 ms
5 MobileNet-V2 960× 512 42.42 94.09 99.33 24.38 mm 97.61 97.82 0 27.50 ms
5 Higher-HRNet-W32 960× 512 85.88 98.31 99.54 16.97 mm 98.51 98.73 0 128.95 ms

TABLE 3
Ablation study of number of views, 2D backbone and input image size on the Panoptic dataset.

Re-ID Features Occlusion Mask 3D Poses MOTA IDF1 ID Switch Tracking Time
√

98.42 93.82 90 0.92 ms√
98.44 94.38 15 0.96 ms√ √
98.45 98.67 0 2.10 ms√ √ √
98.45 98.67 0 2.16 ms

TABLE 4
Ablation study of Re-ID features, occlusion mask and 3D poses on the Panoptic dataset.

views where the person is not occluded. Our approach can
keep the identities of the six people the same and has stable
tracking performance.

6.5 Whole System Running Time

We divide our whole system into the 2D part, the 3D part
and the tracking part and compute the running time of each
of them. The running time of the 3D part is shown in Table
2 which is the sum of the “JEN Time” and the “ARN Time”.
The running time of the 2D part and the tracking part is shown
in Table 3 and Table 4, respectively. From Table 2 we can
see that the sparse convolution can reduce a large amount of
running time of JEN. The voxel size also notably affects the
running time. It is worth noting that the running time of ARN
is hardly affected by the number of people (i.e. 1 ms for 1
person). From Table 3 we can see that the number of views,
the backbone network, and the image size together determine
the running time of the 2D part. From Table 4 we can see that
the running time of the tracking part can almost be ignored
(i.e. 2 ms), which indicates the simplicity of our tracking
algorithm. The light version of our system using MobileNet-
V2 [86] as the 2D backbone and 120×120×48 JEN with the
sparse convolution can run at 15 FPS with 5 camera views as
input, which dramatically enhances the practical values of our
approach.

7 CONCLUSION

We present a novel approach for multi-person 3D pose es-
timation and tracking. It employs a multi-branch network to
jointly estimate 3D poses and Re-ID features for all people
in the environment. Different from the previous methods, it
only makes hard decisions in the 3D space which allows to
avoid the challenging association problems in the 2D space.
In particular, noisy and incomplete information of all camera
views are warped to a common 3D space to form a compre-
hensive feature volume which is used for 3D estimation. We
also introduce an occlusion-aware matching strategy during
tracking. The experimental results on the benchmark datasets
validate that the approach is robust to occlusion. In addition,
the 3D part of the approach can be directly trained on synthetic
data which has practical values.
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