
VoxNet: A 3D Convolutional Neural Network for Real-Time Object

Recognition

Daniel Maturana and Sebastian Scherer

Abstract— Robust object recognition is a crucial skill for
robots operating autonomously in real world environments.
Range sensors such as LiDAR and RGBD cameras are in-
creasingly found in modern robotic systems, providing a rich
source of 3D information that can aid in this task. However,
many current systems do not fully utilize this information and
have trouble efficiently dealing with large amounts of point
cloud data. In this paper, we propose VoxNet, an architecture
to tackle this problem by integrating a volumetric Occupancy
Grid representation with a supervised 3D Convolutional Neural
Network (3D CNN). We evaluate our approach on publicly
available benchmarks using LiDAR, RGBD, and CAD data.
VoxNet achieves accuracy beyond the state of the art while
labeling hundreds of instances per second.

I. INTRODUCTION

Semantic object recognition is an important capability

for autonomous robots operating in unstructured, real-world

environments. Meanwhile, active range sensors such as

LiDAR and RGBD cameras are an increasingly common

choice of sensor for modern autonomous vehicles, including

cars [1], quadrotors [2] and helicopters [3]. While these

sensors are heavily used for obstacle avoidance and mapping,

their potential for semantic understanding of the environment

is still relatively unexplored. We wish to take full advantage

of this kind of data for object recognition.

In this paper, we address the problem of predicting an

object class label given a 3D point cloud segment, which

may include background clutter. Most of the current state

of the art in this problem follows a traditional pipeline,

consisting of extraction and aggregation of hand-engineered

features, which are then fed into an off-the-shelf classifier

such as SVMs. Until recently, this was also the state of the

art in image-based object recognition and similar tasks in

computer vision. However, this kind of approach has been

largely superseded by approaches based on Deep Learning [6],

where the features and the classifiers are jointly learned from

the data. In particular, the state of the art for image object

recognition has been dramatically improved by Convolutional

Neural Networks (CNNs) [7]. CNNs have since shown their

effectiveness at various other tasks [8].

While it is conceptually simple to extend the basic approach

to volumetric data, it is not obvious what architectures and

data representations, if any, will yield good performance.

Moreover, volumetric representations can easily become

computationally intractable; perhaps for these reasons, 3D

convolutional nets have been described as a “nightmare” [9].

Authors are with the Robotics Institute, Carnegie Mellon University,
Forbes Ave 5000, Pittsburgh PA 15201 USA { dimatura, basti }
at cmu.edu

Fig. 1. The VoxNet Architecture. Conv(f, d, s) indicates f filters of size
d and at stride s, Pool(m) indicates pooling with area m, and Full(n)
indicates fully connected layer with n outputs. We show inputs, example
feature maps, and predicted outputs for two instances from our experiments.
The point cloud on the left is from LiDAR and is part of the Sydney Urban
Objects dataset [4]. The point cloud on the right is from RGBD and is part
of NYUv2 [5]. We use cross sections for visualization purposes.

The key contribution of this paper is VoxNet, a basic 3D

CNN architecture that can be applied to create fast and

accurate object class detectors for 3D point cloud data. As

we show in the experiments, this architecture achieves state-

of-the-art accuracy in object recognition tasks with three

different sources of 3D data: LiDAR point clouds, RGBD

point clouds, and CAD models.

II. RELATED WORK

A. Object Recognition with Point Cloud Data

There is a large body of work on object recognition using

3D point clouds from LiDAR and RGBD sensors. Most of this

work uses a pipeline combining various hand-crafted features

or descriptors with a machine learning classifier ([10], [11],

[12], [13]). The situation is similar for semantic segmentation,

with structured output classifiers instead of single output

classifiers ([14], [15], [16]). Unlike these approaches, our

architecture learns to extract features and classify objects



from the raw volumetric data. Our volumetric representation

is also richer than point clouds, as it distinguishes free space

from unknown space. In addition, features based on point

clouds often require spatial neighborhood queries, which can

quickly become intractable with large numbers of points.

B. 2.5D Convolutional Neural Networks

Following the success of CNNs on tasks using RGB

images, several authors have extended their use to RGBD

data ([17], [18], [19], [20]). These approaches simply treat

the depth channel as an additional channel, along with the

RGB channels. While straightforward, this approach does not

make full use of the geometric information in the data and

makes it difficult to integrate information across viewpoints.

For LiDAR, [4] propose a feature that locally describes

scans with a 2.5D representation, and [21] studies this

approach in combination with a form of unsupervised feature

learning. [22] propose an encoding that makes better use of

the 3D information in the depth, but is still 2D-centric. Our

work differs from these in that we employ a fully volumetric

representation, resulting in a richer and more discriminative

representation of the environment.

C. 3D Convolutional Neural Networks

Architectures with volumetric (i.e., spatially 3D) con-

volutions have been successfully used in video analysis

([23], [24]). In this case, time acts as the third dimension.

Algorithmically, these architectures work the same as ours,

but the nature of the data is very different.

In the RGBD domain, [25] uses an unsupervised volumetric

feature learning approach as part of a pipeline to detect indoor

objects. This approach is based on sparse coding, which is

generally slower than convolutional models. In concurrent

work, [26] propose a generative 3D convolutional model of

shape and apply it to RGBD object recognition, among other

tasks. We compare this approach to ours in the experiments.

In the LiDAR domain, [27] is an early work that studies a

3D CNN for use with LiDAR data with a binary classification

task. There is also our own previous work [28], which

introduced 3D CNNs for landing zone detection in UAVs.

Compared to this work, we tackle a more general object

recognition task with 3D data from different modalities. We

also study different representations of occupancy and propose

techniques to improve performance when the data varies

significantly in scale and orientation.

III. APPROACH

The input to our algorithm is a point cloud segment, which

can originate from segmentation methods such as [12], [29],

or a “sliding box” if performing detection. The segment is

usually given by the intersection of a point cloud with a

bounding box and may include background clutter. Our task

is to predict an object class label for the segment. Our system

for this task has two main components: a volumetric grid

representing our estimate of spatial occupancy, and a 3D

CNN that predicts a class label directly from the occupancy

grid. We describe each component below.

A. Volumetric Occupancy Grid

Occupancy grids ([30], [31]) represent the state of the

environment as a 3D lattice of random variables (each

corresponding to a voxel) and maintain a probabilistic estimate

of their occupancy as a function of incoming sensor data and

prior knowledge.

There are two main reasons we use occupancy grids.

First, they allow us to efficiently estimate free, occupied

and unknown space from range measurements, even for

measurements coming from different viewpoints and time

instants. This representation is richer than those which only

consider occupied space versus free space such as point

clouds, as the distinction between free and unknown space can

potentially be a valuable shape cue. Second, they can be stored

and manipulated with simple and efficient data structures. In

this work, we use dense arrays to perform all our CNN

processing, as we use small volumes (323 voxels) and GPUs

work best with dense data. To keep larger spatial extents in

memory we use hierarchical data structures and copy specific

segments to dense arrays as needed. Theoretically this allows

us to store a potentially unbounded volume while using small

occupancy grids for CNN processing.

B. Reference frame and resolution

In our volumetric representation, each point (x, y, z) is

mapped to discrete voxel coordinates (i, j, k). The mapping is

a uniform discretization but depends on the origin, orientation

and resolution of the voxel grid in space. The appearance of

the voxelized objects depends heavily on these parameters.

For the origin, we assume it is given as an input, e.g.

obtained by a segmentation algorithm or given by a sliding

box.

For the orientation, we assume that the z axis of the grid

frame is approximately aligned with the direction of gravity.

This can be achieved with an IMU or simply keeping the

sensor upright. This still leaves a degree of freedom, the

rotation around the z axis (yaw). If we defined a canonical

orientation for each object and were capable of detecting

this orientation automatically, it would be reasonable to

always align the grid to this orientation. However, it is often

non-trivial in practice to detect this orientation from sparse

and noisy point clouds. In this paper we propose a simple

alternative based on data augmentation, discussed in III-F.

For the resolution, we adopt two strategies, depending on

the dataset. For our LiDAR dataset, we use a fixed spatial

resolution, e.g. a voxels of (0.1m)
3
. For the other datasets,

the resolution is chosen so the object of interest occupies

a subvolume of 24 × 24 × 24 voxels. In all experiments

we use a fixed occupancy grid of size 32× 32× 32 voxels.

The tradeoff between these two strategies is that in the first

case, we maintain the information given by the relative scale

of objects (e.g., cars and persons tend to have a consistent

physical size); in the second case, we avoid loss of shape

information when the voxels are too small (so that the object

is larger than the grid) or when the voxels are too large (so

that details are lost by aliasing).



C. Occupancy models

Let {zt}Tt=1
be a sequence of range measurements that

either hit (zt = 1) or pass through (zt = 0) a given voxel

with coordinates (i, j, k). Assuming an ideal beam sensor

model, we use 3D ray tracing [32] to calculate the number of

hits and pass-throughs for each voxel. Given this information,

we consider three different occupancy grid models to estimate

occupancy:

Binary occupancy grid. In this model, each voxel is

assumed to have a binary state, occupied or unoccupied.

The probabilistic estimate of occupancy for each voxel is

computed with log odds for numerical stability. Using the

formulation from [31], we update each voxel traversed by

the beam as

ltijk = lt−1

ijk + ztlocc + (1− zt)lfree (1)

where locc and lfree are the log odds of the cell being occupied

or free given that the measurement hit or missed the cell,

respectively. We set these to the values suggested in [33],

lfree = −1.38 and locc = 1.38 and clamp the log odds to

(−4, 4) to avoid numerical issues. Empirically we found that

within reasonable ranges these parameters had little effect on

the final outcome. The initial probability of occupancy is set

to 0.5, or l0ijk = 0. In this case, the network acts on the log

odd values lijk.

Density grid. In this model each voxel is assumed to have

a continuous density, corresponding to the probability the

voxel would block a sensor beam. We use the formulation

from [34], where we track the Beta parameters αt
ijk and βt

ijk,

with a uniform prior α0

ijk = β0

ijk = 1 for all (i, j, k). The

update for each voxel affected by the measurement zt is

αt
ijk = αt−1

ijk + zt

βt
ijk = βt−1

ijk + (1− zt)

and the posterior mean for the cell at (i, j, k) is

µt
ijk =

αt
ijk

αt
ijk + βt

ijk

(2)

In this case we use µijk as input to the network.

Hit grid. This model only consider hits, and ignores the

difference between unknown and free space. Each voxel has

an initial value h0

ijk = 0 and is updated as

ht
ijk = min(ht−1

ijk + zt, 1) (3)

While this model discards some potentially valuable infor-

mation, in our experiments it performs surprisingly well.

Moreover, it does not require raytracing, which is useful in

computationally constrained situations.

D. 3D Convolutional Network Layers

There are three main reasons CNNs are an attractive option

for our task. First, they can explicitly make use of the spatial

structure of our problem. In particular, they can learn local

spatial filters useful to the classification task. In our case, we

expect the filters at the input level to encode spatial structures

such as planes and corners at different orientations. Second, by

stacking multiple layers the network can construct a hierarchy

of more complex features representing larger regions of space,

eventually leading to a global label for the input occupancy

grid. Finally, inference is purely feed-foward and can be

performed efficiently with commodity graphics hardware.

In this paper, we consider CNNs consisting of the

following types of layers, illustrated in Figure 1. Each

layer type is denoted a shorthand description in the format

Name(hyperparameter).
Input Layer. This layer accepts a fixed-size grid of I×J×K

voxels. In this work, we use I = J = K = 32. Depending on

the occupancy model, each value for each grid cell is updated

from Equation 1, Equation 2 or Equation 3. In all three cases

we subtract 0.5 and multiply by 2, so the input is in the

(−1, 1) range; no further preprocessing is done. While this

work only considers scalar-valued inputs, our implementation

can trivially accept additional values per cell, such as LiDAR

intensity values or RGB information from cameras.

Convolutional Layers C(f, d, s). These layers accept four-

dimensional input volumes in which three of the dimensions

are spatial, and the fourth contains the feature maps. The

layer creates f feature maps by convolving the input with

f learned filters of shape d × d × d × f ′, where d are the

spatial dimensions and f ′ is the number of input feature maps.

Convolution can also be applied at a spatial stride s. The

output is passed through a leaky rectified nonlinearity unit

(ReLU) [35] with parameter 0.1.

Pooling Layers P (m). These layers downsample the input

volume by a factor of by m along the spatial dimensions by

replacing each m×m×m non-overlapping block of voxels

with their maximum.

Fully Connected Layer FC(n). Fully connected layers have

n output neurons. The output of each neuron is a learned

linear combination of all the outputs from the previous layer,

passed through a nonlinearity. We use ReLUs save for the

final output layer, where the number of outputs corresponds

to the number of class labels and a softmax nonlinearity is

used to provide a probabilistic output.

E. Proposed architecture

Given these layers and their hyperparameters, there are

countless possible architectures. To explore this space, in

our previous work [28] we performed extensive stochastic

search over hundreds of 3D CNN architectures on a simple

classification task on simulated LiDAR data. Several of the

best-performing networks had a small number of parameters

in comparison to state of the art networks used for image

data; [7] has around 60 million parameters, while the majority

of our best models used less than 2 million.

While it is difficult to compare these numbers meaningfully,

given the vast differences in tasks and datasets, we speculate

that volumetric classification for point clouds is in some

sense a simpler task, as many of the factors of variation in

image data (perspective, illumination, viewpoint effects) are

diminished or not present.

Guided by this precedent, our base model, VoxNet, is

C(32, 5, 2)−C(32, 3, 1)−P (2)−FC(128)−FC(K), where



K is number of classes (Figure 1). VoxNet is essentially a

simpler version of the two-stage model reported in [28].

The changes aimed to reduce the number of parameters and

increase computational efficiency, making the network easier

and faster to learn. The model has 921736 parameters, most

of them from inputs to the first dense layer.

F. Rotation Augmentation and Voting

As discussed in subsection III-B, it is nontrivial to maintain

a consistent orientation of objects around their z axis. To

counter this problem, many features for point clouds are

designed to be rotationally invariant (e.g. [36], [37]). Our

representation has no built-in invariance to large rotations;

we propose a simple but effective approach to deal with this

problem.

At training time, we augment the dataset with by creating

n copies of each input instance, each rotated 360◦/n intervals

around the z axis. At testing time, we pool the activations

of the output layer over all n copies. In this paper, n is 12

or 18. This can be seen as a voting approach, similar to how

networks such as [7] average predictions over random crops

and flips of the input image; however, it is performed over

an exhaustive sampling of rotations, not a random selection.

This approach is inspired by the interpretation of convo-

lution as weight sharing across translations; implicitly, we

are sharing weights across rotations. Initial versions of this

approach were implemented by max-pooling or mean-pooling

the dense layers of the network during training in the same

way as during test time. However, we found that the approach

described above yielded comparable results while converging

noticeably faster.

G. Multiresolution Input

Visual inspection of the LiDAR dataset suggested a

(0.2m3) resolution preserves all necessary information for

the classification, while allowing sufficient spatial context for

most larger objects such as trucks and trees. However, we hy-

pothesized that a finer resolution would help in discriminating

other classes such as traffic signs and traffic lights, especially

for sparser data. Therefore, we implemented a multiresolution

VoxNet, inspired by the “foveal” architecture of [24] for

video analysis. In this model we use two networks with

an identical VoxNet architectures, each receiving occupancy

grids at different resolutions: (0.1m)3 and (0.2m)3. Both

inputs are centered on the same location, but the coarser

network covers a larger area at low resolution while the finer

network covers a smaller area at high resolution. To fuse the

information from both networks, we concatenate the outputs

of their respective FC(128) layers and connect them to a

softmax output layer.

H. Network training details

Training of the network parameters is performed by

Stochastic Gradient Descent (SGD) with momentum. The

objective is the multinomial negative log-likelihood plus

0.001 times the L2 weight norm for regularization. SGD is

initialized with a learning rate of 0.01 for the LiDAR dataset

Fig. 2. From top to bottom, a point cloud from the Sydney Objects Dataset,
a point cloud from NYUv2, and two voxelized models from ModelNet40.

and with 0.001 in the the other datasets. The momentum

parameter was 0.9. Batch size is 32. The learning rate was

decreased by a factor of 10 each 8000 batches for the LiDAR

dataset and each 40000 batches in the other datasets.

Dropout regularization is added after the output of each

layer. Convolutional layers were initialized with the method

proposed by [38], whereas dense layers were initialized from

a zero-mean Gaussian with σ = 0.01.

Following common practices for CNN training, we augment

the data by adding randomly perturbed copies of each

instance. The perturbed copies are generated dynamically

during training and consist of randomly mirrored and shifted

instances. Mirroring is done by along the x and y axes;

shifting is done between −2 to 2 voxels along all axes.

Our implementation uses a combination of C++ and Python.

The Lasagne1 library was used to compute gradients and

accelerate computations on the GPU. The training process

takes around 6 to 12 hours on our K40 GPU, depending on

the complexity of the network.

IV. EXPERIMENTS

To evaluate VoxNet we consider benchmarks with data

from three different domains: LiDAR point clouds, RGBD

point clouds and CAD models. Figure 2 shows examples

from each.

1) LiDAR data - Sydney Urban Objects: Our first set of

experiments was conducted on the Sydney Urban Objects

Dataset2, which contains labeled Velodyne LiDAR scans of

631 urban objects in 26 categories. We chose this dataset

for evaluation as it provides labeled object instances and the

LiDAR viewpoint, which is used to compute occupancy. When

voxelizing the point cloud we use all points in a bounding

1https://github.com/Lasagne/Lasagne
2http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml



box around the object, including background clutter. To make

our results comparable to published work, we follow the

protocol employed by the dataset authors. We report the

average F1 score, weighted by class support, for a subset

of 14 classes over four standard training/testing splits. For

this dataset we perform augmentation and voting with 18

rotations per instance.

2) CAD data - ModelNet: The ModelNet datasets were

introduced by Wu et al. [26] to evaluate 3D shape classifiers.

ModelNet40 has 151,128 3D models classified into 40 object

categories, and ModelNet10 is a subset based on classes

that are found frequently in the NYUv2 dataset [5]. The

authors provide the 3D models as well as voxelized versions,

which have been augmented by 12 rotations. We use the

provided voxelizations and train/test splits for evaluation.

In these voxelizations the objects have been scaled to fit a

30 × 30 × 30 grid; therefore, we don’t expect to benefit

from a multiresolution approach, and we use the single-

resolution VoxNet. For comparison of performance we report

the accuracy averaged per class.

3) RGBD data - NYUv2: Wu et al also evaluate their

approach on RGBD point clouds obtained from the NYUv2

dataset [5]. We use the train/test split provided by the authors,

which uses 538 images from the RMRC challenge3 for

training, and the rest for testing. After selecting the boxes

sharing a label with ModelNet10, we obtain 1386 testing

boxes and 1422 training ground truth boxes. Wu et al report

results on a subset of these boxes with high depth quality4,

whereas we report results using all the boxes, possibly making

the task more difficult. We will make the split available to

facilitate comparison.

For this dataset, we compute our own occupancy grids.

However, to make results comparable to Wu et al we do

not use a fixed voxel size; instead, we crop and scale the

object bounding boxes to 24 × 24 × 24, with 4 voxels of

margin; likewise, we use 12 rotations instead of 18. As in the

Sydney Objects dataset, we keep all points in a bounding box

around the object; unlike Wu et al, we do not use a per-pixel

object mask to remove outlying depth measurements from

the voxelization.

A. Qualitative results

Learned filters. Figure 3 depicts cross sections of some

learned filters from the input layer and corresponding feature

maps learned from the input in the Sydney Objects dataset.

The filters in this layer seem to encode primitives such as

edges, corners, and “blobs”. Figure 4 shows filters learned in

the NYUv2 and ModelNet40 datasets. The filters are similar

across datasets, similar to what occurs for image data.

Rotational invariance. A natural question is whether the

network learns some degree of rotational invariance. Figure 5

is an example supporting this hypothesis, where the two fully

connected layers show a highly (but not completely) invariant

response across 12 rotations of the input.

3http://ttic.uchicago.edu/˜rurtasun/rmrc/
4Personal communication.

Fig. 3. Cross sections of three 5 × 5 × 5 filters from the first layer of
VoxNet in the Sydney Objects Database, with corresponding feature map on
the right.

Fig. 4. Cross sections along the x, y and z axes of selected first layer
filters learned in the ModelNet40 and NYUv2 datasets.

Fig. 5. Neuron activations for the two fully connected layers of VoxNet
when using the point cloud from Fig. 1 (right) as input in 12 different
orientations. For the first fully connected layer only 48 features are shown.
Each row corresponds to a rotation around z and each column corresponds
to a neuron. The activations show a approximate rotational invariance. The
neurons in the right correspond to output classes. The last column, for toilet,
is the correct response. Near 90◦, the object becomes confused with a chair

(third column); by voting across all orientations we obtain the correct answer.



TABLE I

EFFECTS OF ROTATION AUGMENTATION AND VOTING

Training Augm. Test Voting Sydney F1 ModelNet40 Acc

Yes Yes 0.72 0.83

Yes No 0.71 0.82
No Yes 0.69 0.69
No No 0.69 0.61

TABLE II

EFFECT OF OCCUPANCY GRIDS

Occupancy Sydney F1 NYUv2 Acc

Density grid 0.72 0.71

Binary grid 0.71 0.69
Hit grid 0.70 0.70

B. VoxNet variations

Rotation Augmentation. We study four different cases for

Rotation Augmentation, depending on whether it is applied or

not at train time (as augmentation) and test time (as voting)

for the Sydney Objects and ModelNet40 datasets. For the

cases in which no voting is performed at test time, a random

orientation is applied on the test instances, and the average

over four runs is reported. For the cases in which no training

time augmentation is performed, there are two cases. In

ModelNet40, we select the object in a canonical pose as the

training instance. For Sydney Objects, this information is not

available, and we use the unmodified orientation from the

data. Table I shows the results. They indicate that training

time augmentation is more important. As suggested by the

qualitative example above, the network learns some degree of

rotational invariance, even if not explicitly enforced. However,

voting at training time voting still gives a small boost. For

ModelNet40, we see a large degradation of performance when

we train on canonical poses but test on an arbitrary poses, as

expected. For Sydney Objects there is no such mismatch, and

there is no clear effect. Since rotation augmentation seems

consistently beneficial, in the rest of the results section we

use VoxNet with rotation augmentation at both test time and

run time.

Occupancy grids. We also study the effect of the Occupancy

Grid representation in Table II. We found VoxNet to be quite

robust to the different representations. Against expectations,

we found the Hit grid to perform comparably or better than

the other approaches, though the differences are small. This

is possibly because any advantage provided by differentiating

between free space and unknown space is negated by the

extra viewpoint-induced variability of Density and Binary

grids relative to Hit grids. By default, we will use Density

grids in the experiments below.

Resolution. For the Sydney Object Dataset we evaluated

VoxNet with voxels of size 0.1m and 0.2m. We found them

to perform almost indistinguishably, with an F1 score of

0.72. On the other hand, fusing both with the multiresolution

approach described in subsection III-G slightly outperformed

both with a score of 0.73.

1) Comparison to other approaches: Here we compare

VoxNet against publicly available results in the literature.

TABLE III

COMPARISON WITH OTHER METHODS IN SYDNEY OBJECT DATASET

Method Avg F1

UFL+SVM[21] 0.67
GFH+SVM[37] 0.71

Multi Resolution VoxNet 0.73

TABLE IV

COMPARISONS WITH SHAPENET IN MODELNET (AVG ACC)

Dataset ShapeNet VoxNet

ModelNet10 0.84 0.92

ModelNet40 0.77 0.83

TABLE V

COMPARISON WITH SHAPENET IN NYUV2 (AVG ACC)

Dataset ShapeNet VoxNet VoxNet Hit

NYU 0.58 0.71 0.70
ModelNet10→NYU 0.44 0.34 0.25

Table III shows our best VoxNet against the best approach

from [21], which combines an unsupervised form of Deep

Learning with SVM classifiers, and [37], which designs

a rotationally invariant descriptor and classifies it with a

nonlinear SVM. We show a small increase in accuracy relative

to these approaches. Moreover, we expect our approach to

be much faster than approaches based on nonlinear SVMs,

as these do not scale well to large datasets.

Finally, we compare against the Shapenet architecture

proposed by Wu et al [26] in the task of classification

for ModelNet10, ModelNet40, and in the NYUv2 datasets,

as well as in the task of classifying the NYUv2 dataset

with a model trained on ModelNet10. Shapenet is also a

volumetric convolutional architecture. It is trained generatively

with discriminative fine tuning, and also employs rotation

augmentation for training. ShapeNet is a relatively large

architecture, with over 12.4 million parameters, while VoxNet

has less than 1 million. We do not use pretraining for NYUv2,

but instead train from scratch. Table IV shows results in the

ModelNet datasets and Table V shows results with density

grids (VoxNet) and hit grids (VoxNet Hit) for the two tasks

involving the NYU dataset.

Despite the fact we use a more adverse testing set, VoxNet

outperforms in ShapeNet in all tasks except the cross-domain

task (second row). We are unsure what causes the difference.

Both models perform rotation augmentation at training time;

VoxNet also votes over rotations at test time, but this only

accounts for 1-2% improvement. The simpler architecture

of VoxNet may result in better generalization when using

purely discriminative training. On the other hand, the worse

performance in the cross-domain task may be because the

discriminative training is less capable of dealing with the

domain shift, or because we did not use masks to select

points.

C. Timing

We use a Tesla K40 GPU in our experiments. Our slowest

configuration, the multiresolution VoxNet with rotational



voting, takes around 6ms when classified individually, and

around 1ms when averaged over a batch of size 32. De-

pending on the number of points, raytracing may also be a

bottleneck; our implementation takes around two milliseconds

for around 2000 points (typical for LiDAR) but up to half

a second for 200k points, as may happen with RGBD. For

this situation, one can use Hit Grids, or use one of several

raytracing optimization strategies in the literature.

V. CONCLUSIONS

In this work, we presented VoxNet, a 3D CNN architecture

for for efficient and accurate object detection from LiDAR and

RGBD point clouds, and studied the effect of various design

choices on its performance. Our best system outperforms

the state of the art in various benchmarks while performing

classification in real time.

In the future we are interested in the integration of data

from other modalities (e.g., cameras), and the application of

this method to other tasks such as semantic segmentation.

ACKNOWLEDGMENTS

This research was sponsored under a fellowship by United

Technologies Research Center. The Tesla K40 used for this

research was donated by the NVIDIA Corporation. We thank

the reviewers for their feedback.

REFERENCES

[1] C. Urmson, J. Anhalt, H. Bae, J. A. D. Bagnell, C. R. Baker, R. E.
Bittner, T. Brown, M. N. Clark, M. Darms, D. Demitrish, J. M. Dolan,
D. Duggins, D. Ferguson , T. Galatali, C. M. Geyer, M. Gittleman,
S. Harbaugh, M. Hebert, T. Howard, S. Kolski, M. Likhachev ,
B. Litkouhi, A. Kelly , M. McNaughton, N. Miller, J. Nickolaou,
K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski, V. Sadekar, B. Salesky,
Y.-W. Seo, S. Singh, J. M. Snider, J. C. Struble, A. T. Stentz, M. Taylor
, W. R. L. Whittaker, Z. Wolkowicki, W. Zhang, and J. Ziglar,
“Autonomous driving in urban environments: Boss and the urban
challenge,” JFR, vol. 25, no. 8, pp. 425–466, June 2008.

[2] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
and N. Roy, “Visual odometry and mapping for autonomous flight
using an rgb-d camera,” in ISRR, Flagstaff, Arizona, USA, Aug. 2011.

[3] S. Choudhury, S. Arora, and S. Scherer, “The planner ensemble and
trajectory executive: A high performance motion planning system with
guaranteed safety,” in AHS, May 2014.

[4] A. Quadros, J. Underwood, and B. Douillard, “An occlusion-aware
feature for range images,” in ICRA, May 14-18 2012.

[5] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor
segmentation and support inference from rgbd images,” in ECCV,
2012.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, 2015.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097–
1105.

[8] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN
features off-the-shelf: an astounding baseline for recognition,” CoRR,
vol. abs/1403.6382, 2014.

[9] G. Hinton, “Does the brain do inverse graphics?” Brain and Cognitive
Sciences Fall Colloquium.

[10] A. Frome, D. Huber, and R. Kolluri, “Recognizing objects in range
data using regional point descriptors,” ECCV, vol. 1, pp. 1–14, 2004.

[11] J. Behley, V. Steinhage, and A. B. Cremers, “Performance of histogram
descriptors for the classification of 3D laser range data in urban
environments,” in ICRA, 2012, pp. 4391–4398.

[12] A. Teichman, J. Levinson, and S. Thrun, “Towards 3D object recogni-
tion via classification of arbitrary object tracks,” in ICRA, 2011, pp.
4034–4041.

[13] A. Golovinskiy, V. G. Kim, and T. Funkhouser, “Shape-based recogni-
tion of 3D point clouds in urban environments,” ICCV, 2009.

[14] D. Munoz, N. Vandapel, and M. Hebert, “Onboard contextual classi-
fication of 3-D point clouds with learned high-order markov random
fields,” in ICRA, 2009.

[15] H. Koppula, “Semantic labeling of 3D point clouds for indoor scenes,”
NIPS, 2011.

[16] X. Ren, L. Bo, and D. Fox, “RGB-(D) scene labeling: Features and
algorithms,” in CVPR, 2012.

[17] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” in RSS, 2013.

[18] Richard Socher and Brody Huval and Bharath Bhat and Christopher D.
Manning and Andrew Y. Ng, “Convolutional-Recursive Deep Learning
for 3D Object Classification,” in NIPS, 2012.

[19] L. A. Alexandre, “3D object recognition using convolutional neural
networks with transfer learning between input channels,” in IAS, vol.
301, 2014.

[20] N. Höft, H. Schulz, and S. Behnke, “Fast semantic segmentation of
RGBD scenes with gpu-accelerated deep neural networks,” in 37th

Annual German Conference on AI, 2014, pp. 80–85.
[21] M. De Deuge, A. Quadros, C. Hung, and B. Douillard, “Unsupervised

feature learning for classification of outdoor 3d scans,” in ACRA, 2013.
[22] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich features

from RGB-D images for object detection and segmentation,” in ECCV,
2014.

[23] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE TPAMI, vol. 35, no. 1, pp. 221–
231, 2013.

[24] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in CVPR, 2014.

[25] K. Lai, L. Bo, and D. Fox, “Unsupervised feature learning for 3D
scene labeling,” in ICRA, 2014.

[26] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3d shapenets: A deep representation for volumetric shape modeling,”
in CVPR, 2015.

[27] D. Prokhorov, “A convolutional learning system for object classification
in 3-D lidar data,” IEEE TNN, vol. 21, no. 5, pp. 858–863, May 2010.

[28] D. Maturana and S. Scherer, “3D convolutional neural networks for
landing zone detection from lidar,” in ICRA, 2015.

[29] B. Douillard, J. Underwood, V. Vlaskine, A. Quadros, and S. Singh,
“A pipeline for the segmentation and classification of 3D point clouds,”
in ISER, 2010.

[30] H. Moravec and A. Elfes, “High resolution maps from wide angle
sonar,” in ICRA, 1985.

[31] S. Thrun, “Learning occupancy grid maps with forward sensor models,”
Auton. Robots, vol. 15, no. 2, pp. 111–127, 2003.

[32] J. Amanatides and A. Woo, “A fast voxel traversal algorithm for ray
tracing,” in Eurographics ’87, Aug. 1987, pp. 3–10.

[33] D. Hähnel, D. Schulz, and W. Burgard, “Map building with mobile
robots in populated environments,” in IROS, 2002.

[34] G. D. Tipaldi and K. O. Arras, “FLIRT - interest regions for 2D range
data,” in ICRA, 2010.

[35] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in ICML, vol. 30, 2013.

[36] A. Johnson, “Spin-images: A representation for 3-D surface matching,”
Ph.D. dissertation, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, 1997.

[37] T. Chen, B. Dai, D. Liu, and J. Song, “Performance of global descriptors
for velodyne-based urban object recognition,” in IV, June 2014, pp.
667–673.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” CoRR,
vol. abs/1502.01852, 2015.


