
1

VPFNet: Improving 3D Object Detection with
Virtual Point based LiDAR and Stereo Data Fusion

Hanqi Zhu, Jiajun Deng, Yu Zhang, Jianmin Ji, Qiuyu Mao, Houqiang Li, Fellow, IEEE,
Yanyong Zhang, Fellow, IEEE

Abstract—It has been well recognized that fusing the comple-
mentary information from depth-aware LiDAR point clouds and
semantic-rich stereo images would benefit 3D object detection.
Nevertheless, it is not trivial to explore the inherently unnatural
interaction between sparse 3D points and dense 2D pixels. To
ease this difficulty, the recent proposals generally project the 3D
points onto the 2D image plane to sample the image data and
then aggregate the data at the points. However, this approach
often suffers from the mismatch between the resolution of point
clouds and RGB images, leading to sub-optimal performance.
Specifically, taking the sparse points as the multi-modal data
aggregation locations causes severe information loss for high-
resolution images, which in turn undermines the effectiveness of
multi-sensor fusion. In this paper, we present VPFNet—a new
architecture that cleverly aligns and aggregates the point cloud
and image data at the ‘virtual’ points. Particularly, with their
density lying between that of the 3D points and 2D pixels, the
virtual points can nicely bridge the resolution gap between the
two sensors, and thus preserve more information for processing.
Moreover, we also investigate the data augmentation techniques
that can be applied to both point clouds and RGB images,
as the data augmentation has made non-negligible contribution
towards 3D object detectors to date. We have conducted extensive
experiments on KITTI dataset, and have observed good perfor-
mance compared to the state-of-the-art methods. Remarkably,
our VPFNet achieves 83.21% moderate 3D AP and 91.86%
moderate BEV AP on the KITTI test set, ranking the 1st since
May 21th, 2021. The network design also takes computation
efficiency into consideration – we can achieve a FPS of 15 on
a single NVIDIA RTX 2080Ti GPU. The code will be made
available for reproduction and further investigation.

Index Terms—3D Object Detection, Point Clouds, Stereo Im-
ages, Multiple Sensors

I. INTRODUCTION

ACCURATE and timely 3D object detection is an im-
portant yet challenging problem in many real-world 3D

vision applications, including autonomous vehicles, domestic
robots, virtual reality, etc. As explored in the literature, 3D
object detectors can be developed combining data from differ-
ent sensors, such as monocular images [1], stereo images [2],
[3] and LiDAR point clouds [4], [5]. Although significant
progress have been witnessed, the detection accuracy achieved

Yanyong Zhang is the corresponding author.
Hanqi Zhu, Yu Zhang, Jianmin Ji, Qiuyu Mao, Yanyong Zhang are

with School of Computer Science and Technology, University of Science
and Technology of China, Hefei, China (e-mail: zhuhanqi@mail.ustc.edu.cn,
yuzhang@ustc.edu.cn, jianmin@ustc.edu.cn, qymao@mail.ustc.edu.cn, yany-
ongz@ustc.edu.cn).

Jiajun Deng, Houqiang Li are with Department of Electric Engineering and
Information Science, University of Science and Technology of China, Hefei,
China (e-mail: dengjj@mail.ustc.edu.cn, lihq@ustc.edu.cn)

30 40 50 60 70 80 90 100 110
Inference Time (ms)

78

79

80

81

82

83

3D
 M

od
er

at
e

(%
)

SE-SSD

V-RCNN PV-RCNN

SA-SSD
STD

3D-SSD

PaerA2

CLOCs

3D-CVF

EPNet

MMF

VPFNet
LiDAR-based
Fusion-based
Our method

Fig. 1. Our proposed VPFNet achieves the highest accuracy in 3D object
detection for the moderate of car category on the KITTI [6] benchmark.
Compared with the other multi-modal 3D object detection methods (marked
in yellow), VPFNet achieves a competitive inference time of 63.6ms. Please
refer to Table II for a more comprehensive performance comparison.

by individually processing data of a single sensor is far from
sufficient, due to the limitation of each sensor. For example,
the RGB images are rich in semantic attributes, but lack
depth information; the point clouds offer precise distance
measurements, but cannot provide semantic information like
colors, textures, and fine-grained shapes.

In light of the properties of RGB images and LiDAR point
clouds, several innovations have been made to leverage their
complementary information These multi-modal approaches
can generally be categorized into two groups: object-level fu-
sion [7]–[13] and point/voxel-level fusion [14]–[20] according
to the fusion granularity.

The first group of schemes combines the features at the
object or region of interest (RoI) level. For example, AVOD [7]
combines each object’s intermediate RoI features including
image features and point cloud bird’s eye view (BEV) features
via simple feature concatenation. SIFRNet [13] utilizes image
features and frustum point clouds to generate 3D detection
results following [10]. These schemes combine high-level,
coarse-grained features, implicitly encoding the geometry in-
formation into the RoI context.

The second group of schemes conducts point/voxel level
fusion, exploiting information fusion at a much finer granu-
larity. For example, PointPainting [17] projects LiDAR points
to the image plane, and retrieves the classification information

ar
X

iv
:2

11
1.

14
38

2v
2

 [
cs

.C
V

]
 1

 D
ec

 2
02

1

2

Fig. 2. Illustration of resolution mismatch on the KITTI dataset. The car
marked in orange contains 23 LiDAR points and more than 900 pixels. With
the current sensor technology, pixel density is usually much higher than the
point density.

from image semantic segmentation. EPNet [15] also projects
points to the image plane, retrieving image features instead
of semantic masks. 3D-CVF [14] constructs a 3D volume,
and maps image features to the BEV plane. Multi-Task Multi-
Sensor Fusion (MMF) [16] projects the 2D depth maps to
the 3D space and forms pseudo LiDAR point clouds, then
performs continuous fusion [18] at multiple granularities.

In this work, we take the point/voxel-level fusion approach
in favor of its fine fusion granularity. These schemes usually
involve combining low-level multi-modal features at 3D points
or 2D pixels. However, as pointed out in [21], these schemes
usually face a problem referred to as “resolution mismatch”.
That is, the mismatch between dense image pixels and sparse
LiDAR points renders that only a small portion of pixels have
matching points.

We further illustrate the problem in Figure 2. It shows a
black car that is more likely to absorb the laser energy, causing
resolution mismatch. In fact, on the KITTI dataset, a Velodyne-
64 LiDAR point cloud has only 20,000 points on the camera
view while an image has more than 300,000 pixels. If we
directly project 3D point clouds to the 2D plane and sample
the features at matching image pixels [17], we will have a
rather low sampling rate for image data, roughly 6.7%. Such
a low sampling rate leads to serious information loss in the
image plane.

Here, as an alternative approach, we could try to lift 2D
image features to the 3D space as in [14]. However, naively
associating the 2D pixels with the entire 3D space, this
approach will significantly increase the processing demand. In
consideration of computation efficiency, these schemes usually
need to down-sample the aggregated features, e.g., further
projecting these features to the BEV plane for subsequent
processing. In this case, we may lose valuable 3D information.

To address this dilemma, we cleverly employ a set of “vir-
tual” points in the 3D space that act as the multi-modal data
aggregation points, whose density is in between pixel density
and point density, Dpoint < Dvirtual < Dpixel. For example,
in our implementation, the density of virtual aggregation points
is roughly 20 times the density of actual LiDAR points in
foreground areas. In this way, we can effectively bridge the
resolution gap between the two sensors. When we project
virtual points to the image plane, the resulting image data
sampling rate will be higher.

However, when we try to use virtual points to aggregate
corresponding LiDAR point data, a new challenge arises –
virtual points are not directly associated with any point cloud

features. To solve this challenge, we leverage the voxel-RoI
pooling operation discussed in [22] that can locate the K
nearest point neighbors in the 3D space for a given location.
By aggregating K nearby point features to the virtual point,
we also effectively replicate the sparse point cloud features,
essentially leading to a much denser point cloud features.

Using virtual points to aggregate multi-modal data for the
first time, we refer to our method as virtual-point fusion,
VPFNet in short. In addition to the novel virtual-point aggre-
gation, we also explore several multi-modal data augmentation
techniques. Multi-modal detectors often face the difficulty
of applying data augmentation to both types of sensor data,
such as global rotation augmentation and ground truth boxes
sampling augmentation. We carefully extend these techniques
to multi-modal cases. Our evaluation results on KITTI show
that VPFNet is ranked the highest for the following three
test scenarios: AP3D moderate (83.21%), APBEV moderate
(91.86%), and APBEV hard (86.94%). Our test performance
on AP3D hard (78.20%) is ranked the highest among all
the published results. Further, compared with our point cloud
only network Voxel-RCNN [22], VPFNet can improve the
AP3D value by 0.12%, 1.59%, and 1.14% for easy, moderate,
and hard on the car category, respectively. In Figure 1, we
show the performance (both AP3D moderate accuracy and
inference time) of VPFNet and several recent 3D detection
networks (including both fusion-based networks and LiDAR-
based networks) – VPFNet has the most accurate detection
among them all, and its inference latency is the lowest among
all the fusion-based detectors.

To summarize, this paper has the following contributions:
• We devise an accurate two-stage voxel-level stereo-

LiDAR fusion framework, VPFNet, to effectively alle-
viate the resolution mismatch problem in fusing LiDAR
and camera data. Easing this problem can nicely balance
high sensor data sampling rate and high computation
efficiency.

• We explore several techniques to optimize our VPFNet
network, including random 3D proposal resizing to pre-
vent over-fitting, weighted multi-branch combination to
prevent single-modality dominance, and cut-n-paste based
data augmentation.

• Over the popular KITTI dataset, we have carefully eval-
uated our 3D detection network. The results show that
VPFNet delivers the best performance in several test
scenarios. Moreover, with our light-weight design, the
above accuracy can be achieved at a processing rate of
15 FPS.

II. RELATED WORK

In this section, we present the background and related work
for the following related topics: (1) LiDAR-only 3D object
detection, (2) Stereo-only 3D object detection, (3) LiDAR and
camera fusion based 3D object detection (4) Augmentation for
3D Object detection

3D Object Detection Using LiDAR Only: As far as LiDAR-
based 3D object detection is concerned, there are two main-
stream models: point-based models and voxel-based models.

3

Point-based methods [23]–[25] use point set abstraction to
sample a fixed number of points as keypoints, and aggregate
point features around keypoints with ball query. The keypoints
preserve the original location information. However, since the
point clouds are in-ordered, the complexity of point query is
O(N), where N denotes the number of point clouds.

Voxel-based models [26]–[28] transfer raw-points to voxels.
Voxel representation keeps the memory locality [29], while
loses the original location information. SECOND [27] intro-
duces a novel sparse convolution layer targeted at LiDAR point
clouds. Voxel-RCNN [22] devises voxel query to take the
place of ball query, and achieves the state-of-the-art accuracy
and high efficiency on the KITTI benchmark.

The above studies consider how to effectively perform 3D
object detection usinwg LiDAR point clouds. Our work shows
that by considering both RGB images as well as point clouds,
we can achieve better 3D detection performance.

3D Object Detection Using Stereo Only: There are several
works that lift stereo images to the 3D space. They can be
divided into two groups. One is point based methods [30]–[32].
These methods generate intermediate 3D structure of pseudo
LiDAR point clouds by depth estimation, and feed the points
into LiDAR-only 3D detectors. These methods generate huge
amount of pseudo points and is time-consuming.

Another group constructs cost volume in 3D space. For ex-
ample, PLUME [3] constructs feature volume in 3D space and
compresses it to BEV, then applies 2D convolution network to
generate final results. The recently proposed two-stage method
RTS3D [2] constructs instance level volumes using proposals,
and uses an attention module and MLPs to get the final results.

The above studies consider how to effectively perform 3D
object detection using stereo images in 3D space. Our work
shows that by considering both RGB images as well as point
clouds, we can achieve better 3D detection performance.

3D Object Detection Using Both LiDAR and Cameras:
Several multi-modal 3D object detection networks have been
proposed [33]. There are two levels of fusion: object level
fusion [7]–[13] and point/voxel level fusion [14]–[20]. Object
level fusion methods fuse in a coarse granularity. For example,
AVOD [7] fuses features extracted from LiDAR BEV point
clouds and camera front-view image and feed the features into
fused RPNs for object detection; SIFRNet [13], F-ConvNet [9]
utilize front view images and frustum point clouds to generate
3D detection results following [10]; CLOCs [11] encodes an
object’s 2D and 3D detection results into a sparse tensor, and
uses a 2D convolution network to refine the result.

The second group of schemes conduct point/voxel level
fusion methods, they explicitly project the data between the
2D and 3D space, and fuse in a much finer granularity. For
example, PointPainting [17] and EPNet [15] project LiDAR
points to the image plane, and retrieve segmentation masks
or image features. The point clouds are decorated with the
retrieved features/masks. continuous-fusion [18] associates
image features and point cloud features by adopting KNN
search, and uses the non-empty neighbour features to be the
empty voxel feature. These methods exploit only the sparse
information contained in a dense image, and suffer from

information loss. The problem is referred to as resolution
mismatch [21].

3D-CVF [14] constructs a high resolution 3D voxel space
and lifts image features to the dense 3D voxel space via camera
matrix. To avoid expensive 3D convolution, it compresses
the height channel and converts 3D voxels to BEV feature
map, and loses the 3D information. To explore fusion in the
second stage, 3D-CVF divides the proposal into grid points
and projects them to the image plane and retrieves 2D image
features. However, the extracted 2D image features are directly
aggregated by PointNet [34] without any interaction with the
3D space.

MMF [16] aims at multiple relevant tasks learning. It ex-
ploits depth estimation and converts depth maps into pseudo-
LiDAR points. The computation overhead is heavy if pseudo-
LiDAR points are generated at pixel-level.

Building upon the success of the above pixel-level fusion
schemes, we further consider how to bridge the resolution
mismatch of these two modalities by employing “virtual”
points in the 3D space. Our work shows that this step can
lead to improved detection performance.

Augmentation for 3D Object Detection: As proposed in [35],
popular point cloud augmentations include global rotation,
global flipping, global scaling, and GT-sampling. These aug-
mentations can accelerate convergence and boost the detec-
tion performance [27]. For global augmentations, they are
reversible, and can be easily applied to fusion. However GT-
sampling is not designed for multi-modal fusion. Some exist-
ing works try to avoid multi-modal GT-sampling by training
with only global augmentation [15], or using GT-sampling
only when the LiDAR backbone network was pretrained [14].
Recently, a new cut-n-paste based scheme was proposed
in [36]. Inspired by [37], it cuts point cloud and image patches
of ground-truth objects and pastes them into different scenes
during training.

In addition to the above augmentations, we further employ
a cut-n-paste based object sampling scheme that leverages the
masks from prediction. Our work shows that this augmentation
technique can effectively improve the performance.

III. PRELIMINARIES ON POINT/VOXEL-LEVEL
LIDAR-CAMERA FUSION

Since VPFNet performs sensor fusion at the point/voxel
level, we now provide a background overview on the archi-
tecture of this approach. A typical point/voxel level fusion
scheme [15], [17], [18] consists of four steps: (1) 3D to
2D projection, (2) 2D feature sampling, (3) multi-modal data
aggregation, and (4) 3D object detection.

Existing schemes often directly use LiDAR points as multi-
modal data aggregation points [15], [17], [20]. They project
the LiDAR point P to the image plane as follows:

zc

uv
1

 = hK
[
R T

]
Px
Py
Pz
1

 ,
where Px, Py, Pz denote P ’s 3D location, u, v, zc denote the
2D location and the depth of its projection on the image plane,

4

③ Aggregation

① Projection
Point Clouds

④ 3D Detection

Image

Feature

Point Cloud

Feature

Feature

Vector

② Sampling

Image Features

LiDAR Point

Fig. 3. In a point/voxel level fusion scheme, the original or downsampled
LiDAR points are projected to the 2D plane, to retrieve the corresponding 2D
image features. The multi-modal features are then aggregated by concatenation
for subsequent 3D object detection.

K denotes the camera intrinsic parameter, R and T denote
the rotation and the translation of the lidar with respect to the
stereo camera reference system. and h denotes the scale factor
due to down-sampling.

Then the corresponding image features at location (u, v),
Fu,v , can be sampled with bilinear interpolation. The sampled
feature is then concatenated with point P ’s own location
and feature to form an aggregated feature vector. Figure 3
illustrates this process.

For example, in PointPainting [17], it aggregates the feature
vector with a simple concatenation operation as follows:

φP = concat{Px;Py;Pz;Pi;mask(u,v)},

where φP is the aggregated feature vector at LiDAR point
P , Px, Py , Pz , Pi are the 3D coordinates, and intensity of
point P , mask(u,v) is the sampled image segmentation mask.
As another example, EPNet [15] utilizes a L1-fusion block to
aggregate the multi-modal data in a feature vector.

Finally, the aggregated feature vectors are fed to the detec-
tion head. The final box classification and regression results
are generated accordingly.

IV. VIRTUAL-POINT FUSION (VPFNet)
In this section we present the design of VPFNet. We first

give the design overview, and then describe the important
components one by one.

A. Design Overview

We illustrate our multi-modal 3D detection network in
Figure 4. The primary principle in designing VPFNet is to
(1) carefully bridge the resolution gap between LiDAR point
clouds and camera images, and (2) balance the sampling rate
needed for detection accuracy and computation efficiency.

The first design choice is to determine whether we project
3D data to 2D to perform fusion, or vice versa. Considering the
properties of images and point clouds (summarized in Table I),
we choose to aggregate the sensor data in the 3D space. In
this way, we can involve most of the point cloud information
in the processing and avoid scale effect. Scale effect means
an object’s 2D area size is related with both its actual sizes
and depth. In general, LiDAR points are much more sparse

than image pixels and contain less redundancy. They also give
more accurate 3D detection results than images. As such, we
argue that a fusion network needs to keep as much point cloud
information as possible.

The second design choice is to determine at what locations
in the 3D space to aggregate the data from both sensors. In
order to bridge the resolution gap between the two, we choose
to do so at virtual points that are sparser than image pixels but
denser than LiDAR points. Given a virtual point, we need to
find the corresponding image features and point cloud features,
and suitably aggregate them. For image features association,
we project the virtual point’s location to the 2D image plane,
and retrieve the left/right image features accordingly. For
point cloud features association, we perform a voxel-RoI
pooling operation [22] to locate neighbors and aggregate their
features. In this way, we sample the dense image features while
aggregating/replicating the sparse point cloud features, nicely
balancing the disparity in their resolutions.

Specifically, as shown in Figure 4, our network has the
following main components:

1) Virtual Points Selection. This step selects the virtual
points from 3D proposals. Specifically, we feed point
clouds into 3D backbone networks and generate 3D
proposals, randomly resize the 3D proposals for better
robustness, and divide them into discrete grid blocks.
We then use the resulting grid points as virtual points
(see Figure 5).

2) Associating Image Features to Virtual Points. This step
samples the image features and associates the sampled
image features to virtual points. Firstly we generate
2D image features with a light-weight 2D backbone.
Then we sample the image features through virtual point
projection. We voxelize and convolve the sampled image
feature vectors through stacked sparse convolution layers
to extract more compact features.

3) Aggregating LiDAR Point Features at Virtual Points.
This step aggregates suitable LiDAR features to each
virtual point. We first use a modified voxel-RoI pooling
layer to query and aggregate the sparse LiDAR point
cloud features. Both LiDAR point cloud features and
image features are aggregated in a multi-scale manner.

4) Weighted Multi-Branch Combination. This step predicts
the final results. Here we consider the main branch as
well as an auxiliary branch to avoid single-modality
dominance and alleviate over-fitting. Both branches pre-
dict the final results, while supervised with different
weights.

Point Cloud Image

Feature Aggregation 3D neighbours 2D neighbours
Permutation invariant [34] variant
Scale Effect no yes
Memory Access unordered [29] ordered
Resolution sparse dense

TABLE I
COMPARISON OF POINT CLOUDS AND IMAGES

5

c

c

Spconv Blocks

Stereo Image

(f) Data Augmentation

Point Cloud

(c) Image Features Association

(e) Multi-Branch Combination

Bilinear Interpolation FC LayerVoxel-RoI Pooling

weight sharing

2D Backbone

2D Backbone

Voxelization

Virtual Points

BEV Head
Proposal

Resizing

NMS
3D Backbone

(d) Virtual Points Aggregation

Box Regression

IOU Prediction

Box Regression

Feature Concatenation

Virtual Points Associated

Image Features

Point Cloud Features

(b) Virtual Points Selection

Fig. 4. The architecture of the proposed VPFNet. Each dashed line box is associated with a subsection in Sec IV. Given a stereo and LiDAR point cloud
pair, we first use (f) multi-modal data augmentation techniques to obtain an augmented scene in the training stage. Then in (b) virtual point selection, we
feed the data into the 2D and 3D backbones separately. The 2D backbone is used only for feature extraction, and the 3D backbone is for generating the 3D
proposals. The 3D proposals are randomly resized and divided into fixed-sized grid blocks, and the resulting vertices of each grid block/cell are virtual points.
Then in (c) image feature association, the virtual points are projected to the image plane to sample the 2D image features. The sampled image features are thus
associated with the virtual point. These features are voxelized and processed by stacked sparse convolution layers. Next, in (d) virtual points aggregation,we
sample the virtual points as query points, and locate the K nearest LiDAR point neighbors in the 3D space, and aggregates their features with the associated
images, resulting in an aggregated feature vector. Finally In (e) multi-branch combination, these feature vectors are fed into the detection head to predict the
final results. We also involve an auxiliary branch that only processes the aggregated image features to prevent single-modality dominance. Please note that
the augmentation step and the proposal resizing step are only needed in the training stage.

5) Data Augmentation. This step performs suitable multi-
modal data augmentation.

B. Virtual Points Selection

The sample density of LiDAR point clouds is much lower
than that of camera images, especially for faraway objects and
black objects (see Figure 2). Due to the severe resolution im-
balance, traditional fusion schemes often lead to low sampling
rate for image features, which likely hurts the overall detection
performance.

To alleviate this problem, we do not use actual LiDAR
points as multi-modal feature aggregation points, but propose
to leverage virtual points (we sometimes refer to them as
virtual points). The density of such virtual points is in between
that of actual LiDAR points and image pixels. By attaching
the suitable image features and point features to these virtual
points, we can effectively increase the image feature sampling
rate, better match the two types of data, and utilize more multi-
modal features in the 3D detection.

Next, we explain how we select virtual points in the 3D
space. Firstly, we feed LiDAR point clouds into the 3D
backbone network to generate 3D proposals and 3D feature
maps. Backbone refers to the network which takes the raw
data as input and extracts the feature map upon which the rest
of the network is based. 3D proposals refer to 3D candidate
bounding boxes of the final detection that need to be verified
in the refinement stage. The 3D backbone network we use has
the same structure as Voxel-RCNN in [22]. The 3D proposals

go through a non-maximum suppression (NMS) stage, while
being ranked according to their intersection over union (IoU)
with the ground truth. Only those proposals that have an IoU
larger than a preset threshold will be selected. The proposals
are further expanded by 0.8m in all dimensions to cover more
contextual information.

The virtual points are selected from within these proposals.
Since the proposals from point clouds are usually rather
accurate, directly using them could potentially lead to over-
fitting. Therefore, we randomly resize the 3D proposals to
boost the overall robustness of the model.

Specifically, for each dimension of a 3D proposal, VPFNet
randomly picks a noise value from a uniform distribution and
adds that noise value to the original coordinate following the
formulation below:

∆k = φ{uk}, k ∈ {x, y, z, w, h, l, θ},

where ∆k denotes the noise value in each dimension, and φ is
a uniform distribution from −uk to uk (uk is varied according
to different k), and k denotes the seven dimensions of a
box, including its box center location x, y, z, box dimensions
width, length, height, and θ. θ denotes the orientation angle of
each box from the bird’s eye view. For each dimension uk is
different. In Section V we show that this proposal box resizing
augmentation is rather effective.

After random resizing, the proposals are divided to Nx ×
Ny ×Nz 3D grids along the length, width and height dimen-
sions similar to [22]. We then use these grid points as the

6

③ Aggregation

① Projection
Point Clouds

④ 3D Detection

Image Feature
K Nearest Point

Cloud Features

Feature

Vector

② Sampling

Image Features

Image Feature

Virtual Point

LiDAR Point

Fig. 5. In VPFNet, we use virtual points (marked in green) to aggregate the
multi-modal data. Virtual points are projected to the image plane to sample
image features. As far as LiDAR point cloud features, we perform a voxel-
RoI pooling operation (marked by the 5× 5 square) to aggregate point cloud
features from K nearest neighbors. The feature vector at each virtual point
thus consists of the sampled image feature and aggregated K point cloud
features.

virtual points. Here, example Nx, Ny , and Nz values are 12,
8, and 22, resulting in more than 2K samples in a foreground
area. Such a sample density is much higher than that of the
original LiDAR point clouds (typically hundreds of samples).

C. Associating Image Features to Virtual Points

Given a virtual point, we first locate the corresponding
image features and associate them to the virtual point.

For 2D image feature extraction, we use two light-weight
2D convolution backbone networks. Following [2], [38], our
2D backbones are weight sharing. Figure 6(a) illustrates our
2D backbone structure. Our 2D backbone consists of four
convolution layers, with all the convolution layers having a
kernel size of 3×3, and the second layer having a stride of
2. The generated feature maps are thus 2× down-sampled
compared to the original resolution.

We then attach the sampled left and right image features to
the virtual point V :

φV = concat{Il; Ir;Vx;Vy;Vz},

where φV is the resulting feature vector after aggregating the
image features associated with V located at (Vx, Vy, Vz), Il is
the left image feature, Ir is the right image feature.

After aggregating the image features to the feature vector
φV at the virtual point, VPFNet next voxelizes the feature
vectors at all virtual points and performs feature extraction.
In consideration of both information loss and computation
efficiency, we choose to employ a light weight module that
consists of six sparse convolution blocks [27] for feature
extraction. Figure 6(b) illustrates our sparse convolution struc-
ture. All six spconv layers are standard 3×3 convolution
layers. We obtain the following image feature map D0:

D0 = SPCONV (Φ),

where Φ is the universe set of all aggregated feature vectors,
SPCONV is the employed sparse convolution operation.

D. Aggregating LiDAR Point Features to Virtual Points

Now we aggregate corresponding LiDAR point features to
the virtual point. To compensate for the low sample density
of LiDAR points, we locate multiple nearby LiDAR points
and aggregate their features at a virtual point. In this way,
the LiDAR points’ features are suitably replicated, effectively
boosting the point cloud feature density. In order to find the
nearby k LiDAR points, we adopt the voxel-RoI pooling
operation proposed in [22]. To reduce the complexity, the
query points here has a resolution of Gx × Gy × Gz , where
Gx × Gy × Gz is the number of grid points within a 3D
proposal. It is smaller than the resolution in last subsection.

We next explain how we modify voxel-RoI pooling to fit
our problem. Given a virtual point, we query and aggregate
its feature neighbours on the feature map. Considering that
the feature maps in VPFNet are multi-modal and multi-scale,
we execute queries on each feature map separately to pool
the neighbouring features. The feature maps we use here in
VPFNet include the image feature map D0, and LiDAR point
cloud feature maps D1 and D2, with D1 being the 4x down-
sampled feature map from our 3D backbone and D2 the
8x down-sampled feature map. The queried neighbours are
then aggregated by accelerated PointNet [22]. The aggregated
features are of the same shape, and can be easily concatenated.
Accordingly, we update the aggregated feature vector as:

φV = concat{Qk(Di)},

where Di denotes the feature maps (3 feature maps in total as
explained above), Qk denotes the query operated on different
down-sampling scales (2 scales in total, detailed in Section V).
concat· denotes feature concatenation. For a voxel query Q,
given a virtual point v, and a voxel feature map D, it groups
a set of K neighbors {d1,d2, · · · ,dK}. Then, all the K
neighbors are aggregated as follows:

Q(D) = max
k=1,2,··· ,K

{Ψ1(dk − v) + Ψ2(F k)},

where dk and F k denote the location and voxel feature
of the k-th voxel neighbour, v denotes the location of the
virtual point v, and Ψ1(·) and Ψ2(·) denotes two Multilayer
Perceptron (MLP) layers as in [22]. A max pooling is then
used to obtain the aggregated feature vector of the given virtual
point as in [34].

Eventually, we have the aggregated feature vector φV of
dimensions Gx × Gy × Gz × 3C, 3C is the sum of channel
numbers of all three input feature maps.

E. Weighted Multi-Branch Combination

In this step, we generate the final detection result from
all the aggregated feature vectors with detection heads. The
detection head takes the virtual points as input and predicts the
box regression and the IoU prediction results. In the detection
head, the aggregated feature vector of Gx × Gy × Gz × 3C
dimensions is flattened and reduced to a 1 × 512 vector by
MLPs as in [22], [35]. Since the virtual points are sampled in
a fixed order, we do not need to make the input permutation
invariant. Hence, MLPs are sufficient to generate an accurate
detection result.

7

As observed in [39], during training, a multi-modal network
is likely dominated by one of the modalities. In our case,
since the image features contain less 3D information than the
LiDAR point features, LiDAR point features tend to dominate
and lead to over-fitting. To address this issue, we propose to
use an auxiliary detection branch to prevent over-fitting.

The auxiliary branch is similar to the main branch, with
the difference that it takes the aggregated image features D0

as input and predicts only the box regression results. In this
way, it enforces the image features to encode the 3D context
to certain extent. The two heads are assigned with different
weights, and the loss function is as follows:

Lrcnn = LIoU +WV · LV +WA · LA,

where Lrcnn is the loss in the second stage, LIoU is the
cross entropy loss for the 3D IoU prediction task in the
main detection branch that regresses the 3D IoU between the
predicted boxes and ground-truth boxes as in [22], LV and LA
are the smooth-L1 loss for the 3D bounding box regression
task in the main branch and auxiliary branch respectively that
regresses the residual value of the predicted 3D box and the
ground-truth, and WV and WA denote the loss weights for the
two branches.

F. Data Augmentation

As a recent paper [36] suggests, it is important to adopt
multi-modal data augmentation techniques when multiple sen-
sor types are used. As such, we devise a cut-n-paste based
multi-modal data augmentation scheme. To conduct cut-n-
paste data augmentation, we firstly generate the foreground
object mask list using a pre-trained instance level segmentation
network, and generate the foreground object masks for images.

Additionally, we have also devised a technique to help
process stereo images. Here, we define a cost matrix and use
the Hungarian algorithm [40] to associate the predicted masks
in the image pair. The score for each object pair is defined
below:

Scoreij = α · ‖vi − vj‖
hi

+ β · ‖si − sj‖,

where Scoreij denotes the cost of left-right image pair, vi
and vj denote the vertical location of the i-th object in the
left image and j-th object in the right image, hi denotes the
height of the 2D bounding box for the i-th object, si and sj
denote the object scores, and α and β denote the weight.

After we associate the objects in stereo images, we define a
similar cost matrix to associate the stereo pair and the ground
truth:

Scorekv =
‖vk − vv‖

hk
+
‖uk − uv‖

wk
,

where Scorekv denotes the cost of stereo ground truth image
pairs, k denotes the k-th stereo pair, v denotes the v-th ground
truth image, hk and wk denote the predicted 2D bounding
box height and width, and vk and uk denote the vertical and
horizontal location of the predicted 2D bounding box center.

After obtaining the matched stereo-GT triplets, we then
select the scenes from the training data according to their

112 x 624 x 32
2D Image Features

2D Conv 3x3, 32

2D Conv 3x3, 32

2D Conv 3x3, 32

2D Conv 3x3, 32

224 x 1248 x 3

Image Inputs

Stride=2

(a) 2D backbone

… …

3D Image Voxel Features

Resx x Resy x Resz x 64

SpConv 3x3, 64

SpConv 3x3, 64

SpConv 3x3, 64

x6

Resx x Resy x Resz x 64

3D Image Voxels

(b) 3D spconv block

Fig. 6. The architecture of our 2D backbone (a) and 3D sparse convolution
block (b). The output of the 2D backbone is down-sampled by two times
compared with its input.

calibration files. Only those scenes that have exactly the same
calibration information as the current scene will be selected.
We randomly sample 100 objects from the selected scenes.
Then we move all the objects’ point clouds to the ground
following [27], [35], together with the masks for consistency.
Then we sample 15 objects one by one and calculate 2D and
3D occlusion indicator. If it is less than our preset threshold,
the object will be added to the current scene. Here, the
occlusion indicator for the current object Ii is calculated as:

Ii = max
k=1,2,··· ,N

{IoUi,k},

where IoUi,k is the IoU (3D and 2D) between object i and
the k-th object in the current scene. We consider the 3D
and 2D occlusions separately. By adopting occlusion threshold
τ2D and τ3D, we can avoid the unnecessarily challenging
occlusion scenes caused by the augmentation process. Finally
we rearrange all the sampled objects according to their depth in
ascending order to simulate occlusion, and paste both sampled
point clouds and sampled object masks to the new scene.

V. EVALUATION

In this section, we discuss our experimentation details and
evaluation results. We first present the datasets and metrics,
as well as the implementation details. We then compare the
performance of our approach against many recent methods
on the test set. We also quantify the impact of the proposed
network components by conducting relevant ablation studies.
Furthermore, we conduct more experiments on validation set
to perform qualitative analysis and inference time analysis to
demonstrate more salient properties of our methods.

A. Dataset and Metrics

The KITTI dataset [6] consists of 7,481 training frames
and 7,518 testing frames, with 2D and 3D annotations of

8

Method Venue Sensor(s) 3D BEV
Easy Mod Hard Easy Mod Hard

O
ne

-s
ta

ge

VoxelNet [26] CVPR 2018 LiDAR 77.82 64.17 57.51 87.95 78.39 71.29
ContFuse [18] ECCV 2018 LiDAR+RGB 83.68 68.78 61.67 94.07 85.35 75.88
SECOND [27] Sensors 2018 LiDAR 83.34 72.55 65.82 89.39 83.77 78.59

PointPillars [41] CVPR 2019 LiDAR 82.58 74.31 68.99 90.07 86.56 82.81
TANet [42] AAAI 2020 LiDAR 84.39 75.94 68.82 91.58 86.54 81.19

Associate-3Ddet [43] CVPR 2020 LiDAR 85.99 77.40 70.53 91.40 88.09 82.96
HotSpotNet [44] ECCV 2020 LiDAR 87.60 78.31 73.34 94.06 88.09 83.24
Point-GNN [45] CVPR 2020 LiDAR 88.33 79.47 72.29 93.11 89.17 83.90

3DSSD [4] CVPR 2020 LiDAR 88.36 79.57 74.55 92.66 89.02 85.86
SA-SSD [46] CVPR 2020 LiDAR 88.75 79.79 74.16 95.03 91.03 85.96
CIA-SSD [47] AAAI 2021 LiDAR 89.59 80.28 72.87 93.74 89.84 82.39
SE-SSD [48] CVPR 2021 LiDAR 91.49 82.54 77.15 95.68 91.84 86.72

Tw
o-

st
ag

e

MV3D [8] CVPR 2017 LiDAR+RGB 74.97 63.63 54.00 86.62 78.93 69.80
F-PointNet [10] CVPR 2018 LiDAR+RGB 82.19 69.79 60.59 91.17 84.67 74.77

AVOD [7] IROS 2018 LiDAR+RGB 83.07 71.76 65.73 89.75 84.95 78.32
PointRCNN [5] CVPR 2019 LiDAR 86.96 75.64 70.70 92.13 87.39 82.72
F-ConvNet [9] IROS 2019 LiDAR+RGB 87.36 76.39 66.69 91.51 85.84 76.11

3D IoU Loss [49] 3DV 2019 LiDAR 86.16 76.50 71.39 91.36 86.22 81.20
Fast PointRCNN [50] ICCV 2019 LiDAR 85.29 77.40 70.24 90.87 87.84 80.52
UberATG-MMF [16] CVPR 2019 LiDAR+RGB 88.40 77.43 70.22 93.67 88.21 81.99

Part-A2 [51] TPAMI 2020 LiDAR 87.81 78.49 73.51 91.70 87.79 84.61
STD [52] ICCV 2019 LiDAR 87.95 79.71 75.09 94.74 89.19 86.42

3D-CVF [14] ECCV 2020 LiDAR+RGB 89.20 80.05 73.11 93.52 89.56 82.45
CLOCs PVCas [11] IROS 2020 LiDAR+RGB 88.94 80.67 77.15 93.05 89.80 86.57

PV-RCNN [35] CVPR 2020 LiDAR 90.25 81.43 76.82 94.98 90.65 86.14
Voxel-RCNN [22] AAAI 2021 LiDAR 90.90 81.62 77.06 94.85 88.83 86.13
VPFNet (Ours) - LiDAR+RGB 91.02 83.21 78.20 93.02 91.86 86.94

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE KITTI test SET FOR CAR DETECTION, WITH 3D AND BEV PRECISION OF 40 SAMPLING

RECALL POINTS EVALUATED ON THE KITTI SERVER. OUR VPFNet ACHIEVES THE HIGHEST PRECISION FOR 3D MODERATE, BEV MODERATE AND BEV
HARD. VPFNet ALSO RANKS THE 1ST AMONG ALL THE PUBLISHED METHODS FOR 3D HARD.

Method head 3D Easy 3D Moderate 3D Hard BEV Easy BEV Moderate BEV Hard
Voxel-RCNN [22] LiDAR 92.38 85.29 82.86 95.52 91.25 88.99

VPFNet-base LiDAR 93.15 83.58 80.04 94.30 91.72 89.30
VPFNet Fusion 93.42 88.76 86.05 94.11 92.44 89.88

TABLE III
OUR RESULTS ON THE KITTI val SET FOR CAR DETECTION. VPFNet-BASE DENOTES THE NETWORK WHEN VPFNet ONLY TAKES THE LIDAR POINT
CLOUD INFORMATION (WITH ALL THE IMAGE FEATURES AND THE IMAGE ONLY BRANCH LOSS WEIGHT SET TO ZERO). VOXEL-RCNN IS THE POINT

CLOUD BACKBONE NETWORK THAT WE HAVE ADOPTED. THE RESULTS SHOW THAT OUR VPFNet ACHIEVES PRONOUNCED IMPROVEMENT COMPARED
WITH THE BASELINE NETWORKS, ESPECIALLY FOR 3D METRICS.

cars, pedestrians and cyclists on the streets. It consists of
camera images and point clouds from a Velodyne HDL-64E
LiDAR. Each class is further divided into three difficulty
levels: easy, moderate and hard, according to their object size,
occlusion level and truncation level. Note that among the most
popular autonomous driving dataset KITTI, nuScenes [53], and
Waymo [54], only KITTI provides both LiDAR and stereo
data. That is also the reason why we have only conducted
experiments on KITTI.

The KINS dataset [55] was created by annotating amodal
pixel-level annotation of instances to the KITTI dataset. The
task aims to segment each instance even under severe occlu-
sion. It shares the same raw data with KITTI object detection
dataset and the only difference is the additional annotation.
KINS consists of 7,474 training samples and 7,517 testing
samples.

The metric we use in the evaluation is mainly the 3D object
detection Average Precision (AP3D) metric. We consider a
predicted box is true positive if its 3D intersection over union
ratio (3D IoU) with a ground truth box is above a preset
threshold. In our evaluation, the 3D IoU threshold for the
car category is 0.7. we only conduct evaluation on the ‘car’

category because it contains more annotated boxes and gives
more stable results than the other categories. Note that recently
the KITTI benchmark has updated the evaluation protocol [56]
and increased the recall positions from 11 to 40, aiming at a
more fair evaluation result. All the evaluation experiments we
have conducted follow this newest protocol.

B. Implementation

1) Training strategy: The 7,481 frames on KITTI training
set are further split into training set and validation set follow-
ing the same setting as in [14], [27], [35], [41]. The training
set contains 3,712 frames that belong to 96 different scenarios.
The validation set contains 3,769 frames from 45 different
scenarios. In our experiments, We follow the same setting as
in [35]; we project LiDAR point clouds to the camera view,
and preserve only the points located inside the view. When
submitting to test server, we use all 7,474 training samples.

2) Data Augmentation: Data augmentation is vital to pre-
venting the networks from over-fitting. We adopt four data
augmentation strategies proposed in [35]. The fourth strategy
is suitably modified as described in the design section. They
are (1) globally rotating the whole scene around the Z axis

9

following the uniform distribution [−π2 ,
π
2], (2) flipping the

scene around the X axis with a probability of 0.5, and (3)
scale transformation for each object following the uniform dis-
tribution of [0.95, 1.05]. (4) ground truth boxes sampling. We
generate the foreground object mask list using the pretrained
Deep Snake network [57]. The pretrained model was trained
on the KINS training set following the default configuration.
Then we associate the stereo-GT triplets, and randomly paste
15 triplets into the new scene. The 2D occlusion threshold τ2D
is set to 0.7 to simulate occlusion. τ3D is set to 0.

3) Network setting: We adopt Voxel-RCNN [22] as our 3D
point cloud baseline. VPFNet contains a 3D backbone, a 2D
RPN network, two voxel-RoI pooling layers and two detection
heads. The 3D backbone takes raw points as input and divides
them into voxels. The voxel resolution is [.05, .05, .1]m. Then
voxels are processed by the 3D sparse convolution backbone
as in [22]. Voxel features are then transferred to bird’s eye
view (BEV), and a 2D RPN network is applied to generate
3D region proposals. We enlarge each proposal for 0.8m on
each dimension. We follow most of the settings in Voxel-
RCNN with suitable modifications. Specifically, for each 3D
scene, the range of LiDAR points are limited to [0, 70]m for
X axis, [−3, 1]m for Z axis, [−40, 40]m for Y axis.We use the
KITTI LiDAR coordinate system, so that Z axis is vertical to
the earth. We set the maximum points per voxel to be 5, the
maximum number of voxels to be 40000.

As far as 2D image feature extraction is concerned, our
2D backbone adopts two 2D convolution blocks with the
channel number [32, 32] and a down sample rate [1, 2]. Each
block contains two stacked 3 × 3 convolution layers. Then
we randomly rotate the 3D proposals from [−0.08, 0.08]. and
random resize the rest dimensions from [−0.15, 0.15]m. Then
we discretize proposals by sampling preset virtual points, the
resolution of virtual points is 16 for width, 8 for length, and 22
for height. The virtual points are decorated by image features,
and voxelized into 3D voxels. For feature aggregation, the
resolution of query points Gx = Gy = Gz = 6. The resolution
of 3D voxel space is [0.2, 0.2, 0.1]m. When associating D0,
D1, D2 to virtual points and generating feature vectors,
following [22], we take the Manhattan distance as the query
range, and query in a multi-scale manner. For Q0 the distance
in X/Y/Z axis is set to [2, 2, 2]; for Q1 it is set to [4, 4, 4]. We
use the KITTI LiDAR coordinate system.

During the training stage, we set the IoU threshold to 0.7,
and sample 40 proposals as in [22], [35]. During the evaluation
stage, we set the IoU threshold to 0.1, and keep only 20
proposals. The score threshold is set to 0.1 during inference.
Finally, the VPFNet network was trained over 8 NVIDIA RTX
2080Ti GPUs by ADAM, with a batch size 16, learning rate
0.008, and weight decay of 0.01 for 80 epochs. It takes around
7.5 hours to complete the training for VPFNet.

VPFNet was trained with a 3D voxel space resolution of
[0.2, 0.2, 0.1]m, and grid points resolution of 16 × 8 × 22.
In VPFNet, we generate 5K-30K non-empty voxels with a
sparsity level less than 0.005. It has a similar sparsity level
of typical LiDAR point clouds – the point clouds in KITTI
typically generate 5K-8K voxels with a sparsity of nearly
0.005 in the voxelization stage as stated in [26].

4) Loss Function: We implement our loss function
based on [35]. Suppose we use a vector (x, y, z, w, l, h, θ)
to represent the ground truth box and anchors. Then
we calculate the localization regression residuals accord-
ingly between the ground truth box and the anchor
(∆x,∆y,∆z,∆w,∆l,∆h,∆θ) by:

∆x =
xg − xa
da

,∆y =
yg − ya
da

,∆z =
zg − za
da

,

∆w = log
wg
wa

,∆l = log
lg
la
,∆h = log

hg
ha
,

∆θ = sin(θg − θa),

where g is the ground truth box and a is the anchor box, and
we have da =

√
w2
a + l2a.

We adopt the same region proposal loss Lrpn as in [41].
Here focal loss [58] is utilized for anchor classification, and
Smooth L1 loss is utilized for anchor box regression,

Lrpn = Lcls + β
∑

r∈{x,y,z,l,h,w,θ}

Lsmooth−L1(∆̂ra,∆ra),

where Lcls denotes the anchor classification loss, ∆̂ra denotes
the predicted anchor box residual, ∆ra denotes the target
anchor box residual.

The combined multi-branch loss consists of three parts, the
cross entropy IoU prediction loss, and two box regression
losses from two branches:

Lrcnn = LIoU +WV · LV +WA · LA,

where LIoU is the cross entropy IoU prediction loss follow-
ing [22], [35], and LA and LV are the Smooth L1 loss for 3D
bounding box regression. WV and WA denote the proposed
loss weights for the two branches. The regression target is the
box residual following Lrpn.

C. VPFNet Detection Results on KITTI Test Set

Table II summarizes the 3D detection performance of
VPFNet on the KITTI test set from the official online
leaderboard as of July 14th, 2021. For the sake of space,
we show published schemes here. The best results in each
category are highlighted by the bold font. Among all the 27
networks, VPFNet delivers the best results for the following
3 (out of 6) categories: AP3D moderate (83.08%), APBEV
moderate (91.86%), and APBEV hard (86.94%). Please note
that VPFNet delivers the best result on AP3D hard among all
the published methods. Please also note that our performance
for the easy category is not the best, because objects in this
category are near and have no/little occlusion. Thus the benefit
of fusion is not very clear.

In addition, compared with Voxel-RCNN, our point cloud
backbone network, VPFNet again achieves the performance
gain on AP3D moderate (+ 1.59%), AP3D hard (+ 1.14%),
APBEV moderate (+ 3.03%) and APBEV hard (+ 0.81%).
These results clearly demonstrate that VPFNet is a powerful
multi-modal 3D object detection network.

10

D. VPFNet Detection Results on KITTI Validation Set

Table III shows the AP3D and APBEV results on the
validation set. Here, we consider three networks: VPFNet,
Voxel-RCNN (our point cloud backbone), VPFNet-base (with
all the image features and image loss set to zero).

We have the following observations. Firstly, VPFNet per-
forms the best in most of the cases, except for BEV Easy. This
is because easy objects contain many LiDAR points that are
already very accurate on BEV. Secondly, the performance gain
on AP3D is more pronounced than that on APBEV . A possible
reason is that image information contributes more to height
estimation than other dimensions like rotation estimation.
Thirdly, VPFNet-base fares worse than Voxel-RCNN. This is
because the various multi-modal data augmentation techniques
may possibly hurt the performance when the image features
are not considered.

E. Ablation Studies

We have also conducted a set of ablation studies to evaluate
the following important design choices.

Impact of Network Components: We first evaluate the
impact of various network components. Here, we remove
different components from the overall VPFNet pipeline –
namely, virtual point image sampling, random 3D proposal
resizing, right image, multi-branch loss – and quantify the
impact of these components one by one, as shown in Table IV.
Virtual point image sampling means the image features are
sampled by virtual points instead of actual LiDAR points.
We find that each of these four components contributes to the
overall performance. Among the four, the virtual point image
sampling benefits Mod3D performance the most. It again
proves the effectiveness of our fusion framework. We noticed
that stereo information and multi-branch loss are more helpful
for more heavily occluded samples in the hard category. Also,
since multi-branch loss emphasizes more on hard samples, it
may potentially hurt the Easy3D performance.

Impact of Virtual Point Density and Sparse Convolution
Layer Number: We also conduct experiments to study the
impact of virtual point density as well as the impact of sparse
convolution layer number (used for image feature extraction).
Here, we down-sample the LiDAR beam number from 64 to
32 as these parameters bear little impact with 64-beam LiDAR.
The results are shown in Table VI. We observe that decreasing
the virtual point density hurts the performance, so does having
fewer sparse convolution layers. We also observe that the
accuracy under the virtual point resolution of [30, 18, 30] is
similar to the accuracy under [25, 12, 25]. This is because
[25, 12, 25] is already a fine granularity. For example, for a
typical car, the vertical distance between two virtual points is
around 10cm assuming a car is of 1.8m in height, and the
proposals are enlarged by 0.8m in each dimension.

Better Height Estimation: We have made the hypothesis
that VPFNet can effectively improve the height estimation
compared to VPFNet-base, due to the help of image features.
We show the results in Figure 7. The X-axis is the depth value,
and the Y-axis is the mean value and variance of 1D IOU

0~10 10~20 20~30 30~40 40~50
Depth (m)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ve
rti

ca
l 1

D
IO

U

VPFNet
VPFNet-base

Fig. 7. VPFNet can reduce height estimation errors compared to VPFNet-
base in all depth ranges, especially for faraway objects. Y-axis is the mean
value and variance of 1D IOU between GT 2D boxes and predicted 2D boxes

between GT 2D boxes and predicted 2D boxes. The 1D IOU
is calculated along the vertical dimension of 2D boxes. We
observe that the height estimation is improved in all depth
ranges, especially when depth is between 30-50 meters.
Impact of Data Augmentation: In Table V, we compare the
detection results when we have no cut-n-paste, box cut-n-paste
as in [36], as well as our mask cut-n-paste with different τ2D
values. The results show that our mask cut-n-paste augmen-
tation leads to an improvement of 1.25%, 2.61%, and 2.41%
for Easy3D, Mod3D, and Hard3D, respectively. Meanwhile,
according to Table IV in our paper, the performance improve-
ment brought by our model design is 0.3%, 2.86%, and 2.85%
for Easy3D, Mod3D, and Hard3D, respectively. Comparing
the two, our model design yields larger improvements than
our augmentation scheme on Mod3D and Hard3D,.

F. Qualitative Results

We also include some quantitative results in Figure 8 and
Figure 9, where we visualize the results from VPFNet and

method 3D Easy 3D Mod 3D Hard
VPFNet 93.21 88.45 85.76

w/o Virtual Point Image Sampling 92.91 85.49 82.91
w/o Random Resizing 92.37 86.08 83.61

w/o Right Image 93.09 88.17 83.77
w/o Multi-branch Loss 93.38 88.39 83.79

TABLE IV
THE ABLATION STUDIES TO EVALUATE THE IMPACT OF OUR PROPOSED

MODULES

method τ2D 3D Easy 3D Mod 3D Hard
w/o cut-n-paste - 92.06 85.83 83.51
box cut-n-paste - 92.85 85.92 83.25

mask cut-n-paste(ours)

0.7 93.31 88.44 85.92
0.4 92.97 88.51 85.87
0 92.67 88.41 83.91
1 93.45 88.39 83.98

TABLE V
EFFECTIVENESS OF THE CUT-N-PASTE AUGMENTATION MODULE

11

(a) road scenes (b) residential scenes

Fig. 8. Qualitative results for (a) road scenes and (b) residential scenes. From top to bottom, we have the left image, detection on bird’s eye view from
VPFNet-base, and detection on bird’s eye view (BEV) from our proposed VPFNet. Green boxes on the picture mark ground truth boxes while red boxes
mark prediction boxes. Predictions with scores > 0.1 are visualized on the pictures. We highlight some areas in red circle where the BEV detection results
are improved significantly.

(a) Results for a far-way object. Image features are activated on the top and the wheels of the car.

(b) Results for an occluded object. Image features are activated on the bottom of the occluded car.

(c) Results for a near object. The box length are improved. We can observe that our sample density is lower than that of the image pixels.

Fig. 9. Qualitative results. From left to right: detected object from VPFNet-base, detected object from our VPFNet, the object in left image, the visualization
of the intermediate feature vectors (D0). Green boxes on the picture mark ground truth boxes while red boxes mark prediction boxes. Predictions with scores
> 0.1 are visualized on the pictures. We show that VPFNet can improve both box size and rotation estimation on near, far, and occluded situations.

12

VPFNet-base. Figures 8(a)-(b) show that though the box pre-
dictions (marked in red) generated by VPFNet-base already
have high IoU with the ground truth boxes (marked in green),
VPFNet can still improve the accuracy on the bird’s eye view
(BEV). Figure 8(a) shows an example in which the rotation
estimation of an occluded car is improved. Figure 8(b) shows
the rotation estimation of a far-away object and the box size
estimation of an occluded box are improved.

Figures 9 (a)-(c) show the results from both detectors, as
well as the intermediate feature vectors (D0) after sparse
convolution. In Figure 9(a), the predicted box height from
VPFNet-base exceeds the actual size because LiDAR beams
locate only on the middle part of the car. The activated virtual
point features are mainly located on the top of the car and
the four wheels. In Figure 9(b), the predicted orientation from
VPFNet-base shows a drift because the object suffers from a
severe occlusion. Figure 9(c) shows that even for near objects,
the detection result can be slightly improved by VPFNet.

G. Inference Time Measurement

In our design, the inference time is mainly affected by
the density of virtual points and query points. The submitted
version of VPFNet partitions each proposal into 16× 8× 22
grid blocks and 6× 6× 6 query points, resulting in inference
time of 63.6 ms and a FPS of 15.7 on a single NVIDIA
RTX 2080Ti GPU. Note that there is less than 140 actual
LiDAR points located inside of each 3D proposals on average.
Table VI shows the overall inference time of VPFNet with
different grid block numbers. We observe that although the
accuracy increases with the density of virtue points, the latency
increases even faster. Therefore it is important to find a trade
off between inference time and accuracy.

VI. CONCLUSION

In this work, we present virtual-point fusion to combine
LiDAR and stereo data for more accurate 3D object detection.
The key difference from existing methods lies in the fact that
we take into consideration the resolution mismatch between
the two sensors. We employ virtual points whose density is
in between that of 3D points and 2D pixels to bridge the
resolution gap and to carefully balance data sampling rate and
computing efficiency. With virtual points, we can efficiently
sample image features while aggregating K nearby point cloud
features. Further, final predictions are obtained by having

Nx Ny Nz Nlayer time(ms) 3D Hard BEV Hard
30 18 30 6 102 83.25 89.35
25 12 25 6 81 83.24 89.43
25 12 25 1 61 81.20 89.08
16 8 25 6 76 81.11 89.37
16 8 22 6 71 81.16 89.12
16 8 16 6 62 81.03 87.30

TABLE VI
AP3D AND INFERENCE TIME WITH SEVERAL VIRTUAL POINT DENSITY

SETTINGS (DENOTED BY Nx, Ny , Nz) AND SPARSE CONVOLUTION LAYER
NUMBER (DENOTED BY Nlayer) IN VPFNet. NOTE THAT THE

EXPERIMENTS WERE CONDUCTED ON THE DOWN-SAMPLED KITTI DATA,
WITH LIDAR DOWN-SAMPLED TO 32 BEAMS.

two detection heads with different weights to prevent single-
modality dominance. Finally, multi-modal data augmentation
techniques are devised to further boost the performance. Ex-
periments on the KITTI dataset prove the effectiveness of the
proposed method, which performs the best for several KITTI
metrics and supports an FPS of 15.7.

REFERENCES

[1] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q.
Weinberger, “Pseudo-lidar from visual depth estimation: Bridging the
gap in 3d object detection for autonomous driving,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 8445–8453. 1

[2] P. Li, S. Su, and H. Zhao, “RTS3D: real-time stereo 3d detection from 4d
feature-consistency embedding space for autonomous driving,” CoRR,
vol. abs/2012.15072, 2020. 1, 3, 6

[3] Y. Wang, B. Yang, R. Hu, M. Liang, and R. Urtasun, “PLUME: efficient
3d object detection from stereo images,” CoRR, vol. abs/2101.06594,
2021. 1, 3

[4] Z. Yang, Y. Sun, S. Liu, and J. Jia, “3dssd: Point-based 3D single
stage object detector,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 11 040–11 048. 1,
8

[5] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation
and detection from point cloud,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 770–779. 1, 8

[6] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driv-
ing? the kitti vision benchmark suite,” in Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’12),
2012, pp. 3354–3361. 1, 7

[7] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint
3d proposal generation and object detection from view aggregation,”
in Proceedings of the 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’18). IEEE, 2018, pp. 1–8. 1, 3,
8

[8] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object
detection network for autonomous driving,” in Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’17), 2017, pp. 1907–1915. 1, 3, 8

[9] Z. Wang and K. Jia, “Frustum convnet: Sliding frustums to aggregate
local point-wise features for amodal 3d object detection,” arXiv preprint
arXiv:1903.01864, 2019. 1, 3, 8

[10] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets
for 3d object detection from rgb-d data,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 918–
927. 1, 3, 8

[11] S. Pang, D. D. Morris, and H. Radha, “Clocs: Camera-lidar object
candidates fusion for 3d object detection,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2020, Las Vegas,
NV, USA, October 24, 2020 - January 24, 2021. IEEE, 2020, pp.
10 386–10 393. 1, 3, 8

[12] H. Lu, X. Chen, G. Zhang, Q. Zhou, Y. Ma, and Y. Zhao, “Scanet:
Spatial-channel attention network for 3d object detection,” in IEEE
International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2019, Brighton, United Kingdom, May 12-17, 2019. IEEE,
2019, pp. 1992–1996. 1, 3

[13] X. Zhao, Z. Liu, R. Hu, and K. Huang, “3d object detection using
scale invariant and feature reweighting networks,” in The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019. AAAI Press, 2019, pp. 9267–9274. 1, 3

[14] J. H. Yoo, Y. Kim, J. S. Kim, and J. W. Choi, “3d-cvf: Generating joint
camera and lidar features using cross-view spatial feature fusion for 3d
object detection,” ECCV, 2020. 1, 2, 3, 8

[15] T. Huang, Z. Liu, X. Chen, and X. Bai, “Epnet: Enhancing point features
with image semantics for 3d object detection,” ECCV 2020. 1, 2, 3, 4

[16] M. Liang, B. Yang, Y. Chen, R. Hu, and R. Urtasun, “Multi-task multi-
sensor fusion for 3d object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
7345–7353. 1, 2, 3, 8

13

[17] S. Vora, A. H. Lang, B. Helou, and O. Beijbom, “Pointpainting: Se-
quential fusion for 3d object detection,” in 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020. IEEE, 2020, pp. 4603–4611. 1, 2, 3, 4

[18] M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep continuous fusion
for multi-sensor 3d object detection,” in Proceedings of the the 15th
European Conference on Computer Vision (ECCV’18), 2018, pp. 641–
656. 1, 2, 3, 8

[19] L. Xie, C. Xiang, Z. Yu, G. Xu, Z. Yang, D. Cai, and X. He, “Pi-rcnn:
An efficient multi-sensor 3d object detector with point-based attentive
cont-conv fusion module,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 07, 2020, pp. 12 460–12 467. 1, 3

[20] V. A. Sindagi, Y. Zhou, and O. Tuzel, “Mvx-net: Multimodal voxelnet
for 3d object detection,” in International Conference on Robotics and
Automation, ICRA 2019, Montreal, QC, Canada, May 20-24, 2019.
IEEE, 2019, pp. 7276–7282. 1, 3

[21] Y. Cui, R. Chen, W. Chu, L. Chen, D. Tian, and D. Cao, “Deep learning
for image and point cloud fusion in autonomous driving: A review,”
CoRR, vol. abs/2004.05224, 2020. 2, 3

[22] J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang, and H. Li, “Voxel R-CNN:
towards high performance voxel-based 3d object detection,” CoRR, vol.
abs/2012.15712, 2020. 2, 3, 4, 5, 6, 7, 8, 9

[23] S. Qiu, S. Anwar, and N. Barnes, “Geometric back-projection network
for point cloud classification,” IEEE Transactions on Multimedia, 2021.
3

[24] C. Chen, S. Qian, Q. Fang, and C. Xu, “Hapgn: Hierarchical attentive
pooling graph network for point cloud segmentation,” IEEE Transactions
on Multimedia, 2020. 3

[25] H. Liu, Y. Guo, Y. Ma, Y. Lei, and G. Wen, “Semantic context
encoding for accurate 3d point cloud segmentation,” IEEE Transactions
on Multimedia, 2020. 3

[26] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in Proceedings of the 2018 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’18), 2018, pp.
4490–4499. 3, 8, 9

[27] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, 2018. 3, 6, 7, 8

[28] J. Deng, W. Zhou, Y. Zhang, and H. Li, “From multi-view to
hollow-3d: Hallucinated hollow-3d r-cnn for 3d object detection,”
arXiv:2107.14391, 2021. 3

[29] Z. Liu, H. Tang, Y. Lin, and S. Han, “Point-voxel CNN for efficient 3d
deep learning,” in Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, H. M.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and
R. Garnett, Eds., 2019, pp. 963–973. 3, 4

[30] D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Q. Weinberger,
and W.-L. Chao, “Wasserstein distances for stereo disparity estimation,”
arXiv preprint arXiv:2007.03085, 2020. 3

[31] Y. You, Y. Wang, W.-L. Chao, D. Garg, G. Pleiss, B. Hariharan,
M. Campbell, and K. Q. Weinberger, “Pseudo-lidar++: Accurate depth
for 3d object detection in autonomous driving,” in International Con-
ference on Learning Representations, 2020. 3

[32] C. Li, J. Ku, and S. L. Waslander, “Confidence guided stereo 3d object
detection with split depth estimation,” arXiv preprint arXiv:2003.05505,
2020. 3

[33] Y. Wang, Q. Mao, H. Zhu, Y. Zhang, J. Ji, and Y. Zhang, “Multi-modal
3d object detection in autonomous driving: a survey,” CoRR, vol.
abs/2106.12735, 2021. [Online]. Available: https://arxiv.org/abs/2106.
12735 3

[34] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in Proceedings of
the 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’17), 2017, pp. 77–85. 3, 4, 6

[35] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-rcnn:
Point-voxel feature set abstraction for 3d object detection,” in CVPR,
2020. 3, 6, 7, 8, 9

[36] C. Wang, C. Ma, M. Zhu, and X. Yang, “Pointaugmenting: Cross-modal
augmentation for 3d object detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
11 794–11 803. 3, 7, 10

[37] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Reg-
ularization strategy to train strong classifiers with localizable features,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 6023–6032. 3

[38] Y. Chen, S. Liu, X. Shen, and J. Jia, “Dsgn: Deep stereo geometry
network for 3d object detection,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2020, pp.
12 536–12 545. 6

[39] W. Wang, D. Tran, and M. Feiszli, “What makes training multi-
modal classification networks hard?” in 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020. IEEE, 2020, pp. 12 692–12 702. 7

[40] H. W. Kuhn, “The hungarian method for the assignment problem,” in
50 Years of Integer Programming 1958-2008 - From the Early Years
to the State-of-the-Art, M. Jünger, T. M. Liebling, D. Naddef, G. L.
Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey,
Eds. Springer, 2010, pp. 29–47. 7

[41] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 12 697–12 705. 8, 9

[42] Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou, and X. Bai, “Tanet:
Robust 3d object detection from point clouds with triple attention,” arXiv
preprint arXiv:1912.05163, 2019. 8

[43] L. Du, X. Ye, X. Tan, J. Feng, Z. Xu, E. Ding, and S. Wen, “Associate-
3ddet: perceptual-to-conceptual association for 3d point cloud object
detection,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 13 329–13 338. 8

[44] Q. Chen, L. Sun, Z. Wang, K. Jia, and A. Yuille, “Object as hotspots:
An anchor-free 3d object detection approach via firing of hotspots,” in
European Conference on Computer Vision. Springer, 2020, pp. 68–84.
8

[45] W. Shi and R. Rajkumar, “Point-gnn: Graph neural network for 3d object
detection in a point cloud,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2020, pp. 1711–1719. 8

[46] C. He, H. Zeng, J. Huang, X. Hua, and L. Zhang, “Structure aware
single-stage 3d object detection from point cloud,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020. IEEE, 2020, pp. 11 870–11 879.
8

[47] W. Zheng, W. Tang, S. Chen, L. Jiang, and C.-W. Fu, “Cia-ssd: Confident
iou-aware single-stage object detector from point cloud,” arXiv preprint
arXiv:2012.03015, 2020. 8

[48] W. Zheng, W. Tang, L. Jiang, and C.-W. Fu, “Se-ssd: Self-
ensembling single-stage object detector from point cloud,” arXiv preprint
arXiv:2104.09804, 2021. 8

[49] D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai, and R. Yang, “Iou
loss for 2d/3d object detection,” in 2019 International Conference on
3D Vision (3DV). IEEE, 2019, pp. 85–94. 8

[50] Y. Chen, S. Liu, X. Shen, and J. Jia, “Fast point r-cnn,” in Proceedings
of the IEEE International Conference on Computer Vision, 2019, pp.
9775–9784. 8

[51] S. Shi, Z. Wang, J. Shi, X. Wang, and H. Li, “From points to parts: 3d
object detection from point cloud with part-aware and part-aggregation
network,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2020. 8

[52] Z. Yang, Y. Sun, S. Liu, X. Shen, and J. Jia, “Std: Sparse-to-dense
3d object detector for point cloud,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 1951–1960. 8

[53] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” CoRR, vol. abs/1903.11027, 2019. 8

[54] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,
H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi,
Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2020, pp. 2443–2451. 8

[55] L. Qi, L. Jiang, S. Liu, X. Shen, and J. Jia, “Amodal instance segmen-
tation with kins dataset,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019. 8

[56] A. Simonelli, S. R. Bulo, L. Porzi, M. López-Antequera, and
P. Kontschieder, “Disentangling monocular 3d object detection,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 1991–1999. 8

[57] S. Peng, W. Jiang, H. Pi, X. Li, H. Bao, and X. Zhou, “Deep snake
for real-time instance segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2020. 9

[58] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988. 9

https://arxiv.org/abs/2106.12735
https://arxiv.org/abs/2106.12735

