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Abstract

Both power and performance are important issues in
today’s datacenters. It is hard to achieve optimization
in both aspects on shared infrastructures due to system
dynamics. Previous work mostly emphasized on either
aspect or relied on models that were trained off-line for
specific workload. In this paper, we present vPnP, a
feedback control-based coordination system that provides
guarantees on a service level agreement with respect to
performance and a power budget in virtualized environ-
ments. This system can adapt gracefully to workload
change. It consists of two self-tuning model predic-
tors and a utility function optimizer. The predictors
correlate system resource allocation to power and per-
formance, respectively. The optimizer finds the opti-
mal solution for a tradeoff between power and perfor-
mance. Experimental results using TPC-W benchmark
show vPnP can achieve different levels of tradeoff in a
more flexible way than an existing two-layer feedback
control approach. More importantly, vPnP shows its
robustness over a variety of workloads. It reduces per-
formance relative deviation by 17% compared with the
two-layer feedback controller.

1 Introduction

Virtualization technology has brought in a number of
benefits to datacenters, such as performance isolation,
server consolidation, and system manageability. A va-
riety of applications, from parallel computing to cloud
services, can be hosted on virtualized datacenters. The
power consumption due to the increasing requirement of
application performance and the increasing popularity
of high-density servers poses a key challenge in the de-
sign and management of the datacenters. To meet the
challenge, researchers have developed a wide array of
technologies on power management, including dynamic

voltage and frequency scaling (DVFS) and low-power
sleep states on processors, low-power DRAM states on
memory. In addition, server virtualization facilitates
server consolidation, leading to more power savings.

From datacenter administrators’ perspective, a pri-
mary concern is the service-level agreement (SLA) in
performance. The impact on system performance due
to power management varies greatly depending on the
characteristics of time-varying workloads. It becomes
even more complicated due to resource sharing in virtu-
alized environments.

In analogy to SLA in performance, power budget
sets a power consumption cap of the system. Enforc-
ing power budgets can be physical or contractual [4].
Physically, limiting power consumption in a datacen-
ter can help address thermal conditions or temporary
reductions in cooling or power delivery capacity [11].
One possible approach to power budgeting is to use the
power management capabilities of a processor based on
hardware controllers [9, 16]. However, this class of ap-
proaches may not be applicable in virtualized environ-
ments since the platform is shared by all resident virtual
machines.

There are a number of work devoted to power man-
agement in virtualized servers. Most of them aim to
energy consumption limits or requirement of provision-
ing power budget in an SLA-aware manner but without
SLA guarantees [18, 13, 15, 12]. In these work, power
(or energy) is the first-class control target in adjustment
of hardware power states. There are other performance-
oriented work that aims to meet performance SLAs and
meanwhile reduce power consumption in a best-effort
manner [21]. The work in [3, 20] deal with both power
and performance in a coordinated way, focusing on vir-
tual machine placement [3] or relying on off-line system
identification [20].

Control approaches have been successfully applied to
power management in virtualized environments. How-
ever, they require off-line system identification in con-
troller design [21, 20], or need the expertise of control



parameter tuning [12]. There are also approaches de-
signed for specific workloads [8]. The controllers de-
signed in such manners may not be able to adapt grace-
fully to situations with abrupt workload change though
they can achieve control accuracy and system stabil-
ity within a range theoretically. As a result, existing
solutions hardly provide guarantees on an SLA in per-
formance and a power budget without off-line modeling
for a variety of applications in virtualized environments.

In this paper, we propose vPnP, a feedback control-
based coordination system that can achieve the goal
with respect to both application-level performance and
underlying physical host power consumption in a vir-
tualized environment. This framework consists of two
monitors and a coordinator. The monitors provide real-
time measurement of power and performance, respec-
tively. The coordinator, including two model predic-
tors and a utility function optimizer, produces policies
for execution. The power prediction model should be
the first that can predict power consumption accurately
without need for off-line training or peeking into the
system for additional performance metrics. The frame-
work employs user-specified parameterized utility func-
tions representing different levels of tradeoff between
power and performance. The optimal solution to the
utility function, achieved by the optimizer, directs the
resource allocation amongst virtual machines. We have
implemented vPnP in a Xen-based infrastructure with
different coordination policies. The experimental results
using TPC-W benchmark demonstrate the adaptivity
of the performance and power predictors. The results
also show that vPnP can achieve a user-specified per-
formance and power guarantee in a flexible way. We
further show vPnP is more robust than the two-layer
feedback controller in [20] over a variety of workloads.
It can reduce up to 17% performance relative deviation.

The reminder of this paper is organized as follows.
Related work is discussed in Section 2. In Section 3, we
present the system design of vPnP. Section 4 describes
the implementation of vPnP. Evaluation results are pre-
sented in Section 5. Finally, we conclude the paper in
Section 6.

2 Related Work

Towards managing power and performance for en-
terprise servers, control theory is widely applied in re-
cent years. According to the number of control inputs
and outputs, the work using control theory can divided
into two major categories: Single-Input-Single-Output
(SISO) control and Multi-Input-Multi-Output (MIMO)
control.

Lefurgy et al. [9] designed a Proportional (P) con-
troller to cap the peak power of a server. Wu et al. [23]
managed power by controlling the synchronizing queues

in multi-clock-domain processors. Zhang et al. [24] ad-
justed the resource demands of virtual machines based
on resource availability. These work concerned them-
selves with a single control output employing control
over a single resource. SISO controller is mostly used in
this kind of work.

MIMO control can be employed when there are mul-
tiple control outputs in power management for enter-
prise servers. Wang et al. [19] developed a MIMO
control algorithm for cluster-level power control in a
non-virtualized environment. However, this work re-
quires pre-defined power models and provides no per-
formance guarantee. Kusic et al. [8] presented a power
and performance management strategy using lookahead
control. This work was designed in a workload-specific
way at cluster-level requiring off-line models without ex-
plicit power and performance guarantee. In addition,
Kephart et al. [7] have proposed a coordinated manage-
ment scheme to achieve tradeoffs between power and
performance by optimizing a utility function for a non-
virtualized server. Our work belongs to this class of
approaches. In contrast to the above work, our work co-
ordinates power and performance for a virtualized server
in a non-workload-specific manner.

Multilayer control can be applied to deal with the
similar problem which needs MIMO control. Represen-
tative work includes [21, 12, 20], which employ two-layer
feedback controllers. In [21], one control loop controls
the CPU resource to each virtual machine to guaran-
tee performance while the other one controls CPU fre-
quency for power efficiency. In [12], one loop limits
the power consumption and the other one bids resource
based on shadow price for each virtual machine. How-
ever, the work in [21, 12] are either performance-oriented
or power-oriented without explicit coordination of power
and performance. The work in [20] shares a similar ob-
jective to ours. The power consumption is constrained
by scaling CPU frequency and the performance guaran-
tee is achieved by allocating CPU resources among vir-
tual machines. The design of the controllers elaborates
off-line system identification. The controllers designed
based on a static model for one workload may not adapt
gracefully to workload change though the accuracy and
stability can be assured within a range. In contrast,
our work can adapt to a variety of workloads by online
modeling with negligible runtime overhead.

Adaptive control can cope with the dynamic of a sys-
tem by modifying the control law. A self-tuning ad-
mission controller was designed for a 3-tier web sites in
[6]. In [22], an adaptive fuzzy controller was proposed
to guarantee client-perceived end-to-end QoS. To man-
age resource in virtualized environments, Padala et al.
[14] proposed an adaptive estimator to capture the rela-
tionship between allocated system resource and perfor-
mance. In [5], the Kalman filter was integrated into
feedback controllers to dynamically allocate CPU re-



sources to virtual machines. Rao et al. [17] proposed a
reinforcement learning based approach for virtual ma-
chine configuration which is adaptive to heterogeneous
virtual machines. In the area of power management
for virtualized servers, the power model is complicated
by multiple hosted heterogeneous virtual machines con-
suming different amount of resources. Our proposed
power prediction model should be the first adaptive one,
to our knowledge.

3 System Architecture

In this section, we first discuss the mechanism to reg-
ulate the performance and power of a server. Then we
present the design of our vPnP system with a detailed
description of the key components.

3.1 Control Power and Performance with
VCPU Caps

Modern server processors often support multiple
classes of execution states for the purpose of power man-
agement. These states include the frequency and voltage
operating points (P-states), throttling states (T-states)
in active mode, and sleeping states (C-states) in idle
time. P-states are well documented and can significantly
affect active power consumption. But it has only very
limited speed stages. In multi-core processors, it is not
flexible to manipulate the P-states due to the depen-
dencies of the cores residing on the same die. Things
become even more challenging in virtualized environ-
ments. Since multiple virtual machines may share a
single core, tuning P-states of a core would threaten
desired performance isolation properties. T-states can
further throttle down a CPU by inserting stop clock sig-
nals and thus omitting duty cycles. However, T-states
are not always well documented and may need to modify
the clock modulation register. C-states can be utilized
when the CPU is idle. But it incurs relatively large
switch overhead and might not be effective when the
system is in a low utilization. In this paper, we regulate
the power consumption by re-allocating CPU resources
to virtual machines (VMs).

We assume a hypervisor scheduler to limit processing
time to guest VMs. Non-work-conserving scheduling is
employed. Xen provides the capability to cap the CPU
time of VCPUs allocated to a VM. By capping VCPUs,
the utilization of underlying physical processors can be
constrained thereby regulate power consumption. In
this paper, we use VCPU capping as the actuator for
power management.

3.2 Design of vPnP

Figure 1 shows the architecture of the vPnP power
and performance coordination system. A physical server
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Figure 1. System architecture of vPnP.

can host multiple VMs on which different applications
are running. A power monitor is employed to measure
the power consumption of the whole physical server.
The real-time performance of each VM can be collected
by a separate performance monitor. A number of per-
formance data, such as mean response time, CPU uti-
lization and throughput, can be collected by this perfor-
mance monitor. In our system, we currently only mea-
sure performance in terms of throughput. All the power
and performance data are reported to the resource co-
ordinator synchronously. The power and performance
predictors can predict the future power consumption
and performance, respectively. A multi-criteria utility
function is defined to meet the power and performance
requirements. The ultimate goal is to find a utility-
optimizing policy which will be conveyed to the hyper-
visor to regulate the VCPU cap for each VM.

3.2.1 Power and Performance Predictor

Since the system behavior could be non-linear, time-
varying and workload-dependent, it is not necessarily
accurate to represent the relationship between power (or
performance) and VCPU cap by a static linear function.
One feasible approach to capturing the system behavior
is to use a linear model to approximate locally on the
neighborhoods (operating range) of an operating point.
In order to let this linear model adapt to different op-
erating ranges, the model parameters must be updated
dynamically on the fly.

In [14], the authors experimented with such a dy-
namic model, Autoregressive-moving-average (ARMA),
to approximate the quantitative relationship between al-
located resource and normalized performance. ARMA
model is a combination of an autoregressive (AR) part
and a moving average (MA) part, referred to as the
ARMA(l,m) model, where l and m are the orders, in-
dicating the numbers of previous values considered, of
the AR and MA part, respectively. In our work, we



extend this model to predict power consumption of a
physical server. Like the model in [14], we use an
ARMA(2,2) model to characterize the relationship be-
tween the power consumption of the physical server and
the VCPU caps of all hosted VMs in a control interval.

Let k denote the kth control interval, p(k) be the av-
erage power consumption of the physical server, C(k)
be the vector of VCPU caps of all hosted VMs. Assume
that gi(k) and vector HT

i (k) capture the correlation be-
tween power and VCPU caps, respectively. It follows
that:

p(k) =

2∑
i=1

gi(k)p(k − i) +

1∑
i=0

HT
i (k)C(k − i). (1)

Let r(k) and c(k) represent the throughput and
VCPU cap of a VM, respectively, ai(k) and bi(k) be
time-varying model parameters to capture the rela-
tionship between throughput and VCPU cap. A self-
adaptive ARMA(2,2) model which is similar to that in
[14] represents the relationship between throughput and
VCPU cap for a VM:

r(k) =

2∑
i=1

ai(k)r(k − i) +

1∑
i=0

bi(k)c(k − i). (2)

Notice the model parameters gi(k), HT
i (k) in (1), and

ai(k), bi(k) in (2) vary with time. These parameters are
updated every control period using the data collected in
a given range of past intervals, say M intervals, similar
to the sliding window size. These data include the mea-
sured performance, power, and CPU resource allocated
to each VM in the past M intervals. Least-square re-
gression can be used to obtain these model parameters.
The assumption to use ARMA model is that significant
workload disturbance, which may lead to tremendous
change in the model parameters estimation, seldom oc-
curs. In this case, the convergence of the model pa-
rameters can be achieved. However, the dynamics of
workloads retard this process. If the workload changes
abruptly, the model parameters may not be estimated
accurately during a period. It may take as long as M
intervals to get the accurate model parameters estima-
tion for the system with new workload since all the data
collected for the past M intervals can be replaced. It im-
plies a smaller M is apt to adapt to the change in the
system responsively but it can easily be affected by the
infrequent disturbance.

3.2.2 Utility Function Optimization

Suppose there are n VMs hosted in a physical machine.
Let r̂i (1 ≤ i ≤ n) denote the SLA of performance for
the ith VM. Let ps denote the power budget for the
physical server. We define two step functions to quantify
the SLA of performance and the power consumption,
respectively, in the following:

Θi(ri(k)) =

{
1 ri(k) ≥ r̂i;
ri(k)/r̂i otherwise.

(3)

Γ(p(k)) =

{
1 p(k) ≤ ps;
p(k)/ps otherwise.

(4)

In general, a utility function should be defined in such
a manner that optimizing the utility function is to deter-
mine the resource allocation to each VM to meet perfor-
mance SLAs and power budget. Consider the violations
of SLA in performance and a power budget as penalties,
we have:

U1 = α

n∑
i=1

(1 − Θi(ri(k)))2 + (1 − α)(Γ(p(k)) − 1)2, (5)

where the parameter α represents the weight of SLAs of
power and performance for different levels of tradeoff.
The goal is to minimize the utility function (5) by find-
ing a column vector C(k). Intuitively, this utility func-
tion can achieve its optimal value, 0, by meeting both
performance SLA and power budget. In case this min-
imum value cannot be achieved, there is no solution to
guarantee both power and performance. Instead, min-
imizing this utility function represents the tradeoff of
power and performance.

Consider the SLA in performance as a gain and power
consumption as a cost, we have:

U2 = α

n∑
i=1

(Θi(ri(k)))2 − (1 − α)(Γ(p(k)))2. (6)

Its goal is to maximize the value U2. Besides similar
observation to function (5), we can see these two utility
functions achieve the optimization goal in different man-
ners when there is no solution to guarantee both power
and performance while the power factor is dominant.
The utility function (5) would be minimized by balanc-
ing the performance SLA for each VM in this case, while
(6) would unbalance the performance SLAs. This can
easily be proved by using Cauchy-Schwarz inequality.

A utility function optimizer is designed to deter-
mine the VCPU caps to optimize the defined utility
function. Taking (5) for example, since ri(k) (1 ≤
i ≤ n) and p(k) can all be represented by linear func-
tions using ci(k) (1 ≤ i ≤ n), the utility function (5)
can ultimately be represented by a quadratic function
Q(c1(k), c2(k), . . . , cn(k)). Thus the VCPU caps can be
found by solving the following problem:

minimize Q(c1(k), c2(k), . . . , cn(k)) (7)

subject to clow ≤ ci(k) ≤ cup, 1 ≤ i ≤ n. (8)

where clow and cup represent the minimal and maximal
values of VCPU caps, respectively. Constraint (8) en-
sures the allocated VCPU caps will not be out of the



range. In practice, we set the cup to 100% and clow
to be 10% to avoid starvation. The objective function
is quadratic and convex. An ellipsoid method can solve
this problem in polynomial time. In practice, we can use
an off-the-shelf quadratic programming solver to com-
pute the solution. Similar approach can be applied to
the utility function (6). In this case, the objective func-
tion is quadratic but not convex. Thus this optimization
problem is NP-hard.

Notice here we treat all VMs with the same priority.
In order to differentiate the performance priority, we can
add weights to the performance gained in each VM.

4 Implementation Issues

Implementation details of each component in vPnP
are presented as follows:

Power monitor: We measured the power consump-
tion of a physical server by the use of a WattsUp Pro
[2] power meter. This power meter has an accuracy of
±1.5% of the measured RMS power with a sampling rate
of 1Hz. The measured power are sent to the resource
coordinator continuously.

Performance monitor: vPnP runs a small daemon
program associated with each application to record the
time stamps of incoming requests. When a request is
finished, another time stamp can be obtained. The dif-
ference of time stamps is response time. The number of
requests finished during a unit interval is throughput.
In our work, we only measure performance in terms of
throughput. The throughput is reported to the resource
coordinator every control interval which is set to be 30
seconds for a tradeoff of system response and possible
transient noise.

Resource coordinator: The resource coordinator
consists of three parts: performance predictor, power
predictor and utility function optimizer. The perfor-
mance and power predictors update the control parame-
ters at the end of every control period using least-square
regression. The data in the past 20 intervals would be
used in regression. The overhead for both regression
was 15ms in average in a Xeon5450 quadcore server.
The utility function optimizer employs a quadratic pro-
gramming solver to calculate the VCPU caps for the
next interval. The cost of this calculation overhead was
10ms. The solution will be sent to the CPU resource
allocator.

CPU resource allocator: Xen uses a Credit Sched-
uler [1], Xen’s proportional share scheduler, to allocate
CPU resource. We use the VCPU cap to limit the CPU
time that can be allocate to a VM. Though in Credit
Scheduler, the weight can also specify the CPU resource
allocation to each VM, we here only use VCPU cap to
implement this allocation by setting same weights to all
VMs. A VCPU cap of 0 means there is no upper cap.

5 Evaluation

In this section, we present the experimental results
of vPnP. We compare vPnP with an existing two-layer
feedback controller, Co-Con [20], from the perspective
of flexibility and robustness of coordinated control of
power and performance.

5.1 Experimental Methodology

vPnP was evaluated in an experimental server clus-
ter consisting of five physical machines connected by a
gigabit network. Two physical servers were used to host
VMs. A third storage server was used for Network File
System (NFS) to host all VM images so that live mi-
gration might be integrated to the system in the future.
Each server was configured with two quadcore proces-
sors, Intel Xeon5450, with a total of eight cores, and
8GB RAM. All servers ran CentOS Linux 5.0 with ker-
nel 2.6.18 and Xen 3.4.

We selected TPC-W [10] as the host application.
TPC-W is an E-Commerce benchmark that models after
an online book store. It provides workloads with differ-
ent mixes. There are three predefined workload mixes:
browsing (B), shopping (S) and ordering (O), which re-
quire different amount of resource. TPC-W consists
of two tiers, application (APP) tier in the front and
database (DB) in the back-end. Each tier was hosted
in a VM with 2 VCPUs and 2GB memory. We ran two
TPC-W applications and consolidated the two DB VMs
on a DB HOST and the two APP VMs on an APPS HOST.
We only evaluated vPnP on the DB HOST since the DB
tier tend to be a bottleneck of this application.

We ran the resource coordinator in dom0 of
APPS HOST in order to alleviate the computational stress
at DB HOST with the consideration of consolidation as
well. The CPU resource allocator was deployed in dom0
of DB HOST.

We used the other two servers as the client-side work-
load generators. The default concurrency level was set
to 400, 400, and 1000, for browsing, shopping, and or-
dering, respectively. The default throughput targets for
these workloads with default concurrency levels were
1200, 1500, and 3000 per interval, respectively. The
client machines should be powerful enough to create re-
source stress on any of the VMs.

We conducted three experiments on the platform.
First, we evaluated the accuracy of the self-adaptive

power and performance predictors. Second, we evalu-
ated the agility of vPnP to achieve different levels of
tradeoff between performance and power. The tradeoff
policy could be power-preferred, performance-preferred
or other user-defined criterion. Third, we investigated
the robustness of vPnP. vPnP is designed in a workload-
independent manner. It can perform well for different
applications or in the scenarios with dynamics.
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Figure 2. Performance and power prediction.

We adapted an existing two-layer controller from Co-
Con [20] as the baseline. The controllers were designed
using the off-line data during a run of TPC-W with
browsing mix following the methods in [20].

Each run of the workload lasted 200 intervals by de-
fault. Since vPnP used the data of the past 20 intervals
for prediction, we started it at the 25th interval. The
results from the 30th interval to the 100th interval will
be presented and the results thereafter will be omitted
due to the similarity.

5.2 Experimental Results

5.2.1 Prediction Accuracy

The online performance and power predictors can adapt
the model parameters to the change of the system states.
The accuracy of these two predictors affects the CPU
resource allocation.

We conducted experiments to show the adaptivity of
these two predictors by running a sequence of different
workloads. We allocated the VCPU cap to the VM from
100% to 10% in a step length of 10% every interval back
and forth. Starting from the 90th interval, we changed
the workload type every 60 intervals (30 minutes) in the
order of: browsing→ shopping→ ordering→ browsing.
Figure 2 plots the results from the 50th interval to the
250th interval when all workload changes finish.

To quantify the prediction accuracy of these predic-
tors, we used relative error, defined as |y(k)−ỹ(k)|/ỹ(k),
where y(k) and ỹ(k) denote predicted and measured
power (or throughput) at kth interval, respectively. We
investigated the performance of predictors in different
phases. To adapt to a new workload may take up to
M intervals (data collected in past M intervals would
be used for regression). So we investigated these M in-
tervals as the adapting phase when workload changed.
Figure 3 plots the means of relative errors as well as
95% confidence level confidence intervals for power and
performance predictors.

The power predictor can predict the power consump-
tion at all the time accurately, with mean relative er-
ror below 3%. The mean relative error for performance

(a) Power prediction accuracy

(b) Performance prediction accuracy

Figure 3. Prediction accuracy.

prediction may reach around 15% even if there was no
workload change. This is because the power consump-
tion only depends on current resource utilization and
resource allocation. But the throughput will be af-
fected by the process delay [22] and workload dynam-
ics as well in addition to the control over resource al-
location. During the adapting phase, the accuracy of
performance prediction was degraded. If the workload
change was not significant (for example, B→S), the per-
formance predictor could adapt gracefully to workload
change with narrow confidence intervals. In case of sig-
nificant workload change, this predictor may not adapt
well (for example, O→B).

5.2.2 Tradeoff of Performance and Power

Using vPnP, different levels of tradeoff between power
and performance can be achieved in a flexible way by
tuning the weight in the utility function. Using the two
utility functions defined in Section 3.2, in case both of
power and performance SLAs cannot be met, the policy
depends on the weights in the utility functions. A larger
α represents the tendency to meet the performance SLA
while a smaller α means satisfying power budget is more
important. We defined two policies here for the pur-
pose of evaluation: performance-preferred (α = 0.9) and
power-preferred (α = 0.1). We conducted experiments
using TPC-W browsing workload.

First, we applied the vPnP framework using the
performance-preferred policy. Since power was not dom-
inant, vPnP allocated large VCPU caps to meet perfor-
mance SLA while power consumption was beyond bud-
get. The oscillations of throughput were caused by both
the disturbance of workload and the adjustment to the
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Figure 9. Performance of vPnP vs. Co-Con.

VCPU caps. The utility function U2 performed in a
similar way. For lack of space, we omitted this result.

Then the power-preferred policy was employed. Re-
sults are shown in Figure 5 and Figure 6. Both applica-
tions could not meet the performance SLA mostly but
power consumption was close to the budget. These util-
ity functions acted in different ways. The utility func-
tion U2 would allocate enough VCPU cap to one VM
while the utility function U1 would allocate CPU re-
source in a relatively fair manner. For fairness, in the
rest of experiments, we only used utility function U1.

In contrast, the power control is always primary in
Co-Con. It cannot make different levels of tradeoff be-
tween power and performance.

5.2.3 System Robustness

We investigated the robustness of vPnP by conduct-
ing experiments running different TPC-W workloads:
browsing, shopping and ordering. Two identical appli-
cations were hosted for each run. Results from Co-Con
were included as a baseline for comparison. For fairness
in comparison, we used a strict power-preferred policy
for vPnP by setting α = 0.01.

Recall that Co-Con used a two-layer controller stati-
cally based on the collected data during a run of TPC-
W browsing mix. When running shopping and ordering
workloads, we found vPnP could limit the power con-
sumption closer to the budget than Co-Con. The results
are shown in Figure 7 and Figure 8. The static two-layer
controller in Co-Con could not adapt its control param-
eters to the workload change thus it may not perform
well when the workload changed. As vPnP doesn’t rely
on any off-line trained model, it can adapt to a large
variety of workloads. Since workload disturbance and
controller both affected the power and performance, the
oscillations occurred.

To quantify the performance of Co-Con and vPnP,
we defined relative deviation from a reference as the
metric. The relative deviation for power is |p(k)−ps|/ps.
Similarly, the relative deviation for throughput of one
application is |r(k)− rs|/rs.

Figure 9 shows the means as well as the 95% confi-
dence level confidence intervals for relative deviations for
power and performance. Both vPnP and Co-Con could
achieve very small relative deviation for power for all
workloads. It implies they could provide power guaran-
tee when the power budget was defined within a specific
range (we will see later what will happen if power budget
varies in a large range). For performance, Co-Con out-
performed vPnP by around 5% when running browsing
workload. The difference was marginal when running
shopping workload. In this case, Co-Con slightly out-
performed vPnP since the shopping workload is very
similar to the browsing workload. Using ordering work-
load, we can see the performance relative deviation of
vPnP was around 17% less than that of Co-Con. Over-
all, the performance relative deviation of vPnP could be
limited to 32% with relatively small variation (less than
15%) over a variety of workloads. In contrast, the per-
formance relative deviation of Co-Con may vary over a
large range, from 16% to 43%. The results show good
adaptivity of vPnP for a variety of workloads.

In practice, the power budget might change due to
thermal condition or temporary reductions in cooling
or power delivery capacity. We investigated how vPnP
and Co-Con reacted to this power budget change. We
assumed browsing workload in both with initial power
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Figure 5. Results of utility function U1 with a power-preferred policy (α = 0.1).
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Figure 6. Results of utility function U2 with a power-preferred policy (α = 0.1).
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Figure 10. Reaction to power budget change.

budget 240W for DB HOST. From the 100th interval, the
power budget changed every 50 intervals following this
order: 240W→230W→240W→250W.

As shown in Figure 10, when power budget decreased
to 230W, Co-Con failed to limit the power consumption
to this budget. It is due to the limited stages of CPU
frequency. Only 4 CPU frequencies are available for In-
tel Xeon5450 in our testbed. When the power budget
was 240W, the frequency had already been set to the
lowest. If the budget decreased more, Co-Con could not
control power effectively since there was no lower fre-
quency available. In contrast, vPnP could work in a
large range of power budget using VCPU cap to regu-
late power, which provided a large difference in power
consumption between the highest and the lowest cap.

To sum up, vPnP demonstrated a high flexibility
than Co-Con. It outperformed Co-Con in terms of ro-
bustness over a variety of workloads.

6 Conclusion

In this paper, we present vPnP, a feedback control-
based coordination system providing guarantees on an
SLA in performance and a power budget in virtualized
datacenters. The system consists of two online model
predictors and a utility function optimizer. The pre-
dictors correlate CPU resource allocation to power and
performance, respectively. The optimizer finds the so-
lution that optimizes the utility function of power and
performance.

We evaluated vPnP in a testbed using multi-tier
benchmarks and compared it with the existing two-layer
feedback controller for power and performance. Exper-
imental results show the flexibility of vPnP to achieve
different levels of tradeoff between power and perfor-
mance, and the robustness over a variety of workloads
in contrast to the two-layer feedback controller.

Process delay is expected to have a significant impact
on performance prediction. This factor will be consid-
ered in the future.
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