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Abstract—Recent advances in computer vision and pattern 

recognition have demonstrated the superiority of deep neural 

networks using spatial feature representation, such as 

convolutional neural networks (CNN), for image classification. 

However, any classifier, regardless of its model structure (deep or 

shallow), involves prediction uncertainty when classifying 

spatially and spectrally complicated very fine spatial resolution 

(VFSR) imagery. We propose here to characterise the uncertainty 

distribution of CNN classification and integrate it into a regional 

decision fusion to increase classification accuracy. Specifically, a 

variable precision rough set (VPRS) model is proposed to quantify 

the uncertainty within CNN classifications of VFSR imagery, and 

partition this uncertainty into positive regions (correct 

classifications) and non-positive regions (uncertain or incorrect 

classifications). Those “more correct” areas were trusted by the 
CNN, whereas the uncertain areas were rectified by a Multi-Layer 

Perceptron (MLP)-based Markov random field (MLP-MRF) 

classifier to provide crisp and accurate boundary delineation. The 

proposed MRF-CNN fusion decision strategy exploited the 

complementary characteristics of the two classifiers based on 

VPRS uncertainty description and classification integration. The 

effectiveness of the MRF-CNN method was tested in both urban 

and rural areas of southern England as well as Semantic Labelling 

datasets. The MRF-CNN consistently outperformed the 

benchmark MLP, SVM, MLP-MRF and CNN and the baseline 

methods. This research provides a regional decision fusion 

framework within which to gain the advantages of model-based 

CNN, while overcoming the problem of losing effective resolution 

and uncertain prediction at object boundaries, which is especially 

pertinent for complex VFSR image classification. 

Index Terms—rough set, convolutional neural network, 

Markov random field, uncertainty, regional fusion decision. 
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I. INTRODUCTION 

EMOTE sensing technologies have evolved greatly since 
the launch of the first satellite sensors, with a significant 

change being the wide suite of very fine spatial resolution 
(VFSR) sensors borne by diverse platforms (satellite, manned 
aircraft or unmanned aerial vehicles UAV) [1]. These technical 
advances have resulted in immense growth in the available 
VFSR remotely sensed imagery typically acquired at sub-metre 
spatial resolution [2], such as QuickBird, GeoEye-1, 
Pleiades-1, and WorldView-2, 3, and 4. The fine spatial detail 
presented in VFSR images offer huge opportunities for 
extracting a higher quality and larger quantity of information, 
which may underpin a wide array of geospatial applications, 
including urban land use change monitoring [3], precision 
agriculture [4], and tree crown delineation [5], to name but a 
few. One of the bases of these applications is image 
classification where information embedded at the pixel level is 
captured, processed and classified into different land cover 
classes [6]. Image classification applied to VFSR imagery, 
however, can be a very complicated task due to the large 
spectral variation that the same land cover class can produce, 
which increases the difficulty of discriminating complex and 
ambiguous image features [7]. The increased spatial resolution, 
often in conjunction with a limited number of wavebands, can 
lead to reduced spectral separability amongst different classes. 
As a consequence, it is of prime concern to develop robust and 
accurate image classification methods to fully exploit and 
analyse such data effectively and to keep pace with the 
technological advances in remote sensors. 

Over the last few decades, a vast array of computer-based 
image classification methods have been developed [8], ranging 
from unsupervised methods such as K-means clustering, 
supervised statistical approaches such as maximum likelihood 
classification, and non-parametric machine learning 
algorithms, such as the multilayer perceptron (MLP), support 
vector machine (SVM) and random forest (RF), amongst 
others. Non-parametric machine learning is currently 
considered as the most promising and evolving approach [9]. 
The MLP, as a typical non-parametric neural network 
classifier, is designed to learn the non-linear spectral feature 
space at the pixel level irrespective of its statistical properties 
[10]. The MLP has been used widely in remote sensing 
applications, including VFSR-based land cover classification 
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(e.g. Del Frate et al. (2007), Pacifici et al. (2009)). However, a 
pixel-based MLP classifier does not make use of the spatial 
patterns implicit in images, especially for VFSR imagery with 
unprecedented spatial detail. Thus, limited classification 
performance can be obtained by the pixel-based MLP classifier 
(and related algorithms, e.g. SVM, RF, etc.)  that purely relies 
on spectral differentiation.  

To better exploit the potential in VFSR remotely sensed 
imagery, many researchers proposed to incorporate spatial 
information to distinguish spatial features through context. 
These spatial features may be associated with a regular spatial 
organization specific to particular types of land cover [12]. For 
example, the juxtaposition of buildings and roads can create a 
specific spatial pattern. Similarly, the periodic row structure in 
cereals can be a useful cue in classifying VFSR image data. 
These spatial patterns can be captured directly through spatial 
contextual information in the classification process. A typical 
example of such is the Markov Random field (MRF) [13], that 
has been used widely in the field of remote sensing. The MRF 
models the conditional spatial dependencies within a pixel 
neighbourhood to support prediction for the central pixel, to 
increase classification accuracy [14]. However, the contextual 
MRF often uses small neighbourhood windows to achieve the 
robustness as well as to balance the computational complexity, 
which might downgrade the performance for the classification 
of VFSR imagery that requires wider contexts to handle the rich 
spatial details. 

Recent advances in computer vision and machine learning 
have suggested that spatial feature representation can be learnt 
hierarchically at multiple levels through deep learning 
algorithms [15]. These deep learning approaches learn the 
spatial contexts at higher levels through the models themselves 
to achieve enhanced generalization capabilities. The 
convolutional neural network (CNN), as a well-established 
deep learning method, has produced state-of-the-art results for 
multiple domains, such as visual recognition [16], image 
retrieval [17] and scene annotation [18]. CNNs have been 
introduced and actively investigated in the field of remote 
sensing over the past few years, focusing primarily on object 
detection [19] and scene classification [20]. Recent work has 
demonstrated the feasibility of CNNs for remote sensing image 
classification, as here. For example, Zhao and Du (2016) used 
an image pyramid of hyperspectral imagery to learn deep 
features through the CNN at multiple scales. Chen et al. (2016) 
introduced a 3D CNN to jointly extract spectral–spatial 
features, thus, making full use of the continuous hyperspectral 
and spatial spaces. Längkvist et al. (2016) used a CNN model 
with different contextual sizes to classify and segment VFSR 
satellite images. Volpi and Tuia (2017) used deep CNNs to 
perform a patch-based semantic labelling of VFSR aerial 
imagery together with normalized DSMs. All of these works 
demonstrated the superiority of CNNs by using contextual 
patches as their inputs and the convolutional operations for 
spatial feature representation.  

The contextual-based CNN classifiers, however, might 
introduce uncertainties along object boundaries, leading to 
over-smoothness to some degree [25]. Besides, objects with 

little spatial information are likely to be misclassified, even for 
those with distinctive spectral characteristics [25]. In fact, any 
classifier, regardless of its model structure, predicts with 
uncertainty when handling spatially and spectrally complex 
VFSR imagery. A key problem to be addressed is, thus, for a 
given classification map, which areas are correctly classified 
and which are not? This information is important for 
classification map producers who need to further increase 
classification accuracy. Information on uncertainty is also very 
useful for classification map users, because if it is available, at 
least in some generalised form, users can better target their 
attention and effort. Currently, classification model uncertainty 
is assessed mainly using measures such as the difference 
between the first and second largest class membership value 
[26], Shannon’s entropy [27], α-quadratic entropy [28], and so 
on, but there is generally a lack of objective and automatic 
approaches to partition and label the correct and incorrect 
classification regions.  

The real problem with image classification, using a CNN or 
any other classifier, is, thus, how to reasonably describe and 
partition the geometric space given the inherent prediction 
uncertainties in a classification map. We previously proposed 
to create rules to threshold the classification results and deal 
with uncertainties through decision fusion [25]. This method, 
although having potential to achieve desirable classification 
results, involves a large amount of trial and error and prior 
knowledge of feature characteristics, thus was hard to be 
generalized and applied in an automatic fashion.  As a 
well-established mathematical tool, rough set theory is 
proposed here as a means of providing an uncertainty 
description with no need for prior knowledge, and this can be 
applied to model uncertainties of classification results. 

Rough set theory, as proposed by Pawlak (1982), is an 
extension of conventional set theory that describes and models 
the vagueness and uncertainty in decision making [30]. It has 
been applied in diverse domains such as pattern recognition 
[31], machine learning [32], knowledge acquisition [33], and 
decision support systems [34]. Unlike other approaches that 
deal with vague concepts such as fuzzy set theory, rough set 
theory provides an objective form of analysis without any 
preliminary assumptions on membership association, thus, 
demonstrating power in information granulation [35] and 
uncertainty analysis [36]. In the field of remote sensing and 
GIS, rough set theory has been applied in rule-based feature 
reduction and knowledge induction [30], [37], land use spatial 
relationship extraction [38], spatio-temporal outlier detection 
[39], and land cover classification and knowledge discovery 
[40]. However, description of the uncertainty in remote sensing 
image classification results, as identified as a need and 
proposed here, has not been addressed through rough set 
theory, except for the pioneering work of Ge et al. (2009) on 
classification accuracy assessment. In fact, as one of the basic 
theories of granular computation, the predominant role of rough 
sets is to transform an original target granularity (i.e., 
continuous and intricate) into a simpler and more easily 
analysable variable. Thus, by using rough sets, the uncertainty 
of remote sensing classification can be simplified and the 
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resulting data is more readily used to support decision-making. 
In this paper, a variant of rough set theory, variable precision 

rough set (VPRS) [30], is introduced for the first time to model 
and quantify the uncertainties in CNN classification of VFSR 
imagery with a certain level of error tolerance, which is more 
suitable for the remote sensing domain than standard rough set 
theory due to its complexity. Through the VPRS theory, these 
classification uncertainties are partitioned and labelled 
automatically into positive regions (correct classifications), 
negative regions (misclassifications) and boundary regions 
(uncertain areas), respectively. These labelled regions are then 
used to guide the regional decision fusion for final 
classification. Specifically, the positive regions are trusted 
directly by the CNN, whereas the non-positive regions 
(negative and boundary regions) with high uncertainty (often 
occurring along object edges) are rectified by the results of an 
MLP-based MRF (MLP-MRF). Such a region-based fusion 
decision strategy performs classification integration at the 
regional level, as distinct from the commonly used pixel-based 
strategies. The proposed VPRS-based MRF-CNN regional 
decision fusion aims to capture the mutual complementarity 
between the CNN in spatial feature representation and the 
MLP-MRF in spectral differentiation and boundary 
segmentation.  

The key innovations of this research can be summarized as: 
1) a novel variable precision rough set model is proposed to 
quantify the uncertainties in CNN classification of VFSR 
imagery, and 2) a spatially explicit regional decision fusion 
strategy is introduced for the first time to improve the 
classification in uncertain regions using the distribution 
characteristics of the CNN classification map.  

The effectiveness of the proposed method was tested on 
images of both an urban scene and a rural area as well as 
semantic labelling datasets. A benchmark comparison was 
provided by pixel-based MLP and SVM, spectral-contextual 
based MLP-MRF as well as contextual-based CNN classifiers, 
together with mainstream baseline methods.  

II. METHODS 

A novel VPRS-based method for regional decision fusion of 
CNN and MRF (MRF-CNN) is proposed for the classification 
of VFSR remotely sensed imagery. The methodology consists 
of the following steps: 

1. perform CNN and MLP classification using a training 
sample set (T1) and validate them using a testing sample set 
(T3),  

2. estimate the uncertainty of the CNN classification result to 
achieve a CNN classification confidence map (CCM), and 
perform MLP-based MRF (MLP-MRF) classification,  

3. construct a VPRS fusion decision model to partition the 
CCM into positive regions and non-positive (i.e. boundary and 
negative) regions using a test sample set (denoted as T2), and  

4. obtain the final classification result by taking the 
classification results of the CNN for the positive regions and 
those of MLP-MRF for the non-positive regions.  

Principles and major workflows are detailed hereafter. 

 
Fig. 1. A workflow illustrating the proposed MRF-CNN methodology. 

A. Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) is a multi-layer 
feed-forward neural network that is designed specifically to 
process large scale images or sensory data in the form of 
multiple arrays by considering local and global stationary 
properties [42]. The main building block of a CNN is typically 
composed of multiple layers interconnected to each other 
through a set of learnable weights and biases [43]. Each of the 
layers is fed by small patches of the image that scan across the 
entire image to capture different perspectives of features at 
local and global scales. Those image patches are generalized 
through a convolutional layer and a pooling/subsampling layer 
alternatively within the CNN framework, until the high-level 
features are obtained on which a fully connected classification 
is performed [42]. Additionally, several feature maps may exist 
in each convolutional layer and the weights of the 
convolutional nodes in the same map are shared. This setting 
enables the network to learn different features while keeping 
the number of parameters tractable. Moreover, a nonlinear 
activation (e.g. sigmoid, hyperbolic tangent, rectified linear 
units) function is taken outside the convolutional layer to 
strengthen the non-linearity [44]. Specifically, the major 
operations performed in the CNN can be summarized as: 

                     ))(( 1 lll

p

l
bWOpoolO    (1) 

where the 1l
O  denotes the input feature map to the lth layer, 

the l
W  and the l

b  represent the weights and biases of the layer, 

respectively, that convolve the input feature map through linear 
convolution*, and the )(  indicates the non-linearity function 
outside the convolutional layer. These are often followed by a 
max-pooling operation with p×p window size (poolp) to 
aggregate the statistics of the features within specific regions, 
which forms the output feature map l

O   at the lth layer [43]. 

B. Multilayer Perceptron based Markov Random Field 

(MLP-MRF) Classification 

A multilayer perceptron (MLP) is a classical neural network 
model that maps sets of input data onto a set of outputs in a 
feed-forward manner [45]. The typical structure of a MLP is 
cascaded by interconnected nodes at multiple layers (input, 
hidden and output layers), with each layer fully connected to 
the preceding layer as well as the succeeding layer [11]. The 
outputs of each node are weighted units and biases followed by 
a non-linear activation function to distinguish the data that are 
not linearly separable [9]. The weights and biases at each layer 
are learned by supervised training using a back-propagation 
algorithm to approximate an unknown input-output relation 
between the input feature vectors and the desired outputs [11].  

The predictive output of the MLP is the membership 
probability/likelihood to each class at the pixel level, which 
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forms the conditional probability distribution function 
according to the Bayesian theorem [46]. The objective of 
Bayesian prediction is to achieve the maximum posterior 
probability by combining the prior and conditional probability 
distribution functions, so as to solve the classification problem 
effectively. The MRF classifier provides a convenient way to 
model the local properties of an image into positivity, 
Marknovianity and Homogeneity as its prior probability, 
together with the learnt likelihood from the MLP, which 
constitutes the MLP-MRF [47], [48]. Such local 
neighbourhood information can further be converted into its 
global equivalence of the Gibbs random field as an energy 
function based on the Hamersley-Clifford theorem [14]. The 
MLP-MRF is hence iteratively solved by minimizing the 
energy function to search for the global minima. See [48] and 
[49] for more theoretical concepts on MLP-based MRF and its 
application to image classification. 

C. Variable precision rough set based decision fusion between 

CNN and MRF 

1) Introduction to variable precision rough set theory: In 
rough set theory [29], a dataset is represented as a table, which 
is called an information system, denoted as S = (U, A), where U 
is a non-empty finite set of objects known as the universe of 
discourse, and A is a non-empty finite set of attributes, such that 
U→Va exists for each aA. The set Va denotes the set of 
attribute values that a may take. A decision table is an 

information system in the form of S = (U, A∪{d}), where dA 

is the decision attribute. For any attribute set  AP  , there is an 

indiscernible relation R between two objects x and y: 
               )}()(,|),{( 2

yaxaPaUyxR   (2) 

where R explains that the x and y are indiscernible by the 
attributes from P (i.e. both x and y share the same attribute 
values). 

The equivalence classes of the indiscernible relation based 
on R can be defined as: 

                      }),(|{][ RyxUyx R   (3) 

Given a target set UX  , X can then be approximated by 
using the equivalence classes of the indiscernible relation R, 

including a R-lower approximation: }][|{ XxxXR R  and a 

R-upper approximation: }][|{  XxxXR R
. If XRXR  , 

then the tuple ),( XRXR  forms a rough set. The positive 

(POSR(X)), negative (NEGR(X)) and boundary (BNDR(X)) 
regions can be defined as: 
                             XRXPOS R )(  (4) 

                         ( )RNEG X U RX   (5) 

                  )()( XPOSXRXBND RR   (6) 

 
Fig. 2. An illustration of the standard rough set with positive, boundary and 

negative regions 

However, the above standard definition of the set inclusion 

relation is too rigorous to represent any “almost” complete set 
inclusion [50] (i.e., equation (4) is difficult to be satisfied 
strictly). Thus, a variable precision rough set (VPRS) model 
was proposed to allow a certain number of inclusion errors. Let 
X and Y be two non-empty subsets of a finite universe U, the 
degree (or level) of inclusion error of Y within X can be defined 
as [36]:  

                   
)(

)(
1),(

YCard

XYCard
XYe


 , )( Y  (7) 

where the )(Card  denotes the cardinality of a set. The 
0),( XYe  if and only if XY  , that is, the case of standard 

rough set theory (Fig. 2). Suppose 0),( XYe , then a level of 

inclusion error β is introduced to tolerate a certain level of 
inclusion. Given a level of inclusion error β, Y being included 
by X can be defined as:  
              10,),(   XYeiffXY  (8) 

Having defined the relative inclusion error β, the β-lower 
approximation and the β-upper approximation can be 
characterized as:  
                       }),]([|{   XxeUxXR R

 (9) 

                     }1),]([|{   XxeUxXR R
 (10) 

Given equations (9) and (10), the positive (POSR,β (X)), 
negative (NEGR,β (X)) and boundary (BNDR,β (X)) regions with a 
level of inclusion error β can be inferred as:  
                             XRXPOSR  )(,

 (11) 

                         
, ( )RNEG X U R X    (12) 

                    )()( ,, XPOSXRXBND RR    (13) 

2) VPRS-based MRF-CNN fusion decision: Suppose the 
membership prediction of the CNN at each pixel is an 

n-dimensional vector ),...,,( 21 ncccC  , where n represents the 

number of classes, while each dimension ]),1[( nici   

corresponds to the pixel’s probability of a specific (i-th) class 
with certain membership association. Ideally, the probability 
value of the classification prediction is 1 for the target class but 
0 for the other classes, which is usually unobtainable due to the 
extensive uncertainty in the process of remotely sensed image 
classification. The probability value C is, therefore, denoted as:  
           )},...,2,1(|{)( nzczf z   

n

zz cc
1

1],1,0[  (14) 

By default, the classification model simply takes the 
maximum membership association as the predicted output label 
(denoted as class(C)):  
         ( ) argmax({ ( ) | (1,2,..., )})z

z

class C f z c z n            (15) 

The confidence of being determined as class(C) is derived 
from one minus the normalized Shannon Entropy [41]:  

                  

minmax

n

z

ii

minmax

i

E-E

zfzf

E-E

E
conf

 

))((log)(

1 
 

1 1
2






 (16) 

where, 



n

z

iii zfzfE
1

2 ))((log)(  denotes the entropy value of the 

ith pixel, whereas the Emax and the Emin refer to the maximum 
and minimum entropy values, respectively, of the entire 
classification map. When the entropy of a pixel is maximized 
(i.e., Emax in (16)), f(z) approximates a uniform probability 
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distribution, representing that there is a strong possibility that 
the pixel is wrongly classified, and therefore the confidence 
value conf tends to be small (i.e., the level of the corresponding 
uncertainty tends to be higher) and vice versa. Therefore, the 
conf ])1,0[(  is inversely correlated with the normalized 

entropy.  
Given a CNN classification map, the confidence value of an 

object is spatially heterogeneous: the central region is often 
accurately classified, but the boundary region is likely to be 
misclassified [25]. The two regions (i.e., patch centre and patch 
boundary) can then be described theoretically by using rough 
set theory [30]. That is, the correctness, incorrectness and 
uncertainty of image classification can be modelled via the 
positive (4), negative (5) and boundary (6) regions, 
respectively. 

The decision attribute {d} of the rough set model, commonly 
referred to as the attribute for the identification of a specific 
land cover class, is used here to describe whether a test sample 
is correctly classified (i.e., a strength and weakness analysis on 
the classification results of the region corresponding to the 
sample). The confidence value (conf) of any two samples 
within this region should belong to the same indiscernible 
relation, of which they should be treated simultaneously. For 
the confidence map of CNN classification (i.e., the image with 
a conf value at each pixel), it can, therefore, be partitioned into a 
series of intervals, each of which represents a particular 
indiscernible relation:  
       ]1),/([),...,2,[),,0[ stepconffloorstepstepstepstep   (17) 

Where, step is the atomic granule representing the least unit 
of indiscernible relation. Each interval forms an indiscernible 
region (denoted as INDArea) on the CNN classification map. By 
checking the consistency of the classification results with 
respect to the test samples (T2), the partitions can then be 
characterized as: the positive region (the negative region, 
respectively) where the entirety of T2 lying in the region are 
correctly (incorrectly, respectively) classified, and the 
boundary region in which the T2 are partially correctly 
classified. 

There exists extensive uncertainty and inconsistency in 
remotely sensed image classification, especially for VFSR 
imagery. A small amount of error (even with only one 
misclassified sample) could inevitably turn a positive region 
into a boundary region. Thus, equation (4) is too restrictive and 
might not be sufficiently satisfied. Therefore, the introduction 
of the VPRS model with a relative classification error β is 
necessary to allow for some degree of misclassification in the 
largely correct classification. Based on the VPRS model, the 
CNN classification confidence map can be partitioned into 
indiscernible regions (i.e. INDArea). The accuracy of each region 
is evaluated further using the test sample sets (T2) to quantify 
the ratio of the labelled samples that are consistent or 
inconsistent to the categories of the classification results. Those 
indiscernible regions that meet the accuracy requirements of 
(11) are labelled as positive regions, whereas those fitting 
equations (12) and (13) are characterised as non-positive 
regions. 

As illustrated by equation (7), the real level of inclusion error 

(denoted as error) in a specific INDArea is essentially the 
classification error of the test sample (T2), that is, the ratio 
between the number of misclassified samples and the total 
number of the samples within the region. The INDArea can then 
be identified either as a positive region or a non-positive region 
based on the relative inclusion error β:  

              









βerrorve regionnon-positi

βerroregionpositive r
INDArea

 (18) 

The final classification results of all pixels within the region 
can then be determined by using either the results (classcnn) of 
CNN (in the case of positive region), or the results (classmlp-mrf) 
of MLP-MRF (in the case of non-positive region). The positive 
region and the non-positive region are, therefore, allocating 
priority to the CNN and the MLP-MRF accordingly.  

Following the strategy mentioned above, the VPRS-based 
decision fusion algorithm for remotely sensed image 
classification is illustrated using pseudo-code in Table I:  

TABLE I 
DETAILED DESCRIPTION OF THE VPRS-BASED REGIONAL DECISION FUSION 

ALGORITHM FOR REMOTELY SENSED IMAGE CLASSIFICATION 
 

VPRS-BASED REGIONAL DECISION FUSION ALGORITHM 

Input: remotely sensed (RS) image, level of inclusion error β, training 
sample set T1, rough set test sample set T2, atomic granule step 

Output: classification result resultImg 

1. Modelcnn = The CNN model trained by sample set T1 

2. Modelmlp-mrf  = The MLP-MRF model trained by sample set T1 

3. 
fuzzyMatrix = The RS image classified by using Modelcnn to 
obtain decision vector 

4. 
conf = The uncertain level within fuzzyMatrix (1 – Normalized 
Entropy)  

6. 
For each region INDArea partitioned from conf using an atomic 
granule step 

7.       using error (derived from T2) and β to determine INDArea (18) 

8.       If     error ≤ β then INDArea belongs to positive region 

9. 
resultPixels = each pixel within INDArea is classified by 
CNN (classcnn) 

10.        Else INDArea belongs to non-positive region 

11. 
resultPixels = each pixel within INDArea is classified by 
MLP-MRF (classmlp-mrf) 

12.       End if 

13.       resultImg = resultImg ∪ resultPixels 

14. End for  

15. Return resultImg 

16. End 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Data description and experimental design 

Experiment 1: The city of Bournemouth, UK and its 
surrounding environment, located on the southern coast of 
England, was selected as a case study area (Fig. 3). The urban 
area of Bournemouth city is very developed with a high density 
of anthropogenic structures such as residential houses, 
commercial buildings, roads and railways. In the contrast, the 
suburban and rural areas near Bournemouth are less densely 
populated, predominantly covered by natural and semi-natural 
environments. 

An aerial image was captured on 20 April 2015 using a 
Vexcel UltraCam Xp digital aerial camera with 25 cm spatial 
resolution and four multispectral bands (Red, Green, Blue and 
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Near Infrared), referenced to the British National Grid 
coordinate system (Fig. 3). Two subsets of the imagery with 
different environmental settings, including S1 (2772×2515 
pixels) within Bournemouth city centre and S2 (2639×2407 
pixels) in the rural and suburban area were chosen to test the 
classification algorithms. S1 consists mainly of nine dominant 
land cover classes, including Clay roof, Concrete roof, Metal 
roof, Asphalt, Railway, Grassland, Trees, Bare soil and 
Shadow, listed in Table II. S2 includes Queen’s Park Golf 
Course and is comprised of large patches of woodland, 
grassland and bare soil speckled with small buildings and 
roads. There are seven land cover categories in this study site, 
namely, Clay roof, Concrete roof, Road-or-track, Grassland, 
Trees, Bare soil and Shadow (Table II). 

 
Fig. 3. Location of study area at Bournemouth within the UK, and aerial 

imagery showing zooms of the two study sites S1 and S2. 
TABLE II 

LAND COVER CLASSES AT TWO STUDY SITES WITH TRAINING AND TESTING 

SAMPLE SIZE PER CLASS. TRAINING SAMPLE T1 AND TESTING SAMPLE T3 WERE 

USED FOR MODEL CONSTRUCTION AND ACCURACY VALIDATION, WHILE TEST 

SAMPLE T2 WAS USED FOR BUILDING THE VARIABLE PRECISION ROUGH SET. 
 

Study Sites Class 
Training 

Sample T1 

Test 

Sample T2 

Testing 

Sample T3 

S1 

Clay roof 110 156 110 

Concrete roof 107 148 107 

Metal roof 103 139 103 

Asphalt 107 148 107 

Grassland 114 162 114 

Trees 104 141 104 

Bare soil 103 139 103 

Shadow 103 139 103 

Railway 102 137 102 

S2 

Clay roof 82 104 82 

Concrete roof 90 115 90 

Road-or-track 85 108 85 

Grassland 86 110 86 

Trees 98 124 98 

Bare soil 84 106 84 

Shadow 86 110 86 

 
Sample points were collected using a stratified random 

scheme from ground data provided by local surveyors in 
Bournemouth, and split into 50% training samples (Training 

Sample T1 at Table II) and 50% testing samples (Testing 
Sample T3 at Table II) for each class. In addition, a set of test 
samples (Test Sample T2, see Table II) with which to construct 
the variable precision rough set (VPRS) model were stratified 
randomly collected throughout the imagery and manually 
labelled into different land cover classes. The sample labelling 
was based on expert knowledge and historical references 
provided by local surveyors and photogrammetrists. Field 
survey was conducted on April 2015 to further check the 
validity and precision of the selected samples. Moreover, a 
highly detailed vector map from the Ordnance Survey, namely 
the MasterMap Topography Layer [51], was fully consulted 
and cross-referenced to gain a comprehensive appreciation of 
the land cover and land use within the study area. 

Experiment 2: Two well-known semantic labelling datasets, 
the Vaihingen dataset and the Potsdam dataset, were used to 
further evaluate the effectiveness of the proposed method.  

The Vaihingen dataset contains 33 true orthophoto tiles with 
a spatial resolution of 9 cm. For each tile, four channels are 
provided, namely near-infrared (NIR), red (R) and green (G), 
together with digital surface models (DSMs). Six semantic 
categories were manually classified by ISPRS, including 
impervious surfaces, building, low vegetation, tree, car, and 
clutter/background. As previously with other authors (e.g. [24], 
[52]), the clutter/background class (mainly involving water 
bodies, background and others) was not considered in the 
experiments since it accounts only for 0.88% of the total 
number of pixels.  

Following the same training and testing procedures set by 
FCN [52] and SegNet [24], we used the sixteen annotated tiles 
in our experiments. Eleven tiles (areas: 1, 3, 5, 7, 13, 17, 21, 23, 
26, 32, 37) were selected for training, while the other five tiles 
(areas: 11, 15, 28, 30, 34) were reserved for testing.  

The Potsdam 2D segmentation dataset includes 38 tiles of 
fine spatial resolution remote sensing images. All of them 
feature a spatial resolution of 5 cm and have a uniform 
resolution of 6000×6000 pixels. Twenty-four tiles are provided 
with Ground Reference pixel labels, using the same five classes 
as in the Vaihingen dataset without the clutter/background 
class. In the experiments, Following the practice in [52], six 
tiles (02_12, 03_12, 04_12, 05_12, 06_12, 07_12) were 
selected as the testing set, while the other eighteen among the 
annotated tiles were used for training. 

Sample points for both datasets were acquired using a 
stratified random scheme from the Ground Reference with a 
stride of 300 pixels to ensure the adequacy of GPU memory, 
and these were partitioned into 30%, 40% and 30% sets for 
Training Sample T1, Test Sample T2 and the Testing Sample 
T3. SVM and other mainstream methods, such as FCN [52], 
SegNet [24] and Deeplab-v2 [53], were applied as benchmarks.  

B. Model Architectures and Parameter Settings  

Since the MRF used in this research was based on the 
probabilistic output from a pixel-based MLP, good choices for 
the model architectures and parameter settings of the MLP and 
CNN are essential for the proposed MRF-CNN approach. To 
make a fair comparison, both CNN and MLP models were 
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assigned the same parameters for the learning rate as 0.1, the 
momentum factor as 0.7, the logistic non-linearity function, and 
the maximum iteration number of 1000 to allow the networks to 
fully converge to a stable state through back-propagation. In the 
MLP, the numbers of nodes and hidden layers were tuned with 
1-, 2-, and 3-hidden layers through cross-validation, and the 
best predicting MLP was found using two hidden layers with 20 
nodes in each layer. For the CNN, a range of parameters 
including the number of hidden layers, the input image patch 
size, the number and size of convolutional filter, need to be 
tuned [43]. Following the discussion by Längkvist et al. (2016), 
the input patch size was chosen from {12×12, 14×14, 16×16, 
18×18, 20×20, 22×22, 24×24} to evaluate the influence of 
context area on classification performance. In general, a 
small-sized contextual area results in overfitting of the model, 
whereas a large one often leads to under-segmentation. In 
consideration of the image object size and contextual 
relationship coupled with a small amount of trial and error, the 
optimal input image patch size was set to 16×16 in this 
research. Besides, as discussed by Chen et al. (2014) and 
Längkvist et al. (2016), the depth plays a key role in 
classification accuracy because the quality of learnt feature is 
highly influenced by the level of abstraction and representation. 
As suggested by Längkvist et al. (2016), the number of CNN 
hidden layers was chosen as four to balance the network 
complexity and robustness. Other parameters were tuned 
empirically based on cross-validation accuracy, for example, 
the kernel size of the convolutional filters within the CNN was 
set as 3×3 and the number of filters was tuned as 24 at each 
convolutional layer.  

The MLP-MRF requires to predefine a fixed size of 
neighbourhood and a parameter γ that controls the smoothness 
level. The window size of the neighbourhood in the MLP-MRF 
model was chosen optimally as 7×7 in consideration of the 
spatial context and the fidelity maintained in the classification 
output. Due to the fine spatial detail contained in the VFSR 
imagery, the parameter γ controlling the level of smoothness 
was set as 0.7 to achieve an increasing level of smoothness in 
terms of the MRF. The simulated annealing optimization using 
a Gibbs sampler [55] was employed in MLP-MRF to maximize 
the posterior probability through iteration. 

An SVM classifier was further used as a benchmark 
comparator to test the classification performance. The SVM 
model involves a penalty value C and a kernel width σ that 
needs to be parameterised. Following the recommendation by 
Zhang et al. (2015), a grid search with 5-fold cross-validation 
was implemented to exhaustively search within a wide 
parameter space (C and σ within [2-10, 210]). Such parameter 
settings would lead to high validation accuracy using support 
vectors to formulate an optimal classification hyperplane.  

C. Decision Fusion Parameter Setting and Analysis 

The decision fusion between the MLP-MRF and the CNN, 
namely, the MRF-CNN, based on the VPRS model, involves 
parameters β (the level of inclusion error) and step (the atomic 
granule). The two parameters were optimized through grid 
search with cross-validation using Training Sample 2 (Listed in 

Table II). Specifically, β was varied from 0 to 1 with 
incremental steps of 0.01, while the step was tuned between 0 to 
0.5 through a small step of 0.025 (i.e. with a wider parameter 
searching space) to obtain a higher validation accuracy. By 
doing so, β and step were chosen optimally as 0.1 and 0.075, 
respectively.  

Both of the fusion decision parameters (β and step) jointly 
determined the partition of the positive and non-positive 
regions. As shown in Fig. 4, these parameter settings, reflected 
by variation between the ratios of VPRS non-positive and 
positive regions (horizontal axis coordinates ranging from 0 to 
1), have an impact on the CNN classification confidence values 
(blue dots) and the overall accuracies (boxplots). From the 
figure, it can be seen that along with the increase of the 
non-positive ratio, the CNN classification confidence decreases 
constantly, except for the non-positive ratio from 0.3 to 0.55; 
whereas the overall accuracy initially increases from around 
0.86 to around 0.9 and then decreases constantly until around 
0.81. Another observation is that the boxplot tends to be wider 
as the ratio of non-positive to positive region becomes larger, 
with more credits being given from the CNN to the MLP-MRF. 
The optimal non-positive ratio (determined by decision fusion 
parameter setting) was found to be 0.3 (marked by the red 
dotted line in Fig. 4).  

 
Fig. 4. The CNN classification confidence value and the overall accuracy 

influenced by the fusion decision parameter setting (in the form of the 
non-positive to positive ratio) 

D. Classification Results and Analysis 

Experiment 1: The classification performance of the 
MRF-CNN and the other benchmark methods, including the 
MLP, SVM, MLP-MRF and the CNN, were compared using 
the Testing samples of Bournemouth dataset. Table III lists the 
detailed accuracy assessment of both S1 for Bournemouth city 
centre and S2 for the rural and suburban areas with overall 
accuracy (OA), Kappa coefficient (κ) as well as per-class 
mapping accuracy. Clearly, the MRF-CNN achieved the best 
overall accuracy of 90.96% for S1 and 89.76% for S2 with 
Kappa coefficients of 0.89 and 0.88 respectively, consistently 
higher than the CNN (85.37% and 86.39% OA with κ of 0.84 
and 0.83, respectively), the MLP-MRF (83.76% and 84.52% 
with corresponding κ of 0.79 and 0.80), the SVM (81.65% and 
81.24% with corresponding κ of 0.77 and 0.78), and the MLP 
(81.52% and 80.32% with the same κ of 0.77) (Table III). In 
addition, a McNemar z-test that accounts for the pair-wise 
classification comparison further demonstrates that a 
statistically significant increase has been achieved by the 
MRF-CNN over the MLP, SVM, MLP-MRF and the CNN, 
with z-value = 3.27, 3.02, 2.74 and 2.02 in S1 and z-value = 
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3.89, 3.51, 3.06 and 2.05 in S2 respectively, greater than 1.96 at 
95% confidence level (Table IV). Moreover, the class-wise 
classification accuracy of MRF-CNN constantly reports the 
most accurate results highlighted by the bold font in Table III, 
except for the trees in S2 (89.32%) for which accuracy is 
slightly lower than for the CNN (90.42%). In Particular, the 
mapping accuracies of most land covers classified by the 
MRF-CNN were higher than 90%, with the greatest accuracy 
achieved in grassland at both study sites S1 and S2, up to 
93.57% and 92.94%, respectively.  

With respect to the four benchmark classifiers themselves 
(i.e., MLP, SVM, MLP-MRF and CNN), it can be seen from 
Table III that their classification accuracies are ordered as: 
MLP < SVM < MLP-MRF < CNN. For the urban area at S1, the 
accuracy of the MLP-MRF and the SVM is closer to the MLP 
(<2%), but with larger difference (>3%) from the CNN. This is 
further demonstrated by the McNemar z-test in Table IV where 
the CNN is significantly different from the MLP, the SVM and 
the MLP-MRF (z = 3.12, 2.85 and 2.14, respectively), but the 
increase of the MLP-MRF is not significant compared with the 
MLP (z = 1.57) and the SVM (z = 1.68). In the rural area at S2, 
on the contrary, the accuracy of the MLP-MRF is remarkably 
higher (>4%) than that of the MLP and SVM with statistical 
significance (z = 2.12 and 2.04), and only slightly lower than 
that of the CNN (<2%) without significant difference (z = 1.59).  

Figs. 5 and 6 demonstrate visual comparisons of the five 
classification results using three subset images at each study 
site (S1 and S2).  For the Concrete roof class, from the upper 
right of Fig. 5(a), it is clear that the MLP and SVM 
classification results maintain the rectangular geometry of the 
building, but at the same time present very noisy information 
with salt-and-pepper effects in white throughout the Concrete 
roof (see the red circles at the figure). Such noise has been 
largely reduced by the MLP-MRF but still not yet completely 
eliminated (shown by red circle). The noise has been erased 
thoroughly by the CNN. However, some serious mistakes have 
been introduced by misclassifying the asphalt on top of the 
Concrete roof (highlighted by red circle). Fortunately, the 
MRF-CNN removed all of the noise while keeping the 
correctness of the semantic segmentation (yellow circle). A 
similar pattern was found in the middle of Fig. 5(b), where the 
MLP-MRF is less noisy than the MLP and the SVM (red 
circles), and the CNN obtains the smoothest classification 
result, but tends to be under-segmented along the object 
boundaries (highlighted by red circle). The MRF-CNN, in 
contrast, keeps the central regions smooth while preserving the 
precise boundary information (e.g. the rectangularity of the 
concrete roofs and the shadow next to them; shown in yellow 
circle). Similar situations are found in the Clay roof, as shown 
in Fig. 6(a) and 6(c), where the MLP, SVM and MLP-MRF 
introduced some noise in the central region, whereas the CNN 
eradicated them but with obvious geometric distortions. The 
MRF-CNN, surprisingly, removes all the noise while keeping 
the crisp boundaries with accuracy. In terms of the railway class 
illustrated in the middle of Fig. 5(a), it was noisily classified by 
the MLP, the SVM and the MLP-MRF (red circles). This noise 
was eliminated by the CNN as well as the MRF-CNN (yellow 

circles). Moreover, some small Road-or-tracks exemplified by 
Fig. 6(a) and 6(b) were successfully maintained by the MLP, 
SVM, MLP-MRF as well as MRF-CNN, yet omitted by CNN 
due to the convolutional operations.  

For the natural land cover classes, the grassland patch shown 
in Fig. 5(b) is shaped approximately square (see the original 
image in Fig. 5(b)). The MLP and SVM produced noisy results 
confused with the surrounding tree species (shown in red 
circles). A similar pattern was found in the result of the 
MLP-MRF but with less noise (marked by red circle). The 
CNN and the MRF-CNN did not show any noise in the 
classification map. However, the CNN did not maintain the 
squared shape of the grassland (shown in red circle), whereas 
the MRF-CNN successfully kept the geometric fidelity as a 
square shaped object (highlighted by yellow circle). With 
regard to the Trees indicated in Fig. 6(a) and 6(b), the MLP, 
SVM and MLP-MRF produce different noise: the MLP tends to 
misclassify the trees as grassland (shown in red circle), whereas 
the SVM and MLP-MRF sometimes falsely considers the 
leaf-off trees or the shade of trees as the shaded Clay roof 
(marked by red circle). All these misclassifications are rectified 
by the CNN and the MRF-CNN (in yellow circle).  

As for the other land cover classes (e.g., bare soil and 
shadow) the four classification methods do not show significant 
differences, although some increases in classification accuracy 
were still obtained by the MRF-CNN. For example, the bare 
soil shown in Fig. 6(c) is highly influenced by the cars and 
other small objects, which results in over-segmented noise by 
the MLP and the SVM (shown in red circles) or false 
identification into Clay roof by the CNN (marked in red circle). 
The MLP-MRF and the proposed MRF-CNN, fortunately, 
addressed those challenges with smooth yet semantically 
accurate geometric results (in yellow circle).  

TABLE III 
CLASSIFICATION ACCURACY COMPARISON AMONGST MLP, SVM, MLP-MRF, 

CNN AND THE PROPOSED MRF-CNN APPROACH FOR BOURNEMOUTH CITY 

CENTRE (S1) AND THE SUBURBAN AREA (S2) USING THE PER-CLASS MAPPING 

ACCURACY, OVERALL ACCURACY (OA) AND KAPPA COEFFICIENT (Κ). THE 

BOLD FONT HIGHLIGHTS THE GREATEST CLASSIFICATION ACCURACY PER ROW. 
 

Study 

Site 
Class MLP SVM MLP-MRF CNN MRF-CNN 

S1 

Clay roof 91.37% 91.45% 90.58% 88.56% 92.68% 

Concrete roof 68.52% 68.74% 72.23% 74.37% 78.25% 

Metal roof 89.75% 89.52% 90.12% 91.42% 92.23% 

Asphalt 88.59% 88.55% 88.67% 85.98% 91.26% 

Grassland 73.51% 74.28% 76.42% 88.63% 93.57% 

Trees 65.68% 65.79% 72.28% 82.28% 88.53% 

Bare soil 80.46% 80.51% 80.82% 85.23% 90.24% 

Shadow 91.56% 91.23% 91.23% 90.14% 92.16% 

Railway 82.14% 82.35% 83.57% 90.23% 91.56% 

OA 81.52% 81.65% 83.26% 86.37% 90.96% 

κ 0.77 0.77 0.79 0.84 0.89 
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S2 

Clay roof 88.56% 88.27% 86.75% 82.37% 90.16% 

Concrete roof 79.84% 79.62% 81.26% 84.17% 88.27% 

Road-or-track 83.02% 83.36% 83.17% 86.54% 92.38% 

Grassland 72.11% 73.64% 80.57% 88.58% 92.94% 

Trees 79.31% 79.24% 85.26% 90.42% 89.32% 

Bare soil 76.18% 76.42% 78.25% 81.36% 88.75% 

Shadow 89.42% 89.56% 89.42% 88.25% 89.58% 

OA 80.32% 81.24% 84.52% 86.39% 89.76% 

κ 0.77 0.78 0.80 0.83 0.88 

 

 
Fig. 5. Three typical image subsets (a, b and c) in study site S1 with their 

classification results. Columns from left to right represent the original images 
(R G B bands), the MLP, the SVM, the MLP-MRF, the CNN, and the 

MRF-CNN classification results. The red and yellow circles denote incorrect 
and correct classification, respectively. 

 
Fig. 6. Three typical image subsets (a, b and c) in study site S2 with their 

classification results. Columns from left to right represent the original images 
(R G B bands), the MLP, the SVM, the MLP-MRF, the CNN, and the 

MRF-CNN classification results. The red and yellow circles denote incorrect 
and correct classification, respectively. 

TABLE IV 
MCNEMAR Z-TEST COMPARING THE PERFORMANCE OF THE FOUR CLASSIFIERS 

FOR TWO STUDY SITES S1 AND S2. SIGNIFICANTLY DIFFERENT ACCURACIES 

WITH CONFIDENCE OF 95% (Z-VALUE > 1.96) ARE INDICATED BY *. 
 

Study 

sites 
Classifiers 

McNemar Z-test 

MLP SVM MLP-MRF CNN MRF-CNN 

S1 

MLP —     

SVM 1.32 —    

MLP-MRF 1.57 1.68 —   

CNN 3.12* 2.85* 2.14* —  

MRF-CNN 3.27* 3.02* 2.74* 2.02* — 

S2 

MLP —     

SVM 1.66 —    

MLP-MRF 2.12* 2.04* —   

CNN 2.42* 2.15* 1.59 —  

MRF-CNN 3.89* 3.51* 3.06* 2.05* — 

 

Experiment 2: The proposed MRF-CNN and its 
sub-modules (MLP, MLP-MRF and CNN) as well as other 
benchmark methods were validated on the Vaihingen and 
Potsdam semantic segmentation datasets. Table V and VI 
present the classification accuracies of all four methods 
together with the four benchmark methods (SVM, FCN, 
SegNet and Deeplab-v2). The MRF-CNN achieved the largest 
OA of 88.4% and 89.4% for the two datasets, larger than its 
sub-modules (86.2% and 86.5%, 82.1% and 83.7%, and 81.4% 
and 82.1% OA of CNN, MLP-MRF and the MLP, 
respectively). The MRF-CNN also demonstrates greater 
accuracy than the benchmarks, including the Deeplab-v2 with 
an OA of 86.7% and 88.2%, the FCN with an OA of 85.9% and 
86.2% [52], the SegNet with an OA of 82.8% and 83.6% [24], 
and the SVM with an OA of 81.7% and 82.4%. 

The per-class mapping accuracy (Table V and VI) shows the 
effectiveness of the proposed MRF-CNN for the majority of 
classes. Significant increases in accuracy are realized for the 
classes of Impervious surfaces, Low vegetation, Building and 
Car relative to the individual classifier CNN and MLP-MRF, 
with an average large margin of 3.9%, 4%, 5.55% and 8.75%, 
respectively. The Tree class accuracy, however, was less 
significantly increased compared to the CNN, with small 
margins of 0.8% and 0.6%. In terms of benchmark methods, the 
MRF-CNN demonstrates higher accuracy for the majority of 
classes, except for the Car class (79.6% and 80.3%), for which 
the accuracy is less than for the state-of-the-art Deeplab-v2 
(84.7% and 83.9%).  

TABLE V 
PER-CLASS ACCURACY AND OVERALL ACCURACY (OA) FOR THE MLP, SVM, 

MLP-MRF, CNN AND THE PROPOSED MRF-CNN APPROACH, AS WELL AS 

BASELINE METHODS, FOR THE VAIHINGEN DATASET. THE BOLD FONT 

HIGHLIGHTS THE LARGEST CLASSIFICATION ACCURACY PER ROW. 
 

Method 
Imp 

Surf 

Build

ing 

Low 

Veg 
Tree Car OA 

MLP 83.5% 82.1% 68.3% 86.1% 64.2% 81.4% 

SVM 82.7% 82.4% 69.2% 84.3% 66.5% 81.7% 

MLP-MRF 84.3% 83.6% 72.7% 83.9% 71.7% 82.1% 

CNN 86.2% 89.2% 76.9% 86.9% 69.7% 86.2% 

FCN [52] 87.1% 91.8% 75.2% 86.1% 63.8% 85.9% 

SegNet [24] 82.7% 89.1% 66.3% 83.9% 55.7% 82.8% 

Deeplab-v2 
[53] 

88.5% 93.3% 73.9% 86.9% 84.7% 86.7% 

MRF-CNN 89.7% 93.8% 80.1% 87.7% 79.6% 88.4% 

 

 
Fig. 7. Full tile prediction for No. 30. Legend on the Vaihingen dataset: 

white=impervious surface; blue=buildings; cyan=low vegetation; green=trees; 



ZHANG et al. VPRS-based regional decision fusion of CNN and MRF classifications for VFR remotely sensed images 10 

yellow=cars. (a) True Orthophoto; (b) Normalised DSM; (c) Ground 
Reference, ground reference labelling; (d, e, f, g) the inference result from 
MLP, SVM, MLP-MRF, CNN, respectively; (f) the proposed MRF-CNN 

classification result. The red and dashed circles denote incorrect and correct 
classification, respectively.  

 

Figure 7 and 8 illustrate full tile predictions of Vaihingen 
dataset (No. 30) and Potsdam dataset (No. 05_12), with red and 
dashed circles highlighting broadly incorrect and correct 
classifications, respectively. Both MLP and SVM 
classifications result in salt-and-pepper effects due to 
pixel-level differentiation with subtle differences between them 
(e.g. red circles shown in Fig. 7(d) and 7(e)). The MLP-MRF 
(Fig. 7(f) and 8(f)) improves on the MLP (Fig. 7(d) and 8(d)) 
with homogeneous blocks and crisp boundary differentiation. 
This can be seen at the lower right side of the Building that has 
reduced salt-and-pepper effect (dashed circle in Fig. 7(d) and 
8(d)). The CNN acquires the greatest smoothness (Fig. 7(g) and 
8(g)) thanks to higher-level spatial feature representation. 
However, it makes some blunders by misclassifying Building 
as Car (red circles in Fig. 7(g) or falsely producing some 
building edge artefacts as Impervious Surface (the red circle in 
Fig. 8(g)). The MRF-CNN (Fig. 7(h) and 8(h)), solved the 
aforementioned problems (all dashed circles) by taking 
advantage of the rough set uncertainty partition as well as the 
subsequent decision fusion. 

TABLE VI 
PER-CLASS ACCURACY AND OVERALL ACCURACY (OA) FOR THE MLP, SVM, 

MLP-MRF, CNN AND THE PROPOSED MRF-CNN APPROACH, AS WELL AS 

BASELINE METHODS, FOR THE POTSDAM DATASET. THE BOLD FONT 

HIGHLIGHTS THE LARGEST CLASSIFICATION ACCURACY PER ROW. 
 

Method 
Imp 

Surf 

Build

ing 

Low 

Veg 
Tree Car OA 

MLP 84.3% 81.3% 71.5% 85.6% 70.4% 82.1% 

SVM 83.6% 81.8% 72.2% 84.3% 70.9% 82.4% 

MLP-MRF 85.8% 83.6% 73.4% 84.8% 72.3% 83.7% 

CNN 86.5% 88.7% 76.7% 87.6% 72.7% 86.5% 

FCN [52] 85.5% 90.6% 75.8% 86.1% 69.8% 86.2% 

SegNet [24] 82.9% 89.5% 73.1% 84.3% 70.5% 83.6% 

Deeplab-v2 
[53] 

88.7% 93.6% 77.2% 86.5% 83.9% 88.2% 

MRF-CNN 90.8% 95.2% 81.5% 88.2% 80.3% 89.4% 

 

 
Fig. 8. Full tile prediction for No. 05_12. Legend on the Potsdam dataset: 

white=impervious surface; blue=buildings; cyan=low vegetation; green=trees; 
yellow=cars. (a) True Orthophoto; (b) Normalised DSM; (c) Ground 

Reference, ground reference labelling; (d, e, f, g) the inference result from 
MLP, SVM, MLP-MRF, CNN, respectively; (f) the proposed MRF-CNN 

classification result. The red and dashed circles denote incorrect and correct 
classification, respectively.  

E. Function of the VPRS fusion decision parameter β and step 

The VPRS fusion decision parameters (β and step) were 
analysed separately to investigate each of their contributions in 
describing and integrating the classification results. As 
illustrated by Fig. 9(a) and 9(b), relations between the fused 
classification accuracy and each of the parameters (while fixing 
the other) can be plotted. Generally, there are similar trends in 
terms of the influence of two parameters on classification 
accuracy: the accuracy increases initially until reaching the 
maximum accuracy at β = 0.1 and step around 0.075-0.1, and 
then decreases constantly, along with further increases of the 
inclusion error β (Fig. 9(a)) and the atomic granule step (Fig. 
9(b)) respectively. This means that both β and step can impact 
the accuracy. However, compared with the step, the change in 
accuracy caused by β is greater accompanied by greater 
accuracy variation, indicating that β is the crucial factor for 
VPRS parameter setting. It can be imagined that a large value 
of β can wrongly take the CNN’s problematic boundary 
information as positive regions, whereas the “should-be” 
positive regions can be eliminated by too small a value of β. In 
terms of step, the smaller its value (i.e. a finer information 
granularity), the larger the test samples for the VPRS will be 
required, to provide enough samples within each information 
granularity level. An atomic granularity should, therefore, 
ideally match with the sampling density level; otherwise, it will 
reduce the classification accuracy (Fig. 9(b)). 

 

 
Fig. 9. Accuracies of VPRS (a) influenced by β when fixing the step as 0.075, 

(b) influenced by step when fixing the β as 0.1 

IV. DISCUSSION 

Due to the spatial and spectral complexity within VFSR 
imagery, any classification model prediction is inherently 
uncertain, including the advanced CNN classifier. Thus, for the 
integration of classifiers, it would be of paramount importance 
to discriminate the less uncertain and more uncertain results of 
each individual classification. A VPRS based regional fusion 
decision strategy was, thus, proposed to integrate the 
spectral-contextual-based MLP-MRF classifier with precise 
boundary partitions and the CNN classifier with spatial feature 
representations for high accuracy classification of VFSR 
remotely sensed imagery. The proposed MRF-CNN regional 
decision fusion method takes advantage of the merits of the two 
individual classifiers and overcomes their respective 
shortcomings as discussed below. 

A. Characteristics of MLP-MRF classification 

The MLP-MRF classifier is constructed based on the 
pixel-based MLP as its conditional probability and models the 
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prior probability using its contextual neighbourhood 
information to achieve a certain amount of smoothness [14]. 
That is, the MLP-MRF depends primarily on the spectral 
feature differentiation from the MLP with consideration of its 
spatial connectivity/smoothness [56]. Such characteristics 
result in similar classification performance to the result of MLP 
but with less salt and pepper effect. One positive attribute of the 
MLP-MRF, inherited from the non-parametric learning 
classifier MLP, is the ability to maintain precise boundaries of 
some objects with high accuracy and fidelity. In particular, the 
classification accuracy of a pixel in the MLP model is not 
affected by the relative position (e.g. lying on or close to 
boundaries) of the object it belongs to, as long as the 
corresponding spectral space is separable. Some land cover 
classes (e.g. Clay roof, Metal roof and Shadow), with salient 
spectral properties that are spectrally exclusive to other classes, 
are therefore not only accurately classified with high 
classification accuracies (>90% overall accuracy), but also with 
less noise in comparison with the standard MLP and SVM 
classification results. At the same time, the MLP-MRF can 
elaborately identify some components of an object, for 
example, the VeluxTM windows of a building (shown by yellow 
circle in Fig. 6(c)), indicating that the object and its sub-objects 
might be possibly mapped accurately in future. However, the 
classification accuracy increase of the MLP-MRF over the 
MLP is not substantial or less remarkable, with just a 2-3% 
accuracy increase (see Table III in experiment 1 and Table V in 
experiment 2). In comparison with the CNN, the MLP-MRF 
usually demonstrates a much larger intra-class variation, which 
can be demonstrated by the fact that the boxplots of confidence 
values are larger when gradually trusting the MLP-MRF (Fig. 
4). This is mainly because the MLP-MRF utilizes the spectral 
information in the classification process without fully 
exploiting the abundant spatial information appearing in the 
VFSR imagery (e.g. texture, geometry or spatial arrangement) 
[57]. Such deficiencies often lead to unsatisfactory 
classification performance in classes with spectrally mixed but 
spatially distinctive characteristics (e.g., the confusion and 
misclassification between Trees and Grassland or Low 
Vegetation that are spectrally similar, the severe salt and pepper 
effects on railway with linear textures, etc.). 

B. Characteristics of CNN classification 

Spatial features in remotely sensed data like VFSR imagery 
are intrinsically local and stationary that represent a coherent 
spatial pattern [58]. The presence of such spatial features are 
detected by the convolutional filters within the CNN, and well 
generalized into increasingly abstract and robust features 
through hierarchical feature representations. Therefore, the 
CNN shows an impressive stability and effectiveness in VFSR 
image classification [21]. Especially, classes like Concrete roof 
and Road-or-track that are difficult to distinguish from their 
backgrounds with only spectral features at pixel level, are 
identified with relatively high accuracies. In addition, classes 
with heavy spectral confusion in both study sites (e.g. Trees and 
Grassland), are accurately differentiated due to their obvious 
spatial pattern differences; for example, the texture of tree 

canopies is generally rougher than that of grassland, which is 
captured by the CNN through spatial feature representations. 
Moreover, the convolutional filters applied at each layer within 
the CNN framework remove all of the noise that is smaller than 
the size of the image patch, which leads to the smoothest 
classification results compared with the MLP, the SVM and the 
MLP-MRF (see Figure 5-8). This is also demonstrated by 
Figure 4, where the boxplots of the CNN are much narrower 
than those of the MLP-MRF.  

As discussed above, the CNN classifier demonstrates 
obvious superiority over the spectral-contextual based 
MLP-MRF (and the pixel-based MLP and SVM classifiers) for 
the classification of the spatially and spectrally complex VFSR 
remotely sensed imagery. However, according to the “no free 
lunch” theorem [59], any elevated performance in one aspect of 
a problem will be paid for through others, and the CNN is no 
exception. the CNN also demonstrates some deficiencies for 
boundary partition and small feature identification, which is 
essential for VFSR image classification with unprecedented 
spatial detail. Such a weakness occurs mainly because of 
over-smoothness that leads to boundary uncertainties with 
small useful features being falsely erased, somehow similar to 
morphological or Gabor filter methods [60], [61]. For example, 
the human-made objects in urban scenes like buildings and 
asphalt are often geometrically enlarged with distortion to some 
degree (See Fig. 5(b) and 6(c)), and the impervious surfaces 
and the building are confused with cars being enlarged or 
misclassified (Fig. 7(e)). As for natural objects in rural areas 
(S2), edges or porosities of a landscape patch are simplified or 
ignored, and even worse, linear features like river channels or 
dams that are of ecological importance, are erroneously erased 
(e.g. Fig. 5(b)). Besides, certain spectrally distinctive features 
without obvious spatial patterns are poorly differentiated. For 
example, some Concrete roofs are wrongly identified as 
Asphalt as illustrated in Fig. 5(c). Previous work also found that 
the CNN was inferior to some global low level feature 
descriptors like Border/ Interior Pixel Classification when 
dealing with a remote sensing image that has abundant spectral 
but lacks spatial information [62]. However, the uncertainties 
in the CNN classification demonstrate regional distribution 
characteristics, either along the object boundaries (e.g. Fig. 
5(b)) or entire objects (e.g. Fig. 5(c)). These provide the 
justification of regional decision fusion to further improve the 
CNN for VFSR image classification. 

C. The VPRS based MRF-CNN fusion decision 

This paper proposed to explore rough set theory for 
region-based uncertainty description and classification decision 
fusion using VFSR remotely sensed imagery. The classification 
uncertainties in the CNN results were quantified at a regional 
level, with each region determined as positive or non-positive 
(boundary and negative) regions by matching the correctness of 
a group of samples in the Test Sample T2. Nevertheless, in the 
standard rough set, most of the actual positive regions are 
occupied by boundary (i.e. non-positive) regions due to the 
huge uncertainty and inconsistency in VFSR image 
classification results. Such issues limit the practical application 
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of the standard rough set because of its ignorance of the desired 
positive regions. A variable precision rough set (VPRS) is 
proposed for uncertainty description and classification 
integration by incorporating a small level of inclusion error (i.e. 
parameter β). The VPRS theory is used here as a spatially 
explicit framework for regional decision fusion, where the 
non-positive regions in this research represent the spatial 
uncertainties in the CNN classification result. For those 
positive regions of CNN classifications, including the very 
close to 100% correct classifications, are identified and 
utilized; whereas the rest (i.e. the non-positive) regions are 
replaced by the MLP-MRF results with crisp and accurate 
boundary delineation.  

To integrate the CNN and the MLP-MRF classifier, the CNN 
was served as the base classifier to derive the classification 
confidence, considering its superiority in terms of classification 
accuracy and the regional homogeneity of classification results. 
Therefore, the regional decision fusion process is based on the 
CNN classification results, and the MLP-MRF is only trusted at 
the regions where the CNN is less believable (i.e. the 
non-positive regions). Such a fusion decision strategy achieves 
an accurate and stable result with the least variation in 
accuracy, as illustrated by the narrow box in Figure 4. The 
complete correctness of the MLP-MRF results at the 
non-positive regions are not guaranteed, but one thing is 
certain: the corresponding MLP-MRF results are much more 
accurate than those of the CNN. In fact, while the CNN 
accurately classifies the interiors of objects with spatial feature 
representations, the MLP-MRF could provide a smooth, but 
also crisp boundary segmentation with high fidelity [56]. These 
supplementary characteristics inherent in the MLP-MRF and 
CNN, are captured well by the proposed VPRS-based 
MRF-CNN regional decision fusion approach. As shown by 
Figure 4, although the values of the CNN confidence map 
decrease gradually from the centre to its boundary (i.e. the edge 
between the positive and non-positive regions, at 0.3 marked by 
the red vertical line), the classification accuracies rise 
constantly until reaching the maximum accuracy. For these 
MLP-MRF results in the non-positive regions, the 
corresponding non-positive regions (i.e. the problematic areas 
of the final fusion decision results) can be further clarified. 
Moreover, additional improvement might be obtained by 
means of imposing extra expert knowledge and/or combining 
other advanced classifiers (e.g. SVM, Random Forest, etc.). 

In summary, the proposed method for classification data 
description and integration is, in fact, a general framework 
extensively applicable to any classification algorithms (not just 
for the mentioned individual classifiers), and to any remote 
sensing images (not just for the VFSR remotely sensed 
imagery). The general approach, thus, addresses the complex 
problem of remote sensing image classification in a flexible, 
automatic and active manner. 

The proposed MRF-CNN relies on an efficient and relatively 
limited CNN network with just four layers (c.f. state-of-the-art 
networks, such as Deeplab-v2, built on extremely deep 
ResNet-101). Nevertheless, it still achieves comparable and 
promising classification performance with the largest accuracy 

overall. This demonstrates that the proposed method has 
practical utility, especially when facing the problems of limited 
computational power with insufficient training data, which are 
commonly encountered in the remote sensing domain when 
building a deep CNN network.  

V. CONCLUSION 

Spatial uncertainty is always a key concern in remote sensing 
image classification, which is essential when facing the 
spatially and spectrally complex VFSR remotely sensed 
imagery. Characterising the spatial distribution of uncertainties 
has great potential for practical application of the data. In this 
paper, a novel variable precision rough set (VPRS) based 
regional fusion decision between CNN and MRF was presented 
for the classification of VFSR remotely sensed imagery. The 
VPRS model quantified the uncertainties in CNN classification 
of VFSR imagery by partitioning the result into spatially 
explicit granularities that represent positive regions (correct 
classifications) and non-positive regions (uncertain or incorrect 
classifications). Such a region-based fusion decision approach 
reflects the regional homogeneity of the CNN classification 
map. The positive regions were directly trusted by the CNN, 
whereas non-positive regions were rectified by the MLP-MRF 
in consideration of their complementary behaviour in spatial 
representation. The proposed regional fusion of MRF-CNN 
classifiers consistently outperformed the standard pixel-based 
MLP and SVM, spectral-contextual based MLP-MRF as well 
as contextual-based CNN classifiers, and increased 
classification accuracy above state-of-the-art methods when 
applied to the ISPRS Semantic Labelling datasets. Therefore, 
this VPRS-based regional classification integration of CNN 
and MRF classification results provides a framework to achieve 
fully automatic and effective VFSR image classification. 
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